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1 Introduction

The natural final state of high energy hadronic or nuclear collisions are sprays of collimated
particles consisting of hadrons and/or electrons. They are formed in an initial hard scattering,
by which we mean a collision with a large transfer of momentum, followed by subsequent
parton evolution know as a shower and fragmentation. Due to the large energies involved
in jet production, they can be studied via perturbative QCD since QCD is weakly coupled
at high virtualities of a parton. Therefore the calculation of the initial production of jets is
under perturbative control, which makes jets powerful tools to probe the properties of the
quark-gluon plasma (QGP) in heavy ion collisions.

This is based on the premise, which is now widely accepted that heavy ion collisions are
the laboratory for the creation and study of the Quark Gluon Plasma medium. The high
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energy collision of nuclei both at RHIC and the LHC creates sufficiently energetic partons
that can escape confinement from color neutral hadrons and give rise to a strongly/weakly
coupled soup of quarks and gluons known as the Quark Gluon Plasma medium which,
in thermal equilibrium is mainly characterized by its temperature. We can think of this
plasma as consisting of soft partons with typical energy of the order of the temperature of
the medium which is usually much lower than the center of mass energy of the initiating
nuclear collision. The stopping collisions which create the QGP are accompanied by hard
interactions which create highly energetic partons which eventually form jets. These jets
then have to traverse through a region of the hot QGP as they evolve and hence they
get modified in a heavy ion collision, compared with proton-proton collision, due to the
jet-medium interaction.

We would therefore like to study the modification of jet substructure for the same hard
event in Heavy Ion Collision (HIC) compared to a pp collision as a tool for extracting the
properties of the medium. However, the selection of jets in a HIC suffers from the so called jet
selection bias which is related to a phenomenon of jet quenching, that has been extensively
studied in literature [1–20] and entails the systematic suppression of jet yields for a given
radius (both small and large) and pT compared to pp collisions. This has been recently
observed in experiments at both Relativistic Heavy Ion Collider (RHIC) and Large Hadron
Collider (LHC) [21–30].The suppression mechanism happens through the mechanism of
energy loss when jets travel through the hot medium. There has been tremendous theoretical
effort to study the jet energy loss mechanism (see refs. [31–34] for recent reviews). This
means that given a pT , R bin we are not comparing the evolution of the same hard events in
pp versus HIC. One important goal of this paper is to propose observables that are insensitive
to jet selection bias allowing us an apples to apples comparison for jet substructure.

The evolution of the jet in the medium usually depends on multiple scales such as the
jet energy, the transverse momentum with respect to the jet axis, which will characterize
the collinearity of the jet and thermal scales of the QGP. In current HIC experiments, the
temperature achieved lies in the range 150–500MeV, and may not always be a perturbative
scale. Thus, a fully weak coupling calculation may not be valid. A hybrid model has
been developed to address this problem [35–39], in which the initial jet production and
vacuum-like parton shower are calculated perturbatively, while the subsequent jet energy
loss in the medium is calculated by mapping the field theory computation in the strong
coupling limit to a weak coupling computation in the classical gravity theory [40–45], i.e.,
by using a modification of the AdS/CFT correspondence [46].

However, since a holographic dual to QCD cannot be rigorously proven, it is unclear
whether it can be used for precision jet substructure studies. In this paper, I will instead
follow the idea that given a system with multiple hierarchically separated scales, a powerful
tool is Effective Field Theory (EFT). The main advantage that an EFT approach offers
compared to a purely perturbative Feynman diagram calculation is the notion of factorization,
independent of perturbative order. This allows a separation of physics at widely separated
scales in terms of manifestly gauge invariant operators which can be independently computed
to any perturbative order desired. This approach has been applied with enormous success to
study hadron structure, for e.g. in Deep Inelastic scattering (DIS) where factorization can
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be used to separate the perturbatively calculable hard function from the non-perturbative
Parton Distribution Function (PDF). This establishes an operator definition for a universal
hadron structure function which can then be either computed on the lattice or extracted
from experiment.

