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1 Introduction

The inflationary paradigm is now consolidated as the standard description of the primor-
dial universe [1–7]. However, in spite of its observational successes, the very nature of the
inflaton field remains unknown, and a large number of inflationary models has been pro-
posed since the conception of the theory [8]. In particular, the model proposed by Bezrukov
and Shaposhnikov [9] offers one of the most promising alternatives, given its simplicity and
ability to describe the current data [10]. In such a model inflation is driven by the only
scalar field observed so far, the Higgs boson [11, 12], and is known as Higgs Inflation.

In the well-known slow-roll approximation, in order to induce cosmic acceleration, the
dynamical equations for the inflaton field enables a slowly varying solution, mimetizing a
cosmological constant. In the Higgs Inflation scenario, the inflaton potential can exhibit
a plateau at high energies which is achieved through the introduction of a non-minimal
coupling between the Higgs field and the Ricci scalar. Although an appealing approach, the
introduction of a non-minimal interaction between the inflaton and gravity may potentially
compromise the quantum coherency of the theory. In particular, the authors in refs. [13–
16] discuss the lost of quantum unitarity at the scale of energy Λ = MP /ξ, which is far
bellow the inflationary regime h > MP /

√
ξ. We refer the reader to [17–21] for a different

interpretation.
In addition, the observational feasibility of the model rely on the stability of the Stan-

dard Model of Fundamental Particles (SM) up to inflationary energy scales. Following
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the Renormalization Group Equations (RGE) of the SM couplings one obtains that the
Higgs quartic coupling evolve to small negative values [22–26], which amounts to saying
that the SM develops an unstable scalar potential for energy scales larger than a criti-
cal value around 1010 − 1011 GeV. Nevertheless, it is particularly interesting that the SM
phase diagram sits right at the edge of stability [23–25, 27–32]. In particular, considering
the inherent theoretical uncertainties to the definition of the top quark Yukawa coupling
from the Monte Carlo reconstruction of the top quark mass [33], one is able to show the
stability of the standard model vacuum state within 2σ deviation [34]. In this sense, the
magnitude of the Higgs quartic coupling and Yukawa coupling may be an important hint
for new physics.

In this work we revisit the Higgs inflationary model in its minimal content. In par-
ticular, we perform a detailed investigation of the observational viability of the Coleman-
Weinberg approximation to the one-loop effective Higgs potential in light of the most
recent Cosmic Microwave Background (CMB), Baryon Acoustic Oscillation (BAO) and
Supernova data [35–39]. Applying a Monte Carlo Markov Chains (MCMC) parameter
estimation, we impose constraints on the radiative corrections to the Higgs quartic cou-
pling at inflationary energy scale. Moreover, we also solve the two-loop Renormalization
Group Equations (RGE) for the SM parameters to obtain the corresponding constraints
at the electroweak scale and the upper limit to the top quark pole mass, in order to ex-
amine if current cosmological data are compatible with the electroweak phenomenology
and the inflationary dynamics of the Higgs field. Our analysis shows a large discrepancy
between the value of the top quark pole mass required by cosmological observations and
the Monte Carlo reconstructed top quark mass obtained from LHC and Tevatron runs,
Mt = 172.76± 0.30GeV [40].

This paper is organized as follows: in section 2 we present the effective potential
employed in our analyses. In section 3, we introduce the Higgs Inflation scenario whereas
in section 4 we perform the slow-roll analysis for the model. We discuss the Renormalization
Group approach assumed in our study in section 5. In section 6, we present the method
of analysis to test the theory with cosmological data and discuss our analysis results. The
main conclusions of this work are presented in section 7.

2 Effective potential

Before considering the Higgs Inflation mechanism, let’s discuss the effective potential of
the Standard Model minimally coupled to gravity. For the Higgs field, the RGE-improved
effective potential can be written in the approximated form

Veff(h) = λeff(µ)
(
|H|2 − v2

2

)2

≈ λeff(µ)
4 h4, (2.1)

where H =
(
0, (h+ v)/

√
2
)T

is the Higgs doublet, v is the standard model vacuum expec-
tation value and µ is the renormalization scale [41]. The effective coupling λeff(µ) encodes
the contributions from the relevant running couplings. For a perturbative theory, it can be
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p t W Z φ χ

Np −12 6 3 1 3
Cp 3/2 5/6 5/6 3/2 3/2
κp y2

t /2 g2/4 (g2 + g′2)/4 3λ λ

Table 1. Coefficients for the effective quartic coupling in eq. (2.4).

expanded as a tree level component plus the loop contributions,

λeff(µ) = e4Γ(µ)
[
λ(µ) + λ(1)(µ) + λ(2)(µ) + . . .

]
, (2.2)

with the ellipsis representing high order terms, whereas the factor Γ(µ) takes into account
the field strength renormalization,

Γ(µ) ≡
∫ µ1

µ0
γ(µ)d lnµ, (2.3)

and γ(µ) is the Higgs anomalous coupling.
The two-loop effective potential for the SM was first derived by Ford et al. in [42].

