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Abstract: We explore the role of matter effect in the evolution of neutrino oscillation
parameters in the presence of lepton-flavor-conserving and lepton-flavor-violating neutral-
current non-standard interactions (NSI) of the neutrino. We derive simple approximate
analytical expressions showing the evolution of mass-mixing parameters in matter with
energy in the presence of standard interactions (SI) and SI+NSI (considering both positive
and negative values of real NSI parameters). We observe that only the NSI parameters
in the (2,3) block, namely εµτ and (γ − β) ≡ (εττ − εµµ) affect the modification of θ23.
Though all the NSI parameters influence the evolution of θ13, εeµ and εeτ show a stronger
impact at the energies relevant for DUNE. The solar mixing angle θ12 quickly approaches
to ∼ 90◦ with increasing energy in both SI and SI+NSI cases. The change in ∆m2

21,m
is quite significant as compared to ∆m2

31,m both in SI and SI+NSI frameworks for the
energies relevant for DUNE baseline. Flipping the signs of the NSI parameters alters the
way in which mass-mixing parameters run with energy. We demonstrate the utility of our
approach in addressing several important features related to neutrino oscillation such as:
a) unraveling interesting degeneracies between θ23 and NSI parameters, b) estimating the
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resonance energy in presence of NSI when θ13 in matter becomes maximal, c) figuring out
the required baselines and energies to have maximal matter effect in νµ → νe transition in
the presence of different NSI parameters, and d) studying the impact of NSI parameters
εµτ and (γ − β) on the νµ → νµ survival probability.
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1 Introduction and motivation

The phenomenon of three-flavor neutrino oscillation is governed by the six fundamental
mass-mixing parameters [1]: a) three mixing angles: θ12, θ13, θ23, b) two independent mass-
squared differences: ∆m2

21 ≡ m2
2 −m2

1, ∆m2
31 ≡ m2

3 −m2
1, and c) one Dirac CP phase δCP.

After the discovery of neutrino oscillation at the Super-Kamiokande (Super-K) experiment
in 1998 [2], fantastic data from the world-class accelerator, atmospheric, reactor, and solar
neutrino experiments are pouring in day-by-day to commence the era of precision neutrino
measurement science [3–6], which will certainly provide crucial insights on the possible
origin of neutrino mass and mixing [7–9].
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Marvelous data from several ongoing experiments such as Super-K [10], IceCube-
DeepCore [11], ANTARES [12], Daya Bay [13], RENO [14], Tokai to Kamioka (T2K) [15, 16],
and NuMI Off-axis νe Appearance (NOνA) [17] have been improving our knowledge about
the neutrino oscillation parameters beyond expectations. Because of this fascinating progress,
we have been able to build a robust, simple, three-flavor neutrino oscillation paradigm
which successfully accommodate most of the data [3–6].

Future high-precision neutrino oscillation experiments such as the Deep Underground
Neutrino Experiment (DUNE) [18, 19], Tokai to Hyper-Kamiokande (T2HK) [20], Tokai to
Hyper-Kamiokande with a second detector in Korea (T2HKK) [21], European Spallation
Source ν Super Beam (ESSνSB) [22], India-based Neutrino Observatory (INO) [23–25],
Jiangmen Underground Neutrino Observatory (JUNO) [26], and THEIA [27] aim to deter-
mine the oscillation parameters with a precision around a few %. Therefore, these next
generation experiments are potentially sensitive to various sub-leading beyond the Standard
Model (BSM) effects [28, 29]. One such interesting BSM scenario is non-standard neutrino
interactions (NSI) [30–46] which is the main focus of this paper.

Analytical understanding of neutrino oscillation probabilities over a wide range of
energies and baselines becomes non-trivial in the presence of standard interactions (SI).1 Now,
on top of that if NSI exist in Nature then the task becomes even more complex. Assuming
the line-averaged constant Earth matter density for a given baseline, several authors have
derived approximate analytical expressions for the neutrino oscillation probabilities2 in the
presence of SI [50–61] and SI+NSI [62–70].

To obtain a better understanding of the neutrino oscillation probabilities as functions of
baseline L and/or neutrino energy E in the presence of SI or SI+NSI, it is quite important
in the first place to have a clear knowledge on how various mixing angles and mass-squared
differences get modified in matter with energy for a given baseline. Simple approximate
analytical expressions showing the evolution of mass-mixing parameters in matter with
energy in the presence of SI and SI+NSI allow us to address several important features that
show up in neutrino oscillation in a more general and transparent fashion. This simple and
more intuitive way to understand the neutrino oscillation phenomena will likely pave a way
to disentangle the various non-trivial correlations/degeneracies that may be present among
the various oscillation and NSI parameters. This paper addresses several pressing issues
along this direction.

There exist several studies in the literature investigating how the presence of SI and
NSI affect the evolution of effective neutrino oscillation parameters (the mixing angles,
mass-squared differences, and CP-violating phase) in matter with energy, and eventually
how they modify the oscillation probabilities [55, 57, 59–61, 68–78]. In refs. [71, 72, 74, 75],

1They appear into the picture due to the Standard Model (SM) W -exchange interactions between the
ambient matter electrons and the propagating electron neutrinos, which is popularly known as the ‘MSW
effect’ [30, 47, 48].

2In ref. [49], the authors performed a detailed comparative study between different expansions for neutrino
oscillation probabilities in the presence of SI in matter. They also studied the accuracy and computational
efficiency of several exact and approximate expressions for neutrino oscillation probabilities in the context of
long-baseline (LBL) experiments.
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the authors diagonalize analytically the three-flavor propagation Hamiltonian in constant-
density matter to obtain the exact expressions for the modified mass-mixing parameters
in the presence of SI. The authors in ref. [73] make use of the Cayley-Hamilton approach
with a plane wave approximation to derive the expressions for the modified mass-mixing
parameters without performing the actual diagonalization of the Hamiltonian. They also
briefly discuss how these oscillation parameters get modified with the strength of SI. In
ref. [55], the author diagonalizes the neutrino propagation Hamiltonian in the presence of
SI by applying successive rotations and obtain the expressions for the modified mass-mixing
parameters. In ref. [75], the authors make use of the relations between the Jarlskog invariants
in vacuum and matter (Naumov-Harrison-Scott identities [79–81]) to derive the expressions
for modified mass-mixing parameters in the presence of SI in constant-density matter. In
ref. [69], the authors adopt a perturbative approach towards the SI and NSI effects and
discuss the possible modifications of the mass-mixing parameters. In refs. [76–78], the
authors apply the techniques of renormalization-group equations (RGEs) to understand how
the neutrino mass-mixing parameters evolve in the presence of SI in constant-density matter.
In most of these studies, the authors extract the expressions for modified mass-mixing
parameters in order to obtain approximate analytical expressions for the neutrino oscillation
probabilities. Using the Jacobi method [82], the authors in ref. [59] show that the matter
effect on neutrino oscillation due to SI could be assimilated into the evolution of the effective
mixing angles θ12 and θ13, and the effective mass-squared differences in matter as functions
of the Wolfenstein matter term 2

√
2GFNeE, while the effective values of θ23 and δCP

remain unaltered. Here, GF is the Fermi muon decay constant, Ne is the ambient electron
number density, and E is the energy of the neutrino. They obtain the approximate neutrino
oscillation probabilities by simply replacing the mass-mixing parameters in the expressions
for the probabilities in vacuum with their modified counterparts. Similar approach is
adopted by the authors in ref. [70] to show the evolution of mass-mixing parameters in the
presence of lepton-flavor-conserving, non-universal NSI of the neutrino.

In the present work, we perform successive rotations to almost diagonalize the propaga-
tion Hamiltonian in the presence of SI and SI+NSI and derive simple approximate analytical
expression for the effective mass-mixing parameters in constant-density matter. While
deriving our expressions, we retain the terms of all orders in sin θ13 and α (the ratio of solar
and atmospheric mass-squared differences, ∆m2

21/∆m2
31) which are quite important in light

of the large value of θ13. In our study, we also entertain all possible allowed values of θ23
in vacuum. As far as NSI are concerned, we consider all possible lepton-flavor-conserving
and lepton-flavor-violating neutral-current (NC) NSI at-a-time in our analysis which affect
the propagation of neutrino in matter. We discuss many salient features of the evolution
of oscillation parameters with energy for some benchmark choices of baseline and study
in detail how these mass-mixing parameters get affected by various combinations of NSI
parameters. Our simple analytical expressions enable us to explore the possible degeneracies
between θ23 (which still has large uncertainty) and NSI parameters for a given choice of
neutrino mass ordering in a simple manner. For the first time, we show how the famous
MSW-resonance condition (θ13 in matter becomes 45◦) [30, 47, 48, 83] gets altered in the
presence of NC-NSI. We demonstrate how the simple approximate analytical expressions
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for the modified oscillation parameters in matter help us to estimate the baselines and
energies for which we have the maximal matter effect in νµ → νe oscillation channel in
the presence of various NSI parameters. For simplicity, we perform our calculations in a
CP-conserving scenario where the standard Dirac CP phase δCP and the phases associated
with the lepton-flavor-violating NSI parameters are assumed to be zero. We consider both
positive and negative values of real NSI parameters in our analysis.

We plan this paper in the following fashion. We start section 2 with a brief discussion
on the theoretical formalism of NSI. This is followed by a short summary of the existing
bounds on the NC-NSI. In section 3, we describe our method of approximately diagonalizing
the effective neutrino propagation Hamiltonian in the presence of all possible NC-NSI in
constant-density matter. Subsequently, we derive the expressions for the modified mass-
mixing parameters. In section 4, we study the evolution of θ23, θ13, and θ12 in matter with
energy in detail for some benchmark choices of baseline and analyze the role of various NSI
parameters on their evolution. We illustrate the impact of SI and various NSI parameters
on the variation of two modified mass-squared differences in section 5. In section 6, using
the expressions for modified mass-mixing parameters, we estimate for the first time a simple
and compact expression for the θ13-resonance energy in the presence of all possible NC-NSI
parameters and identify the NSI parameters that significantly affect the θ13-resonance
energy. We devote section 7 to exhibit the utility of our approach in determining the
baselines and energies for which we can achieve the maximal matter effect in νµ → νe
transition in the presence of various NSI parameters. Section 8 describes how the NSI
parameters in the (2,3) block affect νµ → νµ disappearance channel. Finally, we summarize
and draw our conclusions in section 9. In appendix A, we perform a comparison between
various oscillation probabilities obtained using our approximate analytical expressions and
exact numerical calculations. In appendix B, we derive approximate analytical expressions
showing the evolution of the oscillation parameters in matter in the presence of SI and
SI+NSI considering non-zero values of Dirac CP phase δCP. We also compare νµ → νe
oscillation probabilities obtained using our approximate analytical expressions and full
numerical results from the GLoBES software in the presence of NC-NSI parameters (εeµ,
εeτ ) and non-zero values of δCP. In appendix C, we discuss in detail how we estimate
various oscillation probabilities considering a four-layered profile of Earth.

2 Theoretical formalism of NSI

NSI which arise naturally in most of the neutrino mass models can be of charged-current
(CC) or neutral-current (NC) in nature. Both of them can be described with a dimension-six
operator in the four-fermion effective Lagrangian [30, 34, 40],

LNC-NSI = −2
√

2GF
∑

α,β,f,C

εfCαβ (ν̄αγµPLνβ)(f̄γµPCf), (2.1)

LCC-NSI = −2
√

2GF
∑

α,β,f ′,f,C

εff
′C

αβ (ν̄αγµPLlβ)(f̄ ′γµPCf), (2.2)

where, PC indicates the chiral projection operators PL or PR. The dimensionless coefficients
εfCαβ in eq. (2.1) denote the strength of NC-NSI between the leptons of flavors α and β
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(α, β = e, µ, τ ), and the first generation fermions f ∈ {e, u, d}. In eq. (2.2), the dimensionless
coefficients εff

′C
αβ indicate the strength of CC-NSI between the leptons of α and β flavors

(α, β = e, µ, τ ), and the first generation fermions f 6= f ′ ∈ {u, d}. The hermiticity of these
interactions imposes the following conditions:

εfCαβ = (εfCβα )∗ , εff
′C

αβ = (εff
′C

βα )∗ . (2.3)

The CC-NSI modify the production and detection of neutrinos and may also lead to
charged-lepton flavor violation. The NC-NSI, on the other hand, affect the propagation
of neutrinos. Since the coupling strength εfCαβ enters into the Lagrangian only through
vector coupling, we can write εfαβ = εfLαβ + εfRαβ . It is worthwhile to mention here that
models employing scalar mediators [84] or other spin structures [85] are also available in the
literature. Beyond a simplified model approach, many UV complete models for NSI have
also been explored (see, for instance, [86–90]). For a recent comprehensive review of the
NSI, see [43]. Using eqs. (2.1) and (2.2) and the well-known relation GF /

√
2 ' g2

W /8m2
W , it

can be shown that the effective NSI parameters (ε) are proportional to m2
W /m

2
X [62, 65, 91],

where gW is the coupling constant of the weak interaction, mW is the W boson mass
(' 80GeV ∼ 0.1TeV), and mX is the mass scale where NSI are generated. Thus it can
easily be observed that for mX ∼ 1TeV, the NSI parameters are of the order of 10−2.

In the present work, we concentrate on the NC-NSI which appear during neutrino
propagation through matter. Here, the effective NSI parameter can be written in the
following fashion

εαβ ≡
∑

f=e,u,d
εfαβ

Nf

Ne
≡

∑
f=e,u,d

(
εfLαβ + εfRαβ

) Nf

Ne
. (2.4)

Here, Nf is the first generation (e, u, d) fermion number density in the ambient medium.
The effective Hamiltonian for neutrinos propagating in matter in presence of all the

lepton-flavor-conserving and lepton-flavor-violating NC-NSI can be written as

Hf = 1
2E

U
0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

U † + 2EVCC

1 + εee εeµ εeτ
ε∗eµ εµµ εµτ
ε∗eτ ε∗µτ εττ


 , (2.5)

where, ∆m2
21(≡ m2

2 − m2
1) and ∆m2

31(≡ m2
3 − m2

1) are the solar and atmospheric mass-
squared differences, respectively. U is the 3× 3 unitary Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix in vacuum [92–94], which can be parametrized using the three mixing
angles: θ12, θ23, θ13, and one Dirac-type CP phase δCP (ignoring Majorana phases) in the
following fashion

U = R23(θ23, 0) R13(θ13, δCP) R12(θ12, 0) . (2.6)

In eq. (2.5), VCC is the standard W -exchange interaction potential in matter which can be
expressed as

VCC =
√

2GFNe ≈ 7.6× Ye × 10−14
[

ρ

g/cm3

]
eV , (2.7)
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NSI parameters 2σ Bounds
εeµ [−0.372,+0.301]
εeτ [−1.657,+0.732]
εµτ [−0.076,+0.058]

β (εµµ − εee) [−2.861,+0.144]
γ (εττ − εee) [−2.892,+0.836]

Table 1. Bounds on the effective NC-NSI parameters from the neutrino oscillation experiments at
2σ confidence level. Values of εfαβ in eq. (2.9) is taken from the global fit analysis [95].

where Ye = Ne/(Np +Nn) is the relative electron number density of the medium and ρ is
the Earth matter density. For the Earth matter which is the focus of our paper, it is safe
to assume neutral and isoscalar matter, i.e. Nn ≈ Np = Ne. Under these assumptions, the
relative electron number density inside the Earth turns out to be Ye ≈ 0.5.

The (1,1) element of the effective Hamiltonian Hf (see eq. (2.5)) contains the term
εeeVCC which gets simply added to the standard matter effect term. Since it can mimic
the role of standard interaction, it is a wise choice to subtract a common physical phase
I(≡ εeeVCC) from the right-hand side (r.h.s.) of eq. (2.5). Then, the effective Hamiltonian
takes the form

Hf = ∆31

U
0 0 0

0 α 0
0 0 1

U † + Â

 1 εeµ εeτ
ε∗eµ β εµτ
ε∗eτ ε

∗
µτ γ


 , (2.8)

where, ∆31 ≡ ∆m2
31/2E, α ≡ ∆m2

21/∆m2
31, Â ≡ 2EVCC/∆m2

31. We define the effective
lepton-flavor-conserving diagonal NC-NSI parameters as β ≡ εµµ − εee and γ ≡ εττ − εee.

We now briefly discuss the present constraints on the effective NC-NSI parameters
obtained from the global fit of neutrino oscillation data [95]. Using eq. (2.4), we can write,

εαβ = εpαβ + Ynε
n
αβ

= (2 + Yn)εuαβ + (1 + 2Yn)εdαβ , (2.9)

where, Yn is the average neutron/proton ratio inside the Earth. According to ref. [95],
Yn = 1.051. Here, we have taken into account the fact that Nu = 2Np + Nn and Nd =
Np + 2Nn, which in turn imply that εpαβ = 2εuαβ + εdαβ and εnαβ = εuαβ + 2εdαβ . Note that the
contribution from εeαβ is not considered in the global 3ν analysis in the presence of NC-NSI
parameters [95]. Now, we use the bounds (2σ) on εuαβ and εdαβ from the global fit analysis [95]
and list the subsequent 2σ bounds on the effective NSI parameters εαβ in table 1.