Such an EFT approach in the context of HIC has been attempted previously in literature
using a modification of Soft-Collinear Effective Theory [47–51], see [52] for review. The
modification known as SCETG uses the collinear sector of the corresponding EFT and this
formalism has been used to address the question of jet quenching in the medium [53–57].
This approach treats the interaction of the jet with the medium in terms of a background
gauge field, integrating out the propagating degrees of freedom of the medium. As a
consequence, it is unclear how to establish manifest gauge invariance of operators or prove
factorization rigorously in the presence of soft radiation.

I will use an alternative approach applying a new EFT for forward scattering that
has been developed recently [58]. A key difference is that medium degrees of freedom are
retained while integrating out the off-shell interaction between the jet and the medium to
write manifestly gauge invariant interaction operators. I will show how this can be used to
rigorously derive factorization formulas for jet substructure observables and will allow me to
provide a operator definition for the QGP medium structure function in analogy with DIS.

The QGP medium exists for a very short time (∼ 10 fm/c) so that the jet spends a
limited amount of time interacting with the medium. At the same time, the medium can be
inhomogeneous and evolving with time so that the jet encounters a changing medium as it
travels through it. Therefore, we need to keep track of the time evolution of the jet which is
a novel feature compared to pp or DIS experiments. This can most easily be done by using
the open quantum systems formalism (for introductory books, see [59, 60]). For jets inside a
QGP, if we only focus on jet observables, the jet can be treated as an open quantum system
interacting with a QGP bath. The application of the open quantum system formalism
in heavy ion collisions has been thriving in the study of color screening and regeneration
of quarkonium [61–72]. The understanding of quarkonium in-medium dynamics has been
improved by combining potential nonrelativistic QCD (pNRQCD [73–75], an EFT of QCD)
and the open quantum system formalism [76–79]. For example, a semiclassical Boltzmann
transport equation of quarkonium in the medium has been derived, under assumptions that
are closely related with a hierarchy of scales [79–81].

In this paper, I will combine the tools of EFT with the open quantum system formalism
and explore its physical implications for the jet-medium interaction. The long term goal
is to develop a theoretically robust formalism for computing jet substructure observables
for both light parton and heavy quark jets. For example, the bottom quark jets have been
identified as an effective probe of the QGP medium and will be experimentally studied at
LHCb, as well as by the sPHENIX collaboration at RHIC. There has been recent work on
computing jet substructure observable for heavy quark jets in the context of proton-proton
collisions [82, 83]. The objective would then be to compute the same observables in heavy
ion collisions and study modifications caused by the medium.

A first step was taken in [84] which looked at the transverse momentum spread of a
single energetic quark as a function of the time of propagation through the QGP medium.
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However for a realistic description of the system, we also need to account for the initial
hard interaction that creates the energetic quark which is dressed with radiation from the
subsequent parton shower along with any medium interactions. At the same time a realistic
final state jet produced in a heavy ion collision will usually have a large number of soft
partons that originated from the QGP medium and are not directly associated with the
evolution of the energetic jet. Thus any final state measurement imposed on the jet will
have to account for these corrections which necessitates keeping track of the degrees of
freedom of the QGP medium. A way around this, which has long been used to deal with
soft contamination from Multi-Parton Interactions (MPIs) in pp collisions is that of jet
grooming (for e.g. Soft-Drop [85]), which I ll use in this paper in simplified form.

To implement this, I will borrow the tools developed in the context of pp collision for com-
puting groomed jet substructure observables. This field has progressed rapidly in recent years,
both due to advances in explicit calculations, as well as due to the development of techniques
for understanding properties of substructure observables using analytic [86] approaches.
Developments in jet substructure (see [87] for a recent review) have shown that the modified
mass drop tagging algorithm (mMDT) or soft-drop grooming procedure robustly removes
contamination from both underlying event and non-global color-correlations, see ref. [85].

