
J
H
E
P
1
1
(
2
0
2
1
)
0
7
7

Published for SISSA by Springer

Received: September 26, 2021
Accepted: October 26, 2021

Published: November 11, 2021

Normalization of D-instanton amplitudes

Ashoke Sen
Harish-Chandra Research Institute, HBNI,
Chhatnag Road, Jhusi, Allahabad 211019, India

E-mail: sen@hri.res.in

Abstract: D-instanton amplitudes suffer from various infrared divergences associated
with tachyonic or massless open string modes, leading to ambiguous contribution to string
amplitudes. It has been shown previously that string field theory can resolve these ambi-
guities and lead to unambiguous expressions for D-instanton contributions to string am-
plitudes, except for an overall normalization constant that remains undetermined. In this
paper we show that string field theory, together with the world-sheet description of the
amplitudes, can also fix this normalization constant. We apply our analysis to the special
case of two dimensional string theory, obtaining results in agreement with the matrix model
results obtained by Balthazar, Rodriguez and Yin.

Keywords: D-branes, String Field Theory

ArXiv ePrint: 2101.08566

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP11(2021)077

mailto:sen@hri.res.in
https://arxiv.org/abs/2101.08566
https://doi.org/10.1007/JHEP11(2021)077


J
H
E
P
1
1
(
2
0
2
1
)
0
7
7

Contents

1 Introduction 1

2 The normalization constant from the Siegel gauge path integral 2

3 ‘Gauge invariant’ path integral 5

4 The multiplier 10

5 Discussion 11

A Siegel gauge fixing in the Faddeev-Popov formalism 12

1 Introduction

D-instantons give a class of non-perturbative contributions to string amplitudes. One char-
acteristic of these contributions is the presence of an overall multiplicative factor e−C/gs

where gs is the closed string coupling and C is a constant. Besides this factor, the am-
plitudes admit usual perturbation expansion in powers of gs. The contribution to an
amplitude at any given order in gs can be computed using the standard world-sheet ap-
proach by including Riemann surfaces with boundaries ending on the D-instanton, but at
each order one encounters certain infra-red divergences [1–3] that render the amplitudes
ambiguous. At any given order, these ambiguities can be encoded in a set of undetermined
constants. String field theory [4–9] provides an unambiguous procedure for determining
these constants, by identifying the physical origin of these infrared divergences and recti-
fying them based on this understanding [10–13]. So far this procedure has been applied to
two dimensional string theory, for which there is a dual matrix model description that can
be used to check the results.

However previous analysis left one constant undetermined — namely the overall nor-
malization of the D-instanton amplitude. Formally this is given by the exponential of the
annulus amplitude, with D-instanton boundary condition at the two boundaries and no
other vertex operator insertion. However the annulus amplitude is divergent due to the
presence of massless and tachyonic open string modes on the D-instanton. In conventional
string perturbation theory, such diagrams are part of bubble diagrams and drop out in
the computation of physical amplitudes. However for D-instanton amplitudes the situation
is somewhat different since the D-instanton contribution to the amplitude has to be first
added to the perturbative amplitude and then the sum needs to be divided by the sum
of perturbative and D-instanton contribution to bubble diagrams. Therefore the overall
normalization is physically relevant, and one expects that it should be possible to com-
pute this in string theory. Since string field theory is capable of making sense of infrared
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divergences in the amplitudes, the natural expectation would be that string field theory
should be able to give an unambiguous result for the normalization constant. However,
when one tries to compute this using string field theory, which in this case is a theory of
open and closed strings, one finds that there is no internal consistency requirement within
string field theory that can be used to fix this normalization, since this can be changed by
adding a field independent constant to the string field theory action that does not violate
any constraint coming from the requirement of gauge invariance.

To overcome this problem, we shall take the viewpoint that the world-sheet approach
already fixes the normalization as the exponential of the annulus partition function, and
the job of string field theory is to simply give physical interpretation of the divergences
of the amplitude and render them finite based on this interpretation. We show that the
world-sheet result may be regarded as the gauge fixed version of a path integral in string
theory with a specific normalization, and the divergences that we encounter arise due to
breakdown of the gauge choice. However the ‘gauge invariant’ form of the path integral,
expressed as an integral over the full classical string field divided by the volume of the gauge
group, yields unambiguous result. We apply this procedure to the case of two dimensional
string theory, and find that the normalization of the one instanton amplitude determined
this way agrees with the results of the matrix model computed in [3] following the general
formalism developed in [14].

