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1 Introduction

The properties of the new resonance observed at the LHC in 2012 [1, 2] seem tantalizingly
close to those of the Higgs boson predicted by the Standard Model (SM) (for instance,
see [3, 4]). The particle spectrum predicted by the SM has now been fully confirmed, but
many important questions in particle physics are left unanswered: the smallness of neutrino
masses, the fermion mass hierarchy, the colossal asymmetry between the quantity of matter
and antimatter in the universe and the nature of dark matter are a few of such unresolved
issues. They are usually taken as hints for the existence of new physics (NP) beyond the
SM (BSM). Typical BSM scenarios that aim to fix one or more such shortcomings of the
SM often end up extending the scalar sector of the SM. In these extensions, the 125GeV
scalar observed at the LHC is not the only scalar in the spectrum but the first one in a
series of others to follow. This is an intriguing possibility which motivates us for a closer
inspection of the properties of the observed scalar and inspires us to carry on our efforts
to look for new resonances at collider experiments.

When it comes to extending the scalar sector of the SM, adding replicas of the SM
Higgs-doublet is one of the simplest ways to do it. Such extensions do not alter the tree level
value of the electroweak (EW) ρ-parameter. Two Higgs-doublet models (2HDMs), which

– 1 –



J
H
E
P
1
1
(
2
0
2
1
)
0
7
9

add only one extra doublet to the SM Higgs sector, have received its fair share of attention
through the years. They were proposed by T.D. Lee in 1973 [5] as a means to obtain
a spontaneous breaking of the CP symmetry, and boast a rich phenomenology. Other
than the possibility of spontaneous CP breaking, such models contain a richer particle
spectrum, with a charged scalar and a total of three neutral ones, may feature dark matter
candidates in certain scenarios, and generically give rise to the tree-level scalar-mediated
flavour changing neutral currents (FCNCs). Indeed, one ominous outcome of adding extra
scalar doublets is that the fermions of a particular charge will now receive their masses from
multiple Yukawa matrices and consequently, diagonalization of their mass matrices will no
longer guarantee the simultaneous diagonalization of the Yukawa matrices. Therefore, in
general, there will exist FCNCs at tree-level mediated by neutral scalars.

Experimental data from the flavour sector — for instance, neutral meson mass differ-
ences for Kaons and B-mesons, or εK data — strongly constrain such FCNCs, typically
forcing the extra scalars to have masses above 1TeV [6]. An alternative is to fine-tune the
FCNC interactions so that they are very small, though for some models cancellations be-
tween CP-even and CP-odd contributions to the amplitudes off the observables mentioned
allow for below-TeV scalars with a minimal fine-tuning (see, for instance, [7–9]). Another
possibility is to assume alignment between different Yukawa matrices [10–15], though that
is an ansatz which is not preserved under renormalization [16]. There is yet another possi-
bility, however: the BGL (Branco-Grimus-Lavoura) model [17, 18] is a remarkable version
of the 2HDM wherein FCNC interactions are naturally small — this results from the im-
position of a flavour-violating symmetry, i.e. a symmetry which treats some generations
of fermions differently from others. As a consequence of this symmetry, FCNC couplings
are suppressed by off-diagonal Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. The
phenomenology of the model has been studied quite thoroughly (see, for instance, [19–21])
and it remains a valid and exciting possibility for BSM physics.

As a next-to-minimal possibility along these lines, recent years have seen a growing
interest in the topic of three Higgs-doublet models (3HDMs). These models add two
extra scalar doublets on top of the SM one, thereby conforming to the aesthetic appeal
of having three scalar generations in harmony with the three generations of fermions. An
early proposal by Weinberg [22] included two discrete symmetries which yielded flavour
conservation. A recent study [23], following earlier work in [24–26], used a generalized CP
symmetry (called CP4) to constrain the vast parameter space of 3HDM, and was found to
have large regions of parameter space which conformed with experimental constraints in
the flavour and scalar sectors. That model, however, used the liberty in parameters present
in the Yukawa sector to fit all observables, but the FCNC couplings were not necessarily
small. Furthermore, it was shown in [27] that the model contains several regions where top
decays to light charged Higgs bosons is in conflict with LHC data. In [28, 29] is was also
studied how baryogenesis can be realized via the decay of new TeV-scale Higgs bosons in
a 3HDM. Last but not least, in [30], a maximally-symmetric version of the 3HDM based
on the Sp(6) symmetry was proposed.

In this article, we will attempt to implement the BGL method in a 3HDM framework.
We construct a 3HDM with a U(1) × Z2 flavor symmetry, where we also achieve the
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smallness of the FCNC couplings in a way similar to the BGL case. In the considered
version of the model, tree-level FCNC interactions occur in the down-quark sector while
those in the up-quark sector are forbidden by the flavor symmetry. In this work, we
employ publicly available tools such as the generic BSM spectrum generator SARAH/SPheno
interfaced with the widely-used Higgs (HiggsBounds/HiggsSignals) and flavor (Flavio)
observables’ analysers enabling us to thoroughly verify the model parameter space against
the most relevant theoretical and experiments bounds. We find that relatively light scalars
can successfully pass through the stringent experimental constraints arising from flavor
data and hence may occur within the reach of the current and future collider experiments.
To motivate future searches, we also outline possible signatures of nonstandard scalars
present in our model. For such a purpose we use MadGraph5_aMC@NLO 2.6.2 and focus on
scalar and pseudoscalar production via gluon fusion with subsequent decay into tau leptons.

Our article is organized as follows. In section 2 we review the framework of BGL
models. Then, in section 3, we build our model, a 3HDM endowed with a U(1) × Z2
symmetry with a non-trivial structure in the Yukawa sector. In section 4 we review the
constraints imposed upon the model, both theoretical — boundedness from below, unitar-
ity, electroweak precision bounds — and experimental — LHC Higgs data and searches
for heavier scalars, flavour physics data, among others. In section 5 we explain in detail
the procedure we followed to perform a thorough numerical scan of the model and present
the results we found for the parameter space that survives all constraints imposed upon
the model. We conclude in section 6 with an overview of this work and a discussion of its
significance.

2 The BGL model

The BGL model is a version of the 2HDM where the scalar interactions with fermions
violate flavour — meaning, unlike the interactions of the photon and Z boson, the neutral
scalars in the BGL model “jump families” like the W boson does. In 2HDM the general
recipe to avoid FCNC is to only allow fermions of the same charge to couple to just one of
the doublets [31]. This is usually enforced by imposing a Z2 or U(1) [32] symmetry on the
model (see also [33, 34]). The reason for doing this in the first place is the fact that tree-
level mediated FCNCs would make significant contributions to flavour sector observables
such as the mass differences of the K0, Bd or Bs mesons, or to the εK quantity, ruining
an agreement found within the SM for those quantities — unless the masses of the new
scalars are all of order TeV, or the FCNC Yukawa couplings are tuned to be very small.

The BGL model is remarkable since it forces the FCNC couplings to be heavily sup-
pressed as the result of a symmetry. The model therefore provides a simple and natural
explanation as to why NP contributions to flavour observables would not ruin the agree-
ment found within the SM, without the need of any fine-tuning. To understand how this
is achieved, consider the Yukawa Lagrangian for the quark sector in the 2HDM,

− LY =
3∑

a,b=1

{
Q̄aL [(Γ1)ab φ1 + (Γ2)ab φ2] nbR + Q̄aL

[
(∆1)ab φ̃1 + (∆2)ab φ̃2

]
pbR

}
+ h.c.,

(2.1)
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where QaL = (paL naL)T and φi are the SU(2) weak isospin (left-handed) quark and Higgs
doublets, respectively, and φ̃k = iσ2φ

∗
k. The p and n fields are the positively and negatively

charged quark fields, respectively. Upon rotation to the mass basis they will yield the
physical up and down quarks. The a and b are fermion family indices. Γ and ∆ are 3× 3
Yukawa coupling matrices for the down and up sector, respectively. Upon spontaneous
symmetry breaking, the scalar doublets develop neutral vacuum expectation values (VEVs),
such that1 〈φ1〉 = v1/

√
2 and 〈φ2〉 = v2/

√
2, with v2

1 + v2
2 = (246 GeV)2. We define

tan β = v2/v1. For a CP-conserving model (both at the explicit and vacuum levels), the
model will have a charged scalar H+, a pseudoscalar A and two CP-even scalars, h and H.
The 2× 2 CP-even mass matrix is diagonalized via an angle α.

The up and down quark mass matrices are then given by

Mp = 1√
2

(∆1v1 + ∆2v2) , Mn = 1√
2

(Γ1v1 + Γ2v2) , (2.2)

the eigenvalues of which will be the physical quark masses. In fact, these mass matrices
will be bidiagonalized in the usual form as

Du = V †LMpVR = diag{mu,mc,mt} , Dd = U †LMnUR = diag{md,ms,mb} , (2.3)

where mx are the physical quark masses, whereas V and U are U(3) matrices. These
matrices relate the physical quark states u and d to the p and n original states in the
following manner:

pL = VL uL , pR = VR uR ,

nL = ULdL , nR = VR dR . (2.4)

The CKM matrix is then obtained as

V = V †LUL . (2.5)

We also define the following matrices,

Nu = 1√
2
V †L (∆1v2 −∆2v1)VR , Nd = 1√

2
U †L (Γ1v2 − Γ2v1)UR , (2.6)

which end up being related to the Yukawa couplings between the physical scalars and
quarks. In fact, with the usual conventions (see for instance [9, 35]), the Yukawa Lagrangian

1We are assuming these VEVs are real which is the case of the BGL model but the generalization to
complex ones is trivial.
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for the physical fields may be written as

−LY = iA

v

[
ū
(
NuPR −N †uPL

)
u+ d̄

(
N †dPL −NdPR

)
d
]

+h

v
ū
[(
sβ−αMu − cβ−αN †u

)
PL + (sβ−αMu − cβ−αNu)PR

]
u

+h

v
d̄
[(
sβ−αMd − cβ−αN †d

)
PL + (sβ−αMd − cβ−αNd)PR

]
d

+H

v
ū
[(
cβ−αMu + sβ−αN

†
u

)
PL + (cβ−αMu + sβ−αNu)PR

]
u

+H

v
d̄
[(
cβ−αMd + sβ−αN

†
d

)
PL + (cβ−αMd + sβ−αNd)PR

]
d

+
√

2H+

v
ū
(
N †uV PL − V NdPR

)
d+
√

2H−
v

d̄
(
V †NuPR −N †dV

†PL
)
u , (2.7)

where we used the notation sx ≡ sin x, cx ≡ cosx. On a side note, we can see from the
above Lagrangian how in the alignment limit the lighter Higgs’ Yukawa interactions are
exactly like those of the SM particles: in that limit one has sin(β −α) = 1 — which forces
the vertices between h and the electroweak gauge bosons to be identical to those of the SM
Higgs particle — and therefore the Yukawa couplings of h to quark pairs are proportional
to the quark mass, since the contribution of the N matrices vanishes.

In models with flavour conservation, each family of fermions of the same electric charge
couples to a single Higgs doublet, via the imposition of discrete Z2 [31, 36] or global U(1) [32]
symmetries. Then, the diagonalization of the Mu and Md matrices, eq. (2.3), is the same
as that of matrices Nu and Nd and there are no flavour-violating Yukawa interactions
mediated by neutral scalars. In general, though, that will not be the case and FCNCs
occur at tree level.