This paper is organized as follows: in section 2, I introduce the physical system that we
wish to study along with the final state measurements imposed and the relevant physical
scales that play an important role in its description. I also describe the relevant momentum
modes that are dictated by these scales which will be a guide towards writing down a
factorization formula. The next section 3 works out in detail, the factorization formula for
the reduced density matrix of the jet within the framework of SCET. Section 4 deals with
impact of the lack of coherence between the hard and medium interaction on the factorized
density matrix due to the long-lived medium. In section 5 I present the one loop results for
elastic collisions of the jet with the medium presenting its UV and IR structure. Section 6
gives the form of the master evolution equation for multiple jet -medium interactions and
solves is analytically. Section 7 compares the formalism developed in this paper to previous
approaches. Finally I conclude and discuss future directions in section 8. The details of the
loop calculations for the vacuum and medium induced functions are given in appendix A
and B respectively.

2 The observable

I want to a consider final state dijet event produced in a HIC in the background of a QGP
medium. The jets are isolated using a suitable jet algorithm such as anti-kT with jet radius
R ∼ 1. We examine the scenario when the hard interaction creating the back to back jets
happens at the periphery of the heavy ion collision, so that effectively only one jet passes
through the medium while the other evolves purely in vacuum as shown in figure 1. Since
we do not want to keep track of the soft partons coming from the QGP, we groom the jets.
We use the Soft-Drop algorithm [85] with β = 0 and an energy cut-off sufficiently large to
remove all partons at energy T and lower. Given a hard scale Q ∼ 2EJ , where EJ is the

– 4 –



J
H
E
P
1
1
(
2
0
2
1
)
0
6
4

Figure 1. Dijet event in Heavy Ion collision at the periphery of the QGP medium.

energy of the jet and an energy cut-off, zcEJ , we work in the hierarchy

Q ∼ zcQ� T (2.1)

where T is the plasma temperature. The measurement we wish to impose is the transverse
momentum imbalance between the two jets qT ∼ T . While this fixes the scaling of all
radiation modes that fail grooming, this does not necessarily guarantee collinear scaling
inside the jet. To ensure that, we also put in a cumulative jet mass, e, measurement on
both jets with Q

√
e ∼ qT ∼ T . An identical measurement with zc � 1 for e+e− → dijets

was discussed in [88] and we will refer the reader to that paper for a more detailed analysis
of this observable.

We wish to write down a factorization theorem within Soft Collinear Effective Theory
(SCET) which separates out functions depending on their scaling in momentum space.
The philosophy is to divide up the phase space of possible radiative corrections according
the scaling of the momentum modes which will capture the physics at leading power in
λ. Once we identify the modes, like any other EFT, we write down an effective action
obeying the necessary symmetry treating these modes as our degrees of freedom. Thus
the idea is to implement factorization at the level of the action. This is to be contrasted
with the approach of computing the observable in full QCD and then doing the expansion
in λ which is usually far more computationally challenging. At the same time, the EFT
approach allows us to give operator definitions for factorized functions, many of which are
universal (such as the PDF in pp collisions) which need not be recomputed for different
observables. We have two scales in the problem, namely the hard scale Q and the IR scale T
and we wish to capture the physics of two energetic back to back jets composed of light-like
partons. Without loss of generality, we can assume the initiating qq̄ pair created in the hard
interaction to be moving along the z and -z directions. This defines for us two reference
light-like directions n ≡ (1, 0, 0, 1) and n̄ ≡ (1, 0, 0,−1). For further analysis, we will work
in light-cone co-ordinates, in which any momentum p can be decomposed as

pµ = p−
nµ

2 + p+ n̄
µ

2 + pµ⊥, or equivalently

pµ ≡ (p−, p+, ~p⊥) (2.2)

Given the scales and the reference light-like directions, we can carve up the momentum
phase space in terms of different modes. First we have the so called “hard” mode which
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describes UV physics and consists of radiation which does not have a specific direction.

pµh ∼ Q(1, 1, 1), Hard mode (2.3)

Since the transverse momentum of this mode and hence its virtuality is of O(Q) (which
� our measurement qT ), no real radiation for this mode is possible but it can give virtual
corrections. We integrate out this UV mode and its affect appears as the Wilson co-efficient
of the operators in our effective action.