The rest of the paper is organized as follows. In section 2 we express the exponential of
the annulus partition function as a path integral over string fields in the Siegel gauge. At
this stage the path integral remains singular due to the existence of zero modes, reflecting
the singularity of the annulus partition function. In section 3 we trace these singularities
to the breakdown of the Siegel gauge, and show that we can get finite result for the path
integral by rewriting it in a ‘gauge invariant’ form. In section 4 we calculate the multiplier
factor — the multiple of the steepest descent contour of the D-instanton that forms part
of the actual integration contour of the full string theory, and show that after multiplying
the exponential of the annulus partition function, computed in section 3, by this factor, we
get agreement with the matrix model result. In section 5 we discuss possible application
of our analysis to other systems. In appendix A we show how the central result used in
our analysis — the equivalence of the gauge invariant version of the path integral over
string fields and the Siegel gauge fixed version of the same path integral, can be proved
directly using the standard Faddeev-Popov approach instead of the abstract results of the
Batalin-Vilkovisky (BV) formalism [15–21].

2 The normalization constant from the Siegel gauge path integral

Our goal is to compute the normalization constant N appearing in the D-instanton ampli-
tudes. In the world-sheet description it is given by:

N = ζ exp[A] , (2.1)

where A is the annulus partition function:

A =
∫ ∞

0

dt

2t T r(e
−2πtL0) . (2.2)
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Here Tr denotes trace over all states of the open string projected into the Siegel gauge
by the projection operator b0c0, weighted by (−1)F where −(−1)F denotes the grassmann
parity of the vertex operator corresponding to the state. The extra minus sign multiplying
(−1)F is a reflection of the fact that bosonic (fermionic) open string modes correspond to
grassmann odd (even) states in the world-sheet theory. ζ in (2.1) is the multiplier factor
that depends on how the steepest descent contour associated with the D-instanton fits
inside the actual integration contour [22–24]. In particular exp[A] represents the one loop
contribution to the path integral from the full steepest descent contour passing through the
instanton solution and ζ reflects the multiple of the steepest descent contour that forms
part of the actual integration contour. We shall see for example that in the two dimensional
string theory, ζ = 1/2 up to a sign.1

The constant N given in (2.1) is the overall multiplicative factor that appears in the
instanton induced effective action of the closed string fields [27]. This is related to the
normalization constant N introduced in [3, 28], appearing as a multiplicative factor in the
S-matrix, via the relation N = iN. In our analysis, we shall not be careful in fixing the
sign of N, since this will be fixed at the end using separate considerations.

We can express (2.2) as

A =
∫ ∞

0

dt

2t

∑
i

e−2πthb
i −

∑
j

e−2πthf
j

 , (2.3)

where {hbi} and {hfj } are the L0 eigenvalues of the grassmann odd and the grassmann
even states of the world-sheet CFT. If we assume that the total number of bosonic modes
equals the total number of fermionic modes so that the integrand is finite as t → 0, and
furthermore that the hbi and h

f
j are positive so that the integrand falls off exponentially as

t→∞, then the integral (2.3) is finite. In this case it gives the result

A = 1
2 ln

∏
j h

f
j∏

i h
b
i

. (2.4)

Substituting this into (2.1), we get

N = ζ

√√√√∏j h
f
j∏

i h
b
i

. (2.5)

In the system that we shall analyze, hfj ’s come in pairs of equal values so that we can write
this as

N = ζ

∏′
j h

f
j√∏

i h
b
i

, (2.6)

where
∏′
j corresponds to the product running over only one member for each pair.

1In string field theory, (2.1) may be justified by demanding that at the tachyon vacuum [25] N must
be 1 so that we get the usual perturbative closed string amplitudes. Since the boundary state vanishes at
the tachyon vacuum [26], we have A = 0 and therefore eA = 1. Furthermore it will be seen in section 4,
figure 1 that ζ = 1 at the perturbative vacuum. Therefore (2.1) should not have any additional factor.
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We can express this as the result of integration over the bosonic variables bi and
fermionic variables fj , f̃j as follows:

N = ζ

∫ ∏
i

dbi√
2π
∏
j

dfj df̃j exp

−1
2
∑
i

hbib
2
i +

∑
j

′
hfj f̃j fj

 . (2.7)