The BGL model is based on a symmetry imposed on the whole of the Lagrangian,
where some of the quark and scalar fields transform as

QL1 → eiθQL1, pR1 → e2iθpR1, Φ2 → eiθΦ2, (2.8)

with θ 6= nπ, with n an arbitrary integer. All other fields remain invariant under this
symmetry. As we see, the symmetry treats differently one of the generations of quarks,2
since only the “first family” of quarks is affected by the transformations above. In fact,
there are six (not counting the leptonic sector) models of the BGL type, which depend
on which generation of quarks is chosen in eq. (2.8) above. For the scalar sector, the
above symmetry transformation yields a Peccei-Quinn [32] scalar potential, which must be
complemented with a soft breaking parameter as to yield a massive pseudoscalar particle.

2In fact, these are unrotated quark fields, not yet corresponding to physical quarks, but the principle
holds.
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In the quark sector, the symmetry transformations of eq. (2.8) impose zero values in
several entries of the Yukawa matrices of eq. (2.1). They are found to be

Γ1 =

 0 0 0
× × ×
× × ×

 , Γ2 =

× × ×0 0 0
0 0 0

 ,

∆1 =

 0 0 0
0 × ×
0 × ×

 , ∆2 =

× 0 0
0 0 0
0 0 0

 , (2.9)

where, in general, “×” indicates a complex non-zero entry. Then, the form of ∆1 and ∆2
implies that the matrix Mp is block diagonal, namely

Mp =

× 0 0
0 × ×
0 × ×

 . (2.10)

and it may be bi-diagonalized by unitary matrices VL and VR of the form

VL =

 1 0 0
0 × ×
0 × ×

 , VR =

 e
iθR 0 0
0 × ×
0 × ×

 . (2.11)

with some phase θR. The shape of VL is crucial for the FCNC suppression. First, though,
we see that the matrices VL and VR can simultaneously bi-diagonalize ∆1 and ∆2, and
therefore Mu and Nu are both diagonal in the basis of physical up quarks. A simple
calculation yields

Nu = diag
(
− mu1

tan β , mu2 tan β , mu3 tan β
)
, (2.12)

with mu1,2,3 the masses of the up-type quarks. However, we have not yet specified which
generation is affected by the BGL transformations. Nevertheless, the above shows that for
any choice of quark generation in eq. (2.8) the Nu matrix is diagonal in the up-type quark
mass basis, and therefore — since this matrix contains the quark Yukawa couplings of the
neutral scalars — no FCNC occurs in the up sector.

The down-quark sector is a different story: given the form of the VL matrix in eq. (2.11)
and with the CKM matrix V given by (2.5), we immediately obtain

UL ≡

 V (1, 1) V (1, 2) V (1, 3)
× × ×
× × ×

 , (2.13)

and the impact of this structure on the left rotation matrix for the down-quark sector is
considerable. Indeed, a straightforward calculation yields, for the Nd matrix (which, we
remind the reader, contains the Yukawa couplings between the physical down-type quarks
and scalars)

(Nd)aa = ma

(
tan β − |V1a|2

sin β cosβ

)
, (2.14)
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for the diagonal terms, whereas the off-diagonal ones are given by

(Nd)ab = − V ∗1aV1b
sin β cosβ mb (a 6= b) . (2.15)

Thus we see that the off-diagonal Yukawa couplings between scalars and down-type quarks
— which determine the strength of the FCNC interactions — are CKM-suppressed. There
is a freedom to choose the “first” family as any one of the physical quark generations, and
therefore one has three BGL models with FCNC in the down-quark sector and without
them in the up-sector. An analogous symmetry to that of eq. (2.8) associated with a given
family of up-type quarks would yield other three models, where CKM-suppressed FCNC
occur in the up-quark sector and where the down-sector is free from such flavour violation
interactions.

This then is how the hallmark of the BGL models is achieved: a flavour-breaking
symmetry, which yields off-diagonal FCNC couplings naturally suppressed by the entries
of the CKM matrix elements. In what follows we build a similar model but for the case of
three Higgs doublets.

3 A BGL-like 3HDM

Beyond the aesthetic reason of considering three Higgs doublets in analogy with three
fermion families, or the intellectual challenge of attempting to reproduce the BGL structure
with a larger scalar sector (see [37] for an earlier attempt), there are other reasons to explore
a 3HDM with similarly suppressed FCNCs. The BGL model is quite successful, but recent
studies [19] have found that its parameter space may be quite constrained. A possible
criticism one may levy at the analysis of [19] is that the latter has extended the BGL
structure to the leptonic sector as well — something that is not mandatory as the model
has enough freedom to accommodate a flavour-preserving leptonic sector in what concerns
the Yukawa interactions — which is what we will consider here. Nonetheless, this shows
that even with natural FCNC coupling suppression via off-diagonal CKM matrix elements,
the BGL structure can be quite constrained from experimental data. Working within the
framework of a 3HDM will in principle imply greater freedom in terms of parameters that
can be adjusted to comply with experimental bounds.

There is also another reason, more theoretical and fundamental, to attempt a 3HDM
study of the BGL paradigm. In many instances, comparisons of the 2HDM with 3HDMs
have revealed how special a model the 2HDM is. To give only a few examples, tree-level
vacuum stability against charge breaking or spontaneous CP breaking was found for charge-
and-CP conserving minima within the 2HDM [38–40], but charge breaking minima were
found to coexist with charge-preserving ones for NHDMs with N ≥ 3 [41]; a full listing of all
possible symmetries of the SU(2)×U(1) invariant 2HDM was found [42, 43] while for 3HDM
we refer to [24, 44, 45]; generic bounded-from-below [42, 43] and unitarity [46] bounds were
found for the 2HDM, but for the 3HDM such bounds only exist for particular versions
of the model. As such, the possibility of ascertaining whether the BGL structure can be
extended to a full 3HDM compels us to try to find it. And of course one can obtain an exact
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BGL-like 3HDM — all one needs to do is copying the procedure detailed in the previous
section for the first two doublets, while keeping the third doublet VEVless. For that to
happen one would consider the construction of the Inert Doublet Model (IDM) [47–50] and
impose a Z2 symmetry on the third doublet, φ3 → −φ3. This model would have FCNCs in
the visible sector and also a dark matter candidate stemming from the third doublet. An
interesting model would be recovered, however it would not solve our aim to obtain a larger
freedom to fit the flavour observables in comparison to what one has in the 2HDM BGL
model. Thus we are compelled to consider a 3HDM wherein all doublets acquire VEVs.

Let us start by describing the scalar sector of the model, which contains three spin-0
SU(2) doublets, φ1, φ2 and φ3.

3.1 The scalar sector

The scalar doublets are made to transform under the U(1)× Z2 symmetry as follows:

U(1) : φ1 → eiαφ1 , φ3 → eiαφ3 . (3.1a)
Z2 : φ1 → −φ1 , φ2 → φ2 , φ3 → φ3 . (3.1b)

We further require the scalar potential to be CP-invariant, i.e to be invariant under the
usual CP transformations,

φ1 → φ∗1 , φ2 → φ∗2 , φ3 → φ∗3 , (3.2)

such that it can be written as

V0(φ1, φ2, φ3) = µ2
1

(
φ†1φ1

)
+ µ2

2

(
φ†2φ2

)
+ µ2

3

(
φ†3φ3

)
+ λ1

(
φ†1φ1

)2

+λ2
(
φ†2φ2

)2
+ λ3

(
φ†3φ3

)2
+ λ4

(
φ†1φ1

) (
φ†2φ2

)
+ λ5

(
φ†1φ1

) (
φ†3φ3

)
+λ6

(
φ†2φ2

) (
φ†3φ3

)
+ λ7

(
φ†1φ2

) (
φ†2φ1

)
+ λ8

(
φ†1φ3

) (
φ†3φ1

)
+λ9

(
φ†2φ3

) (
φ†3φ2

)
+ λ10

{(
φ†1φ3

)2
+ h.c.

}
. (3.3)

The most general potential that softly breaks the U(1)× Z2 flavor symmetry is given by

Vsoft(φ1, φ2, φ3) = µ2
12φ
†
1φ2 + µ2

13φ
†
1φ3 + µ2

23φ
†
2φ3 + h.c. , V = V0 + Vsoft . (3.4)

Here, due to the CP symmetry all the parameters in V = V (φ1, φ2, φ3) are real. We have
introduced real soft breaking terms, in Vsoft, to avoid the appearance of a massless axion
in the physical spectrum. Recall that the same procedure was necessary for the 2HDM
BGL [51, 52], due to the analogous breaking of the U(1) symmetry given by eq. (2.8).

After spontaneous symmetry breaking, all doublets acquire real VEVs3 and are ex-
panded as

φk =
(

w+
k

1√
2(vk + hk + izk)

)
, (k = 1, 2, 3) , (3.5)

3It is obviously possible to obtain spontaneous CP violation within a 3HDM, via complex VEVs, but we
do not consider that more generic case in the current work.
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where vk represent the VEVs of each doublet which satisfy v2
1 + v2

2 + v2
3 = (246GeV)2. The

minimization of the potential yields three equations that can be conveniently resolved by
expressing the quadratic mass parameters µ2

1, µ2
2 and µ2

3 in terms of the three VEVs and
other couplings as follows:

µ2
1 = −1

2

[
2λ1v

2
1 + (λ4 + λ7) v2

2 + (λ5 + λ8 + 2λ10) v2
3 + 2

(
µ2

13v3 + µ2
21v2

)
v1

]
, (3.6a)

µ2
2 = −1

2

[
2λ2v

2
2 + (λ4 + λ7) v2

1 + (λ6 + λ9) v2
3 + 2

(
µ2

21v1 + µ2
23v3

)
v2

]
, (3.6b)

µ2
3 = −1

2

[
2λ3v

2
3 + (λ6 + λ9) v2

2 + (λ5 + λ8 + 2λ10) v2
1 + 2

(
µ2

13v1 + µ2
23v2

)
v3

]
. (3.6c)

For latter use, we parameterize the VEVs as,

v1 = v sin β1 cosβ2 , v2 = v sin β2 , v3 = v cosβ1 cosβ2 , v =
√
v2

1 + v2
2 + v2

3 (3.7)

and setting v13 =
√
v2

1 + v2
3, define the following orthogonal matrix which rotates the

gauge eigenstates into the so-called Higgs basis, greatly simplifying the analysis of the
scalar sector,

Oβ =

 v1/v v2/v v3/v

v3/v13 0 −v1/v13
v1v2/(vv13) −v13/v v2v3/(vv13)

 =

 sin β1 cosβ2 sin β2 cosβ1 cosβ2
cosβ1 0 − sin β1

sin β1 sin β2 − cosβ2 cosβ1 sin β2

 .

(3.8)
We now turn our attention to the physical scalar spectrum of the model. Since we

are considering a potential with explicit CP conservation and a vacuum which does not
spontaneously break CP, the neutral scalars have definite CP quantum numbers. The
scalar spectrum of the model is composed of a pair of pseudoscalars, a trio of CP-even
scalars and a pair of charged scalars, to be discussed in what follows.

In this work, we have studied the properties of the Higgs sector in the so-called Higgs
alignment limit such that one of the physical scalars coincides with the SM Higgs boson
(i.e. features its mass and interactions). In order to ensure this in the input data prepared
for our parameter scans we would like to utilise an inversion procedure and require the
alignment limit at the level of input parameters. Such an inversion procedure would enable
us to express the parameters of the scalar potential in terms of physical masses, VEVs and
mixing angles.