For our IR EFT, λ = qT
Q ∼

√
e ∼ T

Q � 1 is the expansion parameter and we will work
to leading order in λ. The next obvious mode is the soft mode which again does not have a
specific direction and scales uniformly in all its momentum components with the IR scale
T. Along with any possible radiation that contributes to the measurement, this mode also
captures the QGP degrees of freedom.

pµs ∼ Q(λ, λ, λ), Global Soft mode (2.4)

Finally, we have the collinear modes which describe the energetic degrees of freedom of
the jet. The partons in the n jet have “−” component of order Q, while its transverse
momentum is fixed by the measurement to be qT ∼ Q

√
en ∼ λQ. The scaling of the “+”

component is then fixed by demanding p+p− ∼ p2
⊥, which follows from the observation that

the radiative corrections at leading power in λ are captured by radiation collinear (as well
as soft radiation already considered) to the initiating qq̄ pair and with virtuality Qλ.

pµn ∼ Q(1, λ2, λ), collinear mode (2.5)

Similarly, we can fix the scaling of the n̄ collinear mode,

pµn̄ ∼ Q(λ2, 1, λ), collinear mode (2.6)

In principle, we can have another mode which is not a propagating degree of freedom
but mediates an instantaneous coulomb-like interaction between the Soft and collinear
modes. This is known as the Glauber mode. The scaling of this mode is fixed by demanding
that a Glauber exchange should maintain the momentum scaling of the Soft and collinear
modes and thus enforce forward scattering. We can have three types of Glauber modes
mediating interactions between n− n̄, n̄− s and n− s modes

pµG,nn̄ ∼ Q(λ2, λ2, λ)
pµG,n̄s ∼ Q(λ2, λ, λ)
pµG,ns ∼ Q(λ, λ2, λ) (2.7)

For most jet observables in vacuum, and, in particular the one which we are considering,
these modes are redundant in that their effect is already captured by the Soft and collinear
physics. We refer the reader to [58] for more details. So for pure vacuum evolution such
an in e-p, e+e− or pp these modes are irrelevant. However, in our case we also have a
medium which is made up of Soft modes, and an n jet which can interact with it. Indeed,
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the interaction of a jet in the medium is dominated by forward scattering so that we need
to include the pG,ns Glauber mode in our EFT. In the next section, we will look at the
structure of the effective action in terms of all of relevant modes described thus far.

The medium induces another scale, namely the Debye screening mass mD ∼ gT . We
will work in a weakly coupled regime so that mD is a much smaller scale than T. In a
completely quantum coherent process such as a pp collision, the imposition of an IRC
(Infra-Red collinear) safe observable on the final state guarantees that the final state physics
is not sensitive to any IR scale below the one set by the measurement. However, in our
case the presence of the medium can induce incoherent scattering which can potentially
make the observable sensitive to mD as we will see in an explicit calculation.

Given the scaling we see that the soft mode fails grooming. The emissions that fail
grooming lie outside the groomed jet and hence contribute to the transverse momentum
imbalance. The collinear mode is sensitive to the grooming parameter zc so that it may
either pass or fail grooming. When it fails grooming, it will contribute to the transverse
momentum imbalance while when it passes, it will contribute to the cumulative jet mass.
We assume that the particles that make up the medium also scale uniformly in temperature
and have the same scaling as the soft mode.