Equality of (2.1) and (2.7) is an identity when all the hbi ’s and hfj ’s are positive, but we
shall take (2.7) to be the defining expression for N even when this condition fails. In
particular, we shall apply this formalism to D-instanton system for which some of the L0
eigenvalues vanish and / or are negative. A justification for this may be given as follows.
Instead of studying open strings on a single D-instanton, we can take a system of two D-
instantons separated along the Euclidean time direction and analyze the states of the open
string stretched between the pair of D-instantons. In this case L0 will get a non-vanishing
contribution from the tension of the stretched open string and the manipulations carried
out above will be well defined for sufficiently large separation. We can recover the original
system of interest by analytic continuation of this result to zero separation and using the
fact that in this limit the spectrum of open strings with two ends lying on different D-
instantons coincides with the spectrum of open strings with both ends lying on the same
D-instanton. Of course (2.7) is not well defined in this limit due to the appearance of
zero eigenvalues in the bosonic and fermionic sectors, and so it does not lead to a finite
unambiguous result for N at this stage. However, we shall see in section 3 that it is
possible to trace these zero eigenvalues to singular gauge choice and transform (2.7) to
finite, unambiguous result (3.8) using insights from string field theory.

In (2.7), the variables bi may be interpreted as the bosonic open string fields on the
D-instanton, the variables fi, f̃i may be interpreted as the fermionic open string fields on
the D-instanton and the argument of the exponential may be interpreted as the quadratic
part of the action of the open string field theory in the Siegel gauge. To see how this arises,
we now review some basic aspects of string field theory.

The off-shell open string field describing the degrees of freedom of a D-instanton is
taken to be an arbitrary element |Ψ〉 of H — the vector space of states of the open string,
including matter and ghost excitations. Let {|φr〉} be the set of basis states in H. Then
we can expand |Ψ〉 ∈ H as

|Ψ〉 =
∑
r

χr|φr〉 . (2.8)

{χr}’s are the degrees of freedom over which the path integral is to be performed after
suitable gauge fixing. Even though we have referred to the χr’s as fields, they are actually
zero dimensional fields — ordinary variables — since on the D-instanton the open strings
do not carry any continuous momentum labels. Therefore it is more appropriate to call
them modes. χr has even (odd) grassmann parity if the ghost number of φr is odd (even).
The kinetic term of the BV master action of string field theory takes the form:

S = −1
2〈Ψ|QB|Ψ〉 , (2.9)
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where QB is the world-sheet BRST operator. The minus sign in front of the action is
unusual, but has been introduced keeping in mind that we shall be using a convention in
which the Euclidean path integral is weighted by eS .

In the BV formalism the open string modes multiplying states of ghost number ≤ 1
are regarded as fields and the modes multiplying states of ghost number ≥ 2 are regarded
as antifields. If we introduce basis states {|ϕr〉} in the ghost number ≤ 1 subspace and
{|ϕr〉} in the ghost number ≥ 2 subspace such that

〈ϕr|ϕs〉 = δrs = 〈ϕs|ϕr〉, 〈ϕr|ϕs〉 = 0, 〈ϕr|ϕs〉 = 0 , (2.10)

and expand the string field as,

|Ψ〉 =
∑
r

(ψr|ϕr〉+ ψr|ϕr〉) , (2.11)

then we call ψr a field and ψr the conjugate anti-field up to a sign. The path integral is
carried out over a Lagrangian submanifold. For our analysis it will be sufficient to consider
a special class of Lagrangian submanifolds in which, for each pair (ψr, ψr), we set either
ψr to 0 or ψr to 0. The path integral can be shown to be formally independent of the
choice of the Lagrangian submanifold. The Siegel gauge corresponds to the choice of the
Lagrangian submanifold in which we impose the condition:

b0|Ψ〉 = 0 . (2.12)

In this gauge the action (2.9) takes the form:

Sg.f. = −1
2〈Ψ|c0L0|Ψ〉 . (2.13)

If we choose the basis states {|φ(n)
r 〉} of ghost number n in the Siegel gauge, satisfying

b0|φ(n)
r 〉 = 0, 〈φ(2−n)

r |c0|φ(n)
s 〉 = δrs for n ≤ 1 , (2.14)

then by expanding |Ψ〉 in this basis and substituting in the action (2.13), we recover the
exponent in (2.7) if we identify the variables bi, fi and f̃i as the coefficients of expansion of
|Ψ〉 in this basis.