3 Diagonalization of the effective Hamiltonian in the presence of NSI

Here, we derive the approximate analytical expressions for the fundamental oscillation
parameters in matter considering all possible lepton-flavor-conserving and lepton-flavor-

– 6 –
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violating NC-NSI3 which are real i.e., all the phases associated with the non-diagonal
elements of the NSI matrix are assumed to be zero.

In order to simplify the subsequent calculations, here, we perform our analysis in the
CP-conserving scenario i.e., we take the standard Dirac CP phase δCP to be zero. In
appendix B, we also perform the same considering the non-zero values of δCP. The elements
of the effective Hamiltonian Hf in eq. (2.8) are then given by,

(Hf )11 = ∆31
[
αs2

12c
2
13 + s2

13 + Â
]

(3.1)

(Hf )12 = ∆31
2

[
sin 2θ13s23(1− αs2

12) + α sin 2θ12c13c23 + 2εeµÂ
]

(3.2)

(Hf )13 = ∆31
2

[
sin 2θ13c23(1− αs2

12)− α sin 2θ12c13s23 + 2εeτ Â
]

(3.3)

(Hf )22 = ∆31
2

[
αc2

12 + c2
13 + αs2

12s
2
13 + cos 2θ23(αc2

12 − αs2
12s

2
13 − c2

13)

− α sin 2θ12s13 sin 2θ23 + 2βÂ
]

(3.4)

(Hf )23 = ∆31
2
[
sin 2θ23(c2

13 − αc2
12 + αs2

12s
2
13)− α sin 2θ12s13 cos 2θ23 + 2εµτ Â

]
(3.5)

(Hf )33 = ∆31
2
[
αc2

12 + c2
13 + αs2

12s
2
13 + cos 2θ23(c2

13 − αc2
12 + αs2

12s
2
13)

+ α sin 2θ12s13 sin 2θ23 + 2γÂ
]

(3.6)

In the above expressions, we use the abbreviations: cos θij → cij , sin θij → sij , and retain
the terms of all orders in sin θ13 and α which are quite essential in light of the large value
of θ13. To find the effective mixing angles and mass-squared differences in the presence of
Earth matter potential (VCC) and all possible NC-NSI parameters, we need to diagonalize
the effective Hamiltonian Hf in eq. (2.8). We approximately diagonalize Hf by applying
three successive rotations R23(θm23), R13(θm13), and R12(θm12), where Rij(θmij ) is the rotation
matrix for the (i, j) block with the rotation angle θmij . The product of these rotation matrices
construct a 3× 3 unitary matrix

Ũ ≡ R23 (θm23)R13 (θm13)R12 (θm12) , (3.7)

such that it can almost diagonalize Hf

ŨTHf Ũ ' Diag
(
m2

1,m/2E, m2
2,m/2E, m2

3,m/2E
)

(3.8)

where, the off-diagonal terms after the final rotation are quite small (∼ 10−8) and can be
safely neglected.4

3The authors in ref. [96] derived similar expressions in the context of a particular beyond the Standard
Model (BSM) scenario where they considered the presence of long-range flavor-diagonal NSI appearing due
to abelian Le-Lµ symmetry. In the present work, we adopt a model independent approach and introduce all
possible NSI parameters at-a-time in the framework. It allows us to study the evolution of mass-mixing
parameters in a more generalized scheme considering all possible NSI parameters.

4After the final rotation, (1,3) and (2,3) elements of the rotated effective Hamiltonian remain non-zero.
Simplifying the expressions of these non-zero elements, we find that these two elements are of the order
O(∆m2

31 × α2) and O(∆m2
31 × αs2

13). Compared to these, the diagonal elements are approximately of the
order O(∆m2

31) at relevant energies. So, it is safe to neglect these two off-diagonal elements and consider
that the effective Hamiltonian is approximately diagonal.

– 7 –



J
H
E
P
1
1
(
2
0
2
1
)
0
9
4

Below, we give the expressions for the mixing angles in matter that we derive by equating
the small off-diagonal elements to zero after each rotation during the diagonalization process:

tan2θm23'
(c2

13−αc2
12+αs2

12s
2
13)sin2θ23−αs13 sin2θ12 cos2θ23+2εµτ Â

(c2
13−αc2

12+αs2
12s

2
13)cos2θ23+αs13 sin2θ12 sin2θ23+(γ−β)Â

, (3.9)

tan2θm13'
sin2θ13(1−αs12

2)cos∆θ23−αsin2θ12c13 sin∆θ23+2(εeµsm23+εeτ cm23)Â
(λ3−Â−αs2

12c
2
13−s2

13)
, (3.10)

tan2θm12'
cm13

[
αsin2θ12c13 cos∆θ23+sin2θ13(1−αs2

12)sin∆θ23+2(εeµcm23−εeτsm23)Â
]

(λ2−λ1) ,

(3.11)

where, ∆θ23 ≡ θ23 − θm23 is the deviation of the modified mixing angle θ23 from its vacuum
value. In the above equations, λ1, λ2, and λ3 take the following forms:

λ3 = 1
2

[
c2

13 + αc2
12 + αs2

12s
2
13 + (β + γ)Â

+ (γ − β)Â+ α sin 2θ12s13 sin 2θ23 + (c2
13 − αc2

12 + αs2
12s

2
13) cos 2θ23

cos 2θm23

]
, (3.12)

λ2 = 1
2

[
αc2

12 + c2
13 + αs2

12s
2
13 + (β + γ)Â

− (γ − β)Â+ α sin 2θ12s13 sin 2θ23 + (c2
13 − αc2

12 + αs2
12s

2
13) cos 2θ23

cos 2θm23

]
, (3.13)

λ1 = 1
2

[
λ3 + Â+ s2

13 + αs2
12c

2
13 −

λ3 − Â− s2
13 − αs2

12c
2
13

cos 2θm13

]
. (3.14)

Note that throughout the entire paper, we consider the propagation of neutrinos inside the
Earth and assume normal mass ordering5 (NMO). In case of antineutrino propagation, one
has to reverse the sign of VCC in the above equations which in turn reverses the sign of Â.
Similarly, to get the corresponding expressions for the inverted mass ordering (IMO), one
has to flip the sign of α as well as the sign of Â in eqs. (3.9) to (3.14). For the approximate
analytical expressions of the modified mixing angles in non-zero δCP scenario, see eqs. (B.1)
to (B.3) in appendix B.

To check the validity of analytical expressions derived in this paper, we use the
expressions for modified mixing angles as given in eqs. (3.9) to (3.14) and the expressions
for modified mass-squared differences obtained using eqs. (5.1) to (5.3) (derived later in
section 5) to calculate the oscillation probabilities analytically in the presence of all possible
NC-NSI considering a four-layered6 model of Earth. Then, we compare our approximate

5There are two possible patterns of neutrino masses: a) m3 > m2 > m1, called normal mass ordering
(NMO) where ∆m2

31 > 0 and b) m2 > m1 > m3, called inverted mass ordering (IMO) where ∆m2
31 < 0.

6In appendix C, we discuss in detail how we calculate various oscillation probabilities using our approximate
analytical expressions for a given baseline which passes through different layers of Earth.
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θ23 θ13 θ12 δCP ∆m2
21[eV2] ∆m2

31[eV2]
45◦, 8.61◦ 33.8◦ 0◦ 7.39× 10−5 2.52× 10−3

Table 2. The values of the oscillation parameters used in our analysis. The values of the other
parameters are consistent with the present best-fit values as obtained in various global fit studies [3–6].
We assume normal mass ordering (NMO) throughout the paper.

analytical oscillation probabilities with the exact numerical probabilities obtained from the
GLoBES software [97, 98]. We discuss this in detail in appendix A. We observe that the
analytical and numerical oscillation probabilities match quite well for wide range of energies
and baselines even for NSI strengths as large as 0.3.

4 Evolution of mixing angles in the presence of NSI

In the present section, we study in detail how the effective mixing angles in matter θm12, θm13,
and θm23 (we derive their expressions in section 3) get modified as functions of energy and
baseline in the presence of all possible NC-NSI. For this study, we consider the three-flavor
vacuum oscillation parameters as given in table 2. To show our results, we consider two
benchmark values of the NSI parameters: 0.2 and −0.2.

4.1 Evolution of θm23

Approximate analytical expression describing the evolution of the effective mixing angle
θm23 is given in eq. (3.9). We can further simplify this expression by neglecting the small
terms which are proportional to αs13 ∼ 10−3 in eq. (3.9), which enable us to extract the
useful physics insights related to the evolution of θm23 in a more concise fashion. With this
approximation, the expression showing the evolution of θ23 in matter in the presence of
NSI takes the form

tan 2θm23 '
(c2

13 − αc2
12) sin 2θ23 + 2εµτ Â

(c2
13 − αc2

12) cos 2θ23 + (γ − β)Â
, (4.1)

where, γ − β = εττ − εµµ. Two important features emerge from this simplified expression.

• Only NSI parameters from the (2,3) block (εµτ and an effective NSI parameter
γ − β ≡ εττ − εµµ) of the NSI Hamiltonian contribute to the modification of θm23.

• In the limiting case of all NSI parameters equal to zero (which in this case removes
the standard matter effect Â also), one would get back the vacuum mixing angle (i.e.,
θm23 = θ23) irrespective of energy, baseline, and the octant of θ23. In other words, it
implies that θm23 does not run in the presence of standard matter effect. Note that in the
exact expression of θm23 in eq. (3.9), due to the presence of the tiny terms proportional
to αs13, θm23 slightly deviates from its vacuum value even in the presence of SI.

In figure 1, we show the evolution of θm23 (using eq. (3.9)) with energy in presence of
NSI parameters (γ− β), εµτ , taken one-at-a-time for a baseline corresponding to the DUNE
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Figure 1. Evolution of θm23 in matter (given in eq. (3.9)) as a function of neutrino energy in the
presence of SI and SI+NSI. Solid black curve in each panel represents the SI case while the other
curves correspond to the SI+NSI cases with positive (solid lines) and negative (dashed lines) values
of NSI parameters. In the left column, we show the modification in the presence of NSI parameter
(γ−β), while the right column depicts the effect of εµτ . We consider L = 1300 km and assume NMO.
We present results for three different values of θ23 in vacuum: 40◦ (lower octant), 45◦ (maximal value),
50◦ (upper octant). The values of the other oscillation parameters in vacuum are taken from table 2.

experiment i.e. 1300 km. The left column shows the effect of NSI parameter (γ − β) while
the right column corresponds to the effect of εµτ . The black curves in each column depict
the SI case for three possible values of θ23 in vacuum, namely higher octant (θ23 = 50◦),
maximal mixing (θ23 = 45◦), and lower octant (θ23 = 40◦). As discussed above, value of θm23
in SI case remains almost equal to the value of θ23 in vacuum. Only very small deviations
from the vacuum value of θ23 can be observed due to the presence of terms proportional
to αs13 in eq. (3.9), which are neglected in eq. (4.1). The solid (dashed) red curves in the
left column of figure 1 illustrate the presence of (γ − β) with a benchmark value of 0.2
(−0.2). We observe that for all the three values of θ23 mentioned above, θm23 monotonically
decreases (increases) with energy when (γ − β) is present with a positive (negative) value.
In the right column, the solid (dashed) blue curves depict the case when only εµτ is present
with a benchmark value of 0.2 (−0.2). Interestingly in lower (higher) octant, θm23 increases
(decreases) for a positive value of εµτ . For maximal mixing, the change in θm23 with energy is
negligible in the presence of εµτ and remains almost equal to its vacuum value of 45◦ (since
the denominator of eq. (4.1) vanishes). The dependence of θm23 modification on the choice of
octant of θ23 in vacuum can be understood from the fact that cos 2θ23 in the denominator
of the r.h.s. of eq. (4.1) changes sign when θ23 lies in different octants.
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Figure 2. Evolution of θm23 (given in eq. (3.9)) with neutrino energy in matter with SI and NSI
considering both (γ − β) and εµτ non-zero at-a-time. Black curve in each column represents the SI
case while the other curves show the cases with four possible combinations of the sign of (γ− β) and
εµτ with magnitude 0.2. The left, middle, and right column correspond to the evolution considering
three values of θ23 in vacuum, 40◦, 45◦, and 50◦, respectively. We consider L = 1300 km and assume
NMO. Values of the oscillation parameters in vacuum used in this plot are taken from table 2.

Figure 2 shows the evolution of θm23 when both the NSI parameters εµτ and (γ − β) are
non-zero. The four colored curves in each panel illustrate the effect of the four possible sign
combinations of (γ − β) and εµτ while the black curve shows the SI (with standard matter
effect and no NSI) case, as shown in the legend. As before, three scenarios of the vacuum
mixing angle θ23 are considered: higher octant (θ23 = 50◦), maximal mixing (θ23 = 45◦),
and lower octant (θ23 = 40◦). We note from figure 2 that in the presence of (γ − β) with a
negative (positive) sign, θm23 monotonically increases (decreases) with energy irrespective of
the sign of εµτ and the octant of θ23. We also observe that for lower (higher) octant, the
decrease (increase) is the steepest when (γ − β) is positive (negative) with negative value of
εµτ . For maximal mixing, the modification of θm23 appears symmetric around the SI case
since the term with cos 2θ23 in the denominator of eq. (3.9) vanishes.

To show a correlation between NSI strength and the value of θ23 in vacuum, we
have shown in figure 3, the evolution of θm23 in the plane of [θ23 − εµτ ] (top panels) and
[θ23 − (γ − β)] (bottom panels). We demonstrate the effect of baseline and energy by
choosing three different baselines (energies) as 1300 km (2.6GeV), 5000 km (5GeV), and
8000 km (8GeV) in the three columns, respectively. For a given baseline, we consider energy
closed to the first oscillation maximum for νµ → νe appearance probability. For each of
the baseline, we consider a line-averaged constant passes through the crust and mantle of
the Earth.7 Earth matter density obtained from the PREM profile [99] of the Earth. For

7The baselines 1300 km (ρavg = 2.88 g/cm3) and 5000 km (ρavg = 3.589 g/cm3) pass through only crust
and the baseline 8000 km (ρavg = 4.351 g/cm3). Since the density of the Earth does not vary much inside
the crust and mantle, we can consider line-averaged constant Earth matter densities for these baselines.
Note that while calculating oscillation probabilities using our approximate analytical expressions for a given
baseline, we always use four-layered model of the Earth as discussed in appendix C.
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Figure 3. The evolution of θm23 are shown in the plane of [θ23 − εµτ ] (top row) and [θ23 − (γ − β)]
(bottom row). The left, middle, and right columns correspond to three sets of baseline and neutrino
energy, namely (1300 km, 2.6GeV), (5000 km, 5GeV), and (8000 km, 8GeV), respectively. Values of
the oscillation parameters in vacuum used in this plot are taken from table 2 and we assume NMO.

the baseline of 1300 km, we see that θm23 decreases (increases) from the vacuum value (θ23)
for a positive (negative) εµτ at higher octant. However, an opposite trend can be observed
at lower octant. For maximal mixing, θm23 does not change in presence of εµτ only. These
features are more pronounced for higher baselines since the NSI effect (proportional to
matter density) gets enhanced. In the bottom row, in the presence of positive (negative)
value of (γ − β), θm23 decreases (increases) from the vacuum value, irrespective of the octant
or maximal mixing. Larger baselines manifest it more clearly as evident from the steeper
slant of the boundaries between different colors.