From the scaling of the modes, we see that the constraints from the observable imposed
imply that there is no radiation that is sensitive to the edge of the jet and hence to the
jet radius. The soft modes all fail grooming and lie outside the groomed jet while the
collinear radiation is confined to a narrow core near the jet axis. Hence, there are no
sources of energy/ transverse momentum leakage near the edge of the jet. There will be jet
substructure modification within the jet without changing its radius and pT so that it now
becomes possible to compare the jet substructure modification for the same hard events in
pp and HIC even while working in the same pT , R bin.

3 Factorization for reduced density matrix

I would like to derive a factorization formula for this observable showing a clear separation
of scales in terms of gauge invariant operators. I will treat the jet as an open quantum
system interacting with the QGP bath and follow the time evolution of the reduced density
matrix of the jet. Along the way, I will work out the factorization for this density matrix
within the framework of SCET.

For ease of analysis, we consider that the hard interaction that creates the jet is an e+e−

collision. While this is not a real scenario, it is an ideal playground to work out the EFT
framework which mainly deals with the final state physics. The EFT structure can then be
easily carried over to the realistic case of nuclear/hadronic collisions and I will outline how
this can be done in section 8. While a sketch of the factorization for the same observable
with a different hierarchy of scales was provided in [88], we revisit the factorization in the
context of a density matrix evolution, which uses time ordered perturbation theory.

The hard interaction can be encoded using an effective current operator

OH = C(Q)LµJµSCET (3.1)
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C(Q) is the Wilson co-efficient for this contact operator that depends only on the hard
scale Q. This will lead to a hard function H(Q) at the amplitude squared level and its
form is discussed in appendix A. Lµ is the initial state current, which in this case is just
the lepton current, while JµSCET is the final state SCET current, which is just the gauge
invariant quark current.

Lµ = l̄γµl (3.2)

The SCET current is given as

JµSCET =
[
S†nSn̄

]
χ̄nW

†
nγ

µWn̄χn̄ (3.3)

where Si,Wj are soft and collinear Wilson lines, defined as

S(r)
n (x) = P exp

[
ig

∫ 0

−∞
dsn ·ABs (x+ sn)TB(r)

]

Wn(x) =
[ ∑

perms
exp

(
− g

n · P
n̄ ·An(x)

)]
(3.4)

χn is the n collinear quark field expanded out to leading order in λ. Pµ acts like the
derivative operator and acts on the field to its right (in this case An(x)) to extract out the
momentum of the states created/annihilated by the field. We see that the SCET current is
already factorized in terms of soft and collinear sectors which are manifestly gauge invariant
due to the presence of Wilson lines. This form of the SCET current is correct to leading
order in our power counting parameter λ. Operationally, the collinear Wilson line encodes
the n collinear emissions from the n̄ collinear sector to leading power while the Sn and
Sn̄ soft wilson lines encode the soft emissions from the n and n̄ collinear sectors, again to
leading power in λ. Thus the interaction between the n, n̄ and soft sectors is now completely
captured in these Wilson lines so that these sectors are now decoupled at the level of the
action, i.e., the effective Hamiltonian can be written as

HSCET = Hn +Hn̄ +Hs +O(λ2) (3.5)

However, as we shall see, there is also a Glauber induced interaction between the sectors
which cannot be decoupled in the form of Wilson lines since it does not eikonalize and needs
to be added explicitly to the Hamiltonian. The initial state density matrix is given as

ρ(0) = |e+e−〉〈e+e−| ⊗ ρB (3.6)

ρB is the density matrix of the medium, which we assume to be time independent in this
paper. This is not strictly necessary for proving factorization and a time dependence can
be introduced, which would be equivalent to an inhomogeneity in the medium from the
perspective of the jet. I will comment on this after eq. (3.46) where we use the translational
invariance of the QGP medium. Since the partons in the medium have the same scaling
as the soft mode, we will henceforth suppress explicitly writing out the factor ρB till it
becomes relevant for the soft function analysis. We have started with the assumption that
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the initial state participating in the hard interaction is disentangled from the state of the
background medium. We can follow the evolution of this density matrix which will evolve
with the effective Hamiltonian

H = HIR +OH (3.7)
The IR Hamiltonian is written as a sum over the Hamiltonians of all the SCET sectors (i.e.,
the n collinear, n̄ collinear, soft) along with the Glauber Hamiltonian, which in our case
introduces a interaction between the soft and n collinear sectors.