This shows that (2.7) may be given an interpretation as path integral over the open
string fields in the Siegel gauge. Note however that (2.7) comes with a specific normalization
of the integration measure that will be important for us. String field theory, by itself, cannot
fix the overall normalization of the measure, since this corresponds to adding a constant to
the string field theory action, and the requirement that the action satisfies the BV master
equation does not fix this constant.

3 ‘Gauge invariant’ path integral

Let us now focus on the specific case of (1,1) D-instanton in two dimensional string theory.
In this case we have [28]:

A =
∫ ∞

0

dt

2t
(
e2πt − 1

)
. (3.1)
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Comparing this with (2.3) we see that the contribution from all states with L0 > 0 cancel
between bosonic and fermionic states. It follows that in the path integral expression (2.7)
for N, we can drop the integration over all states with L0 > 0. Therefore we shall introduce
a restricted string field |ΨR〉 given by a linear combination of basis states with L0 ≤ 0.
Before gauge fixing, |ΨR〉 has the following expansion:

|ΨR〉 = ψ0c1|0〉+ ψ0c0c1|0〉+ ψ1c0|0〉+ ψ2|0〉+ ψ1 c−1c1|0〉+ ψ2 c−1c0c1|0〉
+ψ3c1α−1|0〉+ ψ3c0c1α−1|0〉 , (3.2)

where |0〉 is the SL(2,R) invariant vacuum, cn, bn are the usual ghost oscillators and αm
are the oscillators associated with the Euclidean time coordinate X, satisfying [αm, αn] =
mδm+n,0. In the α′ = 1 unit the X’s satisfy the operator product expansion2

∂X(z) ∂X(w) = − 1
2(z − w)2 . (3.3)

This leads to the following state operator correspondence:

c1α−1|0〉 = i
√

2 c(0) ∂X(0)|0〉 . (3.4)

The basis states in which we have expanded the string field in (3.2) are normalized according
to (2.10) provided we choose:

〈0|c−1c0c1|0〉 = 1 . (3.5)

In this case the {ψr}’s label fields and the {ψr}’s label the conjugate anti-fields in the BV
formalism.

In the Siegel gauge, the modes that survive are ψ0, ψ1, ψ
2 and ψ3. Of these, ψ0 and

ψ3 are bosonic modes and ψ1 and ψ2 are fermionic modes. Therefore, (2.7) may now be
written as:

N = ζ

∫
dψ0
√

2π

∫
dψ3
√

2π
dψ1 dψ

2 eS . (3.6)

However, as discussed in [11, 13], this is a singular gauge choice due to the presence of the
zero mode ψ1. We avoid this problem by choosing the ‘gauge’ in which ψ1 = 0 but ψ1 6= 0.
In this case all the anti-fields are set to zero and we integrate over all the field modes
ψ0, ψ1, ψ2, ψ3.3 Now we have three bosonic modes ψ0, ψ1, ψ3 and one fermionic mode ψ2.
The action (2.9) now takes the form:

S = −
[
−1

2(ψ0)2 − (ψ1)2
]
. (3.7)

This shows that we still have a pair of zero modes — one bosonic zero mode ψ3 and one
fermionic zero mode ψ2 over which we need to integrate. Since ψ2 is a grassmann odd vari-
able, naively the integral would vanish. However, the mode ψ2 is the ghost field associated

2We shall use the standard doubling trick in which we regard ∂X as an analytic function over the full
complex plane, with the understanding that ∂X(z) for z in the lower half plane actually represents −∂̄X(z).

3Consequences of this for tree amplitudes have been discussed in [11, 29, 30].
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with the string field theory gauge transformation generated by θ|0〉 for a parameter θ, and
the integration over ψ2 can be interpreted as division by

∫
dθ, with the integral running

over the volume of the gauge group [11, 13],. This allows us to express (3.6) as,

N = ζ

∫
dψ0
√

2π

∫
dψ3
√

2π
dψ1 eS

/∫
dθ . (3.8)

In the BV formalism the equivalence of the ‘gauge invariant’ form of the path integral, where
we set all the anti-fields to zero, to the Siegel gauge fixed version, is usually proved at the
level of correlation functions [18–20] for which the overall normalization of the path integral
cancels. Since the normalization is important for us, we have shown in appendix A that the
equality of (3.6) and (3.8) can be understood using the standard Faddeev-Popov formalism.