As mentioned earlier, we have assumed normal mass ordering (NMO) for our analysis.
In case of inverted mass ordering (IMO) with neutrino (ν, IMO), the effect of each NSI
parameters in θm23 evolution is reversed (i.e., if θm23 increases with energy in presence of a
particular NSI parameter with normal ordering of mass, in case of inverted mass ordering
θm23 will decrease with energy). This happens since the term Â associated with each NSI
parameter changes its sign in case of IMO. Also, in case of antineutrino propagation with
inverted mass ordering (ν̄, IMO), the change in θm23 is almost the same as that of neutrino
propagation with NMO (ν, NMO). This is because of the fact that in both cases, sign of Â
is the same.
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4.2 Evolution of θm13

Eq. (3.10) shows the evolution of θm13 in matter in the presence of NC-NSI parameters. We
note that all five NSI parameters as well as the standard matter effect term8 (Â) have
impact on the evolution of θm13. It is observed that the value of θ23 in vacuum (when it
lies in the range of 40◦ to 50◦) has a very small effect on the modification of θm13. So, we
simplify the expression for our understanding by assuming that the mixing angle θ23 in
vacuum is maximal i.e., 45◦. The relevant expression for the θm13 thus becomes,

tan2θm13'
sin2θ13(1−αs12

2)(sm23+cm23)−αsin2θ12c13(cm23−sm23)+2
√

2(εeµsm23+εeτ cm23)Â√
2(λ3−Â−αs2

12c
2
13−s2

13)
,

(4.2)
where,

λ3 = 1
2

[
c13

2 + αc12
2 + αs2

12s
2
13 + (β + γ)Â+ (γ − β)Â+ α sin 2θ12s13

cos 2θm23

]
. (4.3)

In figure 4, we show the modification of θm13 with energy (by using eqs. (4.2) and (4.3))
in presence of NSI for a baseline of 1300 km and θ23 = 45◦. The SI case is depicted by
the black curve in each panel and the other colored curves indicate the presence of NSI
parameters in matter with a benchmark strength of 0.2 and −0.2. In the top row, we have
shown the variation of θm13 when NSI are positive. The top left panel illustrates the presence
of NSI parameters in (2,3) block while the right shows the effect of εeµ and εeτ . We note
that unlike the case of θm23, θm13 runs even in presence of only SI — its value rapidly rising
with energy from the vacuum value of θ13 = 8.5◦. This can be understood from the fact that
with an increase in energy, the term (λ3 − Â) in the denominator of the r.h.s. in eq. (4.2)
becomes smaller. The NSI parameters from (2,3) block suppress the rapid rise to some
extent due to the modification in the value of λ3 (see eq. (4.3)). Moreover, presence of β or
γ only with the same strength, makes θm13 run in identical manner.9 On the other hand,
εeµ and/or εeτ increases the magnitude of θm13 due to the additional contribution in the
numerator of the r.h.s. in eq. (4.2). For the case of maximal mixing of θ23, the impact of
εeµ is identical to that of εeτ since θm23 ' θ23 = 45◦. At lower energy, the gap between the
curves showing the evolution in the presence of εeµ/εeτ and the SI case increase with energy.
However, as the value of θm13 approaches 45◦, the gap becomes narrower and at θm13 = 45◦,
these three curves intersect. It happens because, around value of θm13 ≈ 45◦ denominator of
r.h.s. in eq. (4.2) becomes so small that the effect from the numerator which have εeµ/εeτ is
insignificant. In the bottom row, we have shown θm13 evolution for the negative values of the
NSI parameters. It is clear from the bottom left panel that variation of θm13 is enhanced when
NSI from (2,3) block is present with negative strength. This happens since the presence
of these negative NSI parameters decrease the value of λ3, thereby decreasing the overall
value of the denominator of r.h.s. in eq. (4.2). In the bottom right panel, some non-trivial
effects are observed. We see that negative εeµ or εeτ highly suppresses the modification of

8Note that the standard matter effect term Â alone does not affect the variation of θm23 (see eq. (4.1)).
9From the discussion of subsection 4.1, we know that cos 2θm23 is consistently positive (negative with the

same magnitude) in presence of a positive β (γ) throughout E > 0. Thus λ3 in eq. (4.3) remains the same
in presence of β or γ with the same strength.
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Figure 4. Evolution of θm13 (given in eq. (4.2)) with energy in presence of SI and NSI in matter. The
solid black curve in each panel shows the SI case while the other curves correspond to the variation
in the presence of SI+NSI. In the top (bottom) row, the NSI have been considered with a benchmark
value of 0.2 (−0.2). The left column depicts the presence of NSI parameters in (2,3) block while the
right column shows the effect of εeµ and εeτ . We have used L = 1300 km and assumed NMO in the
plot. Values of oscillation parameters in vacuum are given in table 2 with θ23 = 45◦.

θm13 such that at lower energy (E . 6GeV), it is almost constant when only one of them
is present. It can be explained by the fact that both numerator and denominator of r.h.s.
in eq. (4.2) decreases with energy when εeµ and/or εeτ are negative, such that the overall
value of θm13 remains almost constant at that energy range. However, at higher energy (∼
10GeV) value of the denominator is so small that the overall effect led to the rapid increase
in the magnitude of θm13 with energy. As we can see from eq. (4.2), in presence of both εeµ
and εeτ with a negative sign, the numerator decreases faster with energy compared to the
previous case due to the additive effect of two NSI parameters. Consequently, value of θm13
decreases with energy from its vacuum value, and becomes negative (at E & 6GeV) when
the numerator becomes negative.

In the case of IMO, the behavior of θm13 in SI as well as in SI+NSI case is significantly
different from the NMO case for neutrino. It can be understood from the (λ3 − Â) term
in the denominator of eq. (4.2). Since Â changes its sign, the denominator increases with
energy, consequently the value of the θm13 decreases from its vacuum value. However, in
case of antineutrino (ν̄) propagation and inverted mass ordering (ν̄, IMO), since Â does not
change its sign, variation of θm13 is almost similar to neutrino (ν, NMO) case.

4.3 Evolution of θm12

Similar to the case of θm13, value of θ23 in vacuum (when it is between 40◦ and 50◦) also has
very small impact in the modification of θm12. With the assumption of maximal mixing of
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θ23, the relevant expression for θm12 in eq. (3.11) takes the form

tan2θm12'
cm13
[
αsin2θ12c13(cm23+sm23)+sin2θ13(1−αs2

12)(cm23−sm23)+2
√

2(εeµcm23−εeτsm23)Â
]

√
2(λ2−λ1)

,

(4.4)
where,

λ2 = 1
2

[
αc2

12 + c2
13 + αs2

12s
2
13 + (β + γ)Â− (γ − β)Â+ α sin 2θ12s13

cos 2θm23

]
, (4.5)

λ1 = 1
2

[
λ3 + Â+ s2

13 + αs2
12c

2
13 −

λ3 − Â− s2
13 − αs2

12c
2
13

cos 2θm13

]
. (4.6)

In figure 5, the evolution of θm12 with energy is shown both for SI (black curve) and for
SI+NSI parameters (other curves) for a baseline of 1300 km and θ23 = 45◦. The left column
shows the effect of the NSI parameters in (2,3) block, while the right column depicts the case
of εeµ and εeτ with a strength of 0.2 or −0.2. For SI, at small energies (E . 1.5–2GeV), λ1
being close to λ2, θm12 shows a very steep increase and then quickly saturates and approaches
to 90◦ approximately.10 Saturation occurs due to the following two reasons.

1. With increase in energy, λ1 moves away from λ2, resulting in a large denominator in
the r.h.s. of eq. (4.4).

2. θm13 rises with energy (see figure 4 and the relevant discussions in subsection 4.2) and
so the overall factor cm13 in eq. (4.4) decreases.

In the presence of NSI parameters in (2,3) block, λ1, λ2 and cm13 undergo mild change, —
retaining almost the same features as that of SI. The presence of εeµ (εeτ ) however, adds up
to the numerator of eq. (4.4)11 and the value of θm12 at which it saturates, shifts down (up).
When both εeµ and εeτ are present, they cancel their effect due to the relative sign between
them and the evolution of θm12 almost coincides with SI scenario. In the bottom row, we
have shown the modification of θm12 for the NSI with negative strength. Since θm12 very mildly
depend on NSI parameters from the (2,3) sector (bottom left panel), the sign of these NSI
parameters do not have any significant effect. In the bottom right panel, we see that role of
εeµ and εeτ is reversed when the sign of the NSI parameter is changed. Interestingly, at
energies around 10GeV, sudden decrease (increase) of θm12 can be observed in the presence
of NSI parameter εeµ (εeτ ) with negative strength. It happens due to the presence of the
term cos θm13 in the numerator of the r.h.s. of eq. (4.4), which reduces rapidly to a very small
value around that energy (see figure 4 and related discussion in subsection 4.2).

Unlike θm13, the θm12 shows similar behavior in SI as well as in SI+NSI cases for neutrino
propagation with IMO (ν, IMO). Also, it shows completely different behavior in case of

10Note that here we assume modified mass eigenstates m2,m is always greater than the m1,m to ensure
that the evolution of masses are continuous as a function of the matter potential and θm12 can also approach
90◦ in matter.

11With increase in energy, λ2 − λ1 in the denominator of eq. (4.4) becomes negative. So a positive
(negative) contribution to the numerator by εeµ (εeτ ) decreases (increases) the magnitude of θm12.
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Figure 5. Evolution of θm12 (given in eq. (4.4)) with energy in presence of SI and NSI in matter. The
solid black curve in each panel shows the SI case while the other curves correspond to the variation
in the presence of SI+NSI. In the top (bottom) row, the positive (negative) values of the NSI are
considered with a benchmark value of 0.2 (−0.2). The left column depicts the presence of NSI
parameters in (2,3) block while the right shows the effect of εeµ and εeτ . We consider L = 1300 km
and assume NMO to prepare this plot. Values of oscillation parameters in vacuum used in this plot
are taken from table 2 with θ23 = 45◦.

antineutrino propagation with inverted mass ordering (ν̄, IMO). It can be understood from
the fact that in case of IMO, sign of first and third terms in the numerator of eq. (4.4) gets
flipped, and in the denominator, the sign of λ1 gets changed. Since the effect from other
remaining terms are very small, both numerator and denominator change their sign, and as
a result, θm12 remains the same as in the case of (ν, NMO). In case of (ν̄, IMO), only first
term in the numerator changes its sign, λ1 in the denominator remains the same as in case
of (ν, NMO). As a result, we see a completely different behavior of θm12.

5 Evolution of mass-squared differences in the presence of NSI

After the diagonalization of the effective propagation Hamiltonian Hf in section 2, we
obtain the expressions for the eigenvalues m2

i,m/2E (i = 1, 2, 3):

m2
3,m

2E ' ∆31
2

[
λ3 + Â+ s2

13 + αs2
12c

2
13 + λ3 − Â− s2

13 − αs2
12c

2
13

cos 2θm13

]
, (5.1)

m2
2,m

2E ' ∆31
2

[
λ1 + λ2 −

λ1 − λ2
cos 2θm12

]
, (5.2)

m2
1,m

2E ' ∆31
2

[
λ1 + λ2 + λ1 − λ2

cos 2θm12

]
, (5.3)
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Figure 6. Variation of ∆m2
31,m (≡ m2

3,m −m2
1,m) as obtained from eqs. (5.1)–(5.3) is shown with

energy in SI case and SI+NSI cases. Top (bottom) row corresponds to the positive (negative) NSI
with strength 0.2. The solid black curve in each panel shows the SI case while the other curves show
the modification in presence of NSI. The left column depicts the presence of various NSI parameters
in (2,3) block while the right shows the effect of εeµ and εeτ . We consider L = 1300 km and the
values of the oscillation parameters used in this plot are taken from table 2. We assume θ23 = 45◦

and NMO.

where, we assume θ23 = 45◦ and we are already familiar with the expressions of θmij and
λi. Using the above equations, we can obtain the approximate analytical expressions for
the modified mass-squared differences ∆m2

31,m ≡ m2
3,m−m2

1,m and ∆m2
21,m ≡ m2

2,m−m2
1,m.

The behavior of ∆m2
31,m (∆m2

21,m) is mainly governed by m2
3,m (m2

2,m). This is due to the
fact that in the approximation θm12 saturating to 90◦ (see subsection 4.3), m2

2,m ≈ λ1∆31
and m2

1,m ≈ λ2∆31. Therefore, λ2 being very small, m2
1,m is insignificant. As we have

already mentioned, we assume that m2,m is always greater than m1,m in matter such that
the evolution of masses are continuous as we vary the matter potential.

In figure 6, we show the evolution of ∆m2
31,m both for SI (black curve) and SI+NSI

(other colored curves) scenarios. The top (bottom) row corresponds to the variation in the
presence of positive (negative) NSI with strength 0.2. The left column depicts the presence
of various NSI parameters in (2,3) block while the right shows the effect of εeµ and εeτ . A
baseline of 1300 km and a maximal mixing for θ23 is considered. For the SI case, ∆m2

31,m
first increases very slowly with energy and then with a relatively steeper rate (around
E & 9GeV). This is due to the additive contribution of the last term in eq. (5.1) when
θm13 increases rapidly with energy. In the top left panel, presence of β or γ shows a similar
change in ∆m2

31,m while the introduction of εµτ shows a steady and almost linear increase

– 17 –



J
H
E
P
1
1
(
2
0
2
1
)
0
9
4

Δ m2
21 = 7.5 × 10-5 eV2

L = 1300 km

SI
β = 0.2
γ =  0.2
ɛμτ =  0.2
β, γ, ɛμτ =  0.2

Δ 
m

2 2
1

,m
 [

1
0

-5
 e

V
2
]

10

100

Δ m2
21 = 7.5 × 10-5 eV2

SI
ɛeμ = 0.2
ɛeτ = 0.2
ɛeμ, ɛeτ = 0.2

Δ m2
21 = 7.5 × 10-5 eV2

SI
β = -0.2
γ = -0.2
ɛμτ = -0.2
β, γ, ɛμτ = -0.2

Δ 
m

2 2
1

,m
 [

1
0

-5
 e

V
2
]

10

100

E [GeV]
0 2 4 6 8 10 12

Δ m2
21 = 7.5 × 10-5 eV2

SI
ɛeμ = -0.2
ɛeτ = -0.2
ɛeμ, ɛeτ = -0.2

E [GeV]
2 4 6 8 10 12

Figure 7. Variation of ∆m2
21,m (≡ m2

2,m −m2
1,m) as obtained from eqs. (5.1)–(5.3) is shown with

energy in SI case and SI+NSI cases. Top (bottom) row corresponds to the positive (negative) NSI
with strength 0.2. The solid black curve in each panel shows the SI case while the other curves show
the modification in presence of NSI. The left column depicts the presence of various NSI parameters
in (2,3) block while the right shows the effect of εeµ and εeτ . We consider L = 1300 km and the
values of the oscillation parameters used in this plot are taken from table 2. We assume θ23 = 45◦

and NMO.

with energy due to the increase of λ3 appearing in r.h.s. of eq. (5.1). In the top right panel,
the presence of εeµ or εeτ shows identical effects and makes ∆m2

31,m rise with a steeper rate.
Both εeµ and εeτ when present together generate an additive effect and further elevates
the steepness of ∆m2

31,m. In the bottom row, we show the modification in the presence of
negative NSI with strength 0.2. Presence of β or γ with flipped signs reverse the behavior
of ∆m2

31,m. In presence of negative εµτ , initially, there is a steady decrease in the value of
∆m2

31,m because of the decreasing behavior of λ3. However, at higher energy (E & 7GeV),
we see sudden growth in the evolution of ∆m2

31,m due to increase in the value of θm13 at a
faster rate which in turn increase the value of m2

3,m. In the bottom right panel, we show
the evolution in the presence of εeµ and/or εeτ with negative strength. In the presence of
negative εeµ or εeτ , the value of ∆m2

31,m becomes almost constant initially (E . 10.5GeV),
which can be understood from the variation of θm13 in the presence of negative NSI (bottom
right panel of figure 4) and the fact that λ3 is constant in the presence of εeµ or εeτ . At E &
10GeV, a sudden increase in the value of θm13 leads to the increasing behavior of ∆m2

31,m
around that energy.