Latter, the authors of [24] introduced a compact form for the effective potential in the limit
of λ → 0, subsequently enhancing the accuracy of the analysis in [25]. In particular, the
one-loop contributions to the effective coupling recover the structure derived by Coleman
and Weinberg [43],

λ(1)(µ) = 1
(4π)2

∑
p

Npκ
2
p(µ)

(
ln κp(µ)e2Γ(µ)h2

µ2 − Cp

)
, (2.4)

where p runs for all the species of particles contributing to the loop diagrams, Np accounts
for the degrees of freedom, κ rises from the field-dependent mass squared and Cp is a renor-
malization scheme dependent constant. The predominant contributions for the summation
in (2.4) are the ones coming from the top quark t, the weak gauge bosons W and Z, the
Higgs h and Goldstone χ bosons loops. Table 1 summarizes the values for these coefficients
for the MS renormalization scheme and the Landau gauge.

Despite the increasing accuracy obtained in the extrapolation of the Standard Model
properties [44–48], the high-energy behaviour of the theory seems to be fairly well approx-
imated by the leading-order terms in expression (2.2). As discussed in [24, 25, 49, 50],
the Higgs quartic coupling λ and its β-function βλ run to small values, reaching a mini-
mum somewhere bellow the Planck scale. This suggests that λ, as well as its β-function,
holds only a weak dependence with the renormalization scale µ. One might assume βλ to
be constant, yielding the familiar Coleman-Weinberg form for the effective Higgs poten-
tial [43, 51, 52],

Veff(h) ≈
(
λ(M)

4 + βλ(M)
4 ln h

M

)
h4, (2.5)

whereM is some high-energy scale. For simplicity, the constant terms in (2.4) are redefined
into an unobservable phase shift of the Higgs field h and the anomalous coupling is assumed
to vanish, γ ∼ 0.
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The potential energy in (2.5) is appropriate to describe the standard model for field
displacements close to M , otherwise spoiling the perturbative aspect of Higgs-Higgs scat-
tering processes. In particular, the problem with large-logarithms is avoided as long as
βλ(M)/4 ln (h/M)� 1.

3 Higgs inflation

Although the application of modified gravity theories in order to achieve a slow-roll phase in
the early universe is not particularly recent [53, 54], the viability of a Higgs driven inflation
in such scenarios has been widely debated in the last decades [9, 55–58]. Essentially,
the model proposed by Bezrukov and Shaposhnikov [9] expands the canonical Einstein-
Hilbert sector with a non-minimal coupling between the Higgs field and the Ricci scalar.
Such configuration produces a inflationary plateau at large field regime, driving the model
predictions to the sweet-spot of the CMB observations [10].

In the Higgs Inflation, the expanded gravity sector is defined in the Jordan frame,
where the inflationary Lagrangian assumes the form,

L = 1
2(∂µh)†(∂µh)− M2

PR

2 − 1
2ξh

2R− VJ(h), (3.1)

where MP = 2.435 × 1018 GeV is the reduced Planck mass. Here, the non-minimal inter-
action is parameterized by the dimensionless coupling ξ.

In practical sense, it is useful to recover the canonical Einstein-Hilbert gravity in order
to compute the inflationary parameters. To this purpose, one can perform a set of conformal
transformations in the metric [59–61]:

g̃µν = Ω2gµν where Ω2 = 1 + ξh2

M2
P

, (3.2)

which makes the kinetic energy of the inflaton field non-canonical. The process is finished
by the field redefinition

χ′ ≡ dχ

dh
=

√
Ω2 + 6ξ2h2/M2

P

Ω4 . (3.3)

Finally, the Lagrangian with minimal gravity sector and canonical kinetic term is defined
in the Einstein frame,

L = −M
2
P R̃

2 + 1
2(∂µχ)†(∂µχ)− V (χ) , (3.4)

where V (χ) = 1
Ω4VJ(h [χ]).

The scalar potential in (3.4) is the one employed to the inflationary parameter estima-
tion. In the original proposal [9], the authors performed the analysis of the model at tree
level, obtaining for the spectral index and the tensor-to-scalar ratio the values nS ' 0.97
and r ' 0.0033, thus in excellent agreement with current Planck data [10]. Also, the
measured value of the amplitude of scalar perturbation, AS ' 2.1× 10−9, impose a strong
constraint to the non-minimal coupling ξ ∼ 104.
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Latter, the quantum corrections to the inflaton potential were probed to play a major
role at inflationary dynamics [55, 62–65]. There are, however, several dubieties in what
concerns quantum effects in the model. The unnaturally large value of ξ supposedly give rise
to a new scale, Λ = MP /ξ, associated to the loss of quantum unitarity of the system [13–16]
(see [17, 20, 21] for a different point of view). In addition, there is an inherent ambiguity in
the definition of effective potential of the inflaton. To compute the radiative corrections to
such scenario one has to choose a frame of reference, leading to two nonequivalents results,
namely prescription I [9, 63, 66–70] (Einstein frame) and prescription II schemes [19, 55,
63, 65, 71, 72] (Jordan frame). The former presents an attractive alternative to investigate
the high-energy behavior of the theory, where the effects of the non-minimal coupling are
strong. In particular, the shape of the renormalization group enhanced potential coincides
with the tree level one, making the model compatible with CMB data even when quantum
corrections are taken into account. The latter seems to be more appropriate to study the
connection between the inflationary predictions and the electroweak scale observables, if
the linear order for the perturbative expansion of the gravity sector is considered. In this
case the radiative corrections coming from the non-minimal coupling will lead to finite
and small threshold corrections to the running Higgs quartic coupling. Without further
knowledge about the ultraviolet completion of the model it is not clear whether frame is
appropriate to compute the quantum effects.