We shall now show that (3.8) leads to finite unambiguous result. Let us first carry out
the integral over ψ0 and ψ1 by taking the integration contours to be the steepest descent
contours. Both of these lie along the imaginary axis, and the final result takes the form:

N = −ζ 1√
2

∫
dψ3

/∫
dθ . (3.9)

The minus sign in (3.9) is the result of the product of two i’s, one from having to integrate
the tachyon ψ0 along the imaginary axis and the other from having to integrate ψ1 along
the imaginary axis. However in the open string field theory, the reality condition on the
mode ψ1 is (ψ1)∗ = −ψ1 [31], indicating that we should carry out the path integral over the
variable iψ1 instead of ψ1. This would remove one factor of i from (3.9). There is however
a similar factor of i involved in the integration over the gauge transformation parameter
θ in (3.8). These effects cancel each other, and so we shall proceed with (3.9) without
removing any factor of i. This has been discussed in footnote 4.

The mode ψ3 is related by field redefinition to the collective mode corresponding to
the freedom of translating the D-instanton along the Euclidean time direction. If φ̃ denotes
the correctly normalized collective mode that measures the amount of translation along the
time coordinate, then the dependence of any amplitude on φ̃ should be of the form e−iωφ̃

where ω is the total energy carried by all the external closed string states. Therefore the
relation between ψ3 and φ̃ may be found by studying the coupling of ψ3 to an amplitude
and comparing this with the expected coupling of φ̃ to the same amplitude. Let us begin
with a disk amplitude of a set of closed string states carrying energies ω1, ω2, · · · . Since the
vertex operator of the state associated with ψ3 is given by i

√
2 c ∂X, inserting this into

this amplitude will correspond to inserting the integrated vertex operator

i
√

2
∫
∂X(z)dz . (3.10)

Using the operator product expansion (3.3), and recalling that when we use the doubling
trick mentioned in footnote 2, insertion of a vertex operator e−iωkX(wk) is implicitly ac-
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companied by its image eiωkX(w̄k), we get〈
i
√

2
∫
∂X(z)dz

∏
k

e−iωkX(wk)
〉

= i
√

2
∑
j

∫
dz

[{
iωj

2(z − wj)
− iωj

2(z − w̄j)

} 〈∏
k

e−iωkX(wk)
〉]

= −2πi ω√
2

〈∏
k

e−iωkX(wk)
〉
, ω ≡

∑
j

ωj . (3.11)

Since we have not included any dependence on the string coupling in the quadratic terms
in the action, the open string vertex operator (3.10) should also carry a factor of the open
string coupling go ∝

√
gs. The precise relation between go and gs was determined in [25]

and takes the form g2
o = gs/(2π2) in the convention in which the instanton action is given

by 1/gs. We shall proceed for now by ignoring the factors of go since go (in)dependence of
N has already been understood in [32]. At the end of this section we shall briefly discuss
go dependence of different contributions to N and show how they cancel. Eq. (3.11) now
shows that coupling of ψ3 to an amplitude with closed string states carrying total energy
ω generates a factor of −

√
2πiω. On the other hand, since the dependence of an amplitude

on the collective coordinate φ̃ is of the form e−iωφ̃ = (1− iωφ̃+ · · · ), the coupling of φ̃ to an
amplitude with closed string state carrying energy ω generates a factor of −iω. This gives
the identification of −

√
2πiωψ3 to −iωφ̃, in agreement with the results of [25]. Therefore

in (3.9) we can make the replacement:

dψ3 = 1√
2π

dφ̃ . (3.12)

Integration over the collective mode φ̃ generates the usual energy conserving delta function
2πδ(ω) that is part of any amplitude and is not included in the normalization constant N.
Therefore we can now express (3.9) as

N = −ζ 1√
2

1√
2π

/∫
dθ = −ζ 1

2π

/∫
dθ . (3.13)

We now turn to the evaluation of
∫
dθ. Physically, this gauge transformation is related

by field redefinition to the rigid U(1) gauge transformation that multiplies any state of
the open string, stretched from the D-instanton to a second D-instanton, by eiθ̃. Since θ̃
has period 2π, in order to determine the range of θ integral, we need to find the relation
between θ and θ̃. This in turn can be determined by comparing the string field theory gauge
transformation law generated by θ to the rigid U(1) gauge transformation with parameter
θ̃ for any state of the open string that connects the D-instanton to the second D-instanton.
This is achieved as follows:

1. As in [13], we shall work with a particular mode ξ that multiplies the vacuum state |0〉
of the open string stretched between the two D-instantons but the relation between
θ and θ̃ is independent of this choice. The conjugate anti-field ξ∗ of ξ will multiply
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the state c−1c0c1|0〉 of the open string that connects the second D-instanton to the
original D-instanton.