In figure 7, we have shown the evolution of ∆m2
21,m with energy for the baseline 1300 km

and θ23 = 45◦. The black curve in each panel corresponds to the SI case while other curves
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show the evolution in presence of NSI. Top (Bottom) row corresponds to the modification
in the presence of positive (negative) NSI with strength 0.2. SI case shows steady increase
with energy, — reaching a value of an order as high as & 10−3 eV2 from its vacuum order of
magnitude 10−5 eV2. In other words, the variation of ∆m2

21,m can make itself comparable in
magnitude with that of ∆m2

31,m. In the presence of positive (top row) or negative (bottom
row) NSI (except for negative εµτ or taking negative β, γ, εµτ together), the behavior of
∆m2

21,m does not show significant deviation in magnitude from SI case. But interestingly,
depending on the sign of NSI parameter, the magnitude of ∆m2

21,m in presence of NSI is
slightly higher or lower than in presence of SI. In presence of negative εµτ (when present
singly or together with negative β and γ), we see a deviation from SI case at higher energy
which can be understood from the variation of λ1 with energy. With negative εeµ or εeτ ,
however, at E & 10.5GeV ∆m2

21,m becomes almost constant. It happens due to a sudden
increase in the value of θm13 around that energy which results in saturation of the value of λ1.

In the case of IMO, evolution of ∆m2
21,m is almost the same as (ν, NMO) case for both

neutrino and antineutrino propagation. However, IMO leads to a significant change in
the evolution of ∆m2

31,m for both neutrino and antineutrino propagation which is obvious
because the vacuum value ∆m2

31 changes its sign.

6 θ13-resonance in the presence of NSI

From the evolution of θm13 (eq. (4.2)), we see that interestingly there exists a resonance such
that

Â = λ3 − αs2
12c

2
13 − s2

13 . (6.1)

Consequently, the denominator of the r.h.s. of eq. (4.2) becomes close to zero and θm13
becomes maximal (45◦). We note that this resonance is independent of the value of εeµ or
εeτ (as evident from the right panels of figure 4) but depends upon NSI parameters in the
(2,3) block. We know that for the SI case, under the one mass scale dominance (OMSD)
approximation (∆m2

31L/4E � ∆m2
21L/4E), the resonance occurs at an energy Eres such

that [57], [
ESI

res

]
OMSD

= ∆m2
31 cos 2θ13
2VCC

, (6.2)

where, VCC is the standard W -exchange interaction potential in matter (eq. (2.7)). In
presence of NSI, we seek to find out the modifications in eq. (6.2) considering θ23 = 45◦.
After replacing cos 2θm23 from eq. (3.9) in the expression for λ3 (eq. (3.12)), we obtain,

λ3 '
1
2

[
c2

13 + αc2
12 + αs2

12s
2
13 + (β + γ)Â

+
√
{αs13 sin 2θ12 + (γ − β)Â}2 + {c2

13 − αc2
12 + αs2

12s
2
13 + 2εµτ Â}2

]
. (6.3)

In the above equation, we neglect the small terms proportional to αs2
13, (γ − β)2Â2 and the

cross-term proportional to αÂ(γ − β)s13. Finally, we get the following simpler expression
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for λ3,

λ3 ' c2
13 + 1

2(β + γ + 2εµτ )Â . (6.4)

It is noteworthy to mention that for SI case, we get λ3 ' c2
13. Putting this back in eq. (6.1)

and using OMSD approximation, we easily obtain the well-known expression for resonance
in eq. (6.2). Equating eqs. (6.1) and (6.4), we obtain the following final expression for the
resonance energy,

ENSI
res '

∆m2
31 cos2θ13
2VCC

[
1−(αs2

12c
2
13/cos2θ13)

1− 1
2(β+γ+2εµτ )

]
=
[
ESI

res

]
OMSD

[
1−(αs2

12c
2
13/cos2θ13)

1− 1
2(β+γ+2εµτ )

]
.

(6.5)
The term in the square bracket in the r.h.s. of eq. (6.5) is the correction over eq. (6.2). The
term 1

2(β+γ+2εµτ ) is the correction induced by the presence of NSI, while αs2
12c

2
13/ cos 2θ13

is the modification induced by relaxing the OMSD approximation. Thus it is now also clear
analytically that θm13-resonance gets affected only by the NSI parameters in the (2,3) block
and not by εeµ or εeτ .

In figure 8, we plot the θ13-resonance energy as a function of the matter density (ρ)
inside the Earth. The matter density (ρ) inside the Earth typically varies in the range of
2 g/cm3 to 14 g/cm3 as we move towards the center of Earth from the surface. The four
grey shaded regions with varying intensity in the figure show the four different layers inside
the Earth considered in this work, namely, crust, mantle, outer core, and inner core. The
densities in these layers are taken from the so-called PREM profile of the Earth [99]. From
eq. (6.5), we observe that for each value of the matter density,12 there will be a different
value of the θ13-resonance energy in SI case as well as in the presence of NSI. The solid
black curve shows the SI case, for which the value of the θ13-resonance energy decreases with
the increase in the matter density. In other words, resonance energy decreases as neutrino
travels deep inside the Earth. Note that there is a sudden decrease in the θ13-resonance
energy at the boundary of mantle and outer core. Also, we observe a slight decrease in
resonance energy as neutrinos enter into the inner core from the outer core. It happens due
to a sudden jump in the matter density at the boundaries of these layers. Similar trends are
observed in SI+NSI cases as shown by other colored curves (considered one NSI parameter
at-a-time as shown in the legend). However, the value of the θ13-resonance energy increases
(decreases) compared to the SI case at a given matter density for the positive (negative)
value of the NSI parameter, as shown by the dot-dashed (dashed) curve.

7 Impact of NSI in νµ − νe appearance channel

One of the most important oscillation channel that is probed in LBL experiment is νµ → νe
appearance channel. This channel will play a significant role in determining the value
of the CP phase, neutrino mass ordering, octant of θ23 from various upcoming neutrino
oscillation experiments. So, in this section, we are interested in studying the effect of NSI on

12Earth matter potential (VCC) and matter density (ρ) are connected through eq. (2.7).
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Figure 8. θ13-resonance energy (see eq. (6.5)) as a function of the matter density ρ inside the
Earth. The solid black line shows the SI case. The dot-dashed (dashed) lines correspond positive
(negative) values of the NSI parameters considering one NSI parameter at-a-time, as shown in the
legend. The four grey shaded regions with varying intensity show the four different layers (crust,
mantle, outer core, and inner core) and their corresponding densities inside the Earth [99]. The
values of the benchmark oscillation parameters used in this plot are taken from table 2. We assume
θ23 = 45◦ and NMO.

νµ → νe transition probability maxima at various baselines (L) through the Earth-matter
with neutrino beam having energy (E) in the GeV range. In order to study this, in figure 9,
we plot the νµ → νe transition probability in (E-L) plane in SI case and SI+NSI cases
considering a benchmark value of 0.2 for the strength of the NSI parameters. We calculate
the oscillation probabilities for various baselines considering the well-known four-layered
profile of the Earth, namely, crust, mantle, outer core, and inner core [100], which takes
care of all the important features of Earth. We evaluate the transition amplitude matrices
separately for each part of a given baseline passing through various layers inside the Earth.
Then, finally, we calculate the νµ → νe transition probabilities using the resultant amplitude
as discussed in detail in appendix C. We check that figure 9 shows very good agreement in
both SI and SI+NSI cases with the exact three-flavor oscillation probabilities which are
calculated numerically using the GLoBES software [97, 98]. Top left panel shows the SI
case where no NSI are taken into account. Here, it is observed that the region of maximum
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Top left panel corresponds to SI case and other three panels correspond to the cases in presence
of non-zero positive NSI parameters (taken one-at-a-time with a strength of 0.2 as shown in the
legends). The values of the oscillation parameters used in this plot are taken from table 2 with
θ23 = 45◦ and NMO.

appearance probability occurs for the baseline almost passing through the core and the
mantle boundary. However, in presence of εeµ (bottom left panel) or εeτ (top right panel)
this region shifts towards lower baselines. In case of εµτ (bottom right panel), this region
remains almost the same as in the SI case. To show the effect of NSI with negative strength,
we similarly plot the oscillograms in figure 10 in SI case and in the presence of negative NSI
with strength 0.2. Huge differences in the oscillation patterns can be observed in case of
εeµ and εeτ . Unlike figure 9, there is no such region of the maximum transition probability
in figure 10.

In figure 9, we notice that for positive values of εeµ and εeτ , a significant enhancement
in the νµ → νe transition probability as compared to SI case, for some choices of L and E
where we have large matter effects. On the other hand, in figure 10, for negative choices
of εeµ and εeτ , we see a large depletion in νµ → νe transition probability for some choices
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Figure 10. Oscillogram of νµ → νe transition probability as a function of baseline L and energy E.
Top left panel corresponds to SI case and other three panels correspond to the cases in presence
of non-zero negative NSI parameters (taken one-at-a-time with a strength of 0.2 as shown in the
legends). The values of the oscillation parameters used in this plot are taken from table 2 with
θ23 = 45◦ and NMO.

of L and E where matter effect is suppressed. Now, we make an attempt to understand
these features with the help of approximate analytical expressions. After replacing the
vacuum oscillation parameters with their modified counterparts in the νµ → νe transition
probability as mentioned above, we simplify it further by using the approximation that
θm12 almost saturates to π/2 (see figure 5 and the related discussion in subsection 4.3). As
a result, we obtain the following simplified expression that helps us to explain the broad
features observed in figures 9 and 10,

Pmνµ→νe = sin2 θm23︸ ︷︷ ︸
T1

sin2 2θm13︸ ︷︷ ︸
T2

sin2
[1.27×∆m2

32,mL

E

]
︸ ︷︷ ︸

T3

. (7.1)

In figure 11, we plot eq. (7.1) with energy and also the contribution from each term T1,
T2, and T3, separately considering a baseline of 5000 km for which ρavg = 3.589 g/cm3. It
is clear from the figure that the variation of T1 with energy is very less compared to the
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Figure 11. Variation of νµ → νe transition probability (eq. (7.1)) with energy under the approxima-
tion θm12 → 90◦ for a baseline of L = 5000 km. T1 (red curve), T2 (blue curve), and T3 (green curve)
are the three terms defined in eq. (7.1). Various panels represent the SI case and SI+NSI cases as
shown in the labels. To prepare this plot, the values of the three-flavor oscillation parameters are
taken from table 2. We assume θ23 = 45◦ and NMO.

variation of T2 and T3. Thus, the energy at which maximum of T1T2T3 occurs is the same
as that of T2T3. In other words, the maximum of Pmνµ→νe occurs at an energy determined by
T2 and T3, not T1. This feature is also valid for any other baselines. So, Pmνµ→νe is maximum
when both the following two conditions are satisfied simultaneously.

• T2 ≡ sin2 θm13 = 1 i.e., θm13 = 45◦ (θ13-resonance condition). This condition is achieved
in SI case when E = Eres = ∆m2

31 cos 2θ13
2VCC (see eq. (6.2)) with the OMSD approximation.

• T3 ≡ sin2
[

1.27×∆m2
32,mL

E

]
= 1 for some energy E = Emmax, such that

Emmax =
1.27×∆m2

32,mL

(2n+ 1)π/2 with n = 0, 1, 2 . . . (7.2)

Thus, the maximum matter effect is obtained when the condition Eres = Emmax is satis-
fied [101–103].

In order to simplify the expression of Emmax in the presence of SI only, we use eq. (5.1)
and eq. (5.2) to calculate ∆m2

32,m considering all the NSI parameters to be zero. Applying
the OMSD approximation and θ23 = 45◦, we obtain

∆m2
32,m = ∆m2

31

√
(λ3 − Â− s2

13) + sin2 2θ13 . (7.3)
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Now, using eq. (7.3) in the expression of Emmax in eq. (7.2), the condition for the maximum
matter effect Eres = Emmax gets further simplified. Ultimately, we obtain a simple and
compact relation between the baseline (L) and the corresponding matter density (ρ) to
have the maximum νµ → νe transition probability in matter

(
ρ× L

)
SI = (2n+ 1)× π × 5.18× 103

tan 2θ13
km g/cm3 . (7.4)

Note that under the OMSD approximation, the resonance energy condition in eq. (6.1)
takes a very simple form: (λ3 − Â− s2

13) = 0 and we make use of this expression in eq. (7.3)
to obtain eq. (7.4), which exactly matches with the expression derived by the authors in
ref. [102].

Now, we analyze how eq. (7.4) gets modified in the presence of NC-NSI. First, we use
eqs. (3.12)–(3.14) and eqs. (5.1)–(5.3) to derive the following two expressions for m2

3,m and
m2

2,m under the OMSD approximation and assuming θ23 = 45◦

m2
3,m = ∆m2

31
2

[
λ3 + Â+ s2

13 + T
]
,

m2
2,m = ∆m2

31
2

[
λ3 + Â+ s2

13 − T
]
, (7.5)

where,

T = 1√
2

√
2
[
λ3 − Â− s2

13
]2 +

[
sin 2θ13(cm23 + sm23) + 2

√
2(εeµsm23 + εeτ cm23)Â

]2
. (7.6)

Using the resonance energy condition (eq. (6.1)), we now have

∆m2
32,m = m2

3,m −m2
2,m = ∆m2

31

[ 1√
2

sin 2θ13(cm23 + sm23) + 2(εeµsm23 + εeτ c
m
23)Â

]
. (7.7)

Replacing ∆m2
32,m in eq. (7.2), we finally have the following condition for the maximal

νµ → νe transition probability in the presence of NC-NSI.(
ρ×L

)
NSI

' (2n+1)π×5.18×103

tan2θ13
[{

1− 1
2(β+γ+2εµτ )

}(
cm23+sm23√

2

)
+{2(εeµsm23+εeτ cm23)/tan2θ13}

] km g/cm3

(7.8)

=
(
ρ×L

)
SI

 1{
1− 1

2(β+γ+2εµτ )
}(

cm23+sm23√
2

)
+{2(εeµsm23+εeτ cm23)/tan2θ13}

km g/cm3.

(7.9)

The second factor in the r.h.s. of eq. (7.8) is the correction introduced by the NSI parameters.
As shown in figure 11, the modified θm23 does not run significantly and is also close to 45◦
for maximal mixing of θ23. Using the approximation θm23 ' 45◦, we simplify eq. (7.8) to the
following

(
ρ×L

)max
NSI '

(
ρ×L

)
SI

[
1

1−(β+γ+2εµτ )/2+
√

2(εeµ+εeτ )/tan2θ13

]
km g/cm3 . (7.10)
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Figure 12. The product of the baseline (L) and the corresponding matter density (ρ) for which
νµ → νe transition probability attains the maximum value (see eq. (7.10)) as a function of various
NSI parameters having strength in the range [−0.2 : 0.2]. The solid black curve shows the SI case
while the other colored curves correspond to the cases considering one NSI parameter at-a-time, as
shown in the legend. The three-flavor oscillation parameters in vacuum are taken from table 2 with
a choice of θ23 = 45◦ and NMO.

In figure 12, we plot above equation as a function of the strength of various NSI
parameters in the range of −0.2 to 0.2. In the y-axis, we show the value of (ρ × L) for
which νµ → νe transition probability attains the maximum value as given in eq. (7.10). The
horizontal solid black line indicates the value of the (ρ× L) for which νµ → νe transition
probability is maximum in the SI case. Other colored curves correspond to the SI+NSI cases
considering one NSI parameter at-a-time. The green and blue curves correspond to the NSI
parameters from the (2,3) block, namely, β (or γ) and εµτ , respectively. In the presence
of these NSI parameters, we observe a small increase or decrease in the value of (ρ × L)
as compared to the SI case depending on the sign of the given NSI parameter. However,
in the presence of εeµ or εeτ (as shown by the red curve), there is a significant change in
the required value of (ρ × L) to attain the maximum νµ → νe transition probability as
compared to the SI case. When εeµ or εeτ is positive, the required value of (ρ× L) is much
smaller as compared to the SI case. In other words, when εeµ or εeτ are positive, baseline
length and corresponding matter density required to achieve maximum νµ → νe transition
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is much smaller than the corresponding values in SI case. We observe similar feature in
figure 9, where we plot the exact oscillation probabilities in L and E plane. Figure 9 clearly
shows that in the presence of positive εeµ or εeτ , maximum νµ → νe transition regions shift
towards the shorter baseline as compared to the SI case. Similarly, when the strength of
εeµ or εeτ is negative, the required value of (ρ× L) is much larger than that of the SI case.
When the value of εeµ (or εeτ ) is around −0.2, it is possible that the required value of L and
corresponding ρ to obtain maximum νµ → νe transition is so large that it is not attainable
inside the Earth. For this reason, as shown in figure 10, we do not observe any maximum
νµ → νe transition inside the Earth when the value of εeµ or εeτ is −0.2.