In view of this, we opt to employ in the following sections the prescription II scheme,
leaving the analysis of the prescription I scheme for a forthcoming communication, where
we explore the connection between lower and high energy parameters [73].

4 Slow-roll analysis

Before considering the Bayesian analysis of the Higgs Inflation model, it is useful to revisit
the slow-roll predictions of the inflationary parameters. To this end, we compute the
one-loop effective potential in light of the prescription II procedure.

Since the radiative corrections to the tree level Lagrangian are computed in the Jordan
frame, the resulting effective potential reduces to the familiar Coleman-Weinberg form
presented in eq. (2.5) [55]. After the set of conformal transformations (3.2) and the field
redefinition (3.3), we have the Einstein frame description of the theory,

V (χ) = λM4
P

4ξ2

(
1− exp

(
− 2
MP

√
1
6χ
))2

×

1 + a′ ln


√√√√1
ξ

exp
(

2
MP

√
1
6χ
)
− 1
ξ

 . (4.1)

The large field regime is assumed, χ �
√

6MP , in order to obtain h(χ). Note that the
deviation from the tree level potential is quantified by the parameter a′ ≡ βλ/λ. All the
couplings are computed at renormalization scale M = MP .

Once with the effective scalar potential of the model, the analysis of its high-energy
behaviour is straightforward. In particular, the study of the inflationary dynamics follows
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from the slow-roll parameters,

ε = M2
P

2

(
V ′

V

)2
, η = M2

P

(
V ′′

V

)
, (4.2)

where ′ indicates derivative with respect to the canonical field, χ. The beginning of inflation
takes place in the slow-roll regime ε, η � 1 and continues until ε, η ' 1. One can compute
the predictions for the spectral index and the tensor-to-scalar ratio through,

nS = 1− 6ε+ 2η, r = 16ε. (4.3)

Another important observable quantity is the amplitude of scalar perturbations, which
is related with the Primordial Power Spectrum (PR) of curvature perturbations produced
during inflation:

As = PR|k=k∗ = V

24M4
Pπ

2ε

∣∣∣∣∣
χ=χ∗

. (4.4)

All the aforementioned parameters are computed for the field strength χ∗, associated to
the energy density at which a chosen pivot scale, k∗, crossed the Hubble horizon. Although
χ∗ cannot be directly measured, it can be related to the amount of expansion the universe
experienced, from the horizon crossing moment up to the end of inflation. Such quantity
is defined by the number of e-folds,

N∗ = − 1
M2
P

∫ χe

χ∗

V

V ′
dχ. (4.5)

Similarly to r, nS and AS , the number of e-folds is not a free parameter, but an
observable quantity associated to the evolution of cosmological scales [74]. Its main source
of uncertainty lies from the lack of information about the reheating process, yielding to
this observable a moderate model dependence. For the class of inflationary models with
large non-minimal coupling, such as Higgs Inflation, the number of e-folds can be evaluated
between 50− 60 for all relevant scales [56, 75–79].

With the value of the number of e-folds, one can use the expression (4.5) to obtain χ∗,
and then compute the model predictions for the inflationary parameters. Such a procedure
is not possible analytically, unless under a set of reasonable assumptions [19, 55]. Here, we
opt to employ numerical methods to solve the observable in terms of the free parameters
a′ and ξ. In particular, we set the number of e-folds to N∗ = 55, in order to compare the
model predictions with the Planck data.

Figure 1 shows the predictions of the model in the nS×r plane, for ξ = 100, 1000, 5000
and −0.07 ≤ a′ ≤ 5. The first aspect one shall note in the figure is the superposition of
the curves for the different values of ξ, indicating that the inflationary observable is not
sensitive to this parameter in the strong coupling regime. Such behaviour was pointed out
in [80]. On the other hand, nS and r seems to be highly susceptible to variations in the
radiative corrections. In particular, the predictions of the model converge to the Planck
favoured region (95 C.L.) for −0.02 ≤ a′ ≤ 0.28, with the null correction case aligned with
the 68% C.L. Planck result (nS ' 0.965 and r ' 0.0035 for a′ = 0) [10].
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r

a' = -0.07
a' = 0

a' = 5.0

Figure 1. nS vs r for ξ = 100, 1000 and 5000. From the inferior left extreme of the curve to
its superior right, the parameter a′ assumes the values −0.07 ≤ a′ ≤ 5. The blue areas show the
favoured regions by Planck2018, with 68% and 95% confidence level (Planck TT, TE,EE+ lowE+
lensing +BICEP2/Keck +BAO data set) [10].

The relation between the inflationary parameters and the radiative corrections can
be better visualised in the figure 2, where we present the predictions of the model in the
a′×(nS , r) plane. In particular, nS achieve a maximum somewhere between 0.1 < a′ < 0.2,
with a slightly different value for each curve. In the large correction regime (large a′), all the
three curves approach to a slightly close asymptotic value, around nS ' 0.973. Meanwhile,
the predicted tensor-to-scalar ratio r runs from small values in the negative regions of a′ to
a asymptotic value r ' 0.072 at large radiative corrections. These asymptotic values are
in agreement with the results obtained in [81–83]. In both panels, the parameters seem to
acquire a slight sensitivity to ξ in the region 0.1 . a′ . 0.6. For the region of the phase
diagram that leads to a′ < −0.07 the predictions for nS run quickly to tiny values, raising
a tension with Planck results.