2. The vertex operators associated with the modes ξ and ξ∗ are accompanied by Chan-

Paton factors
(

0 1
0 0

)
and

(
0 0
1 0

)
respectively, and the open string mode ψ2, that

connects the original D-instanton to itself, carries Chan-Paton factor
(

1 0
0 0

)
.

3. It follows from the gauge transformation laws of the string field theory that the gauge
transformation of ξ under the gauge transformation generated by θ is given by the
second derivative of the action with respect to ξ∗ and ψ2. The leading contribution
comes from the ξ-ξ∗-ψ2 coupling in the action arising from the disk amplitude. Since
two of the three vertex operators — those associated with ξ and ψ2 are just identity
operators, the coefficient of this term is given by

〈0|c−1c0c1|0〉Tr
[(

0 1
0 0

)(
0 0
1 0

)(
1 0
0 0

)]
= 1 . (3.14)

This corresponds to the presence of a term

ξ ξ∗ ψ2 (3.15)

in the action if we ignore the factors of go as before.

4. Taking the derivative of (3.15) with respect to ξ∗ and ψ2, we see that the gauge
transformation generated by the parameter θ takes the form δξ = θξ. Comparing
this with the infinitesimal rigid U(1) transformation δξ = iθ̃ξ. we get θ = iθ̃.4

This gives

N = −ζ 1
2π

/∫
dθ = ζ

i

2π

/∫
dθ̃ = ζ

i

4π2 . (3.16)

Finally we shall discuss the dependence of N on the string coupling. This has already
been fully understood in [32] but we include the discussion here for completeness. We
denote by go =

√
gs/(2π2) the open string coupling [25]. We shall work in the convention

in which the kinetic term of the open string fields has go independent normalization, so that
in the Siegel gauge the quadratic part of the action is go independent, in agreement with
the go independent exponent appearing in (2.7). In this convention, each open string vertex
operator carries a factor of go. This introduces an additional factor of go in (3.10), (3.11)
and therefore a factor of 1/go in the right hand sides of (3.12), (3.13), (3.16). On the
other hand the disk three point function of three open string vertex operators now gets a
factor of g−2

o from the disk, and a factor of g3
o from the three open string vertex operators,

producing a net factor of go. Therefore (3.15) gets a factor of go, leading to the gauge
4This factor of i is the result of imposing wrong reality condition on the mode ψ2 or equivalently the

parameter θ. We have not corrected it since this cancels the factor of i arising out of the wrong choice of
reality condition for the mode ψ1. This has been discussed below (3.9).
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×
ψ0 = 1/a

complex ψ0-plane

ψ0 = 0
⇒ ⇒×

⇑

Figure 1. The integration contour in the complex ψ0 plane.

transformation law δξ = goθξ. Therefore we now have goθ = i θ̃, leading to an extra factor
of go on the right hand side of (3.16). This cancels the earlier factor of 1/go and leaves the
right hand side of (3.16) unchanged. Therefore N is go independent.

4 The multiplier

We now turn to the determination of the multiplier ζ. For this we need to know how the
steepest descent contour / Lefschetz thimble passing through the saddle point representing
the D-instanton fits inside the actual integration cycle that computes the full amplitude
in string theory [22–24]. For the case of two dimensional bosonic string theory this was
discussed in [27] where it was argued that the actual integration contour contains only
half of this thimble. In brief, the argument can be stated as follows. After integrating
out the massive open string modes, the tachyon effective potential on the D-instanton
has a potential V (ψ0) that has a maximum at ψ0 = 0 describing the D-instanton and
a minimum at some positive value 1/a describing the perturbative vacuum where the
potential vanishes. The potential is unbounded from below as ψ0 → −∞. Therefore the
integration contour over ψ0 cannot be taken to be along the real axis all the way to −∞,
but near the perturbative vacuum where the potential has a local minimum we expect the
contour to lie along the real axis. If we model the potential as