The mass terms for the pseudoscalar sector can be straightforwardly extracted from the
scalar potential — they will correspond to the terms quadratic in the zk (k = 1, 2, 3) fields,
after one has replaced the expression for the doublets of eq. (3.5) into the potential (3.3)
and (3.4). One obtains

V mass
P =

(
z1 z2 z3

) M2
P

2

z1
z2
z3

 , (3.9)
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whereM2
P is the 3× 3 pseudoscalar mass matrix which takes a block-diagonal form in the

Higgs basis with the help of the orthogonal matrix Oβ defined in (3.8),

B2
P ≡ Oβ · M2

P · OTβ =

0 0 0
0 (B2

P )22 (B2
P )23

0 (B2
P )23 (B2

P )33

 , (3.10)

where(
B2
P

)
22

=− 1
v1v3v2

13

[
2λ10

(
v5

1v3 + 2v3
1v

3
3 + v1v

5
3

)
+ µ2

13v
4
13 + v2v

3
3µ

2
21 + v3

1v2µ
2
23

]
) ,

(
B2
P

)
32

=− v

v2
13

(
v1µ

2
23 − v3µ

2
21

)
,

(
B2
P

)
33

=− v2

v2v2
13

(
v1µ

2
21 + v3µ

2
23

)
.

(3.11)

Thus, apart from the three VEVs, only λ10 and the soft mass parameters, µ2
12, µ

2
13, µ

2
23,

enter the pseudoscalar mass matrix. The line and column of zeroes in this matrix obviously
tells us that it has a zero eigenvalue — which of course is the neutral Goldstone boson
responsible for the longitudinal polarisation of the massive Z boson.

The pseudoscalar mass matrix is further diagonalized to the mass basis via an addi-
tional rotation,

Oγ1 ·B2
P · OTγ1 =

 0 0 0
0 m2

A1 0
0 0 m2

A2

 , (3.12)

where the matrix Oγ1 is defined as

Oγ1 =

1 0 0
0 cos γ1 − sin γ1
0 sin γ1 cos γ1

 . (3.13)

The full diagonalization of M2
P from eq. (3.9) is therefore accomplished with the matrix

product Oβ · Oγ1 , and this is important when one wishes to write the Yukawa interactions
between the two physical pseudoscalars and the physical quarks.

An analogous procedure can be performed in other sectors. For instance, the 3 ×
3 charged Higgs sector mass matrix, M2

C , can also be block diagonalized by the same
orthogonal matrix as:

B2
C ≡ Oβ · M2

C · OTβ =

0 0 0
0 (B2

C)22 (B2
C)23

0 (B2
C)23 (B2

C)33

 . (3.14)

where again the single line and column of zeros yields a zero eigenvalue, the massless
charged Goldstone boson providing the longitudinal polarisation of the massive W boson.
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In the above matrix, we find

(B2
C)22 =− 1

2v1v3v2
13

[
v5

1v3(2λ10 + λ8) + v1
(
v2

2v
3
3λ7 + v5

3(2λ10 + λ8)
)

+ 2v4
1µ

2
13 + 4v2

1v
2
3µ

2
13

+ 2v3
3(v3µ

2
13 + v2µ

2
21) + v3

1

(
2v3

3(2λ10 + λ8) + v2
2v3λ9 + 2v2µ

2
23

)]
,

(B2
C)23 =− v

[
v1v2v3(λ7 − λ9) + 2v3µ

2
21 − 2v1µ

2
23
]

2v2
13

,

(B2
C)33 =− v2 [v2

1v2λ7 + 2v1µ
2
21 + v3(v2v3λ9 + 2µ2

23)
]

2v3v2
13

. (3.15)

Then, one switches to the mass basis in the charged scalar mass matrix as follows,

Oγ2 · (BC)2 · OTγ2 =

 0 0 0
0 m2

C1 0
0 0 m2

C2

 , (3.16a)

with the charged mixing matrix

Oγ2 =

1 0 0
0 cos γ2 − sin γ2
0 sin γ2 cos γ2

 , (3.16b)

and where mC1 and mC2 denote the masses of the two physical charged scalars, H±1 and
H±2 , respectively.

Repeating the procedure above also for the CP-even states, we obtain

V mass
S =

(
h1 h2 h3

)M2
S

2

h1
h2
h3

 , (3.17)

where M2
S is a 3× 3 symmetric mass matrix. In explicit form,

M2
S =


−µ

2
21v2 + µ2

13v3 − 2λ1v
3
1

v1
v1v2(λ4 + λ7) + µ2

21 v1v3(2λ10 + λ5 + λ8) + µ2
13

v1v2(λ4 + λ7) + µ2
21 −µ

2
21v1 + µ2

23v3 − 2λ2v
3
2

v2
v2v3(λ6 + λ9) + µ2

23

v1v3(2λ10 + λ5 + λ8) + µ2
13 v2v3(λ6 + λ9) + µ2

23 −µ
2
13v1 + µ2

23v2 − 2λ3v
3
3

v3


.

(3.18)
Switching to the Higgs basis, H0

H ′1
H ′2

 = Oβ ·

h1
h2
h3

 . (3.19)

we notice that the state H0 has the same gauge and Yukawa couplings at tree level as those
of the SM Higgs boson.
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The physical CP even scalars, h, H1 and H2, are obtained via a different orthogonal
rotation:  h

H1
H2

 = Oα

h1
h2
h3

 , (3.20)

where Oα is a 3× 3 orthogonal matrix which can be conveniently parameterized as

Oα = R3 ·R1 ·R2 , (3.21a)

with,

R1 =

 cosα1 sinα1 0
− sinα1 cosα1 0

0 0 1

 , R2 =

 cosα2 0 sinα2
0 1 0

− sinα2 0 cosα2

 , R3 =

 1 0 0
0 cosα3 sinα3
0 − sinα3 cosα3

 .
(3.21b)

Therefore, M2
S should be diagonalized via the following orthogonal transformation:

Oα ·M2
S · OTα ≡

m
2
h 0 0

0 m2
H1 0

0 0 m2
H2

 , (3.22)

where the first eigenvalue corresponds to the SM-like Higgs boson state h, with mh '
125GeV.

Last but not least, it is instructive to discuss the alignment condition in our model.
While a rotation to the Higgs basis is performed with the Oβ matrix such that eq. (3.19)
holds, the mass eigenstates can be written in terms of the Higgs basis ones as h

H1
H2

 = OαO>β

H0
H ′1
H ′2

 , (3.23)

where one defines the matrix
O ≡ OαO>β . (3.24)

The alignment limit is achieved once the SM-like Higgs boson completely overlaps with H0
which, in practice, results in the condition

O11 = 1 . (3.25)

With our VEV parametrization in eq. (3.7) the alignment condition can be cast as

cosα1 cosβ2 sin(α2 + β1) + sinα1 sin β2 = 1 (3.26)

with reduces to the result in [53] if one identifies

α2 ↔ α1 and β1 → −β1 + π

2 . (3.27)
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This means that putting mh = 125GeV, α1 = β2 and α2 = −β1 + π/2 will ensure the
presence of a 125GeV SM Higgs boson in the spectrum — that is the exact alignment limit
of this model, forcing the interactions between h and the electroweak gauge bosons Z, W
(as well as with SM fermions, see below) to be exactly identical to those of the SM.

In practice, the exact alignment implies that (M̃2
S)11 = m2

h and (M̃2
S)12 = (M̃2

S)13 = 0
where we define the Higgs basis mass matrix

M̃2
S ≡ Oβ ·M2

S · O>β . (3.28)

This can be further solved with respect to λ1, λ2 and λ10 such that one can write

λ1 = 1
2v4

1

[
m2
h(v2

1 − v2
3) + 2v4

3λ3 − v2
1v

2
2(λ4 + λ7) + v2

2v
2
3(λ6 + λ9)

]
,

λ2 = 1
2v2

2

[
m2
h − v2

1(λ4 + λ7)− v2
3(λ6 + λ9)

]
,

λ10 = 1
2v2

1

[
m2
h − 2v2

3λ3 − v2
1(λ5 + λ8)− v2

2(λ6 + λ9)
]
.

(3.29)

At this point, it is instructive to summarise the above steps. First of all, in order to
make our numerical calculations technically feasible and time efficient, in this work the
analysis of the scalar spectrum (couplings, mixing and masses) is performed entirely at
tree level. We note that the scalar potential in eqs. (3.3) and (3.4) contains sixteen real
parameters. Among them, the quadratic parameters µ2

1, µ2
2 and µ2

3 can be traded in favor of
the three VEVs, v1, v2 and v3 or equivalently v, tan β1 and tan β2. In our numerical studies
we take advantage of the exact alignment limit in order to randomly sample tan β1, tan β2,
λ3,...,9 as well the soft parameters µ2

13, µ2
21 and µ2

23 such that, using eq. (3.29), one obtains
the correct λ1, λ2 and λ10 quartic couplings compatible with an exact alignment of the
SM-like Higgs boson. While off-alignment deviations are beyond the scope of this article,
we provide in appendix A generic formulas to obtain the gauge eigenbasis parameters if
the physical masses and mixing angles are provided as inputs.

3.2 The Yukawa sector

Alongside the scalar field transformations of eq. (3.1) the following quark fields are assumed
to transform nontrivially under the U(1)× Z2 flavor symmetry:

U(1) : QL3 → eiαQL3 , pR3 → e2iαpR3 , (3.30a)
Z2 : QL3 → −QL3 , pR3 → −pR3 , nR3 → −nR3 , (3.30b)

with α the same arbitrary phase of eq. (3.1), and the rest of the quark fields remain unaf-
fected under said symmetry transformations. In eq. (3.30), as before, QLa = (pLa, nLa)T
denotes the left-handed quark doublet of the a-th generation whereas pRa and nRa denote
the a-th generation (unrotated) up (positively charged) and down (negatively charged)
type quark singlets respectively. Notice the similarity between these transformation laws
and those of the BGL model, eq. (2.8).
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The quark Yukawa Lagrangian for a 3HDM will then have the general form

LY = −
3∑

k=1

[
Q̄La(Γk)ab φk nRb + Q̄La(∆k)ab φ̃k pRb + h.c.

]
, (3.31)

where as before Γk and ∆k stand for the Yukawa matrices in the down and up quark sectors
respectively. Due to specific charge assignments given for the Higgs doublets and quark
fields under U(1)× Z2 these Yukawa matrices will have the following textures:

Γ1 =

0 0 0
0 0 0
× × 0

 , ∆1 =

0 0 0
0 0 0
0 0 0

 , Γ2,∆2 =

× × 0
× × 0
0 0 0

 , Γ3,∆3 =

0 0 0
0 0 0
0 0 ×

 . (3.32)

Therefore, the quark mass matrices that emerge from these Yukawa matrices have the
following structure:

Mp = 1√
2

3∑
k=1

∆kvk =

× × 0
× × 0
0 0 ×

 , Mn = 1√
2

3∑
k=1

Γkvk =

× × 0
× × 0
× × ×

 . (3.33)

We then rotate from the p and n fields to the physical quark states u and d via rotation
matrices VL, VR, UL and UR identical to those of eq. (2.4). We thus obtain diagonal mass
matrices as in eq. (2.3), and the CKM matrix is, as before, given by V = V †LUL. Let us
now analyse carefully the Yukawa couplings between the neutral scalar eigenstates and the
physical quarks, with particular attention to any FCNC couplings which may arise.

In the alignment limit, with α1 = β1 and α2 = β2, the physical scalar h completely
overlaps with H0. In that limit, the other physical scalars, H1 and H2, will, in general, be
an orthogonal mixture of the intermediate states defined above, H ′1 and H ′2.

Now, the terms in the Yukawa Lagrangian pertaining to the interactions between CP-
even scalars and quarks are

L CP even
Y = − 1√

2

[
n̄L

( 3∑
k=1

Γkhk
)
nR + p̄L

( 3∑
k=1

∆khk

)
pR + h.c.

]
, (3.34)

from which, using the rotation matrix of eq. (3.19) to express the hk in terms of H0, we
can obtain

L H0
Y =− H0

v

[
n̄L

(
1√
2

3∑
k=1

Γkvk
)
nR + p̄L

(
1√
2

3∑
k=1

∆kvk

)
pR + h.c.