HIR = HSCET +HG = Hn +Hn̄ +Hs +HG
ns (3.8)

This form of the QCD Hamiltonian is correct to leading power in our expansion parameter
λ. We see here that the three sectors n, n̄ and soft are decoupled in the HSCET Hamiltonian
and only talk to each other via the hard OH and Glauber HG

ns terms. The interaction
induced by the Glauber mode does not eikonalize in the form of Wilson lines and hence
it explicitly induces a coupling between the n collinear and soft sectors at the level of the
action. Only the HG

ns Galuber Hamiltonian that couples the n jet and the medium soft
degrees of freedom is included since only the n jet interacts with the medium. We will
not describe the details for the Hamiltonians of the individual sectors Hn, Hn̄ and HS ,
which are standard in SCET literature but refer the reader to a review of SCET [52]. The
Hamiltonian of each of the 3 sectors can be further written as a sum over the free theory
Hamiltonian and an interaction term. For instance

Hn = H0
n +Hn,int (3.9)

where Hn,int describes the interaction between the n collinear degrees of freedom. As
motivated in [84], the dominant interaction of the jet with the medium is mediated by the t
channel exchange of the Glauber gluon. The Glauber Hamiltonian is expressed in terms
of effective gauge invariant operators for quark-quark (qq), quark-gluon (qg or gq) and
gluon-gluon (gg) interactions which have been worked out in the Feynman gauge in ref. [58]

HG
ns =

∑
ij

CijOijns

Oqqns = OqBn
1
P2
⊥
OqnB
s , Oqgns = OqBn

1
P2
⊥
OgnB
s ,

Ogqns = OgBn
1
P2
⊥
OqnB
s , Oggns = OgBn

1
P2
⊥
OgnB
s (3.10)

where B is the color index and the subscripts n and s denote the collinear and soft operators.
The Glauber gluon propagator appears as the derivative in ⊥ direction. We will assume
for the remainder of the paper that the jet which traverses the medium points along the n
direction. Cij are the Wilson co-efficients for these contact operators and all begin at O(αs).
Since I am interested in a dijet event, I will consider only a single insertion of the hard
operator which, at tree level will create a back to back qq̄ pair that subsequently evolves
into dijets. The time evolved density matrix is given as

ρ(t) = e−iHtρ(0)eiHt = e−iH
IRt
[
eiH

IRte−iHt
]
ρ(0)

[
eiHte−iH

IRt
]
eiH

IRt

= e−iH
IRtU(t, 0)ρ(0)U †(t, 0)eiHIRt (3.11)
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Our evolution operator U(t, 0) now obeys the equation

∂tU(t, 0) = −iOH,IR(t)U(t, 0), with OH,IR(t) = eiH
IRtOHe−iH

IRt (3.12)

which has the solution
U(t, 0) = T

{
e−i

∫ t

0 dt
′OH,IR(t′)

}
(3.13)

which is the evolution operator written as a time ordered exponent of the hard operator
dressed with the IR Hamiltonian. Our solution for the density matrix now becomes

ρ(t) = e−iH
IRtT

{
e−i

∫ t

0 dt
′OH,IR(t′)

}
ρ(0)T̄

{
e−i

∫ t

0 dt
′OH,IR(t′)

}
eiH

IRt (3.14)

We are interested in creating dijets, it is sufficient to consider a single insertion of the Hard
operator on each side of the cut.

ρ(t) = e−iH
IRtρ(0)eiHIRt +

∫ t

0
dt1

∫ t

0
dt2e

−iHIRtOH,IR(t1)ρ(0)O†H,IR(t2)eiHIRt (3.15)

When we impose the measurement for the dijet event with the required properties, only the
second terms will survive, hence hereafter we can simply follow the evolution for this piece.