It is evident from eq. (7.10) that since the role of εeµ and εeτ are on the same footing,
the presence of εeµ induces an effect identical to that of εeτ with the same magnitude. But
the oscillograms (figures 9 and 10) for εeµ and εeτ look quite different. This is because of
the fact that θm12 saturates to a value higher or lower than 90◦ in the presence of εeµ or
εeτ (see figure 5). Since θm12 is not exactly 90◦, we have non-zero contributions from some
other terms in νµ → νe oscillation probability expression, which affect the oscillograms in
the presence of εeµ and εeτ in a different fashion. In the presence of negative εeµ and εeτ ,
we observe from figure 10 that we no longer achieve the maximum transition in νµ → νe
oscillation channel. It is because of the fact that in this case, the baseline length required
for the maximum νµ → νe appearance probability turns out to be longer than the Earth’s
diameter (see eq. (7.10)). Therefore, it is not possible to attain the maximum νµ → νe
transition inside the Earth for negative values of εeµ and εeτ as evident from figure 10. We
observe from figure 9 and figure 10 that in the presence of non-zero εµτ , there are slight
changes in L and E as compared to SI case for which we obtain maximum possible νµ → νe
transition.

8 Impact of NSI in νµ → νµ disappearance channel

So far, we have focused on νµ → νe appearance channel which is one of the most impor-
tant channel probed in LBL experiments. However, another crucial channel, νµ → νµ
disappearance channel can be probed in LBL and atmospheric neutrino experiments. This
channel can play an important role in precision measurement of the atmospheric oscillation
parameters. In this section, we discuss the effect of NSI in νµ → νµ survival probability.
Since NSI parameters from the (2,3) block have significant impact on this channel [68, 104],
only these NSI parameters have been considered. To get the broad feature, we simplify
the analysis by assuming ∆21 ' 0 and θ13 ' 0. Under these approximations, νµ → νµ
disappearance probability expression reduces to [105, 106]

Pνµ→νµ = 1− sin2 2θ23 sin2
[

∆m2
31L

4E

]
. (8.1)

Now, we replace the vacuum oscillation parameters by the corresponding modified parameters
in the presence of SI and NC-NSI assuming the line-averaged constant Earth matter density.
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Thus, eq. (8.1) takes the form:

Pmνµ→νµ = 1− sin2 2θm23 sin2
[

∆m2
31,mL

4E

]
. (8.2)

Using OMSD approximation (∆m2
31L/4E � ∆m2

21L/4E) and θ13 ' 0 in eq. (3.9), also
implementing θ23 = 45o, we get

sin2 2θm23 = (1 + 2εµτ Â)2

[(γ − β)Â]2 + [1 + 2εµτ Â]2
'
[
1− (γ − β)2Â2

(1 + 2εµτ Â)2

]
. (8.3)

To calculate ∆m2
31,m(= m2

3,m −m2
1,m) in the last term of eq. (8.2), we use eq. (5.1) and

eq. (5.3) and implement all the approximations. After simplification, we obtain,

∆m2
31,m = ∆m2

31[λ3 − λ2] ' ∆m2
31

[
1 + 2εµτ Â+ 1

2
(γ − β)2Â2

(1 + 2εµτ Â)

]
, (8.4)

where, we use the approximation θm12 → π/2 in the expression of m2
1,m in eq. (5.3). So, using

eqs. (8.3) and (8.4), νµ → νµ disappearance probability in presence of NSI parameters from
(2,3) sector can be written as,

Pmνµ→νµ = 1−
[
1− (γ − β)2Â2

(1 + 2εµτ Â)2

]
× sin2

[{
1 + 2εµτ Â+ 1

2
(γ − β)2Â2

(1 + 2εµτ Â)

}
∆m2

31L

4E

]

= cos2
[{

1 + 2εµτ Â+ 1
2

(γ − β)2Â2

(1 + 2εµτ Â)

}
∆m2

31L

4E

]

+ (γ − β)2Â2

(1 + 2εµτ )2 × sin2
[
(1 + 2εµτ Â)∆m2

31L

4E

]
. (8.5)

If we only consider the off-diagonal NSI parameter εµτ , the expression boils down to the
simplified expression already derived in [105]. From the approximate expression in eq. (8.5),
some broad features about the impact of NSI on the νµ → νµ survival channel can be
observed. We see that the parameter (γ − β) always appears in second order in eq. (8.5),
while other NSI parameter εµτ has a linear dependence. For the same reason, the sign of
(γ − β), unlike the sign of εµτ , does not affect the disappearance probability. Since the
strength of NSI parameters are not very large, it is expected that the impact of (γ − β) will
be always small compared to εµτ .

To find out whether these features remain intact even if we assume non-zero θ13 and finite
∆m2

21, in figure 13, we plot νµ → νµ survival probability as a function of baseline (x-axis) and
energy (y-axis) commonly known as oscillogram plot. We first consider the full three-flavor
vacuum expression of νµ → νµ survival probability without any approximation [59] and
replace the vacuum parameters with their modified expressions in matter with NSI which
we derive in this work. As mentioned earlier, we calculate the oscillation probabilities for
various baselines considering the well-known four-layered profile of the Earth, namely, crust,
mantle, outer core, and inner core [100], which takes care of all the essential features of Earth.
We evaluate the transition amplitude matrices separately for each part of a given baseline
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Figure 13. Oscillogram of νµ → νµ survival probability as a function of baseline L and energy
E. Top and bottom rows correspond to the oscillogram in presence of NSI parameter (γ − β) and
εµτ , respectively. The middle column in both the rows shows the SI case. The first (third) column
depicts the presence of negative (positive) NSI with a strength of 0.2. Values of the oscillation
parameters are taken from table 2. We assume θ23 = 45◦ and NMO.

passing through various layers inside the Earth. Then, finally, we calculate the νµ → νµ
survival probabilities using the resultant amplitude as discussed in detail in appendix C. As
before, θ23 in vacuum is assumed to be 45◦. In the middle panels of figure 13, we plot νµ
survival probabilities in the SI case. Next, we compare these probabilities in the SI case
with probabilities in the presence of the effective NSI parameter (γ − β) considering its
negative (top left panel) and positive (top right panel) values. The oscillation valley denoted
by the diagonal blue shaded region (where νµ → ντ transition probability in vacuum is
maximum and because of that νµ → νµ survival probability is minimum) gets diminished
when effective NSI parameter (γ − β) is finite we and see an enhancement in the νµ → νµ
survival probabilities as compared to the SI case at higher energies and baselines. Eq. (8.5)
reveals that νµ → νµ survival probability should not depend on the sign of (γ − β). The
top left and right panels of figure 13 confirm this fact, except for some small differences,
which appear due to non-zero θ13, that brings the matter effect into the picture and finite
value of ∆21 causes some differences.

In the bottom row of figure 13, we plot the same but in presence of εµτ with negative
(positive) value in the extreme left (right) panel and show the results for SI case in the
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middle panel. It is observed that the presence of εµτ can lead to significant differences in
the pattern of νµ → νµ disappearance probability as compared to the SI case. When εµτ
is positive (negative), one can observe a significant shift in the oscillation valley from the
SI case towards higher (lower) energies in figure 13. This feature can be explained from
the approximate expression in eq. (8.5). In that expression, the value of Pmνµ→νµ is mainly
determined by the first term in r.h.s. since second term is suppressed by the NSI parameters
appearing quadratically. At the first term in r.h.s. of eq. (8.5), minimum occurs at higher
(lower) energy compared to the SI case for a given baseline L when εµτ is present with
positive (negative) strength.13 Depending on the sign of εµτ , the regions representing the
oscillation dip tend to bend upward or downward with increase in baseline length compared
to the SI case.

9 Summary and concluding remarks

In this work, we derive the expressions for the evolution of the fundamental mass-mixing
parameters in the presence of SI and SI+NSI considering all possible lepton-flavor-conserving
and lepton-favor-violating NC-NSI. In order to derive these expressions, we use a method of
approximate diagonalization of the effective Hamiltonian by performing successive rotations
in (2,3), (1,3), and (1,2) blocks. In our study, we present the results for the benchmark
value of the DUNE baseline of 1300 km and also discuss the results for few other baselines.
We consider both positive and negative values of real NSI parameters with benchmark
values of ±0.2.

In the presence of SI only, the 2-3 mixing angle in matter (θm23) receives a tiny correction
which is independent of energy and the strength of the matter potential. It is observed
that only the NSI parameters in the (2,3) block, namely εµτ and (γ − β) ≡ (εττ − εµµ)
influence the evolution of θm23. In the presence of negative (positive) value of (γ − β), θm23
increases (decreases) with energy. For the maximal value of θ23 in vacuum, the change in
θm23 is negligible in the presence of εµτ . If θ23 belongs to the upper octant then θm23 increases
(decreases) for negative (positive) choices of εµτ . We notice a completely opposite behavior
if θ23 lies in the lower octant. We also study the modification in θm23 as a function of energy
when both the NSI parameters εµτ and (γ − β) are present in the scenario with their all
possible sign combinations. We unravel interesting degeneracies in [θ23-(γ−β)] and [θ23-εµτ ]
planes for three different combination of L and E and discuss how our simple approximate
analytical expression showing the evolution of θm23 plays an important role to understand
these complicated degeneracy patterns.

In contrast to θm23, θm13 is more sensitive in matter in the presence of SI and SI+NSI.
Therefore, an accurate understanding of the evolution of θ13 in matter is crucial to correctly
assess the outcome of the oscillation experiments in the presence of NC-NSI. θm13 goes
through an appreciable change even in SI case depending on the choice of mass ordering and
whether we are dealing with neutrinos or antineutrinos. Compared to SI case, the relative
change in θm13 for (ν, NMO) is somewhat suppressed (enhanced) in the presence of positive

13At oscillation dip, the argument of the cosine term in eq. (8.5) should be approximately equal to
(2n+ 1)π/2 where n = 0, 1, 2 . . . This roughly implies that (1 + 2εµτ Â) ∆m2

31L
4E ' π/2.
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(negative) NSI parameters in the (2,3) block, namely γ ≡ (εττ − εee), β ≡ (εµµ − εee), and
εµτ . For positive εeµ and/or εeτ , θm13 for (ν, NMO) approaches the resonance (θm13 = 45◦)
faster than SI case, but after crossing the resonance energy, SI takes over. For negative
εeµ or εeτ , modification of θm13 is suppressed almost up to the resonance energy and then, it
increases very steeply compared to SI case.

As far as the solar mixing angle is concerned, θm12 approaches to 90◦ (sin θm12 → 1,
cos θm12 → 0) very quickly as we increase the neutrino energy in SI case. While the NSI
parameters in the (2,3) block (γ, β, εµτ ) have minimal impact on the evolution of θm12, εeµ
and εeτ affect the evolution of θm12 substantially. In the presence of positive (negative) εeµ,
the change in θm12 with energy qualitatively remains the same with the saturation value
turns out to be around 80◦ (100◦). In the presence of positive (negative) εeτ , the saturation
happens around 100◦ (80◦).

Out of the two mass-squared differences, the evolution of the solar ∆m2
21,m is quite

dramatic as compared to that of the atmospheric ∆m2
31,m in matter. Both in SI and SI+NSI

cases, as we increase the energy and go beyond 10GeV, the value of ∆m2
21,m increases to

almost 20 times as compared to its vacuum value for 1300 km baseline. At the same time,
the value of ∆m2

31,m does not change much compared to its vacuum value.
We demonstrate the utility of our approach in addressing some interesting features

that we observe in neutrino oscillation in presence of matter. It is well known that θm13
can attain the value of 45◦ (MSW-resonance condition) for some choices of L and E in
the presence of standard matter effect. Now, in this work, for the first time, we show how
the θ13-resonance energy gets modified in the presence of NC-NSI with the help of simple,
compact, approximate analytical expressions. We observe that only the NSI parameters in
the (2, 3) block affects the θ13-resonance energy.

We study in detail how the NC-NSI parameters affect νµ → νe oscillation probability
which plays an important role to address the remaining unknown issues, namely CP violation,
mass ordering, and the precision measurement of oscillation parameters. In this paper,
for the first time, we derive a simple approximate analytical expression for E, L and its
corresponding ρ to have the maximal matter effect which in turn gives rise to maximum
νµ → νe transition in the presence of all possible NC-NSI parameters. This analytical
expression (see eq. (7.10)) reveals that in SI case, maximum νµ → νe transition occurs when
the value of (ρ × L) is around 5.33 × 104 km g/cm3 which may be satisfy for neutrinos
passing through core of the Earth under the assumption that the θ13-resonance energy
coincides with the energy that corresponds to the first oscillation maximum. However, in
the presence of positive εeµ or εeτ in matter, it is observed that the required value of (ρ×L)
to obtain the maximum νµ → νe transition probability is much smaller as compared to the
SI case (see figure 12). for an example, if the value of εeµ/εeτ is equal to 0.1, then one can
achieve the maximum νµ → νe transition for the value of (ρ × L) around 3.64 × 104 km
g/cm3, which may be realized in nature if neutrinos pass through mantle. On the other
hand, if we consider negative values of εeµ/εeτ with higher strength, the required values of
(ρ× L) to attain maximum νµ → νe transition may not be satisfied inside the Earth.

We also study in detail how the NSI parameters in the (2,3) block affect νµ → νµ
disappearance channel which plays an important role in atmospheric neutrino experiments.
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We observe that the off-diagonal NSI parameter εµτ has the dominant effect as compared to
the diagonal NSI parameter (γ−β). It happens because (γ−β) appears in the second-order
in the approximate νµ → νµ oscillation probability expression, whereas εµτ shows a liner
dependence. Also, the sign of εµτ has a significant impact on νµ → νµ disappearance
channel. However, this oscillation channel is not sensitive to the sign of the NSI parameter
(γ−β). We hope that the analysis performed in this paper will take our understanding of the
evolution of the oscillation parameters in the presence of all possible NC-NSI a step forward.
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A Comparison between approximate analytical expressions and exact
numerical calculations at the probability level

In section 3, we derive the expressions for the three modified mixing angles which are
given in eqs. (3.9)–(3.14). Expressions for the modified mass-squared differences are shown
in eqs. (5.1)–(5.3). Now one can calculate the oscillation probabilities in the presence
of NC-NSI parameters in matter by replacing the vacuum oscillation parameters in the
probability expressions with the corresponding modified approximate analytical expressions
in matter. In this appendix, we perform a neck-to-neck comparison between various
oscillation probabilities obtained using our approximate analytical expressions and full
numerical results obtained from the publicly available software GLoBES. This study enables
us to judge how accurate our analytical expressions are, in comparison to the exact numerical
calculations at the probability level.

In figure 14, we show the comparison between the approximate analytical expressions
(red curves) and exact numerical calculations (black curves) for νµ → νe channel considering
three different baselines (1300 km, 5000 km, and 8700 km) and two different flavor-violating
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Figure 14. Comparison of νµ → νe appearance probability estimated from our approximate
analytical expressions (red curves), and the numerical calculations obtained from GLoBES (black
curves) in the presence of NC-NSI parameters εeµ (upper panels) and εeτ (lower panels) one-at-a-
time. The three different columns correspond to the three different baselines: 1300 km (left panels),
5000 km (middle panels), and 8700 km (right panels). The solid (dashed) curves are obtained using
a value of 0.1 (−0.1) for the NSI parameters. Values of the three-flavor oscillation parameters are
taken from table 2. We assume θ23 = 45◦ and NMO.

NC-NSI parameters εeµ and εeτ (one-at-a-time). The upper (lower) panels show the results
for εeµ (εeτ ). We consider both positive (solid lines) and negative (dashed lines). This plot
shows that we have a very good agreement between analytical and numerical calculations.

In figure 15, we perform the same study for νµ → νµ survival channel considering the
NC-NSI parameters from the (2,3) block, namely, (γ−β) and εµτ one-at-a-time. The upper
panels are for (γ − β) and in the lower panels we consider εµτ . This figure also depicts a
very good agreement between analytical and numerical calculations.

B Evolution of mass-mixing parameters with non-zero δCP

Recent global fit study of the neutrino oscillation data containing information from the
solar, atmospheric, reactor, accelerator, and short-baseline experiments hint that Dirac
CP-violating phase δCP is non-zero in Nature with a best-fit value around 220◦ assuming
normal mass ordering [107]. Therefore, it is important to consider the non-zero values of
δCP in our analysis.