V (ψ0) = −1
2(ψ0)2 + 1

3a (ψ0)3 + 1
6 a2 , (4.1)

then one can easily see that the potential goes to +∞ as we approach the asymptotic region
within three 60◦ cones, centered around the lines ψ0 = r, ψ0 = r e2πi/3 and ψ0 = r e−2πi/3

for real positive r. Therefore we can take the integration contour to interpolate between
the regions ψ0 = e−2πi/3 × ∞ and ψ0 = ∞ as shown in figure 1 or we can choose the
complex conjugate contour. On the other hand, the steepest descent contour for the saddle
point at ψ0 = 1/a, representing the perturbative vacuum, lies along the real ψ0 axis from
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0 to ∞, while the steepest descent contour for the saddle point at ψ0 = 0, representing the
D-instanton, consists of a contour through the origin that interpolates between the regions
around ψ0 = e−2πi/3×∞ and ψ0 = e2πi/3×∞. Therefore the integration contour shown in
figure 1 can be regarded as the union of the steepest descent contour of the saddle point at
ψ0 = a, and half of the steepest descent contour of the saddle point at ψ0 = 0. This gives

ζ = 1
2 , (4.2)

and
N = i

8π2 . (4.3)

Let us now comment on the sign of N about which we have not been careful so
far. This clearly depends on the choice of the full integration contour — if instead of
the contour shown in figure 1 we choose the complex conjugate contour, the sign of N
will change. The actual choice should be dictated by physical considerations, e.g. if a D-
instanton induced amplitude leads to violation of unitarity, it should be describable by an
effective Hamiltonian with negative imaginary part, reflecting loss of probability due to
possible transition to states that have not been accounted for in the effective Hamiltonian.
As discussed in [27], the choice of sign given in (4.3) is the correct choice according to
this consideration. Therefore (4.3) gives the final result for the normalization constant
associated with single D-instanton amplitudes in two dimensional string theory. This agrees
with the result obtained in [3] by comparison with the matrix model results for the instanton
induced amplitudes, after we multiply this by a factor of i to compute the normalization
of the D-instanton contribution to the S-matrix elements.

5 Discussion

The method described here can in principle be applied to other D-instanton systems, e.g.
general (m,n) ZZ-instantons in two dimensional bosonic string theory [28], D-instantons
in two dimensional type 0B string theory [33, 34] and D-instantons in type IIB string the-
ory [2, 35]. Part of the analysis that may be somewhat non-trivial is the computation of the
multiplier factor ζ, since this requires the knowledge of how the steepest descent contour
/ Lefschetz thimble associated with a particular D-instanton fits into the full integration
contour. For example, in the context of (m,n) ZZ-instantons in two dimensional string
theory, this will require the knowledge of how the different ZZ-instantons are represented
as different extrema in the configuration space of string fields. However since the multiplier
factors are just rational numbers, we only need topological information on the locations of
various extrema in the configuration space of string fields instead of requiring detailed dy-
namical information. Therefore we do not consider this to be an insurmountable problem.
Similarly for computing the D-instanton contribution to the type IIB string theory ampli-
tude, we need to understand how the D-instantons, which in this case represent complex
saddle points, fit inside the integration contour over the string fields.
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A Siegel gauge fixing in the Faddeev-Popov formalism

In our analysis the formal equality between the Siegel gauge fixed path integral (3.6) and
the gauge invariant path integral (3.8) plays an important role. In this appendix we shall
show how this can be proved using the standard Faddeev-Popov formalism.

Classical open string field |ψc〉 is an arbitrary state of ghost number 1 of the open
string and the gauge transformation parameters describing the symmetries of the classical
open string field theory correspond to an arbitrary state |θ〉 of ghost number 0. As in (3.2),
we shall work with the restricted string field carrying L0 ≤ 0. In this case, it is evident
from (3.2) that the gauge transformation parameter |θ〉, carrying ghost number 0, satisfies
the condition b0|θ〉 = 0. Let us introduce basis states {|φ(n)

r 〉} of ghost number n, satisfying
b0|φ(n)

r 〉 = 0. Then the full set of basis states at ghost number n may be taken to be {|φ(n)
r 〉}

and {c0|φ(n−1)
s 〉}. We shall further normalize these basis states for n = 0 and 2 such that

〈φ(2)
r |c0|φ(0)

s 〉 = δrs . (A.1)

We can now expand the restricted classical string field |ψc〉 and the gauge transformation
parameter |θ〉 as:

|ψc〉 =
∑
r

ψ̃r|φ(1)
r 〉+

∑
s

ψ̂sc0|φ(0)
s 〉 , (A.2)

|θ〉 =
∑
s

θs|φ(0)
s 〉 . (A.3)

The gauge invariant classical action up to quadratic order and the linearized gauge trans-
formation laws are given, respectively, by,

Sg.i. = −1
2〈ψc|QB|ψc〉 , (A.4)

and
δ|ψc〉 = QB|θ〉 . (A.5)

We now consider a gauge invariant path integral of the form:

Ig.i. =
∫ ∏

r

dψ̃r
∏
s

dψ̂s e
Sg.i.