One of the most revealing constraint of the model comes from the measured value of
the amplitude of scalar perturbations, AS ' 2.1 × 10−9 for the pivot choice k∗ = 0.05
Mpc−1 [10]. By inverting the expression resulting from (4.4) one can write the value of the
quartic coupling λ in terms of ξ and a′. In other words, the non-minimal coupling and the
radiative corrections are degenerated in the value of the quartic Higgs coupling. In figure 3
we present the graphic consequence of such a degeneracy. Although the form of the curves
do not seem to significantly alter with variations in ξ, the magnitude of the amplitude λ is
highly dependent on the non-minimal coupling ξ. Furthermore, each curve exhibits a mild
variation with a′, presenting a maximum for λ somewhere between 0.2 . a′ . 0.3.

Figure 3 depicts the constraints on the potential amplitude resulting from the slow-
roll analysis of inflation. At lower energy scales, however, the magnitude of λ is fixed by
the phenomenology of the Higgs boson. In the following section, we revisit the running
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Figure 2. nS vs a′ (left) and r vs a′ (right) for ξ = 100 (red curve), 1000 (blue curve), 5000
(green curve).
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Figure 3. log(λ) vs a′ for ξ = 100, 1000 and 5000. Colors are labeled as in figure 2.
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equations for Higgs Inflation model in order to extrapolate the electroweak bounds on the
Higgs quartic coupling to the inflationary energy regime.

5 Renormalization group equations

The observables of a renormalized field theory must not depend on the specific scale µ
at which the Lagrangian parameters are defined. This gives rise to the running (flow) of
the renormalized couplings between two distinct energy scales. Such relation is expressed
mathematically by the chain rule [43, 51],(

µ
∂

∂µ
+ βi

∂

∂λi
− γ ∂

∂h

)
Veff = 0, (5.1)

where
βi = µ

∂λi
∂µ

and γ = −µ
h

dh

dµ
(5.2)

are the β-functions for the SM couplings (λi = λ, yt, g
′, g, gS , . . .) and the anomalous di-

mension of the Higgs field, respectively. The set of equations in (5.2) are often called
renormalization group equations (RGE). They determine the flow of the Lagrangian pa-
rameters according to the symmetries and particle content of the model.

For the Higgs Inflation scenario, the non-minimal gravity sector manifests in the RGEs
through the suppression of the off-shell Higgs propagator. There are two numerically
equivalent ways to compute this suppression. The first one introduces a factor s to each
Higgs propagator,1 with

s(h) = 1 + ξh2/M2
P

1 + (1 + 6ξ)ξh2/M2
P

(5.3)

following from the commutation relation for the Higgs field [64, 65]. The second method
imposes the abrupt suppression (freezing) of the radial mode of the Higgs doublet at scales
of energy larger than MP /ξ, with the purpose to attenuate its effective coupling to the
other SM fields [84]. In this section, we follow closely the analysis performed in [86], where
the two-loops β-functions for the non-minimal Standard Model were computed with the
suppression factor s (appendix A).

We are particularly interested in the evolution of the Higgs quartic coupling λ, the
top quark Yukawa coupling yt, the electroweak g′, g and strong gS gauge couplings, in
order to compute the main contributions to a′ at Planck scale. According to the standard
procedure, we define the SM parameters at electroweak scale as contour conditions, in order
to solve the set of coupled differential equations in (5.2). From the global fit of electroweak
precision data [40], we obtain the values for the MS gauge couplings g and g′,

g(µ = MZ) =
√

4παem sin2 θW = 0.651784, (5.4)

g′(µ = MZ) =
√

4παem cos2 θW = 0.35744, (5.5)

where MZ ' 91.19GeV is the Z boson pole mass.
1Only the radial mode of the Higgs doublet, h, is suppressed [64, 84, 85].
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In what concerns λ, yt and gS , higher order threshold corrections are supposed to
contribute considerably at the weak scale, given the magnitude of QCD and top Yukawa
interactions. In the following analysis we make use of the interpolating formulæ originally
obtained in [25],

λ(µ = Mt) = 0.12604 + 0.00206
(
MH

GeV − 125.15
)
− 0.00004

(
Mt

GeV − 173.34
)
, (5.6)

yt(µ = Mt) = 0.93690 + 0.00556
(
Mt

GeV − 173.34
)
− 0.00042αS(MZ)− 0.1184

0.0007 , (5.7)

gS(µ = Mt) = 1.1666 + 0.00314αS(MZ)− 0.1184
0.0007 − 0.00046

(
Mt

GeV − 173.34
)
, (5.8)

where αS(MZ) is the MS strong coupling and Mh,Mt are the pole masses of the Higgs
boson and the top quark, respectively. The full two-loop threshold corrections were con-
sidered in order to obtain these expressions. Lastly, the value of the non-minimal cou-
pling ξ must be defined at some large energy scale. The analysis bellow is performed
for 100 ≤ ξ(MP ) ≤ 5000.