When δCP is non-zero, some elements of the effective neutrino propagation Hamiltonian
(see eq. (2.8)) matrix contain imaginary terms. In order to diagonalize the effective
Hamiltonian, we apply three complex rotations: R23(θm23, 0), R13(θm13, δ

m
CP), and R12(θm12, 0)

successively, where Rij(θmij , φm) is the complex rotation matrix in the (i, j) plane with
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Figure 15. Comparison of νµ → νµ disappearance probability estimated from our approximate
analytical expressions (red curves), and the numerical calculations obtained from GLoBES (black
curves) in the presence of NC-NSI parameters (γ − β) and εµτ one-at-a-time. In the upper panels,
we consider the presence of (γ − β) and lower panels are for εµτ . The three different columns
correspond to the three different baselines: 1300 km (left panels), 5000 km (middle panels), and
8700 km (right panels). The solid (dashed) curves are obtained using a value of 0.1 (−0.1) for the
NSI parameters. Values of the three-flavor oscillation parameters are taken from table 2. We assume
θ23 = 45◦ and NMO.

angle θmij and phase φm. After performing the rotation in each plane, we separately equate
the real and imaginary parts of the off-diagonal elements of that plane to zero and derive
the expressions for the corresponding modified mixing angle (θmij ) and phase (φm). While
doing this, we neglect all the terms which are of the order αs13 (∼ 10−3) or higher.14 The
expressions for the modified mixing angles and CP phase are as follows

tan2θm23 = c2
13−αc2

13+2εµτ Â
(γ−β)Â

, (B.1)

tan2θm13 = 1√
2(λ3−Â−s2

13−αs2
12c

2
13)

[
{sin2θ13(1−αs2

12)cosδCP(cm23+sm23)

−αsin2θ12c13(cm23−sm23)+2
√

2(εeµsm23+εeτ cm23)Â}2

+{sin2θ13(1−αs2
12)sinδCP(cm23+sm23)}2

]1/2
, (B.2)

14After performing the rotations in (2,3) and (1,2) blocks, the imaginary parts of the off-diagonal elements
appear to be proportional to αs13, which is of the order of 10−3, we can safely neglect these imaginary
parts of the off-diagonal elements. Note that we make this assumptions while obtaining the expressions for
modified mass-mixing parameters with non-zero δCP, but at the probability level, we always have the terms
which are of the order of αs13.

– 34 –



J
H
E
P
1
1
(
2
0
2
1
)
0
9
4

tan2θm12 = cm13√
2(λ2−λ1)

[
{sin2θ13(1−αs2

12)cosδCP(cm23+sm23)+αsin2θ12c13(cm23−sm23)

+2
√

2(εeµcm23−εeτsm23)Â}2+{sin2θ13(1−αs2
12)sinδCP(cm23+sm23)}2

]1/2
, (B.3)

tanδmCP = tanδCP. (B.4)

In the above equations, the λ’s take the form,

λ3 = 1
2

[
c2

13 + αc2
12 + (β + γ)Â+

√
(c2

13 − αc2
12 + 2εµτ Â)2 + (γ − β)2Â2

]
, (B.5)

λ2 = 1
2

[
c2

13 + αc2
12 + (β + γ)Â−

√
(c2

13 − αc2
12 + 2εµτ Â)2 + (γ − β)2Â2

]
, (B.6)

λ1 = 1
2

[
λ3 + Â+ s2

13 + αs2
12c

2
13 −

λ3 − Â− s2
13 − αs2

12c
2
13

cos 2θm13

]
. (B.7)

We consider the maximal value of θ23 (θ23 = 45◦) to derive the above expressions with
non-zero δCP. From these expressions, one can get back the expressions derived in section 3
(eqs. (3.9) to (3.14)) for θ23 = 45◦, δCP = 0 and retaining the terms which are of the order
of αs13.

After the final rotation in (1,2) block, the effective Hamiltonian is approximately
diagonalized with two small non-zero off-diagonal elements which are of the order of
O(∆m2

31 × α2) and O(∆m2
31 × αs13). Since these remaining off-diagonal terms are very

small, we can safely neglect them. The modified mass-squared differences in the presence of
non-zero δCP can be expressed with the help of the following three diagonal elements

m2
3,m

2E = ∆31
2

[
λ3 + Â+ s2

13 + αs2
12c

2
13 + λ3 − Â− s2

13 − αs2
12c

2
13

cos 2θm13

]
, (B.8)

m2
2,m

2E = ∆31
2

[
λ1 + λ2 −

λ1 − λ2
cos 2θm12

]
, (B.9)

m2
1,m

2E = ∆31
2

[
λ1 + λ2 + λ1 − λ2

cos 2θm12

]
. (B.10)

In section 4 and section 5, we discuss in detail the evolution of three modified mixing
angles and two mass-squared differences assuming δCP = 0. Now, we show how the evolution
of these mass-mixing parameters get affected in the presence of non-zero δCP. In figure 16,
we show the evolution of three modified mixing angles as a function of neutrino energy
for the baseline 1300 km for the SI case and considering one diagonal NSI parameter γ
and one off-diagonal NSI parameter εeτ with non-zero δCP. The black curve in each panel
represents the SI case, which does not depend on δCP as evident from eqs. (B.1) to (B.7),
under the assumption that all the NSI parameters are zero. The red curve in each panel
denotes the case with the NSI parameter γ = 0.1 which is also almost independent of δCP
(see eqs. (B.1) to (B.7)). The evolution of θm23 does not depend on εeτ (see the extreme left
panel of figure 16, where blue line completely overlap with black line) and it only affects
the evolution of θm13 and θm12. The blue colored band in the middle panel is obtained by
varying δCP in the entire range of −180◦ to 180◦ assuming εeτ = 0.1. Interestingly, near
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Figure 16. Evolution of three modified mixing angles θm23 (left panel), θm13 (middle panel), and θm12
(right panel) as a function of neutrino energy [see eqs. (B.1) to (B.7)] for the SI case (black curves)
and SI+NSI cases considering the NSI parameters γ (red curves) and εeτ (blue curves) with strength
0.1 for the baseline of 1300 km. θm23 does not evolve in the SI case and with the NSI parameter
εeτ (see the left panel where black and blue curves completely overlap with each other). In the
middle and right panels, the blue colored bands are obtained by varying δCP in the range of −180◦

to 180◦ with εeτ = 0.1. Note that the evolution of θm23 does not depend on δCP at all, whereas the
evolution of θm13 and θm12 do not depend on δCP for the SI case and with the diagonal NSI parameters
γ. Values of the benchmark oscillation parameters in vacuum are taken from table 2 with θ23 = 45◦

assuming NMO.

θ13-resonance, the impact of δCP vanishes as the denominator of the expression for θm13
becomes zero. The width of the blue color band due to the variation in δCP is not significant
in the case of θm12 evolution with εeτ = 0.1.

In figure 17, we show the evolution of two modified mass-squared differences ∆m2
31,m≡

(m2
3,m−m2

1,m) and ∆m2
21,m ≡ (m2

2,m−m2
1,m) as a function of neutrino energy (see eqs. (B.8)

to (B.10)) for the SI case and considering one diagonal NSI parameter γ and one off-diagonal
NSI parameter εeτ for the baseline 1300 km with non-zero δCP. From figure 17, we observe
that the evolution of ∆m2

31,m (see left panel) do not depend on δCP for the SI case and with
the off-diagonal NSI parameter γ. Note that we observe similar features for these modified
mixing angles in figure 16. δCP only leave imprints in the evolution of ∆m2

31,m and to some
extent for ∆m2

21,m when we consider the off-diagonal NSI parameter εeτ .
In figure 18, we show a comparison between νµ → νe appearance probabilities calculated

using our approximate analytical expressions given in eqs. (B.1) to (B.10) (see dashed curves)
and full numerical probabilities obtained from the publicly available software GLoBES (see
solid curves). Here, we assume L = 1300 km, θ23 = 45◦, normal mass ordering (NMO). The
values of the other benchmark three-flavor oscillation parameters are taken from table 2. We
show a neck-to-neck comparison between numerical and analytical probabilities considering
the off-diagonal NSI parameters εeµ (black lines) and εeτ (red lines) one-at-a-time with
strength 0.1. Four different panels correspond to the four benchmark values of δCP: 0, 90◦,
180◦, and −90◦ (see legends). We observe that for all the four benchmark values of δCP,
analytical oscillation probabilities obtained in this work have good agreement with the
numerical oscillation probabilities.
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Figure 17. Evolution of two modified mass-squared differences ∆m2
31,m (left panel) and ∆m2

21,m
(right panel) as a function of neutrino energy [see eqs. (B.8) to (B.10)] for the SI case (black curves)
and SI+NSI cases considering the NSI parameters γ (red curves) and εeτ (blue curves) with strength
0.1 for the baseline of 1300 km. The blue colored bands are obtained by varying δCP in the range of
−180◦ to 180◦ with εeτ = 0.1. Note that the evolution of ∆m2

31,m and ∆m2
21,m do not depend on

δCP for the SI case and with the diagonal NSI parameters γ. Values of the benchmark oscillation
parameters in vacuum are taken from table 2 with θ23 = 45◦ assuming NMO.

C Calculation of the oscillation probabilities for neutrinos passing
through various layers inside the Earth

Matter density inside the Earth is not uniform and its value varies in the range of 2 g/cm3 to
14 g/cm3 as we move towards the center of Earth from the surface. It is also well-known that
there is a sudden jumps in the Earth’s matter densities at the boundaries of mantle-outer
core and outer core-inner core (see figure 8). If a neutrino passes through only the crust or
crust and mantle regions inside the Earth, then for those baselines, we can assume line-
averaged constant Earth matter densities to estimate the neutrino oscillation probabilities.
When a neutrino penetrates the core (it happens for the baselines L & 10691 km), then, for
those baselines, the concept of line-averaged constant Earth matter density does not work
since there is a sudden jumps in the matter density at the mantle-core boundary. In such
cases, one needs to consider the exact PREM profile of the Earth as given in ref. [99].

In order to calculate the oscillation probabilities using our approximate analytical
expressions for the modified mass-mixing parameters in matter, guided by the PREM profile
of the Earth, we consider a simple four-layered profile consisting of crust, mantle, outer core,
and inner core [100], which takes into account all the important characteristics of Earth.
The radius and density of each layer of this four-layered profile are given in table 3. To
calculate the oscillation probability for a given baseline L, we first find out the length of the
baseline which passes through each layer of this four-layered profile (lx where x = 1, . . . 4).
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Figure 18. Comparison of νµ → νe appearance probability estimated from our approximate
analytical expressions (dashed curves), and the numerical calculations obtained from GLoBES (solid
curves) in the presence of NC-NSI parameters εeµ (black curves) and εeτ (red curves) in the presence
of non-zero δCP. We consider our benchmark values of δCP: 0◦ (upper left panel), 90◦ (upper right
panel), 180◦ (lower left panel), and −90◦ (lower right panel). We assume L = 1300 km, θ23 = 45◦, and
NMO. The values of the other benchmark three-flavor oscillation parameters are taken from table 2.

Region Rmin (km) Rmax (km) Average density (g/cm3)
Inner core 0 1220 13.0
Outer core 1220 3480 11.3
Mantle 3480 5701 5.0
Crust 5701 6371 3.3

Table 3. The radius and average density of each layer of the four-layered profile of Earth which
preserves all the important features of Earth. Rmin (Rmax) is the radius at which a given layer
starts (ends).
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Using the expressions of the modified mass-mixing parameters derived in this work, as given
in eqs. (3.9) to (3.14) and eqs. (5.1) to (5.3), we calculate the probability amplitude matrix
for each layer whose elements are given by the following expression15 [71]

Axβα(Lx, ρx, E) =
3∑
j=1

Uβj(ρx) exp
(
−i

∆m2
j1(ρx)
2E lx

)
U∗αj(ρx) . (C.1)

To calculate the oscillation probability for a given baseline L, we first evaluate the resultant
transition amplitude, which is the product of probability amplitude matrices estimated for
various parts of the baseline passing through each layer. Then, we obtain the expression for
the oscillation probability να → νβ (α, β = e, µ, τ) for a given baseline L passing through
the n layers inside the Earth (where n can be 1, 2, 3, 4)

P (να → νβ , L) =
∣∣∣∣∣
n∏
x=1

Ax(Lx, ρx, E)
∣∣∣∣∣
2

βα

, (C.2)

where Ax(Lx, ρx, E) is the transition amplitude matrix for neutrino passing through the
x-th layer. Following this prescription, for an example, νµ → νe appearance probability for
a baseline passing through all the four concentric layers inside the Earth can be written as

P (νµ → νe, L) = |A1A2A3A4A3A2A1|2µe . (C.3)

Similarly, one can calculate the νµ → νµ survival probability by squaring the (µ, µ) element
of the resultant probability amplitude matrix. We use this prescription to calculate the
oscillation probabilities in our work (see figures 9, 10, and 13).
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any medium, provided the original author(s) and source are credited.

References

[1] Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020)
083C01 [INSPIRE].

[2] Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys.
Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

[3] A. Marrone, Phenomenology of Three Neutrino Oscillations, talk given at The XIX
International Workshop on Neutrino Telescopes, 18th to 26th February 2021, Padova, Italy
[https://agenda.infn.it/event/24250/overview].

[4] NuFIT 5.0 (2020), http://www.nu-fit.org/.

15U(ρx) is estimated by replacing the vacuum oscillation parameters with their matter modified counter-
parts for each layer having path length lx and the corresponding density ρx using eqs. (3.9) to (3.14). We
calculate ∆m2

j1(ρx) for each layer having path length lx and the corresponding density ρx using eqs. (5.1)
to (5.3).

– 39 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://inspirehep.net/search?p=find+J%20%22PTEP%2C2020%2C083C01%22
https://doi.org/10.1103/PhysRevLett.81.1562
https://doi.org/10.1103/PhysRevLett.81.1562
https://arxiv.org/abs/hep-ex/9807003
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ex%2F9807003
https://agenda.infn.it/event/24250/overview
http://www.nu-fit.org/


J
H
E
P
1
1
(
2
0
2
1
)
0
9
4

[5] I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate of hints:
updated global analysis of three-flavor neutrino oscillations, JHEP 09 (2020) 178
[arXiv:2007.14792] [INSPIRE].

[6] P.F. de Salas et al., 2020 global reassessment of the neutrino oscillation picture, JHEP 02
(2021) 071 [arXiv:2006.11237] [INSPIRE].

[7] R.N. Mohapatra et al., Theory of neutrinos: A White paper, Rept. Prog. Phys. 70 (2007)
1757 [hep-ph/0510213] [INSPIRE].

[8] A. Strumia and F. Vissani, Neutrino masses and mixings and. . . , hep-ph/0606054 [INSPIRE].
[9] M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept.

460 (2008) 1 [arXiv:0704.1800] [INSPIRE].
[10] Super-Kamiokande collaboration, Evidence for an oscillatory signature in atmospheric

neutrino oscillation, Phys. Rev. Lett. 93 (2004) 101801 [hep-ex/0404034] [INSPIRE].
[11] IceCube collaboration, Measurement of Atmospheric Neutrino Oscillations at 6–56GeV with

IceCube DeepCore, Phys. Rev. Lett. 120 (2018) 071801 [arXiv:1707.07081] [INSPIRE].
[12] ANTARES collaboration, Measuring the atmospheric neutrino oscillation parameters and

constraining the 3+1 neutrino model with ten years of ANTARES data, JHEP 06 (2019) 113
[arXiv:1812.08650] [INSPIRE].

[13] Daya Bay collaboration, Measurement of the Electron Antineutrino Oscillation with 1958
Days of Operation at Daya Bay, Phys. Rev. Lett. 121 (2018) 241805 [arXiv:1809.02261]
[INSPIRE].

[14] RENO collaboration, Observation of Reactor Electron Antineutrino Disappearance in the
RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

[15] T2K collaboration, Constraint on the matter-antimatter symmetry-violating phase in
neutrino oscillations, Nature 580 (2020) 339 [Erratum ibid. 583 (2020) E16]
[arXiv:1910.03887] [INSPIRE].

[16] T2K collaboration, Improved constraints on neutrino mixing from the T2K experiment with
3.13× 1021 protons on target, Phys. Rev. D 103 (2021) 112008 [arXiv:2101.03779]
[INSPIRE].