]
,

=− H0
v

[
d̄LDddR + ūLDuuR + h.c.

]
.

(3.35)

In writing the last step, we have made use of eqs. (3.33) and (2.3). Thus we see that H0
possesses SM like Yukawa coupling at tree level. This is a close analogy to the BGL model,
where we explained how, in the exact 2HDM alignment limit, the h state had identical
Yukawa interactions to those of the SM Higgs boson.
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In a similar manner, we can write down the Yukawa couplings of H ′1 and H ′2 with the
down type quarks as follows:

L
H′1,H

′
2

Y = −H
′
1
v
d̄LNd1dR −

H ′2
v
d̄LNd2dR + h.c. , (3.36)

where the matrices Nd1 and Nd2 are given by

Nd1 = v√
2v13

U †L(Γ1v3 − Γ3v1)UR ,

Nd2 = U †L

[
v2
v13

1√
2

(Γ1v1 + Γ3v3)− v13
v2

1√
2

Γ2v2

]
UR .

(3.37a)

To simplify further the expressions for Nd1 and Nd2, we go back to the textures of the mass
matrices in eq. (3.33). From the block diagonal structure of Mu, one can conclude that the
corresponding bidiagonalizing matrices, VL and VR, should have block diagonal structures
too. In fact, we can choose

VL =

× × 0
× × 0
0 0 1

 (3.38)

with the understanding that the phase of (Mu)33 can always be absorbed into (VR)33. Here,
unlike the BGL example of section 2, we are choosing to single out the third family. Then,
from eq. (2.5) we obtain

(UL)3A = V3A , (3.39)

which means that the third row of UL is identical to that of the CKM matrix, as occurred
in the 2HDM BGL case. To proceed further, it is useful to define the following projection
matrix

P =

0 0 0
0 0 0
0 0 1

 . (3.40)

Thus, in view of the structures of the Yukawa matrices, we obtain the following relations
in the down quark sector:

Γ3 = (Γ3)33P ,
1√
2

(Γ1v1 + Γ3v3) = P Md . (3.41)

Using eqs. (3.39) and (3.41), the expressions for Nd1 and Nd2 can now be simplified so that:

(Nd1)AB = v v3
v1v13

V ∗3AV3B(Dd)BB −
1√
2
v v13
v1

(Γ3)33V
∗

3A(UR)3B , (3.42a)

(Nd2)AB = v13
v2

(Dd)BBδAB +
(
v13
v2

+ v2
v13

)
V ∗3AV3B(Dd)BB . (3.42b)

These equations tell us that the FCNC interactions of H ′2 are exactly BGL-like — all off-
diagonal elements in Nd2 are CKM-suppressed. That however is not the case for H ′1 —
the first term in the right-hand side of eq. (3.42a) is a matrix whose off-diagonal entries
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are suppressed by two CKM matrix elements, as in the BGL model, but the second term’s
FCNC couplings are suppressed by only one CKM matrix element. To estimate the size
of (UR)3B, we note that if (Γ1)31 and (Γ1)32 were zero in eq. (3.32), then we could choose
UR to be block diagonal as well. However, in view of the smallness of the off-diagonal
elements in the CKM matrix, the elements of Γ1 should also be quite small. Therefore it is
reasonable to assume that the elements (UR)3B (for B 6= 3) are also small. Considering all
these facts, one can expect that the FCNC couplings in the down quark sector controlled
by Nd1 and Nd2 will be under control.

In this work, as was stated above, we work in the exact alignment limit implying that
the physical state h couples to the SM fermions and gauge bosons with the same strength
as the SM Higgs boson. Ultimately, of course, we will be close to the alignment limit
— the current LHC data requires it, see section 4.2 — but not necessarily exactly in it,
so the physical CP-even/odd scalar states would have FCNC interactions given by linear
combinations of the Nd1 and Nd2 matrices via the rotation matrices defined in section 3.1.
As such, one obtains a model that is not as “clean” as the 2HDM BGL, but where one
still sees how FCNC interactions arise which are CKM-suppressed due to the symmetries
imposed upon the potential — the suppression is therefore natural and not the result
of a fine tuning. A quantitative study of the possible impact arising from off-alignment
corrections on FCNC observables in the current model is a subject of a dedicated work in
the future.

A similar exercise in the up quark sector would reveal that there are no scalar mediated
FCNC at tree level in the up sector. This is due to the special structures of the up type
Yukawa matrices, which, in turn, are dictated by the fermionic charges given in eq. (3.30).
But it should be noted that, just like in the usual BGL models, the charges in eq. (3.30)
can be appropriately shuffled so that the tree level FCNC couplings reside entirely in the
up quark sector instead of the down quark sector. And within each sector one still has
the possibility of choosing FCNC associated with a given family. However, we choose the
current variant — FCNC in the down sector, associated with the third family — because
it will be the most restrictive one. There is a wealth of experimental data limiting such
FCNCs, thus this version of the model will be the most restricted one. Therefore, if this
version can survive all constraints we will throw at it, other versions would more easily
pass the same constraints and may be the subject of future studies.

In passing, it should be mentioned that the leptonic fields are assumed to couple only
to φ1 in the Yukawa sector. This can be achieved very simply by assigning the following
transformations to the leptonic fields

U : LLa → eiαLLa , `Ra → `Ra , (3.43a)
Z2 : LLa → −LLa , `Ra → `Ra , (3.43b)

where LLa = (νLa, `La)T and `Ra denote, respectively, the left-handed lepton doublet and
the right handed charged lepton singlet of a-th generation. Since the charged leptons
receive their masses from a single scalar doublet, there will be no FCNC couplings at tree
level in the leptonic sector. Thus, all constraints from observables such as µ → eγ are
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automatically satisfied, since for simplicity in our model the lepton number is assumed to
be exactly conserved. Additionally, it is also worth mentioning that in this first study of
a 3HDM BGL-like scenario we do not introduce right handed neutrinos, i.e., neutrinos are
assumed to be massless in our model.

One major challenge in producing a BSM theory with a non-trivial Yukawa sector, i.e.
with FCNC interactions, resides in being able to successfully fit the quark mass spectrum
and CKM mixing, simultaneously. In fact, it is a highly non-trivial — and time-consuming
— task to find values for Yukawa couplings and scalar VEVs capable of fitting quark
masses which differ by many orders of magnitude. Add to that the difficulty in having to
simultaneously being capable of fitting the CKM matrix entries and a simultaneous fit to
the quark and scalar sector becomes a very difficult achievement.

In this work, we follow an inversion procedure in some ways similar to that implemented
in appendix A for the scalar sector. In essence, the inversion here means expressing the
Lagrangian parameters of a given BSM scenario (partially or completely) in terms of phys-
ical observables and mixing angles connecting the gauge basis with the physical one. In the
model under consideration, such inversion can be unambiguously realized since the corre-
sponding system of equations is linear and non-singular and thus yields a unique non-trivial
solution, upon an appropriate choice of input parameters.

The inversion procedure in the Yukawa sector consists in, literally, inverting the usual
fitting logic of the Yukawa sector: instead of scanning over Yukawa couplings and VEVs
defining some sort of χ2 function whose minimization would yield an acceptable quark mass
spectrum and CKM matrix, we do the opposite. Namely, quark masses and CKM matrix
elements are our initial inputs, and we scan over the bidiagonalization matrices which pass
from the interaction basis to the mass eigenstate basis.

To make this clear, let us begin with the diagonal quark mass matrices, Du =
diag (mu , mc , mt) and Dd = diag (md , ms , mb). Within the considered BGL-like 3HDM,
they are the result of the bidiagonalization of the (interaction basis) matrices of eq. (3.33),
via 3× 3 unitary matrices UL, UR, VL and VR, such that

Du = V †LMp VR , Dd = U †LMn UR , (3.44)

and the CKM matrix V defined above. Using the unitarity of the rotation matrices we
can invert the above equations, and since the definition of the CKM matrix implies that
UL = VL V , we can write

Mp = VLDu V
†
R =

(∆2)11v2 (∆2)12v2 0
(∆2)21v2 (∆2)22v2 0

0 0 (∆2)33v3

 ,

Mn = VL V Dd U
†
R =

(Γ2)11v2 (Γ2)12v2 0
(Γ2)21v2 (Γ2)22v2 0
(Γ1)31v1 (Γ1)32v1 (Γ3)33v3

 ,

(3.45)

where UL has been replaced by VL and the CKM matrix. In eq. (3.45) the quark masses,
CKM matrix and VEVs will be the inputs (the VEVs obtained from a previous partial scan
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of the scalar sector, already ensuring that the alignment limit is satisfied). The unknowns
are the rotation matrices VL, VR and UR. Since any U(1)(3) matrix can be parameterized
by three angles and six phases we have a total of 27 free parameters with which one would
attempt a fit to eq. (3.45). However, using our inversion method there is no fit involved
and, due to the Yukawa textures, VL,R become 2× 2 block diagonal matrices. This means
that, in the up sector, we can parameterize our rotation to the mass basis with two angles,
αL and αR, defined as

VL =

 cosαL sinαL 0
− sinαL cosαL 0

0 0 1

 , VR =

 cosαR sinαR 0
− sinαR cosαR 0

0 0 1

 . (3.46)

Therefore, the five real non-zero elements of ∆ inMp are traded for αL, αR and the physical
up-type quark masses mu, mc and mt. In the down sector, on the other hand, both UL and
UR are generic 3×3 matrices. While the former is fixed as UL = VLV , with the CKMmatrix
expressed in the Wolfenstein form ( see PDG for details [54]), the latter can be parameter-
ized with three angles β1,2,3

R if we assume, as we do in our numerical implementation, that
the only complex CP-phase comes from the CKM matrix. This means that, for our sce-
nario, the seven non-zero elements of Γ in Mn can be consistently described with eight real
couplings, which are replaced by the four Wolfenstein parameters λ, A, ρ̄ and η̄, three quark
masses, md, ms and mb and a randomly generated angle which we call βR. In particular,
denoting the solutions of eq. (3.45) for the angles as β2

R = β2
R(λ,A, ρ̄, η̄,mb,ms,md, βR)

and β3
R = β3

R(λ,A, ρ̄, η̄,mb,ms,md, βR), which are numerically computed, one can express
UR as

UR = (3.47) cosβR cosβ2
R sin βR cosβ2

R sin β2
R

− cosβR sin β2
R sin β3

R−sin βR cosβ3
R cosβR cosβ3

R−sin βR sin β2
R sin β3

R cosβ2
R sin β3

R

− cosβR sin β2
R cosβ3

R+sin βR sin β3
R − cosβR sin β3

R−sin βR sin β2
R cosβ3

R cosβ2
R cosβ3

R

,
with βR a free parameter.

All in all, given the physical quark masses and CKM mixing (with a complex CP-
phase), our numerical sampling of the Yukawa sector is consistently achieved solely with
three angles, αL, αR and βR, upon inversion of eq. (3.45). Therefore with the VEVs and the
values obtained for the nonzero entries, it is a simple matter to reconstruct the elements of
the Γ and ∆ matrices — notice that each non-zero entry of Mp (Mn) has the contribution
of a single ∆ (Γ) matrix element such that the reconstruction of the Yukawa matrices is
unequivocal.