With the current global fit of the electroweak precision data and the two-loop β-
functions (appendix A), one can solve the set of RGEs. Specifically, the central values of
the observed strong gauge coupling αS(MZ) = 0.1179 ± 0.0010, Higgs pole mass MH =
125.10 ± 0.14GeV and the top quark mass 172.76 ± 0.30GeV obtained from LHC and
Tevatron data by means of a Monte Carlo reconstruction [40] have been employed in order
to obtain the flow of the SM parameters depicted in figure 4. As previously obtained in the
literature [24, 86], the Higgs quartic coupling evolve to small negative values. In particular,
the non-minimal coupling to gravity acts to suppress the Higgs interactions, lowering the
instability scale of the Higgs potential to ∼ 1010 GeV. Also, note that the β-function for
the Higgs quartic coupling remain small and roughly scale independent at high energies.
Such behaviour substantiate the Coleman-Weinberg approximation used to describe the
inflationary potential (2.5).

The results shown in figure 4 only reinforce the well-known fact that the SM vacuum
is metastable for the central values of the electroweak standard model parameters [22–
26, 34]. In particular, the electroweak precision data favour an instability scale around
1010 − 1011 GeV for the Higgs potential energy. Of course, this conjuncture compromises
the viability of Higgs inflation. In the following analysis we choose to set all but the top
quark pole mass to the central values of electroweak observations. More specifically, we use
as input parameter 170 ≤ Mt ≤ 173, in order to obtain the set of contour conditions for
λ, yt and gS . Such approach is justified given the inherent uncertainties in the definition of
the Monte Carlo reconstruction of the top quark pole mass [33, 34]. In addition, we set the
non-minimal coupling 100 ≤ ξ ≤ 5000, at energy scale MP , following the previous slow-roll
discussion.

Figure 5 presents the numerical dependence of the Higgs quartic coupling λ and its one-
loop β-function βλ, computed at Planck scale, to the top quark pole mass Mt (left panel).
The numerical values for the corresponding a′ parameter are also presented (right panel).
For comparison purposes, the central value of the top quark mass Mt = 172.76GeV [40]

– 10 –



J
H
E
P
1
1
(
2
0
2
1
)
0
9
1

Figure 4. Flow of the MS standard parameters λ, yt, g′, g, gS and βλ according to the renormaliza-
tion scale µ. In addition to the electroweak contour conditions discussed in the text, ξ(MP ) = 1000
was used in order to obtain the points.
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Figure 5. λ(MP ), βλ(MP ) vs Mt (left) and a′ vs Mt (right). The thickness in each curve reflects
the variation in the non-minimal coupling ξ, defined at Planck scale, 100 ≤ ξ(MP ) ≤ 5000. Also,
the observed value of the top quark pole mass is indicated by the black dashed line (left) and the
red star (right).

is marked by the black dashed line in the left panel, while the corresponding value of a′

is indicated by the red star in the right panel. The thickness of each curve results from
the variation of the non-minimal coupling constant, from ξ = 100 to ξ = 5000, showing
a mild dependence of the running equations to this parameter [87]. As expected, the
magnitude of λ(MP ) becomes greater and positive as Mt moves away from its low-energy
value. In particular, λ(MP ) ' 0 is obtained forMt somewhere close to 170.80GeV.2 The β-
function for the Higgs quartic coupling remains small and positive for the entire range ofMt

considered. Consequently, the magnitude of a′ is singular for Mt ' 170.8GeV (according
to its definition a′ = βλ/λ).

2A similar result was obtained in [88] in the Palatini formulation of Higgs Inflation (Mt < 121.1GeV).
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On the other hand, the inflationary dynamics of the Higgs field can be used to constrain
the parameter space of the SM in order to describe cosmological observations [10]. In
particular, the amplitude of scalar perturbations prescribe the relation between the Higgs
quartic coupling and the radiative corrections to the Higgs potential, according to the
discussion preceding figure 3. It is instructive to compare the constraints resulting from
the low and high energy behaviour of the theory.

In figure 6 we present the results of such analysis in the a′ × λ plane. The dashed
blue curve is obtained through the solution of the RGEs, where the top quark pole mass
assumes the values between 170.00 ≤Mt ≤ 170.80GeV. Some of the points are highlighted
with black dots, with the input value for the low-energy quark mass displayed by the first
number in parenthesis. Following the previous analysis, the Higgs quartic coupling goes
asymptotically to zero as Mt approaches 170.80GeV. While the running equations are
nearly insensitive to variation in ξ, one can tune the non-minimal coupling to gravity in
order to reproduce the observed value of the amplitude of scalar perturbations As. The
resulting values for ξ are displayed by the second number in parenthesis for each benchmark
point in the figure. Following expression (4.4), ξ assumes increasingly smaller values as λ
becomes smaller. Negative values for the Higgs quartic coupling are not compatible with
the observed value of As, enforcing the exclusion of the negative solutions to λ(MP ).

Following figure 6 one could be led to infer that increasingly lower values of ξ could
be imposed in order to fit the observed value of the amplitude of scalar perturbations for
increasingly lower values of λ. However, for λ → 0 the one-loop beta function for the
quartic coupling reads βλ ∼ 8.73 × 10−5 (obtained for Mt ' 170.80GeV). With these
set of values, one has to assume ξ ' 204.06 in order to recover the observed value of As.
This translates as a lower bound to the non-minimal coupling, i.e., ξ & 204.6 for this
approximation of the Higgs Inflation scenario.