We define

σ(t) =
∫ t

0
dt1

∫ t

0
dt2e

−iHIRtOH,IR(t1)ρ(0)O†H,IR(t2)eiHIRt

= |C(Q)|2Iµν
∫
d3x1

∫ t

0
dt1

∫
d3x2

∫ t

0
dt2e

−i(x1−x2)·(pe+pē)

e−iH
IRtJµSCET,IR(x1)|0〉〈0|JνSCET,IR(x2)eiHIRt (3.16)

where pe, pē are the momenta of the initial state electron positron. In the c.o.m. frame
pe + pē = (Q, 0, 0, 0). Iµν is the Lepton tensor.

However, the Glauber Hamiltonian prevents us from factorizing the full density matrix
since it couples the collinear n and the Soft sectors. We therefore need to expand in
powers of the Glauber Hamiltonian and establish factorization at each order in the Glauber
expansion. We will show that after imposing final state measurements, it is possible to
resum the series in the Glauber Hamiltonian, atleast in the Markovian approximation via a
Lindblad type equation.

To proceed, we rearrange the result above so as to be able to do a systematic expansion
in the Glauber Hamiltonian. For convenience lets define∫

dx̃ =
∫
d3x1

∫ t

0
dt1

∫
d3x2

∫ t

0
dt2e

−i(x1−x2)·(pe+pē) (3.17)

σ(t) = |C(Q)|2Iµν
∫
dx̃e−iH

IRtJµSCET,IR(x1)|0〉〈0|JνSCET,IR(x2)eiHIRt

= |C(Q)|2Iµν
∫
dx̃e−iH

SCETt
{
eiH

SCETte−iH
IR(t−t1)e−iH

SCETt1
}

{
eiH

SCETt1JµSCET(~x1, 0)e−iHSCETt1
}{
eiH

SCETt1e−iH
IRt1

}
|0〉〈0|

{
eiH

IRt2e−iH
SCETt2

}
{
eiH

SCETt2JνSCET(~x2, 0)e−iHSCETt2
}{
eiH

SCETt2eiH
IR(t−t2)e−iH

SCETt
}
eiH

SCETt
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Using the same process as for the hard operator, we can rearrange the expression as time
ordered dressed operators

σ(t) = |C(Q)|2Iµν
∫
dx̃e−iH

SCETtT
{
e−i

∫ t

0 dt
′HG

Isc
(t′)JµSCET,Isc

(x1)
}
|0〉

〈0|T̄
{
e−i

∫ t

0 dt
′HG

Isc
(t′)JνSCET,Isc

(x2)
}
eiH

SCETt (3.18)

where
OIsc(t) = eiH

SCETtOe−iH
SCETt (3.19)

so that all operators are now dressed with the SCET Hamiltonian. We are now set up to do
an expansion in the Glauber Hamiltonian. Ultimately, for this paper, we want to compute
the trace over the reduced density matrix with an appropriate measurement

Σ(t) ≡ Tr[σ(t)M]
∣∣
t→∞ (3.20)

where we first completely trace over the Soft and collinear degrees of freedom with the
measurementM which includes the jet algorithm to isolate a final state large radius groomed
dijet configuration with the required qT imbalance and jet mass. We then expand this out
in powers of HG

Σ(t) = Σ(0)(t) + Σ(1)(t) + Σ(2)(t) +O([HG]3) + . . . (3.21)

In the next section we will sketch the proof for factorization of the reduced density matrix
upto quadratic order in theHG expansion. We will subsequently use this to derive a Lindblad
equation to resum all the higher order terms in HG in the Markovian approximation.

3.1 Leading order in Glauber: vacuum evolution

We start with the leading order term from eq. (3.18) with no Glauber insertions and so
should simply give us a result proportional to the vacuum-background cross section. Since
we are doing this in the context of time ordered perturbation theory we will outline the
proof for factorization of this piece here.