With this simple procedure we ensure that the very different quark masses are auto-
matically and exactly reproduced for every single sampled point, and so does the non-trivial
structure of the CKM matrix. The computational challenge then is to scan over three rota-
tion angles in order to reproduce the correct flavour observables in consistency with strict
experimental constraints.
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4 Constraints on the model

Any realistic BSM theory needs to do, at least, as good a job as the SM in describing
well measured particle physics properties. For multi-scalar scenarios, there is a wealth of
theoretical and experimental bounds that are imposed upon the model’s parameter space.
The main challenge then is to find the domains of validity for a given model for which the
parameter space points pass all the relevant restrictions. In this section, we summarize the
main theoretical and experimental constraints that need to be satisfied in order to validate
our BGL-like 3HDM framework.

4.1 Theoretical constraints

For models with a scalar content larger than that of the SM, special attention needs to be
focused on the possibility of the scalar potential becoming unbounded from below i.e. tend-
ing to minus infinity for some direction along which the fields are assuming arbitrarily large
values. This imposes constraints on the model’s scalar quartic couplings, as the quartic
part of the potential clearly dominates over the quadratic (or even an eventual cubic) one
when the scalar fields tend to infinity. This is already a concern for the SM — it is the
reason why the SM Higgs quartic coupling λ is taken positive. For the 2HDM, generic con-
ditions were found in refs. [42, 43] but for the 3HDM, on the other hand, there is no such
generic boundedness-from-below prescription that can be straightforwardly implemented
in a parameter scan (see [55] for a U(1)×U(1) version of the 3HDM). Still, some necessary
conditions are easy to find. Analysing the shape of the scalar potential of eq. (3.3), we see
that if one takes each of the doublets φi to infinity separately, the potential will tend to
−∞ unless

λ1 > 0 , λ2 > 0 , λ3 > 0 . (4.1)

Likewise, following a procedure similar to the one used in the 2HDM [18], if one takes two
doublets (i, j) to infinity but such that φ†iφj = 0 (which is realised, for instance, when the
upper component of one of the doublets and the lower component of the other doublet are
zero) one obtains a positive value of the potential for any value of the fields if

λ4 > − 2
√
λ1λ2 , λ5 > − 2

√
λ1λ3 , λ6 > − 2

√
λ2λ3 . (4.2)

We can also adapt the boundedness-from-below necessary conditions from ref. [56] (see
eqs. (21)–(24) there), being careful with the fact that the potential of that work is different
from the one considered here (our potential has a more restrictive symmetry, and therefore
has fewer quartic couplings). This translates into a generalisation of the above conditions,
which become

λ4 > − 2
√
λ1λ2 − min(0, λ7) , λ5 > − 2

√
λ1λ3 − min(0, λ8 − 2|λ10|) ,

λ6 > − 2
√
λ2λ3 − min(0, λ9) . (4.3)

Ultimately, these necessary conditions eliminate a great deal of parameter space. Even
though they are not the sufficient ones, they are still expected to cover most of the param-
eter space regions that lead to a bounded-from-below potential.
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Another strong constraint on the quartic couplings of potential is the requirement
for the theory to be unitary. For the SM, this implies an upper bound on the mass
of the Higgs boson [57, 58], and similar studies have been applied to the 2HDM (general
unitarity conditions are presented in ref. [46]) and other models with a larger scalar content.
Essentially, the method consists in computing all scalar-scalar J = 0 scattering amplitudes
(usually denoted a0) and requiring that they respect unitarity in the high energy regime.
This translates into an upper bound on those amplitudes, |a0| < 1/2. Theories with
many scalars complicate the calculation somewhat due to a growing multiplicity of such
scattering amplitudes and bounds must be imposed upon eigenvalues of the S-matrix.
General unitarity bounds for a 3HDM with a Z2 × Z2-symmetric potential are presented
in ref. [56], of which our U(1) × Z2 symmetry is a special case. Since our model has
a larger symmetry, it has less parameters than that of ref. [56] and one could read off
from eqs. (91) to (102) of that article the unitarity constraints imposed upon the quartic
couplings. However, as explained below, we will use the SARAH/SPheno machinery instead
to take into account these bounds.

Finally, a “standard” constraint on multiscalar models is to verify their compliance
with electroweak precision bounds i.e. constraints on the oblique S, T and U parameters.
Models with N Higgs doublets automatically satisfy ρ = 1 at tree-level, which means that
bounds on the oblique parameter S will be easily satisfied. However, that is no longer
true for the T parameter, which typically needs to be computed for any given model.
Constraints on T typically enforce, for very high masses, degeneracies between the extra
scalars in the mass spectrum of the model. The results from ref. [56] are of no help to us
in this case, as the expressions for the oblique parameters given there are only valid for
a 3HDM version of the inert type (where one of the doublets is VEVless and naturally
decouples from the gauge sector).

Instead of computing the unitarity bounds and oblique corrections analytically, in this
work, we have adopted another strategy and used the publicly available SARAH/SPheno
framework [59–61] which enables one to compute them numerically in a given particle
physics model for a particular parameter space point (for an earlier implementation of
this procedure, see e.g. ref. [62]). In our numerical analysis substantiated in detail below,
we have implemented the 3HDM model under consideration into this framework where
both the unitarity constraints and the electroweak precision bounds on S, T, U parameters
have been consistently incorporated in the parameter scans designed to search for the valid
physical regions of the model. In particular, the oblique parameters are computed by
SPheno-4.0.4 at one loop-order using tree-level masses and then are verified against the
experimental bounds for every parameter space point.

4.2 Experimental constraints

Since the discovery of the Higgs-like state in 2012 the LHC collaborations have been able
to verify that its properties correspond to those expected for the SM Higgs boson, within
rather small experimental error bars. In practical terms, this means that the couplings of
the 125GeV h state to electroweak gauge bosons and fermions in a BSM model cannot
deviate too much from the corresponding SM couplings. A convenient way of parame-
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terizing the Higgs interaction strengths is by introducing the κ-formalism, defining the
dimensionless quantities,

κ2
X = ΓBSM(h→ X)

ΓSM(h→ X) , (4.4)

through the decay widths, Γ, of the Higgs boson to a certain final state X (typically, ZZ,
WW , τ τ̄ and bb̄), computed both in a given BSM scenario as well as in the SM. This
definition implies that the exact SM behaviour would correspond to κ = 1. Notice that
current LHC measurements [3, 4] only allow deviations from unity roughly up to 20% for
the several final states.

Requiring h to be SM-like naturally suppresses the couplings to gauge bosons of the
heavier CP-even states H1 and H2 (these three states’ gauge couplings obey a sum rule, due
to gauge invariance). Since one of the most constraining channels in the search for heavier
resonances at the LHC is precisely via di-Z boson production, most of the constraints
coming from those searches are automatically satisfied. However, there is still an ample
parameter space for which the heavier scalars also have suppressed production cross sections
and could thus have avoided detection so far.

The basic properties of the Higgs boson in the BGL-like 3HDM under consideration,
such as its physical couplings, decay rates and branching ratios, have been computed
numerically in SPheno-4.0.4 for each input parameter-space point in a dedicated numerical
scan. A set of input points has been prepared in a separate special routine using an
inversion procedure in the scalar sector in order to reproduce the exact Higgs alignment
limit, with fixed VEV v ' 246GeV and Higgs massmh ' 125GeV values, as detailed above.
Then, a candidate point has been chosen to satisfy the electroweak precision bounds, the
boundedness-from-below and unitarity constraints discussed in the previous subsection. On
top of that, in order to take into account the latest data from the LHC on the properties
of the observed 125GeV state we used HiggsSignals-2.2.3beta [63], whereas limits from
the LEP, Tevatron and LHC direct searches for new CP-even and CP-odd scalars were
taken into account through the use of HiggsBounds-5.3.2beta [64–66]. The latter two
packages are linked to SPheno-4.0.4 such that they get all the necessary inputs containing
masses and decay widths of the SM and BSM Higgs states for each parameter-space point.
A point that passes all these constraints is considered to be valid, at least, from the point
of view of the scalar sector constraints.

As for the flavour sector, there are numerous observables that have to be computed
and checked for each parameter space point that satisfies the scalar sector constraints. The
inverted procedure outlined in section 3.2 already ensures that our choice of the parameter-
space points, even before a numerical scan, automatically reproduces the correct measured
values of the quark masses and of the CKM matrix elements. But the presence of charged
scalars, as well as neutral ones with tree-level CKM-suppressed FCNC interactions, means
that we must verify particularly sensitive quantities, such as the b→ sγ width, the neutral
K- and B-meson mass differences and the CP-violating εK phase, among others. To this
end, we employ the FlavourKit package [67] as part of the SPheno tool in order to compute
the full list of Wilson coefficients for a given parameter-space point. The Wilson coefficients
are then passed over to the Flavio python package [68] enabling to compute all the relevant
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Channel OSM σSM OExp σExp σ

BR(B → χsγ) 3.29× 10−4 1.87× 10−5 3.32× 10−4 0.16× 10−4 0.075
BR(Bs → µµ) 3.66× 10−9 1.66× 10−10 2.80× 10−9 0.06× 10−9 0.038
∆Md (GeV) 3.97× 10−13 5.07× 10−14 3.33× 10−13 0.013× 10−13 0.11
∆Ms (GeV) 1.24× 10−11 7.08× 10−13 1.17× 10−11 0.0014× 10−11 0.054
εK 1.81× 10−3 2.00× 10−4 2.23× 10−3 0.011× 10−3 0.14

Table 1. The measured QFV observables values and their respective uncertainties were taken
from [69]. The SM prediction and the theoretical uncertainties are taken from Flavio.

flavour physics observables for a given point and to compare them to the corresponding
SM values.

In particular, out of an extensive list, we have found that the most relevant4 quark
flavour violation (QFV) observables to consider are B → χsγ, Bs → µµ, ∆Ms , ∆Md and
εK , which we collectively denote as O3HDM. In our analysis we quantify deviations from
the SM prediction as a ratio O3HDM/OSM. Defining the QFV experimentally measured
value, its experimental error and the SM prediction theoretical uncertainty as OExp, σExp
and σSM respectively, one can use the error propagation formalism to obtain the error
associated to the ratio OExp/OSM that reads as

σ = 1
OSM

√√√√σ2
Exp + σ2

SM
O2

Exp
O2

SM
. (4.5)

In table 1 we numerically determine σ for each of the five QFV observables mentioned
above which will later be used to define the error bars in our plots.

Given the BGL-like nature of the FCNC interactions in the considered 3HDM, the QFV
observables appear to be already in the right ballpark of typical values being not too far
from the SM results (see below). Thus, there is no need to include the flavour observables
in the numerical fit — we have just computed those observables for each point that has
passed the theoretical, electroweak precision tests and Higgs sector constraints. In other
words, when scanning over the BGL-3HDM parameter space requiring exact alignment
and using the inversion procedure described for the fermion sector, the parameters found
already give QFV observable values not too far from the expected values. As such there is
no practical need to include fitting those variables along with the scalar sector (a task which
would be highly work-intensive), since the overall efficiency of the scan is not compromised
by points not complying with QFV observables. Let us now turn to a discussion of our
numerical results.

4“Relevant” in the sense that these observables are may have, in our calculations, the largest deviations
from the SM-expected values, and thus harder to fit; but when one finds a set of parameters which fits
these five quantities, the remaining flavour observables are found to be in general agreement with SM
expectations.
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|µ2
21|, |µ2

13|, |µ2
23| (TeV2) |λ3,...,9| β1, β2 αL, αR, βR[

0.12, 102] [
10−7, 4π

] [
0, π2

]
[0, 2π]

Table 2. Ranges used for the input parameters in our numerical scan. The values of the quark
masses, of the CKM mixing elements and of the Higgs boson mass were fixed to their central values
according to [54].