The central discussion on the Higgs inflation scenario follows from the difficulty to
reconciling inflationary dynamics with electroweak phenomenology. As depicted in figure 6,
the observed value of the amplitude of scalar perturbations diverge from the low-energy pole
quark mass, assumed to be equal to the Tevatron and LHC Monte Carlo reconstruction
of the top mass Mt = 172.76 ± 0.30GeV [40]. On the other hand, the purely slow-roll
analysis of the empirical parameters of inflation (As, nS , r, . . .) may lead to an inaccurate
interpretation of the cosmological data, as pointed out in [89] and demonstrated in [80, 90]
for non-minimal models of inflation. In the next section, we intend to contribute to this
discussion by performing a Monte Carlo Markov Chain analysis of the theory, confronting
the model predictions with the most recent data.

6 Analysis method and results

In this section we proceed with the discussion of the methodology used to compare our
model with cosmological data. We build our theory assuming a standard cosmological
model with a modified primordial power spectrum, following our section 4. This means
that we consider the usual cosmological parameters, namely, the physical baryon density,
ωb, the physical cold dark matter density, ωcdm, the optical depth, τ , and the angular
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(170.0; 2750)

(170.57; 1000)

(170.71; 400)

(170.789; 210)
(170.796; 209.74)

(170.7986; 209.62) (170.7998; 209.55)

Figure 6. log10(λ) vs a′. The blue dashed line is obtained for the solution of the RGEs with Mt

ranging from 170.00GeV (leftmost point) to 170.80 (for the limit a′ →∞). Throughout the curve
a series of benchmark points are highlighted, with the first number in parenthesis representing the
value of the top quark pole mass Mt employed to solve the threshold corrections in the electroweak
scale parameters, while the second number represents the value of the high energy scale non-
minimal coupling ξ(MP ), required to recover the measured amplitude of scalar perturbations (As =
2.101× 10−9 [10]).

diameter distance at decoupling, θ, while we do not consider the standard treatment of the
primordial power spectrum, which assumes a power law parametrization with a primordial
scalar amplitude, As, and a primordial spectral index, ns. Instead of this assumption, we
consider the primordial power spectrum given by the inflationary potential eq. (4.1), where
we have two more parameters: the non-minimal coupling, ξ, and the radiative corrections
at Planck scale, a′.

We modify the numerical Code for Anisotropies in the Microwave Background
(CAMB) [91] following the indications of ModeCode [89, 92], which allows the primordial
spectrum of an inflationary model to be analysed by giving a specific form of the poten-
tial V(φ) (for further details, see ref. [80]). CAMB is able to calculate the observational
predictions of the model considered, thus allowing to compare the model with the data.
It is implemented in the CosmoMC packages [93], that is a Monte Carlo Markov chain
(MCMC) code able to perform parameters estimation of the considered model, as well as
statistical analysis.

Once we have implemented our model in the code, we can resume the previous discus-
sion about the parameters λ, a′ and ξ to understand their effects on the primordial power
spectrum, PR, and select the parameters prior to use in our analysis (see details explained
later). For the other cosmological parameters, broad and flat priors are used, as usual.
In the following, we will explore two numerical equivalent ways to probe the parameter
space of the Higgs Inflation model, each of them allowing complementary interpretations
for the cosmological data. We compare our modeling with a dataset that combines the
CMB Planck (2018) likelihood [35], using Plik temperature power spectrum, TT, and HFI
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ξ Mt r02 H0

2000 170.304± 0.005 0.00556± 0.00003 68.11± 0.40
1000 170.575± 0.002 0.0103± 0.0001 68.72± 0.39
500 170.683± 0.001 0.0225± 0.0002 69.01± 0.41

209.5 170.772± 0.004 0.0665± 0.0008 68.11± 0.40

Table 2. Constraints on the theory parameters using the Planck TT, TE,EE + lowE + lensing+
BICEP2/Keck + BAO + Pantheon combination. Quoted intervals correspond to 68% C.L.
intervals.

polarization EE likelihood at ` ≤ 29; BICEP2 and Keck Array experiments B-mode po-
larization data [36]; BAO measurements from 6dFGS [37], SDSS-MGS [94], and BOSS
DR12 [38] surveys, and the Pantheon sample of Supernovae Type Ia [39].

6.1 Exploring the quark top pole mass, Mt

The first approach arises from the fact that the parameters composing the primordial poten-
tial eq. (4.1) are related to the electroweak scale observables through the Renormalization
Group Equations, described in appendix A. Following the discussion in section 5 we set
the prior to the quark top pole mass 170.00 ≤ Mt ≤ 170.79GeV.3 This in turn translates
to the range 5.1 × 10−3 . λ(MP ) . 9.0 × 10−5 and 1.5 × 10−2 . a′(MP ) . 1.0 for the
Lagrangian parameters. Also, setting the value for the non-minimal coupling, we obtain
the amplitude of scalar perturbations through expression eq. (4.4). In order to encompass
the Planck’s observed value for the primordial amplitude in our priors, we opt to select
values of the non-minimal coupling parameter inside the interval allowed by the slow-roll
analysis, 204.06 . ξ . 2750 (see figure 6 and discussion). Therefore, we choose to perform
the MCMC analysis for ξ = 209.55, 500, 1000 and 2000.