[17] NOvA collaboration, First Measurement of Neutrino Oscillation Parameters using Neutrinos
and Antineutrinos by NOvA, Phys. Rev. Lett. 123 (2019) 151803 [arXiv:1906.04907]
[INSPIRE].

[18] DUNE collaboration, Deep Underground Neutrino Experiment (DUNE), Far Detector
Technical Design Report, Volume II: DUNE Physics, arXiv:2002.03005 [INSPIRE].

[19] DUNE collaboration, Experiment Simulation Configurations Approximating DUNE TDR,
arXiv:2103.04797 [INSPIRE].

[20] Hyper-Kamiokande Proto- collaboration, Physics potential of a long-baseline neutrino
oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande, PTEP 2015
(2015) 053C02 [arXiv:1502.05199] [INSPIRE].

[21] Hyper-Kamiokande collaboration, Physics potentials with the second Hyper-Kamiokande
detector in Korea, PTEP 2018 (2018) 063C01 [arXiv:1611.06118] [INSPIRE].

[22] ESSnuSB collaboration, A very intense neutrino super beam experiment for leptonic
CP-violation discovery based on the European spallation source linac, Nucl. Phys. B 885
(2014) 127 [arXiv:1309.7022] [INSPIRE].

– 40 –

https://doi.org/10.1007/JHEP09(2020)178
https://arxiv.org/abs/2007.14792
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.14792
https://doi.org/10.1007/JHEP02(2021)071
https://doi.org/10.1007/JHEP02(2021)071
https://arxiv.org/abs/2006.11237
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.11237
https://doi.org/10.1088/0034-4885/70/11/R02
https://doi.org/10.1088/0034-4885/70/11/R02
https://arxiv.org/abs/hep-ph/0510213
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0510213
https://arxiv.org/abs/hep-ph/0606054
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0606054
https://doi.org/10.1016/j.physrep.2007.12.004
https://doi.org/10.1016/j.physrep.2007.12.004
https://arxiv.org/abs/0704.1800
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0704.1800
https://doi.org/10.1103/PhysRevLett.93.101801
https://arxiv.org/abs/hep-ex/0404034
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ex%2F0404034
https://doi.org/10.1103/PhysRevLett.120.071801
https://arxiv.org/abs/1707.07081
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.07081
https://doi.org/10.1007/JHEP06(2019)113
https://arxiv.org/abs/1812.08650
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.08650
https://doi.org/10.1103/PhysRevLett.121.241805
https://arxiv.org/abs/1809.02261
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.02261
https://doi.org/10.1103/PhysRevLett.108.191802
https://arxiv.org/abs/1204.0626
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1204.0626
https://doi.org/10.1038/s41586-020-2177-0
https://arxiv.org/abs/1910.03887
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.03887
https://doi.org/10.1103/PhysRevD.103.112008
https://arxiv.org/abs/2101.03779
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.03779
https://doi.org/10.1103/PhysRevLett.123.151803
https://arxiv.org/abs/1906.04907
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.04907
https://arxiv.org/abs/2002.03005
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.03005
https://arxiv.org/abs/2103.04797
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.04797
https://doi.org/10.1093/ptep/ptv061
https://doi.org/10.1093/ptep/ptv061
https://arxiv.org/abs/1502.05199
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.05199
https://doi.org/10.1093/ptep/pty044
https://arxiv.org/abs/1611.06118
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.06118
https://doi.org/10.1016/j.nuclphysb.2014.05.016
https://doi.org/10.1016/j.nuclphysb.2014.05.016
https://arxiv.org/abs/1309.7022
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.7022


J
H
E
P
1
1
(
2
0
2
1
)
0
9
4

[23] M.M. Devi, T. Thakore, S.K. Agarwalla and A. Dighe, Enhancing sensitivity to neutrino
parameters at INO combining muon and hadron information, JHEP 10 (2014) 189
[arXiv:1406.3689] [INSPIRE].

[24] ICAL collaboration, Physics Potential of the ICAL detector at the India-based Neutrino
Observatory (INO), Pramana 88 (2017) 79 [arXiv:1505.07380] [INSPIRE].

[25] A. Kumar, A. Khatun, S.K. Agarwalla and A. Dighe, From oscillation dip to oscillation
valley in atmospheric neutrino experiments, Eur. Phys. J. C 81 (2021) 190
[arXiv:2006.14529] [INSPIRE].

[26] JUNO collaboration, Neutrino Physics with JUNO, J. Phys. G 43 (2016) 030401
[arXiv:1507.05613] [INSPIRE].

[27] Theia collaboration, THEIA: an advanced optical neutrino detector, Eur. Phys. J. C 80
(2020) 416 [arXiv:1911.03501] [INSPIRE].

[28] C.A. Argüelles et al., New opportunities at the next-generation neutrino experiments I: BSM
neutrino physics and dark matter, Rept. Prog. Phys. 83 (2020) 124201 [arXiv:1907.08311]
[INSPIRE].

[29] S.K. Agarwalla, BSM Searches in Neutrino Experiments, talk given at The XXIX
International Conference on Neutrino Physics and Astrophysics (Neutrino 2020), 22nd June
to 2nd July 2020, Fermilab, Chicago, U.S.A. [https://conferences.fnal.gov/nu2020/].

[30] L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].

[31] J.W.F. Valle, Resonant Oscillations of Massless Neutrinos in Matter, Phys. Lett. B 199
(1987) 432 [INSPIRE].

[32] M.M. Guzzo, A. Masiero and S.T. Petcov, On the MSW effect with massless neutrinos and
no mixing in the vacuum, Phys. Lett. B 260 (1991) 154 [INSPIRE].

[33] E. Roulet, MSW effect with flavor changing neutrino interactions, Phys. Rev. D 44 (1991)
R935 [INSPIRE].

[34] Y. Grossman, Nonstandard neutrino interactions and neutrino oscillation experiments, Phys.
Lett. B 359 (1995) 141 [hep-ph/9507344] [INSPIRE].

[35] M.M. Guzzo, H. Nunokawa, P.C. de Holanda and O.L.G. Peres, On the massless ‘just-so’
solution to the solar neutrino problem, Phys. Rev. D 64 (2001) 097301 [hep-ph/0012089]
[INSPIRE].

[36] P. Huber and J.W.F. Valle, Nonstandard interactions: Atmospheric versus neutrino factory
experiments, Phys. Lett. B 523 (2001) 151 [hep-ph/0108193] [INSPIRE].

[37] A.M. Gago et al., Global analysis of the postSNO solar neutrino data for standard and
nonstandard oscillation mechanisms, Phys. Rev. D 65 (2002) 073012 [hep-ph/0112060]
[INSPIRE].

[38] F.J. Escrihuela, M. Tortola, J.W.F. Valle and O.G. Miranda, Global constraints on
muon-neutrino non-standard interactions, Phys. Rev. D 83 (2011) 093002
[arXiv:1103.1366] [INSPIRE].

[39] M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Testing matter effects in propagation of
atmospheric and long-baseline neutrinos, JHEP 05 (2011) 075 [arXiv:1103.4365] [INSPIRE].

[40] T. Ohlsson, Status of non-standard neutrino interactions, Rept. Prog. Phys. 76 (2013) 044201
[arXiv:1209.2710] [INSPIRE].

– 41 –

https://doi.org/10.1007/JHEP10(2014)189
https://arxiv.org/abs/1406.3689
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.3689
https://doi.org/10.1007/s12043-017-1373-4
https://arxiv.org/abs/1505.07380
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.07380
https://doi.org/10.1140/epjc/s10052-021-08946-8
https://arxiv.org/abs/2006.14529
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.14529
https://doi.org/10.1088/0954-3899/43/3/030401
https://arxiv.org/abs/1507.05613
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.05613
https://doi.org/10.1140/epjc/s10052-020-7977-8
https://doi.org/10.1140/epjc/s10052-020-7977-8
https://arxiv.org/abs/1911.03501
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.03501
https://doi.org/10.1088/1361-6633/ab9d12
https://arxiv.org/abs/1907.08311
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.08311
https://conferences.fnal.gov/nu2020/
https://doi.org/10.1103/PhysRevD.17.2369
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD17%2C2369%22
https://doi.org/10.1016/0370-2693(87)90947-6
https://doi.org/10.1016/0370-2693(87)90947-6
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB199%2C432%22
https://doi.org/10.1016/0370-2693(91)90984-X
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB260%2C154%22
https://doi.org/10.1103/PhysRevD.44.R935
https://doi.org/10.1103/PhysRevD.44.R935
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD44%2C935%22
https://doi.org/10.1016/0370-2693(95)01069-3
https://doi.org/10.1016/0370-2693(95)01069-3
https://arxiv.org/abs/hep-ph/9507344
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9507344
https://doi.org/10.1103/PhysRevD.64.097301
https://arxiv.org/abs/hep-ph/0012089
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0012089
https://doi.org/10.1016/S0370-2693(01)01319-3
https://arxiv.org/abs/hep-ph/0108193
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0108193
https://doi.org/10.1103/PhysRevD.65.073012
https://arxiv.org/abs/hep-ph/0112060
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0112060
https://doi.org/10.1103/PhysRevD.83.093002
https://arxiv.org/abs/1103.1366
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1103.1366
https://doi.org/10.1007/JHEP05(2011)075
https://arxiv.org/abs/1103.4365
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1103.4365
https://doi.org/10.1088/0034-4885/76/4/044201
https://arxiv.org/abs/1209.2710
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.2710


J
H
E
P
1
1
(
2
0
2
1
)
0
9
4

[41] M.C. Gonzalez-Garcia and M. Maltoni, Determination of matter potential from global
analysis of neutrino oscillation data, JHEP 09 (2013) 152 [arXiv:1307.3092] [INSPIRE].

[42] O.G. Miranda and H. Nunokawa, Non standard neutrino interactions: current status and
future prospects, New J. Phys. 17 (2015) 095002 [arXiv:1505.06254] [INSPIRE].

[43] Y. Farzan and M. Tortola, Neutrino oscillations and Non-Standard Interactions, Front. in
Phys. 6 (2018) 10 [arXiv:1710.09360] [INSPIRE].

[44] A. Khatun, S.S. Chatterjee, T. Thakore and S. Kumar Agarwalla, Enhancing sensitivity to
non-standard neutrino interactions at INO combining muon and hadron information, Eur.
Phys. J. C 80 (2020) 533 [arXiv:1907.02027] [INSPIRE].

[45] P.S. Bhupal Dev et al., Neutrino Non-Standard Interactions: A Status Report, SciPost Phys.
Proc. 2 (2019) 001 [INSPIRE].

[46] A. Kumar, A. Khatun, S.K. Agarwalla and A. Dighe, A New Approach to Probe
Non-Standard Interactions in Atmospheric Neutrino Experiments, JHEP 04 (2021) 159
[arXiv:2101.02607] [INSPIRE].

[47] S.P. Mikheyev and A.Y. Smirnov, Resonance Amplification of Oscillations in Matter and
Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].

[48] S.P. Mikheev and A.Y. Smirnov, Resonant amplification of neutrino oscillations in matter
and solar neutrino spectroscopy, Nuovo Cim. C 9 (1986) 17 [INSPIRE].

[49] G. Barenboim, P.B. Denton, S.J. Parke and C.A. Ternes, Neutrino Oscillation Probabilities
through the Looking Glass, Phys. Lett. B 791 (2019) 351 [arXiv:1902.00517] [INSPIRE].

[50] S.T. Petcov and S. Toshev, Three Neutrino Oscillations in Matter: Analytical Results in the
Adiabatic Approximation, Phys. Lett. B 187 (1987) 120 [INSPIRE].

[51] C.W. Kim and W.K. Sze, Adiabatic Resonant Oscillations of Solar Neutrinos in Three
Generations, Phys. Rev. D 35 (1987) 1404 [INSPIRE].

[52] J. Arafune and J. Sato, CP and T violation test in neutrino oscillation, Phys. Rev. D 55
(1997) 1653 [hep-ph/9607437] [INSPIRE].

[53] J. Arafune, M. Koike and J. Sato, CP violation and matter effect in long baseline neutrino
oscillation experiments, Phys. Rev. D 56 (1997) 3093 [Erratum ibid. 60 (1999) 119905]
[hep-ph/9703351] [INSPIRE].

[54] T. Ohlsson and H. Snellman, Three flavor neutrino oscillations in matter, J. Math. Phys. 41
(2000) 2768 [Erratum ibid. 42 (2001) 2345] [hep-ph/9910546] [INSPIRE].

[55] M. Freund, Analytic approximations for three neutrino oscillation parameters and
probabilities in matter, Phys. Rev. D 64 (2001) 053003 [hep-ph/0103300] [INSPIRE].

[56] A. Cervera et al., Golden measurements at a neutrino factory, Nucl. Phys. B 579 (2000) 17
[Erratum ibid. 593 (2001) 731] [hep-ph/0002108] [INSPIRE].

[57] E.K. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson and T. Schwetz, Series expansions
for three flavor neutrino oscillation probabilities in matter, JHEP 04 (2004) 078
[hep-ph/0402175] [INSPIRE].

[58] K. Asano and H. Minakata, Large-θ13 Perturbation Theory of Neutrino Oscillation for
Long-Baseline Experiments, JHEP 06 (2011) 022 [arXiv:1103.4387] [INSPIRE].

[59] S.K. Agarwalla, Y. Kao and T. Takeuchi, Analytical approximation of the neutrino oscillation
matter effects at large θ13, JHEP 04 (2014) 047 [arXiv:1302.6773] [INSPIRE].

– 42 –

https://doi.org/10.1007/JHEP09(2013)152
https://arxiv.org/abs/1307.3092
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.3092
https://doi.org/10.1088/1367-2630/17/9/095002
https://arxiv.org/abs/1505.06254
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.06254
https://doi.org/10.3389/fphy.2018.00010
https://doi.org/10.3389/fphy.2018.00010
https://arxiv.org/abs/1710.09360
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.09360
https://doi.org/10.1140/epjc/s10052-020-8097-1
https://doi.org/10.1140/epjc/s10052-020-8097-1
https://arxiv.org/abs/1907.02027
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.02027
https://doi.org/10.21468/SciPostPhysProc.2.001
https://doi.org/10.21468/SciPostPhysProc.2.001
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.00991
https://doi.org/10.1007/JHEP04(2021)159
https://arxiv.org/abs/2101.02607
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.02607
https://inspirehep.net/search?p=find+J%20%22Sov.J.Nucl.Phys.%2C42%2C913%22
https://doi.org/10.1007/BF02508049
https://inspirehep.net/search?p=find+J%20%22Nuovo%20Cim.%2CC9%2C17%22
https://doi.org/10.1016/j.physletb.2019.03.002
https://arxiv.org/abs/1902.00517
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.00517
https://doi.org/10.1016/0370-2693(87)90083-9
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB187%2C120%22
https://doi.org/10.1103/PhysRevD.35.1404
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD35%2C1404%22
https://doi.org/10.1103/PhysRevD.55.1653
https://doi.org/10.1103/PhysRevD.55.1653
https://arxiv.org/abs/hep-ph/9607437
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9607437
https://doi.org/10.1103/PhysRevD.60.119905
https://arxiv.org/abs/hep-ph/9703351
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9703351
https://doi.org/10.1063/1.533270
https://doi.org/10.1063/1.533270
https://arxiv.org/abs/hep-ph/9910546
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9910546
https://doi.org/10.1103/PhysRevD.64.053003
https://arxiv.org/abs/hep-ph/0103300
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0103300
https://doi.org/10.1016/S0550-3213(00)00221-2
https://arxiv.org/abs/hep-ph/0002108
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0002108
https://doi.org/10.1088/1126-6708/2004/04/078
https://arxiv.org/abs/hep-ph/0402175
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0402175
https://doi.org/10.1007/JHEP06(2011)022
https://arxiv.org/abs/1103.4387
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1103.4387
https://doi.org/10.1007/JHEP04(2014)047
https://arxiv.org/abs/1302.6773
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.6773


J
H
E
P
1
1
(
2
0
2
1
)
0
9
4

[60] H. Minakata and S.J. Parke, Simple and Compact Expressions for Neutrino Oscillation
Probabilities in Matter, JHEP 01 (2016) 180 [arXiv:1505.01826] [INSPIRE].

[61] P.B. Denton, H. Minakata and S.J. Parke, Compact Perturbative Expressions For Neutrino
Oscillations in Matter, JHEP 06 (2016) 051 [arXiv:1604.08167] [INSPIRE].