5 Results

As it was discussed above, we use an inversion procedure in order to automatically obtain
the correct quark masses, CKM matrix elements, the measured Higgs boson mass as well
as an exact alignment of the latter to the SM, for all sampled parameter space points. For
such a purpose we have built an internal routine, that we shall denote as pre-SPheno, where
eq. (3.29) and an expanded form of eq. (3.45) are implemented. With this we compute
the gauge eigenbasis Lagrangian parameters and then proceed with the calculation passing
them to SPheno. The input free parameters were then randomly sampled in the ranges
given in table 2.

In essence, for all that follows, we have imposed a priori certain basic constraints im-
plemented analytically: the correct electroweak symmetry breaking must occur, thus the
doublets have VEVs satisfying v2

1 + v2
2 + v2

3 = (246 GeV)2; the lightest CP-even mass is
fixed to be 125GeV; the λ1, λ2 and λ10 quartic scalar couplings where chosen to provide
the exact Higgs alignment limit; and the remaining angles in the fermion sector besides αL,
αR and βR were calculated to comply with the correct quark masses and CKM mixing. All
the other constraints, such as the necessary boundedness-from-below conditions described
in section 4.1, the unitarity, electroweak precision and Higgs-sector phenomenological con-
straints are checked numerically using the coupled chain of computer packages — SPheno,
HiggsSignals (HS) and HiggsBounds (HB) — in a dedicated numerical scan, while the
flavour physics constraints are verified a posteriori using FlavourKit and Flavio tools.

Let us now investigate the effect that the various constraints, both on the scalar and
flavour sectors, have on the allowed parameter space of the model.

5.1 Allowed parameter space

We show in figure 1 the EW precision observables in the S-U , S-T and U -T projections.
Current precision measurements [54] provide the allowed regions,

S = −0.01± 0.10 , T = 0.03± 0.12 , U = 0.02± 0.11 , (5.1)

where S-T are 92% correlated, while S-U and T -U are −80% and −93% anti-correlated,
respectively. We compare our results with the EW fit in eq. (5.1) and require consistency
with the best fit point at 95% C.L. taking into account the correlation between the oblique
parameters.

We see that even with our generation of parameters satisfying exact alignment com-
pliance with electroweak precision constraints is not guaranteed, and plenty of points are
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Figure 1. STU electroweak precision observables for all sampled points. Only coloured points pass
the STU analysis with a confidence level (CL) of, at least, 95%.

rejected. However, as expected in a model with multiple doublets, it is not difficult to find
regions of parameter space for which all constraints on the oblique parameters are satisfied.

In figure 2 we show the effect of non-flavour constraints on the allowed parameter space.
Here, the impact of restrictions from the LHC experiments, both in terms of measurement
of the Higgs bosons’ properties or in the searches for extra scalars, incorporated in the
HS/HB framework have been analysed. Unitarity bounds on the model’s quartic couplings
are also imposed, as well as precision electroweak constraints via the S, T and U parameters,
each leading to a considerable reduction of the allowed parameter space. We see a close
correlation between mA1 and mH1 for large values, stemming mostly from unitarity and
electroweak precision constraints. Note, the same tendency of near-degeneracy is observed
in the mass spectrum of the 2HDM. Furthermore our scan generates very low masses for the
scalars, which are excluded by various direct collider searches and implemented in HS/HB.
It is important to mention that the size of the input soft masses, together with that of the
quartic couplings in table 2 set, approximately, the scale of the physical BSM scalars.

In figure 3 we show how some of the QFV observables might further constrain the
model’s parameter space that survives the Higgs physics, unitarity and electroweak preci-
sion constraints. For instance, the dependency of the ratio of the b→ sγ width computed in
the BGL-like 3HDM to the expected SM value as a function of mH1 is shown in figure 3(a).
Here, we observe a dispersion around the SM value such that some of the points deviate
by more than 2σ. The 1σ band is defined in the first line of table 1. In analogy to many
known versions of the 2HDM, the b → sγ constraint is a very important one, excluding a
number of parameter points which otherwise could be perfectly acceptable. Not all flavour
variables yield strong constraints, though — in figure 3(b) we show the values obtained
within our parameter scan for the Kaon system CP-violating εK phase. One notices a
rather minuscule variation around the SM value after all other QFV observables have been
constrained to lie within a 2σ interval of their respective SM-expected values. This is
clearly an indication that there are no substantial FCNC contributions to this observable
in the considered BGL-like 3HDM.
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Figure 2. Scatter plots of the allowed parameter space under several constraints imposed by the
BGL-like 3HDM. While on the right panel, b), we plot the masses of the two lightest BSM CP-even
scalars H1 and H2, the left one, a), showcases the relation between H1 and its heavy CP-even
counterpart H2.
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Figure 3. Scatter plots of parameter space allowed by several constraints imposed on the BGL-like
3HDM. In the left panel, (a), we show the results for b → sγ, namely, the ratio of 3HDM-to-SM
branching fractions for B → Xsγ reaction while in the right panel, (b), we plot an analogous ratio
for εK , both in terms of the H1 mass. The colour code is as in figure 2 and grey points are excluded,
at 2σ level, by at least one QFV observable.
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Figure 4. The ratio of 3HDM-to-SM branching fractions for B → Xsγ decay in the considered
BGL-like 3HDM as a function of the H±1 mass. Red-shaded points are those for which all QFV
constraints are satisfied at most at 2σ (many even at 1σ) level, grey points are those for which
at least one QFV observable is in disagreement with the current measurements by more than 2σ.
The horizontal lines account for the 1 and 2σ uncertainties as in the first line of table 1. The
“temperature” gradient of colour shows the lightest pseudoscalar mass.

Note that in figures 2 and 3 we have shown only the regions of the parameter space
where all constraints from boundedness from below, unitarity, electroweak precision vari-
ables and direct searches are obeyed. Having ascertained the relevance of the constraints
imposed on the scalar sector, we wish to analyse in detail the impact of the QFV ob-
servables, leaving temporarily aside the remaining phenomenological constraints. Since
our model has tree-level FCNCs, the inverted procedure described in section 3.2 does not
immediately guarantee a good fit to QFV observables such as the mass differences of the
neutral K, Bd and Bs mesons, the already mentioned εK CP phase, branching ratios such
as Bs → µ+µ− etc. Since the SM already does a good job at describing the quark and
lepton sector behaviour, we need to verify that NP contributions to those quantities do not
ruin the existing agreement between theory and experiment.

As we have already mentioned, our model, being BGL-like, ought to allow for an easy
fit in the flavour sector, an assumption we now put to the test. In figure 4 we see how
an agreement with b → sγ constraints is not automatic — in fact, we observe a number
of (grey) points with larger than 2σ deviation from the SM prediction, and quite a few
disagreeing with the SM b→ sγ values between 1 and 2σ. These larger than 1σ deviations
are seen to occur mostly (though not exclusively) for lower masses of the lightest charged
scalar, m±H1

≤ 700GeV. This is similar to what occurs for the Type II 2HDM [70]. Since
in our model the down-type quark masses do not arise from a single Γ matrix, it is in
fact natural that we find regions of parameter space for which observables such as b→ sγ

behave in a similar manner to a Type II 2HDM. However, we see that our 3HDM can fit
this observable for much lower charged Higgs masses than 700GeV, as occurs, for instance
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Figure 5. εK as a function of theH±1 mass for the parameter space allowed under several constraints
imposed on the BGL-like 3HDM. The colour code is the same as in figure 3.

in a Type I 2HDM — again to be expected, certain regions of our parameter space should
mimic well the Type-I behaviour. A similar phenomenon was observed for a 2HDM with
tree-level FCNCs, see [9].

We further observe that the values of the B → Xsγ width in our model approach the
corresponding SM value for very large values of the lightest charged Higgs boson mass.5
This is not surprising since NP contributions to this observable depend on the inverse of
the square of the extra scalars’ masses and are thus expected to approach zero as those
masses tend to infinity. In figure 5 on the other hand, considering again the full set of
phenomenological constraints, we observe how the inverted procedure we are using to
constrain the Yukawa sector yields an excellent agreement with other QFV observables —
there we plot the values of εK as a function of the lightest charged Higgs boson mass, and see
how close it gets to the SM value for all the generated points. We see that this observable
attains, in this model, values extremely close to the SM prediction, with deviations of the
order of ∼ 0.01%. To put these results in context, the current experimental uncertainty on
εK stands at less than 0.5% of its central value. The minimal value of the charged Higgs
boson mass that still reproduces the experimental value of εK and satisfies all constraints
is found to be ∼ 150GeV.

For completeness, let us also consider the B-meson mass differences. These are the
observables which in the SM are generated by one-loop box diagrams but also receive
tree-level contributions in theories with scalar mediated FCNC interactions in the down-
quarks sector. Again, and as expected, we see in figures 6 and 7 that the values obtained
in the BGL-like 3HDM for ∆MBs and ∆MBd

approach their SM values for large enough
masses of the extra scalars. We also see that our scanning procedure produces values of
∆MBd

extremely close to that of the SM (even for lower masses), with a larger dispersion

5As we saw in figure 2(b), theoretical and experimental constraints imposed upon the model force the
extra scalars to have small mass splittings for large values of their mass. A value of m

H±
1

above 1TeV thus
corresponds to all other scalar particles having masses of the same order.
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Figure 6. Bs mass difference as a function of the CP-even H1 and pseudoscalar A1 masses. The
colour code is as in figure 4.
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Figure 7. Bd mass difference as a function of heavier CP-even Higgs boson masses. The colour
code is the same as in figure 4.

found in ∆MBs , still within a 2σ variation. This is clearly due to the fact that we chose
a specific structure for the Yukawa matrices in eq. (3.42) in order to single out the third
generation. Furthermore, for a BGL-like model, the FCNC interactions are expected to be
suppressed by the CKM matrix elements, which, for the B-meson oscillation observables
under consideration, explains how contributions to ∆MBd

, which involve a “jump” across
two generations, are more suppressed than those contributions to ∆MBs , for which scalars
only “jump” one generation in their QFV interactions.

While we do not show all the numerical results explicitly, we have analysed a wealth
of other flavour physics observables, encountering 1σ agreement with current experimental
bounds for all of them. These included the remaining QFV observables such as neutral
Kaon mass differences, neutral B mesons decays to muon and electron pairs and other
leptonic sector measurements, Z → bb̄ observables etc.
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5.2 A degree of fine-tuning

The remarkable agreement found in the previous section for QFV observables, even when
including the FCNC contributions from the extra scalars present in our model, needs to
be analysed in depth. Such an agreement can arise in several ways. For instance, if
all extra scalar boson masses are very high, then the NP contributions take very small
values and an agreement with the SM value is easily found. Another possibility is that
the FCNC Yukawa interactions are naturally small, something which occurs in the 2HDM
BGL model. Their strong suppression follows from the small off-diagonal CKM matrix
elements as a consequence of the symmetry of the model, which we claim to also happen in
the current 3HDM version. And finally, there is also the possibility of a fine tuning having
occurred in the scanning procedure, “unnaturally” causing cancellations between different
NP contributions. Let us now demonstrate that this last possibility does not occur in
our model.