Our results are summarised in figure 7 and table 2, where we show the parameter
constraint of our analysis using ξ = 2000 (red lines), ξ = 1000 (green lines), ξ = 500 (blue
lines) and ξ = 209.55 (orange lines), compared to the ΛCDM+r model using the same
dataset (grey line). We note that for increasing coupling values we obtain lower Mt values,
going fromMt = 170.772±0.004 for ξ = 209.55 toMt = 170.304±0.005 for ξ = 2000. This
produces both a very precise expectation on the value of the tensor-to-scalar ratio, and a
significant difference on the constraint of the expansion rate today, H0. In particular, for
decreasing coupling values the value of H0 increases, which happens up to ξ = 500. On
the other hand, we note that the case ξ = 209.55 shows constraints on the cosmological
parameters very close to the case with coupling ξ = 2000. Considering a coupling of
ξ = 500, the discrepancy with the value estimated by the SH0ES Collaboration H0 =
74.03± 1.42 [95] is lowered to 2.3σ, in comparison to the one obtained with the canonical
ΛCDM parameterization (4.4σ [95]). It is worth mentioning that the model investigated
in this analysis uses five parameters, i.e, one less than the standard cosmological model,
and that the parameter Mt is closely related to the constraints on primordial amplitude.

3We have intentionally excluded the value Mt ' 170.80 in order to avoid the singularity a′ →∞.
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Figure 7. 2D C.L. and posterior distributions of Higgs Inflation and ΛCDM+r models.

Such constraint is very accurate using CMB data, and for this reason we obtain a highly
accurate constraint on Mt. Through expression eq. (4.4) and the RGEs, one can translate
the constraint on Mt into As, obtaining a value close to the one pointed out by Planck
collaboration, As ' 2.1× 10−9, independently of the magnitude of ξ. This raises a second
possibility to probe the parameter space of the Higgs Inflation model, as explained in the
next approach.

6.2 Exploring the radiative correction at Planck scale, a′

Following a procedure closely related to the one adopted in ref. [80] and the slow-roll
discussion in section 4, we fix the amplitude of scalar perturbations to the value compatible
with the one inferred by Planck 2018 release, As = 2.1 × 10−9 [10]. As result, we obtain
the relation between λ, ξ and a′ depicted in figure 3. Such relation reflects on the shape of
the scalar potential and, consequently, on the prediction of the inflationary parameters (see
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Figure 8. 2D C.L. and posterior distributions of Higgs Inflation and ΛCDM+r models.

figures 1 and 2). Similarly to the previous analysis, we can set the value for ξ and employ
the MCMC parameter estimation method to constrain a′ and then link the constraint to
Mt by Renormalization Group methods.4 We will see in the following that this approach
can lead to an unique constraint to Mt.

In this analyses, we choose a flat prior for a′ in the range [−0.05 : 4], looking at
the figures 1–2. We also fix ξ to 100, 1000 and 5000 in order to obtain a comprehensive
understanding of this parameter. The results are summarized in figure 8, where we note
that the constraints on the cosmological parameters overlap for each value explored for the
non-minimal coupling. In particular, we obtain a′ = 0.008 ± 0.015 at 68% C.L. for the
data combination described above. In contrast to the previous analysis, where we derived
the constraint on Mt according with the value assumed for ξ, this approach results in a
unique constraint on a′, which can be translated toMt by means of Renormalization Group
methods.

Following the discussion at section 5, we set all but the top quark pole mass to the
central values of the electroweak observations as contour conditions to the RGEs. After
the numerical solution of the six coupled differential equations in appendix A, one can

4Remember that a′ is closely related to the radiative corrections at Planck scale, a′ = βλ/λ, which
relates to the electroweak scale parameters through Renormalization Group equations.
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obtain the numerical value of a′ substituting the solutions for λ, yt, g′, g, gS and ξ into
the definition of a′ = βλ/λ. Using this process with the upper one sigma value of a′

constrained by our previous analysis, we find the upper limit to the top quark pole mass,
Mt ≤ 170.222GeV. In other words, it would be required for the top quark pole mass to
assume a value ≈ 8σ away from the one inferred from the Monte Carlo reconstruction of
the top quark mass, mt = 172.76 ± 0.30GeV [40],5 in order the reconcile the low-energy
phenomenology and inflationary dynamics of the Higgs field.

7 Final remarks

In this work we investigated the observational viability of a inflationary scenario driven
by the Higgs boson, as proposed by Bezrukov and Shaposhnikov [9]. We considered the
Coleman-Weinberg approximation to the effective Higgs potential in order to obtain the
predictions of the primordial power spectrum, and constrained the Lagrangian parameters
at the inflationary scale. Finally, through the solution of the two-loop Renormalization
Group equation (RGE) for the Standard Model couplings, we compared our results with
the electroweak scale observations [40].

In order to explore the parameter space of the Higgs Inflationary model we made
use of two numerical equivalent approaches, obtaining complementary interpretation of
the data. First we solved the RGEs, with the electroweak scale value to the Standard
Model observables as contour conditions, in order to obtain the values of the Lagrangian
parameters at the inflationary scale, namely λ and a′. Fixing the value of the non-minimal
coupling to gravity ξ, we then estimated the best-fit values to the cosmological parameters,
as well as the quark top pole mass, through the MCMC analysis described above. In
particular, Mt is closely related to the amplitude of primordial perturbations, allowing
a highly accurate constraint on this parameter. We obtained values for Mt ranging from
170.772±0.004 for ξ = 209.55 to 170.304±0.005 for ξ = 2000. In what concerns the Hubble
constant, the MCMC analysis revealed an apparent non-linear dependence between H0 and
ξ. For ξ = 500 we obtained H0 = 69.01 ± 0.41 km/s/Mpc, lowering the tension with the
value estimated by the SH0ES Collaboration H0 = 74.03± 1.42 to 2.3σ [95].