[62] M.C. Gonzalez-Garcia, Y. Grossman, A. Gusso and Y. Nir, New CP-violation in neutrino
oscillations, Phys. Rev. D 64 (2001) 096006 [hep-ph/0105159] [INSPIRE].

[63] T. Ota, J. Sato and N.-a. Yamashita, Oscillation enhanced search for new interaction with
neutrinos, Phys. Rev. D 65 (2002) 093015 [hep-ph/0112329] [INSPIRE].

[64] O. Yasuda, On the exact formula for neutrino oscillation probability by Kimura, Takamura
and Yokomakura, arXiv:0704.1531 [INSPIRE].

[65] J. Kopp, M. Lindner, T. Ota and J. Sato, Non-standard neutrino interactions in reactor and
superbeam experiments, Phys. Rev. D 77 (2008) 013007 [arXiv:0708.0152] [INSPIRE].

[66] N.C. Ribeiro, H. Minakata, H. Nunokawa, S. Uchinami and R. Zukanovich-Funchal, Probing
Non-Standard Neutrino Interactions with Neutrino Factories, JHEP 12 (2007) 002
[arXiv:0709.1980] [INSPIRE].

[67] M. Blennow and T. Ohlsson, Approximative two-flavor framework for neutrino oscillations
with non-standard interactions, Phys. Rev. D 78 (2008) 093002 [arXiv:0805.2301]
[INSPIRE].

[68] T. Kikuchi, H. Minakata and S. Uchinami, Perturbation Theory of Neutrino Oscillation with
Nonstandard Neutrino Interactions, JHEP 03 (2009) 114 [arXiv:0809.3312] [INSPIRE].

[69] D. Meloni, T. Ohlsson and H. Zhang, Exact and Approximate Formulas for Neutrino Mixing
and Oscillations with Non-Standard Interactions, JHEP 04 (2009) 033 [arXiv:0901.1784]
[INSPIRE].

[70] S.K. Agarwalla, Y. Kao, D. Saha and T. Takeuchi, Running of Oscillation Parameters in
Matter with Flavor-Diagonal Non-Standard Interactions of the Neutrino, JHEP 11 (2015)
035 [arXiv:1506.08464] [INSPIRE].

[71] V.D. Barger, K. Whisnant, S. Pakvasa and R.J.N. Phillips, Matter Effects on Three-Neutrino
Oscillations, Phys. Rev. D 22 (1980) 2718 [INSPIRE].

[72] H.W. Zaglauer and K.H. Schwarzer, The Mixing Angles in Matter for Three Generations of
Neutrinos and the MSW Mechanism, Z. Phys. C 40 (1988) 273 [INSPIRE].

[73] T. Ohlsson and H. Snellman, Neutrino oscillations with three flavors in matter: Applications
to neutrinos traversing the Earth, Phys. Lett. B 474 (2000) 153 [Erratum ibid. 480 (2000)
419] [hep-ph/9912295] [INSPIRE].

[74] K. Kimura, A. Takamura and H. Yokomakura, Exact formula of probability and CP-violation
for neutrino oscillations in matter, Phys. Lett. B 537 (2002) 86 [hep-ph/0203099] [INSPIRE].

[75] K. Kimura, A. Takamura and H. Yokomakura, Exact formulas and simple CP dependence of
neutrino oscillation probabilities in matter with constant density, Phys. Rev. D 66 (2002)
073005 [hep-ph/0205295] [INSPIRE].

[76] Z.-z. Xing, S. Zhou and Y.-L. Zhou, Renormalization-Group Equations of Neutrino Masses
and Flavor Mixing Parameters in Matter, JHEP 05 (2018) 015 [arXiv:1802.00990]
[INSPIRE].

[77] X. Wang and S. Zhou, Analytical solutions to renormalization-group equations of effective
neutrino masses and mixing parameters in matter, JHEP 05 (2019) 035 [arXiv:1901.10882]
[INSPIRE].

– 43 –

https://doi.org/10.1007/JHEP01(2016)180
https://arxiv.org/abs/1505.01826
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.01826
https://doi.org/10.1007/JHEP06(2016)051
https://arxiv.org/abs/1604.08167
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.08167
https://doi.org/10.1103/PhysRevD.64.096006
https://arxiv.org/abs/hep-ph/0105159
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0105159
https://doi.org/10.1103/PhysRevD.65.093015
https://arxiv.org/abs/hep-ph/0112329
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0112329
https://arxiv.org/abs/0704.1531
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0704.1531
https://doi.org/10.1103/PhysRevD.77.013007
https://arxiv.org/abs/0708.0152
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0708.0152
https://doi.org/10.1088/1126-6708/2007/12/002
https://arxiv.org/abs/0709.1980
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0709.1980
https://doi.org/10.1103/PhysRevD.78.093002
https://arxiv.org/abs/0805.2301
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.2301
https://doi.org/10.1088/1126-6708/2009/03/114
https://arxiv.org/abs/0809.3312
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0809.3312
https://doi.org/10.1088/1126-6708/2009/04/033
https://arxiv.org/abs/0901.1784
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0901.1784
https://doi.org/10.1007/JHEP11(2015)035
https://doi.org/10.1007/JHEP11(2015)035
https://arxiv.org/abs/1506.08464
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.08464
https://doi.org/10.1103/PhysRevD.22.2718
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD22%2C2718%22
https://doi.org/10.1007/BF01555889
https://inspirehep.net/search?p=find+J%20%22Z.Phys.%2CC40%2C273%22
https://doi.org/10.1016/S0370-2693(00)00008-3
https://arxiv.org/abs/hep-ph/9912295
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9912295
https://doi.org/10.1016/S0370-2693(02)01907-X
https://arxiv.org/abs/hep-ph/0203099
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0203099
https://doi.org/10.1103/PhysRevD.66.073005
https://doi.org/10.1103/PhysRevD.66.073005
https://arxiv.org/abs/hep-ph/0205295
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0205295
https://doi.org/10.1007/JHEP05(2018)015
https://arxiv.org/abs/1802.00990
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.00990
https://doi.org/10.1007/JHEP05(2019)035
https://arxiv.org/abs/1901.10882
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.10882


J
H
E
P
1
1
(
2
0
2
1
)
0
9
4

[78] X. Wang and S. Zhou, On the Properties of the Effective Jarlskog Invariant for Three-flavor
Neutrino Oscillations in Matter, Nucl. Phys. B 950 (2020) 114867 [arXiv:1908.07304]
[INSPIRE].

[79] C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and
a Measure of Maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].

[80] V.A. Naumov, Three neutrino oscillations in matter, CP-violation and topological phases, Int.
J. Mod. Phys. D 1 (1992) 379 [INSPIRE].

[81] P.F. Harrison and W.G. Scott, CP and T violation in neutrino oscillations and invariance of
Jarlskog’s determinant to matter effects, Phys. Lett. B 476 (2000) 349 [hep-ph/9912435]
[INSPIRE].

[82] C.G.J. Jacobi, Über ein leichtes Verfahren, die in der Theorie der Säkularstörangen
vorkommenden Gleichungen numerisch aufzuloösen, Crelle 30 (1846) 51.

[83] L. Wolfenstein, Neutrino Oscillations and Stellar Collapse, Phys. Rev. D 20 (1979) 2634
[INSPIRE].

[84] S.-F. Ge and S.J. Parke, Scalar Nonstandard Interactions in Neutrino Oscillation, Phys. Rev.
Lett. 122 (2019) 211801 [arXiv:1812.08376] [INSPIRE].

[85] D. Aristizabal Sierra, V. De Romeri and N. Rojas, COHERENT analysis of neutrino
generalized interactions, Phys. Rev. D 98 (2018) 075018 [arXiv:1806.07424] [INSPIRE].

[86] J. Heeck and W. Rodejohann, Gauged Lµ − Lτ Symmetry at the Electroweak Scale, Phys.
Rev. D 84 (2011) 075007 [arXiv:1107.5238] [INSPIRE].

[87] Y. Farzan and I.M. Shoemaker, Lepton Flavor Violating Non-Standard Interactions via Light
Mediators, JHEP 07 (2016) 033 [arXiv:1512.09147] [INSPIRE].

[88] Y. Farzan and J. Heeck, Neutrinophilic nonstandard interactions, Phys. Rev. D 94 (2016)
053010 [arXiv:1607.07616] [INSPIRE].

[89] K.S. Babu, A. Friedland, P.A.N. Machado and I. Mocioiu, Flavor Gauge Models Below the
Fermi Scale, JHEP 12 (2017) 096 [arXiv:1705.01822] [INSPIRE].

[90] M.B. Wise and Y. Zhang, Lepton Flavorful Fifth Force and Depth-dependent Neutrino Matter
Interactions, JHEP 06 (2018) 053 [arXiv:1803.00591] [INSPIRE].

[91] H. Minakata, Probing Non-Standard Neutrino Physics at Neutrino Factory and T2KK, in 4th
International Workshop on Neutrino Oscillations in Venice: Ten Years after the Neutrino
Oscillations, pp. 361–380 (2008) [arXiv:0805.2435] [INSPIRE].

[92] B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Sov. Phys. JETP
7 (1958) 172 [INSPIRE].

[93] Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles,
Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].

[94] B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge,
Sov. Phys. JETP 26 (1968) 984 [INSPIRE].

[95] I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and J. Salvado, Updated
constraints on non-standard interactions from global analysis of oscillation data, JHEP 08
(2018) 180 [Addendum ibid. 12 (2020) 152] [arXiv:1805.04530] [INSPIRE].

[96] S.S. Chatterjee, A. Dasgupta and S.K. Agarwalla, Exploring Flavor-Dependent Long-Range
Forces in Long-Baseline Neutrino Oscillation Experiments, JHEP 12 (2015) 167
[arXiv:1509.03517] [INSPIRE].

– 44 –

https://doi.org/10.1016/j.nuclphysb.2019.114867
https://arxiv.org/abs/1908.07304
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.07304
https://doi.org/10.1103/PhysRevLett.55.1039
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C55%2C1039%22
https://doi.org/10.1142/S0218271892000203
https://doi.org/10.1142/S0218271892000203
https://inspirehep.net/search?p=find+J%20%22Int.J.Mod.Phys.%2CD1%2C379%22
https://doi.org/10.1016/S0370-2693(00)00153-2
https://arxiv.org/abs/hep-ph/9912435
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9912435
https://doi.org/10.1515/crll.1846.30.51
https://doi.org/10.1103/PhysRevD.20.2634
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD20%2C2634%22
https://doi.org/10.1103/PhysRevLett.122.211801
https://doi.org/10.1103/PhysRevLett.122.211801
https://arxiv.org/abs/1812.08376
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.08376
https://doi.org/10.1103/PhysRevD.98.075018
https://arxiv.org/abs/1806.07424
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.07424
https://doi.org/10.1103/PhysRevD.84.075007
https://doi.org/10.1103/PhysRevD.84.075007
https://arxiv.org/abs/1107.5238
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1107.5238
https://doi.org/10.1007/JHEP07(2016)033
https://arxiv.org/abs/1512.09147
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.09147
https://doi.org/10.1103/PhysRevD.94.053010
https://doi.org/10.1103/PhysRevD.94.053010
https://arxiv.org/abs/1607.07616
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.07616
https://doi.org/10.1007/JHEP12(2017)096
https://arxiv.org/abs/1705.01822
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.01822
https://doi.org/10.1007/JHEP06(2018)053
https://arxiv.org/abs/1803.00591
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.00591
https://arxiv.org/abs/0805.2435
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.2435
https://inspirehep.net/search?p=find+J%20%22Sov.Phys.JETP%2C7%2C172%22
https://doi.org/10.1143/PTP.28.870
https://inspirehep.net/search?p=find+J%20%22Prog.Theor.Phys.%2C28%2C870%22
https://inspirehep.net/search?p=find+J%20%22Sov.Phys.JETP%2C26%2C984%22
https://doi.org/10.1007/JHEP08(2018)180
https://doi.org/10.1007/JHEP08(2018)180
https://arxiv.org/abs/1805.04530
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.04530
https://doi.org/10.1007/JHEP12(2015)167
https://arxiv.org/abs/1509.03517
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.03517


J
H
E
P
1
1
(
2
0
2
1
)
0
9
4

[97] P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation
experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys.
Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].

[98] P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of
neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment
Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].

[99] A.M. Dziewonski and D.L. Anderson, Preliminary reference earth model, Phys. Earth Planet.
Interiors 25 (1981) 297.

[100] Super-Kamiokande collaboration, Atmospheric neutrino oscillation analysis with external
constraints in Super-Kamiokande I-IV, Phys. Rev. D 97 (2018) 072001 [arXiv:1710.09126]
[INSPIRE].

[101] M.C. Banuls, G. Barenboim and J. Bernabeu, Medium effects for terrestrial and atmospheric
neutrino oscillations, Phys. Lett. B 513 (2001) 391 [hep-ph/0102184] [INSPIRE].

[102] R. Gandhi, P. Ghoshal, S. Goswami, P. Mehta and S.U. Sankar, Large matter effects in
νµ → ντ oscillations, Phys. Rev. Lett. 94 (2005) 051801 [hep-ph/0408361] [INSPIRE].

[103] R. Gandhi, P. Ghoshal, S. Goswami, P. Mehta and S.U. Sankar, Earth matter effects at very
long baselines and the neutrino mass hierarchy, Phys. Rev. D 73 (2006) 053001
[hep-ph/0411252] [INSPIRE].

[104] J. Kopp and M. Lindner, Detecting atmospheric neutrino oscillations in the ATLAS detector
at CERN, Phys. Rev. D 76 (2007) 093003 [arXiv:0705.2595] [INSPIRE].

[105] I. Mocioiu and W. Wright, Non-standard neutrino interactions in the µ− τ sector, Nucl.
Phys. B 893 (2015) 376 [arXiv:1410.6193] [INSPIRE].

[106] M.C. Gonzalez-Garcia and M. Maltoni, Atmospheric neutrino oscillations and new physics,
Phys. Rev. D 70 (2004) 033010 [hep-ph/0404085] [INSPIRE].

[107] F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri and A. Palazzo, Unfinished
fabric of the three neutrino paradigm, Phys. Rev. D 104 (2021) 083031 [arXiv:2107.00532]
[INSPIRE].

– 45 –

https://doi.org/10.1016/j.cpc.2005.01.003
https://doi.org/10.1016/j.cpc.2005.01.003
https://arxiv.org/abs/hep-ph/0407333
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0407333
https://doi.org/10.1016/j.cpc.2007.05.004
https://arxiv.org/abs/hep-ph/0701187
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0701187
https://doi.org/10.1016/0031-9201(81)90046-7
https://doi.org/10.1016/0031-9201(81)90046-7
https://doi.org/10.1103/PhysRevD.97.072001
https://arxiv.org/abs/1710.09126
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.09126
https://doi.org/10.1016/S0370-2693(01)00723-7
https://arxiv.org/abs/hep-ph/0102184
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0102184
https://doi.org/10.1103/PhysRevLett.94.051801
https://arxiv.org/abs/hep-ph/0408361
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0408361
https://doi.org/10.1103/PhysRevD.73.053001
https://arxiv.org/abs/hep-ph/0411252
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0411252
https://doi.org/10.1103/PhysRevD.76.093003
https://arxiv.org/abs/0705.2595
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.2595
https://doi.org/10.1016/j.nuclphysb.2015.02.016
https://doi.org/10.1016/j.nuclphysb.2015.02.016
https://arxiv.org/abs/1410.6193
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.6193
https://doi.org/10.1103/PhysRevD.70.033010
https://arxiv.org/abs/hep-ph/0404085
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0404085
https://doi.org/10.1103/PhysRevD.104.083031
https://arxiv.org/abs/2107.00532
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.00532

	Introduction and motivation
	Theoretical formalism of NSI
	Diagonalization of the effective Hamiltonian in the presence of NSI
	Evolution of mixing angles in the presence of NSI
	Evolution of theta(23)**(m)
	Evolution of theta(13)**(m)
	Evolution of theta(12)**(m)

	Evolution of mass-squared differences in the presence of NSI
	theta(13)-resonance in the presence of NSI
	Impact of NSI in nu(mu) - nu(e) appearance channel
	Impact of NSI in nu(mu) –> nu(mu) disappearance channel
	Summary and concluding remarks
	Comparison between approximate analytical expressions and exact  numerical calculations at the probability level
	Evolution of mass-mixing parameters with non-zero delta(CP)
	Calculation of the oscillation probabilities for neutrinos passing  through various layers inside the Earth