In order to see an example of such possible fine tuning, consider the Kaon system and
observables such as the K0−K̄0 mass difference, or the CP-violating phase εK . The matrix
element describing the transition K̄0 → K0, M21, receives contributions from the SM, via
box diagrams, and from NP, through tree-level FCNCs in the scalar sector: M21 = MSM

21 +
MNP

21 . The NP terms arise in our model from tree-level Feynman diagrams and thus can in
principle overwhelm the SM result. These diagrams represent the tree-level exchanges of
CP-even and CP-odd scalars with FCNC interactions which, using the vacuum-insertion
approximation (see refs. [6, 7, 9]), are found to be

MK,NP
21 = f2

KmK

96v2

{
10m2

K

(ms +md)2

(
F dA1
ds

m2
A1

+ F dA2
ds

m2
A2

− F dhds
m2
h

−
F dH1
ds

m2
H1

−
F dH2
ds

m2
H2

)

+4
[
1 + 6m2

K

(ms +md)2

](
F̄ dA1
ds

m2
A1

+ F̄ dA2
ds

m2
A2

+ F̄ dhds
m2
h

+ F̄ dH1
ds

m2
H1

+ F̄ dH2
ds

m2
H2

)}
, (5.2)

where fK and mK are the K-meson decay constant and mass, respectively, and the
following combinations of FCNC couplings were defined, for each scalar/pseudoscalar
X = {h,H1, H2, A1, A2}, as follows

F dXab = (N∗dX)2
ab + (NdX)2

ba ,

F̄ dXab = (N∗dX)ab (NdX)ba . (5.3)

Here, the matricesNdX are the Yukawa matrices for down-type quark interactions with each
scalar X. We observe in eq. (5.2) that CP-even contributions tend to cancel CP-odd ones.
This opens up the possibility to fit the Kaon observables if the CP-even and CP-odd terms,
though potentially large by themselves, cancel up to the nth decimal place. Therefore, such
a cancellation would produce a result that, while in nominal agreement with experiments, is
“unnatural”, and would be potentially challenged by higher order corrections. Similar fine-
tunings should be investigated in other observables, such as the B-meson mass differences,
or semileptonic quantities such as the branching ratio of Bs → µ+µ− etc.

In order to investigate whether our results were fine-tuned or not, we have undertaken
the following procedure:
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Figure 8. Percentage of variation of the branching fractions (a) for B → Xsγ decay and (b) for
Bs → µ+µ− decay as functions of the percentage of variation in scalar boson masses. In the set
of input parameters for which all experimental and theoretical constraints were satisfied, each of
the soft breaking parameters were smeared by less than 1% around their initial values, keeping the
Yukawa couplings and mixing angles fixed.

• Chose a combination of parameters for which all theoretical and experimental con-
straints are satisfied. Here, we were focused on the parameter space points that give
rise to the predicted values for QFV observables that are at most within 2σ of their
SM counterparts.

• Fixed all the model parameters except for the soft breaking mass terms, which were
then smeared with a random variation of no more than 1% about their initial values.
The scalar mass spectrum was then re-calculated and we chose those situations for
which there were variations of less than 5% on all scalar boson masses.

• With the new values of the scalar boson masses (and all remaining mixing angles
and Yukawa couplings being fixed to the values prior to the smearing procedure
described above) we recalculate the QFV observables and compare them with their
initial values.

If there is a fine tuning in the calculation of εK , for instance, a small variation in the masses,
such as mA1 or mH1 , should lead to a much larger variation of the observable. We see the
results of this procedure in figure 8. Here we show variations observed for the branching
ratios of B → Xsγ and Bs → µ+µ− decays. Similar variations were found for other
observables, such as the meson mass differences ∆Md and ∆Ms or the branching ratio for
Bs → µ+µ− decay. Other observables had by far smaller variations — for comparison, the
absolute value of variations on εK , for instance, were always found to be less than 0.01%.

Thus, we observe that, while keeping all mixing angles and Yukawa couplings the
same, smearing the physical scalar masses by up to 4% around their starting values for
phenomenologicaly viable points, induces variations of less than 2.5 % on the values of
typical QFV observables. We therefore conclude that in our BGL-like 3HDM the best
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parameter space points that pass all the considered constraints are not the result of an
accidental fine-tuning, rather the FCNC interactions of the model have been rendered nat-
urally small by the symmetries of the model, just as it occurs in the standard 2HDM BGL.

5.3 LHC predictions

As we saw in the previous sections, the BGL-like 3HDM under discussion can fit, despite
the presence of tree-level FCNC interactions in the down sector, all current experimental
constraints without any fine tuning. Furthermore, it can do so even with extra scalar
masses below ∼ 500GeV raising a tantalizing question: could such scalars have already
been observed at the LHC, or can the current LHC data be used to exclude portions of the
model’s parameter space? Besides, what can one expect vis-à-vis future LHC sensitivity
to potentially discover the extra scalars predicted in our model?

To begin with, we must recall that we have chosen to work in the exact alignment
limit in this model. Thus, the CP-even scalars H1 and H2 have couplings to Z (and
W ) boson pairs exactly equal to zero. As such, experimental searches for extra scalar
resonances decaying into Z or W boson pairs [71–73] are automatically satisfied in our
parameter scan. Deviations from the alignment limit to be considered in a more general
analysis might somewhat change that state of affairs. Given how SM-like the 125GeV
scalar appears to be in the LHC measurements, the couplings of H1 and H2 to electroweak
gauge bosons should always be heavily suppressed, so we do not perform such more generic
off-alignment analysis in the current work. However, the sum rule for scalar-gauge boson
couplings — which in the exact alignment limit makes H1 and H2 gauge-phobic — does not
apply to Yukawa interactions. For instance, in the 2HDM or in SUSY models, interactions
of the pseudoscalar A to fermion pairs may be enhanced (or suppressed) by a factor of
tan β. A promising avenue in searches for additional scalars is therefore the di-tau channel,
where the current and future LHC sensitivities may well reveal their presence.

In figure 9 we show the cross section for the production of the lightest pseudoscalar
A1 in a gluon-gluon fusion process multiplied by its branching ratio into tau pairs, for a
center-of-mass energy of 13TeV. The CMS 65% and 95% exclusion bounds were extracted
from [74]. The pseudoscalar production cross section via gluon-gluon fusion was obtained
using MadGraph5_aMC@NLO 2.6.2 [75]. We have used an interface with SPheno where
masses, decay widths and branching fractions are calculated and linked to MadGraph5 for
every single generated point. The relevance of requiring an agreement with QFV observ-
ables is emphasized in this plot, where grey points represent scenarios where at least one of
such observables was found to deviate from its SM value by more than 2σ. The blue points
denote scenarios for which a full 1σ agreement was found for all QFV observables while the
darker shades of blue also survive all remaining theoretical and experimental constraints.
As was to be expected, the total signal strength for this channel diminishes as the pseu-
doscalar mass increases — see in particular the sharp drop-off around mA1 ∼ 375GeV, that
is twice the top mass. Indeed, for larger pseudoscalar masses, a new decay channel A1 → tt̄

becomes kinematically allowed and tends to reduce the branching ratio for A1 → τ τ̄ . No-
tice, however, that there is a number of points for lower mA1 which can almost be probed
by the current CMS bounds.
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Figure 9. The pseudoscalar A1 production cross section in gluon-gluon fusion at the LHC center
of mass energy of 13TeV, times its decay branching ratio to τ τ̄ as a function of mA1 . Grey points
represent the sets of scenarios excluded by not obeying at least one QFV observable at 2σ. Blue
points, both dark and light shades, correspond to an agreement with all QFV observables at least
at 2σ level. Those points that are further allowed by all imposed constraints are represented by
the dark blue points. The 1 and 2σ observation limits available from the CMS Collaboration for
searches in this channel are taken from [74].

Until the end of LHC operation we can expect an increase in accumulated luminosity
by at least a factor of 100, which would roughly lower the exclusion lines shown in figure 9
by an order of magnitude. As such, we can expect the searches in this channel to at least
exclude parts of the parameter space for mA1 < 400GeV. In fact, we see in figure 9 that the
maximum of the signal strength occurs for mA1 ' 350GeV, which is unsurprising, given
that this value roughly corresponds to twice the top mass. In fact, it is well known that the
gluon-gluon fusion cross section has a local maximum for a c.o.m. energy equal to twice
the top mass, both for the production of a CP-even or a CP-odd scalar.

The di-tau channel is also appropriate in searches for a heavier CP-even state, as we
see in figure 10. As before, take notice of the expected sharp drop in the value of the signal
rate for masses mH1 > 2mt. Both in direct production via gluon-gluon fusion into H1, or in
its associated production with a bottom quark pair, the obtained signal strength including
the branching ratio for H1 → τ τ̄ is very close to the current CMS sensitivity for the lower
mass region. Thus, we see that our BGL-like 3HDM is close to being probed by the current
LHC data, and before the end of the next LHC run certain parts of its parameter space can
also be tested in direct searches for BSM scalars. We therefore provide five representative
benchmark points in table 3 to be searched for in the LHC run-III. These were chosen such
that they obey all theoretical and experimental contraints on the scalar, gauge and fermion
sectors, and further satisfying the following criteria:

• BP1 corresponds to the lightest CP-even BSM Higgs boson found in our scans with
massmH1 = 249 GeV. This point also corresponds the lightest charged Higgs scenario
with mH±1

= 101 GeV;

– 32 –



J
H
E
P
1
1
(
2
0
2
1
)
0
7
9

102 103

MH1
[GeV]

10−15

10−12

10−9

10−6

10−3

100

σ
( g
g
→

H
1)
×
B

( H
1
→

τ
τ

)
[p

b
]

102 103

MH1
[GeV]

10−15

10−12

10−9

10−6

10−3

100

σ
( g
g
→

H
1b
b̄)
×
B

( H
1
→

τ
τ

)
[p

b
]

(a) (b)

Figure 10. The signal strength for production of a CP-even scalar via the gluon-gluon fusion
mechanism (a) times its branching ratio to τ τ̄ , and (b) with associated production of a bb̄-pair
times its branching fraction to τ τ̄ , as a function of the lightest CP-even mass, mH1 . The colour
code is the same as in figure 9 and the exclusion bounds in both panels were also taken from [74].

• BP2 represents the second-to-lightest CP-even and charged BSM Higgs bosons found
in our anlysis with masses mH1 = 285 GeV and mH±1

= 146 GeV;

• BP3 and BP4 correspond to the lithest and next-to-lightest CP-odd Higgs boson
found in our scan with masses mA1 = 161 GeV and 206 GeV respectively;

• BP5 offers an early discovery or early exclusion scenario in the gg → A1 → ττ

channel, mA1 = 338 GeV, where the signal strength was found to be the closest one
to the CMS bound.

• BP6 corresponds to an early discovery/exclusion scenario in the gg → H1bb̄ → ττbb̄

channel, mH1 = 313 GeV, where the signal strength was found to be the closest one
to the CMS bound.

• Last but not least, BP7 represents an early discovery/exclusion scenario in the gg →
H1 → ττ channel, mH1 = 353 GeV, where the signal strength was found to be the
closest one to the CMS bound.