On the second approach, we fixed the amplitude of scalar perturbations to the value
indicated by Planck measurements, As = 2.101×10−9 [10]. As a consequence, we obtained a
relation between λ, ξ and a′ at high energy scales. This allowed us to investigate the impact
of the radiative corrections to the Higgs potential a′ in the primordial power spectrum.
For a wide range of the non-minimal coupling to gravity ξ, the MCMC analysis resulted
in the same amount for the radiative corrections, a′ = 0.008 ± 0.015 at 68% (C.L.). One
particularly useful aspect of this approach is that it leads to an unique limit to the quark
top pole mass. In order to obtain a′(MP ) in the range suggested by the MCMC analysis

5The value chosen as reference for the top quark pole mass is an average of the mass measurements from
the LHC and Tevatron runs [40]. The discrepancy found can be attenuated if one assumes other low-energy
measurements. For example, the value obtained by the ATLAS collaboration from the l+ jets+ ll+All jets
channel [96], 172.08±0.25 (Statis.) ± 0.41 (Syst.) GeV, has a discrepancy of ≈ 4.5σ with the value obtained
from the MCMC analysis, Mt ≤ 170.22GeV.

– 17 –



J
H
E
P
1
1
(
2
0
2
1
)
0
9
1

one must assume Mt ≤ 170.222GeV in the solutions of the RGEs. This is a remarkable
result since the value for the top quark mass is inferred to be Mt = 172.76 ± 0.30GeV
by the Monte Carlo reconstruction based on LHC and Tevatron data [40], resulting in a
discrepancy of approximately 8σ between the observed low-energy value and the amount
inferred in our MCMC analysis.

It is worth emphasizing the fact that the Monte Carlo estimate of the top mass,
assumed to be equal to the pole mass, inherits a series of theoretical uncertainties which may
lead to a difference of the order of 1GeV [97–99]. One may also consider the top quark mass
extracted from differential cross-section of the top production theoretically more clean [100].
In this case, considering the most recent results obtained by the CMS Collaboration from
the differential cross-section of the top quark production (Mt = 170.5± 0.8GeV [101]) the
cosmological MCMC limit (Mt ≤ 170.222GeV) and the measured top quark mass are in
full agreement.

Our results are in agreement with previous works [23, 86, 102], and allows us to con-
clude that the simplest realisation of the Higgs Inflation model [9] faces difficulties in
reconciling cosmological data [35–39, 94] to the observations at electroweak scale [40]. On
the other side, small deviations on the scenario proposed in [9] could present viable candi-
dates to explain the early universe dynamics and longstanding problems in the fundamental
particle physics [85, 103–109]. Some of these analyses are currently in progress and will
be reported in a forthcoming communication. Finally, given the sensitivity with which Mt

determines the expected value of r, we expect that future experiments on the polarised
CMB signal, such as COrE [110], Simons Observatory [111, 112] and CMB-S4 [113, 114],
to be of great relevance to this type of analysis.
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A Renormalization group equations for Higgs inflation

In this appendix we list the RGE employed in our analysis, first derived in [86]. In par-
ticular, the flow for the couplings λ, yt, g′, g, gS and ξ were computed in the MS scheme
at two-loop level. For each coupling we write dx/dt = βx, where t = ln (µ/µ0). The
anomalous dimension γ, employed in the field reescaling (2.3), is also given. Also, note
the presence of the suppression factor s = s(h), as discussed in section 5, for each off-shell
Higgs propagator.
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The two-loop RGE for the Higgs quartic coupling reads as follow,

βλ = 1
(4π)2

[(
18s2+6

)
λ2−6y4

t + 3
8

(
2g4+

(
g2+g′2

)2
)

+
(
−9g2−3g′2+12y2

t

)
λ

]
+ 1

(4π)4

[ 1
48
(
(3s+912)g6−(290−s)g4g′2−(560−s)g2g′4−(380−s)g′6

)
+(38−8s)y6

t −y4
t

(8
3g
′2+32g2

S+
(
12−117s+108s2

)
λ

)
+λ

(
−1

8
(
181+54s−162s2

)
g4+ 1

4
(
3−18s+54s2

)
g2g′2+ 1

24
(
90+377s+162s2

)
g′4

+
(
27+54s+27s2

)
g2λ+

(
9+18s+9s2

)
g′2λ−

(
48+288s−324s2+624s3−324s4

)
λ2
)

+ y2
t

(
−9

4g
4+ 21

2 g
2g′2− 19

4 g
′4+λ

(45
2 g

2+ 85
6 g
′2+80g2

S−
(
36+108s2

)
λ

))]
. (A.1)

For the top Yukawa coupling we have,

βyt = yt
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Also, the running for the gauge coupling assume the form,
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For the non-minimal coupling ξ,

βξ = 1
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Finally, the Higgs anomalous dimension is given by,
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(A.5)
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