/∫ ∏
s

dθs (A.6)

We can evaluate this by gauge fixing in the Siegel gauge, by setting ψ̂s = 0. This introduces
a factor of

∏
s δ(ψ̂s) in the path integral, accompanied by the appropriate determinant. To
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find the determinant we need to examine the gauge transformation law of ψ̂s. Substitut-
ing (A.2), (A.3) into (A.5) and taking the inner product of the resulting equation with
〈φ(2)
s |, we get

δψ̂s = 〈φ(2)
s |QB|θ〉 = Msuθu, Msu = 〈φ(2)

s |QB|φ(0)
u 〉 . (A.7)

The determinant entering the integrand of the path integral is detM . We can express this
as a path integral over a pair of grassmann odd ghost variables {ps}, {qs}. This gives the
gauge fixed path integral:

Ig.f. =
∫ ∏

r

dψr
∏
s

dpsdqs e
Sg.i.+Sghost

∣∣∣∣
ψ̂s=0

, Sghost = −
∑
s,u

psMsuqu = −〈P |QB|Q〉 ,

(A.8)
where we have introduced

|P 〉 =
∑
s

ps|φ(2)
s 〉, |Q〉 =

∑
s

qs|φ(0)
s 〉 . (A.9)

The equality of Ig.i. and Ig.f. give in (A.6) and (A.8) in the context of two dimensional
string theory gives the equality of (3.8) and (3.6). To see this note that in this case the
master field |ψ〉 contains fields of all ghost number without any gauge condition, and the
master action is −1

2〈ψ|QB|ψ〉. When we pick the Lagrangian submanifold in which we set
the modes of ghost number ≥ 2 to 0, the master action reduces to (A.4) and (3.8) may be
interpreted as ζ/(2π) times Ig.i. given in (A.6). On the other hand when we pick the La-
grangian submanifold by imposing the Siegel gauge condition, the master action reduces to
Sg.i.+Sghost given in (A.8) and (3.6) may be interpreted as ζ/(2π) times Ig.f. given in (A.8).

The equality of Ig.i. and Ig.f. that we have established is formal, since in the context in
which we apply this, there are component fields that multiply basis states of vanishing L0
eigenvalue. This means that the Siegel gauge action becomes independent of those fields,
making the path integral (A.8) ill-defined. This can be traced to the fact that the Siegel
gauge ψ̂r = 0 is a singular gauge choice due to the appearance of zero eigenvalues of the
matrix M introduced in (A.7). However the original gauge invariant path integral (A.6) is
well defined. The point of view we take is that (A.6) is the proper definition of the path
integral, and the problem we face with (A.8) arising in the world-sheet formalism is due to
illegal choice of gauge.5

The analysis described above also resolves an apparent puzzle that arises out of the
equality of (3.6) and (3.8). Since the integral in (3.6) has equal number of bosonic and
fermionic variables, it remains unchanged if we multiply S in the exponent by some constant
C. Following the logic that led from (3.6) to (3.8), we can see that the effect of this rescaling
is to multiply the exponent in (3.8) by the same constant C. Since in this expression both
ψ0 and ψ1 represent bosonic variables, this will produce a factor of 1/C on the right hand
side of (3.9) that carries over to the right hand sides of (3.13) and (3.16). So the question
is: what compensates this factor?

5As discussed below (2.7), Ig.f. can be made well-defined by working with open strings stretched between
a pair of separated D-instantons. In that case the equality between Ig.i. and Ig.f. becomes an identity.
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The answer to this question comes from (A.7) and (A.8). If the exponent of (3.6)
is multiplied by C, then the ghost action involving the modes ps, qs, which correspond
to ψ2 and ψ1 in (3.6), also gets multiplied by C. Therefore the matrix M in (A.7) must
be multiplied by C. This can happen if we include an extra factor of C in the gauge
transformation law (A.5). If we denote by θ′ the new gauge transformation parameter,
then it is related to the old gauge transformation parameter θ by θ = Cθ′. Therefore the∫
dθ′ factor that now appears in the denominator can be identified to

∫
dθ/C, and we get

an extra multiplicative factor of C on the right hand side of (3.9). This cancels the extra
factor of 1/C coming from the integration over ψ0 and ψ1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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