Note that the entire scalar spectrum in BP3, BP4 and BP5 is lighter than 1 TeV and
potentially at the reach of the LHC run-III. Furthermore, it is remarkable to note that
the lightest charged Higgs in BP1 is allowed to be lighter than the SM Higgs boson while
conforming with all experimental constraints. On the other hand, in BP1 and BP2 the
heavy scalar masses mH2 , mA2 and mH±2

are larger than 4 TeV while in BP6 and BP6
their masses are approximately 1.5 TeV and 1.1 TeV. We also provide in table 3 both the
production cross sections and the branching fractions calculated for each of the studied
channels as well as the 3HDM-to-SM ratio of each of the five QFV observables in table 1.
While the former are relevant for direct searches for new scalars at the LHC, the latter
may be probed in flavour experiments.
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mH1 mH2 mA1 mA2 mH±1
mH±2

BP1 249 4746 212 4740 101 4736
BP2 285 4364 264 4419 146 4371
BP3 576 695 161 930 484 663
BP4 437 702 206 881 380 710
BP5 452 659 338 723 420 793
BP6 313 1564 326 1457 230 1469
BP7 353 1067 582 1056 312 1091

BR(B→Xsγ)
BRSM (B→Xsγ)

BR(Bs→µµ)
BRSM (Bs→µµ)

∆Md
∆MdSM

∆Ms
∆MsSM

εK
εKSM

BP1 0.98 1.01 1.00 0.99 1.00
BP2 1.04 0.99 1.00 0.99 1.00
BP3 0.90 1.06 1.00 1.01 1.00
BP4 0.97 1.05 1.00 0.98 1.00
BP5 0.99 1.01 1.00 1.00 1.00
BP6 0.99 1.00 1.00 1.01 1.00
BP7 1.00 0.96 0.99 1.05 1.00

σ (gg → H1) σ (gg → A1) σ
(
gg → H1bb̄

)
B (H1 → ττ) B (A1 → ττ)

BP1 15.99 56.61 4.41 3.32×10−5 1.81×10−4

BP2 5.76 16.34 1.67 1.56×10−4 2.92×10−4

BP3 8.66×10−4 1.84 2.40 8.86×10−6 2.50×10−1

BP4 1.31×10−2 2.80×10−2 3.06×10−1 1.01×10−4 7.55×10−1

BP5 1.31×10−4 4.70×10−1 7.29×10−2 1.29×10−3 3.11×10−1

BP6 5.18 17.34 1.58 1.55×10−2 1.11×10−3

BP7 2.43 9.92×10−1 1.14×10−1 2.28×10−2 3.34×10−5

Table 3. A selection of seven benchmark points. All masses are given in GeV and cross sections
in pb. These correspond to the lightest scalars found that respect all QFV, electroweak, Higgs
and theoretical constraints (BP1–BP4), and to three early discovery/exclusion points that mostly
approach the experimental bounds in figure 9 (BP5) as well as in figure 10-right (BP6) and figure 10-
left (BP7).

An extended parameter space domain which relaxes the condition of exact Higgs align-
ment — while maintaining the full agreement with the current LHC measurements regard-
ing the properties of the lightest Higgs boson — would no doubt show a larger excluded
region by means of the measurements in the gg → H1bb̄→ τ τ̄bb̄ channel.

Other search channels might also be considered (such as searches in decays to top
pairs) but we relegate those analyses for a future work where one would need to perform a
more thorough scan of the model’s parameter space. Our main goal here is to prove, with
a simple example, that the model is of interest for the ongoing LHC searches.

– 34 –



J
H
E
P
1
1
(
2
0
2
1
)
0
7
9

6 Conclusions

We have presented a new BGL-like 3HDM model with symmetry-suppressed FCNC inter-
actions mediated by neutral scalars, in a close similarity the well-known example of BGL
2HDM. We have applied the basic theoretical (unitarity, boundedness from below) and
experimental (electroweak, Higgs and flavour) constraints and identified the domains of
validity of the model and main phenomenological implications. Our analysis has enabled
us to narrow down the allowed parameter space regions which simultaneously fit all the-
oretical and experimental constraints. We have also discussed the possibility of probing
the model at the LHC via gluon fusion production of new CP-even and CP-odd Higgs
bosons and subsequent decay into τ τ̄ pairs as well as via an associated production of the
new CP-even Higgs state and bb̄ pair. In particular, we have observed that the BGL-like
3HDM offers a possibility for lighter than conventionally allowed non-standard scalars, at
the reach of the LHC III. We have identified and described seven benchmark scenarios that
can be used in experimental searches for Higgs partners at forthcoming LHC runs.

Our analysis determined the most sensitive flavour violation channels, and has re-
vealed that the BGL-like mechanism induced by the U(1)×Z2 flavour symmetry is indeed
responsible for the suppression of FCNCs rather than any accidental cancellation or any
fine-tuning. Indeed, it results from the BGL nature of the 3HDM under consideration that
the most stringent constraints on the model’s parameter space are not the QFV ones but
rather the Higgs physics observables from direct searches. As one of the possible future
avenues, theoretical investigation of the proposed BGL-like mechanism can be continued
towards generalisation of the lepton and neutrino sectors by implementing the U(1) × Z2
symmetry there and studying its consequences on LFV and neutrino mass generation.
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A Generic off-alignment conditions

An alternative inversion procedure to the one used in our numerical calculations can be
given. In particular, we provide in this appendix closed expressions for the quartic couplings
λ1,...,10 and for the soft breaking mass terms µ2

12 and µ2
23 in terms of all physical scalar

masses, mixing angles and VEVs.
Starting with the pseudoscalar sector, one can first invert (eq. (3.12)) with respect to

the elements of the B2
P matrix such that,

m2
A1 cos2 (γ1) +m2

A2 sin2 (γ1)) =
(
B2
P

)
22
,

m2
A2 sin (γ1) cos (γ1)−m2

A1 sin (γ1) cos (γ1) =
(
B2
P

)
32
,

m2
A1 sin2 (γ1) +m2

A2 cos2 (γ1) =
(
B2
P

)
33
.

(A.1)

Equating these to the corresponding quantities in eq. (3.11), one obtains three equations
which can be resolved with respect to the potential parameters, for example, λ10, µ2

12 and
µ2

23 in terms of two physical masses, mA1 and mA2 , one mixing angle γ1, the third soft
mass parameter, µ2

13, and the Higgs VEVs (or, equivalently, mixing angles β1,2 and v). The
results reads,

λ10 =
µ2

13v
2v2

13+m2
A1

(vv3cγ1−v1v2sγ1)(vv1cγ1 +v2v3sγ1)−m2
A2

(v2v3cγ1−vv1sγ1)(v1v2cγ1 +vv3sγ1)
2v2v1v3v2

13
,

(A.2)

µ2
23 = 1

v2

[
m2

A2
cγ1(vv1sγ1 − v2v3cγ1)−m2

A1
sγ1 (v2v3sγ1 − vv1cγ1)

]
, (A.3)

µ2
12 = 1

v2

[
m2

A1
sγ1 (vv3cγ1 − v1v2sγ1)−m2

A2
cγ1 (v1v2cγ1 + vv3sγ1)

]
. (A.4)

For the charged scalar masses one can use the expressions for λ10, µ2
12 and µ2

23 found
above and, solving the eigenvalue problem for eq. (3.16), extract the relations for other
three parameters of the potential — λ7, λ8, and λ9 couplings — in terms of the physical
masses of the H±1,2 and A1,2 states, the µ2

13 parameter, the mixing angles γ1,2 and the Higgs
VEVs (or, equivalently, mixing angles β1,2 and v). The result reads as

λ7 = 2
v2v1v2

[
m2

A2v1v2c
2
γ1 +(m2

A2−m
2
A1)vv3cγ1sγ1 +m2

A1v1v2s
2
γ1 +m2

C1sγ2(vv3cγ2 − v1v2sγ2)

−m2
C2cγ2(v1v2cγ2 + vv3sγ2)

]
λ8 = 1

v2v1v3v2
13

[
1
2

(
(m2

A1 +m2
A2)v1v3(v2 − v2

2)

+ (m2
A1 −m

2
A2)
(
v1v3(v2 + v2

2)c2γ1 + vv2(v2
3 − v2

1)s2γ1

))
− (m2

C1 −m
2
C2)
(
v1v3(v2 + v2

2)c2γ2 + vv2(v2
1 − v2

3)s2γ2

)
− (m2

C1 +m2
C2)v1v3(v2 − v2

2)− 2v2v2
13µ

2
13

]
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λ9 = 2
v2v2v3

[
(m2

A1 −m
2
A2)vv1cγ1sγ1 + v2v3(m2

A1s
2
γ1 −m

2
A2c

2
γ1)−m2

C1sγ2(vv1cγ2 + v2v3sγ2)

+m2
C2cγ2(vv1sγ2 − v2v3cγ2)

]
(A.5)

Finally, for the CP-even scalar masses, inverting eq. (3.22) we get,

M2
S ≡ OTα ·

m
2
h 0 0

0 m2
H1 0

0 0 m2
H2

 · Oα , (A.6)

which enables us to solve for the remaining six quartic couplings λ1,2,3,4,5,6 in terms of the
physical CP-even scalar masses, the Higgs VEVs and the mixing angles α1,2,3, as well as
the quartic couplings λ7,8,9,10, and the soft parameters µ2

12 and µ2
23, obtained above for the

CP-odd and charged scalar sectors. The final expressions can be expressed as

λ1 = 1
2v2v3

1

[
v2v3µ

2
13+m2

hv
2v1c

2
α1c

2
α2 + v2

(
(m2

A1−m
2
A2)vv3cγ1sγ1−v1v2(m2

A1s
2
γ1 +m2

A2c
2
γ1)
)

v2v1
(
m2

H1(sα2sα3 + sα1cα2cα3)2 −m2
H2(sα2cα3 − sα1cα2sα3)2

)]

λ2 = 1
2v2v2

2

[
m2
hv

2s2
α1 − v

2
13(m2

A1s
2
γ1 +m2

A2c
2
γ1) + v2c2

α1(m2
H1c

2
α3 +m2

H2s
2
α3)
]

λ3 = 1
2v2v3

3

[
v2
(
m2
hv3c

2
α1s

2
α2 + v1µ

2
13

+ v3
(
m2

H1(sα1sα2cα3 − cα2sα3)2 +m2
H2(sα1sα2sα3 + cα2cα3)2

))
− v2

(
(m2

A1 −m
2
A2)vv1cγ1sγ1 + (m2

A1s
2
γ1 +m2

A2c
2
γ1)v2v3

)]
(A.7)

λ4 = 1
v2v1v2

[
m2
hv

2cα1sα1cα2 + (m2
A1 −m

2
A2)vv3cγ1sγ1 − (m2

A1s
2
γ1 +m2

A2c
2
γ1)v1v2

+ 2m2
C1sγ2(v1v2sγ2 − vv3cγ2) + 2m2

C2cγ2(v1v2cγ2 + vv3sγ2)

− v2cα1

(
m2

H1cα3(sα1cα2cα3 + sα2sα3) +m2
H2sα3(sα1cα2sα3 − sα2cα3)

)]

λ5 = 1
v2v1v3v2

13

[
m2

C1

(
v1v3(v2 − v2

2) + v1v3(v2 + v2
2)c2γ2 + vv2(v2

3 − v2
1)s2γ2

)
m2

C2

(
v1v3(v2 − v2

2)− v1v3(v2 + v2
2)c2γ2 + vv2(v2

1 − v2
3)s2γ2

)
v2v2

13

(
µ2

13 + 4m2
hc

2
α1s2α2 − (m2

H1−m
2
H2)(c2α1−3)c2α3s2α2 + 4(m2

H2−m
2
H1)sα1c2α2s2α3

− 2(m2
H1 +m2

H2)c2
α1s2α2

)]
(A.8)

– 37 –



J
H
E
P
1
1
(
2
0
2
1
)
0
7
9

λ6 = 1
v2v2v3

[
v1vsγ1cγ1(m2

A2−m2
A1)− v2v3(m2

A1s
2
γ1 +m2

A2c
2
γ1) + 2sγ2m

2
C1(v2v3sγ2 +vv1cγ2)

+ 2cγ2m
2
C2(v2v3cγ2 − vv1sγ2) + v2cα1

(
cα3m

2
H1(cα2sα3 − sα1sα2cα3)

− sα3m
2
H2(sα1sα2sα3 + cα2cα3)

)
+m2

hv
2cα1sα1sα2

]
(A.9)

In essence, a generic, off-alignment scan, can be performed by exchanging µ2
12, µ2

23 and
λ10 for mA1, mA2 and the mixing angle γ1 using eqs. (A.2)–(A.4). The remaining nine
quartic couplings, as discussed above, can be expressed in terms of five physical masses
(three CP-even scalars, and two charged scalars), the remaining soft-breaking parameter,
µ2

13, and four mixing angles (three in the CP-even sector and one in the charged scalar
sector).
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