σ(0)(t) = |C(Q)|2Iµν
∫
dx̃e−iH

SCET(t−t1)JµSCET(~x1)e−iHSCETt1 |0〉

〈0|eiHSCETt2JνSCET(~x2)eiHSCET(t−t2)

We can now write the result in the interaction picture as Hint,

HSCET = H0 +Hint (3.22)

where H0, Hint respectively is a sum over the free and interaction Hamiltonians for the n,
n̄ and Soft sectors. Then performing the same series of steps as before, we can write our
result in terms of the free theory interaction picture,

σ(0)(t) = |C(Q)|2Iµν
∫
dx̃e−iH

0tT
{
e−i

∫ t

0 dt
′Hint,I(t′)JµSCET,I(x1)

}
|0〉

〈0|T̄
{
e−i

∫ t

0 dt
′Hint,I(t′)JνSCET,I(x2)

}
eiH

0t
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where
OI(t) = eiH

0tOe−iH
0t (3.23)

so that all the operators are now dressed with the free theory Hamiltonian.To proceed
further, we put in our measurement on the dijets and take a trace over final states and take
the limit t→∞.

〈X|σ(t→∞)M|X〉 ≡ Σ(0) = |C(Q)|2Iµν
∫
dx̃

〈X|T
{
e−i

∫∞
0 dt′Hint,I(t′)JµSCET,I(x1)

}
|0〉〈0|T̄

{
e−i

∫∞
0 dt′Hint,I(t′)JνSCET,I(x2)

}
M|X〉

where we have

M = δ2
(
~qT − ~p⊥Xn,∈gr − ~p⊥Xn̄,∈gr

)
Θ (en − en,∈gr) Θ (en̄ − en̄,∈gr)

where ~qT is the transverse momentum imbalance between the two groomed jets, while en,
en̄ measures the jet mass for the two groomed jets. The jet mass is defined as

en,∈gr = 4
Q2

 ∑
i∈n,gr

pXi

2

(3.24)

Notice that none of the modes are sensitive to the jet radius R. This follows from the
fact that the collinear radiation is collimated along the jet axis far away from the edge of
the jet while the soft radiation can populate the full phase space without constraint. Our
Hamiltonian is

Hint = Hs,int +Hn,int +Hn̄,int (3.25)

where the three sectors are decoupled from each other while the interactions between the
various sectors now appear in the form of Wilson lines in the SCET current (eq. (3.3)).
Without the presence of factorization violating Glauber interactions, using standard tech-
niques outlined in [88], the momentum sectors can now be written as separate matrix
elements. Hence the Hilbert space also factorizes into various momentum mode states

|X〉 = |Xn〉|Xn̄〉|Xs〉 (3.26)

Since the Hamiltonian is already factorized, we have, in principle, a factorization of all
the modes at this stage. However, we still have to implement our power counting on
the measurement functions which will ensure that only leading power corrections in our
expansion parameter λ are retained.

Acting on the final state Hilbert space, we can then pull out the co-ordinate dependence
of the SCET current and perform all co-ordinate integrals

Σ(0) = |C(Q)|2Iµν
∫
d4x1

∫
d4x2e

−i(x1−x2)·(pe+pē−pXn−pXn̄−pXs )

× 〈X|T
{
e−i

∫∞
0 dt′Hint,I(t′)JµSCET,I(0)

}
|0〉〈0|T̄

{
e−i

∫∞
0 dt′Hint,I(t′)JνSCET,I(0)

}
M|X〉
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Performing the integrals over x1 and x2 now gives momentum conserving δ function along
with a 4d volume factor V. We can then decompose the 4 momentum delta function in
light-cone co-ordinates and apply power counting

δ4(pe + pē − pXn − pXn̄ − pXs)

→ δ(Q− p−Xn
)δ(Q− p+

Xn̄
)δ2

(
p⊥Xn,∈gr + p⊥Xn̄,∈gr + p⊥Xs

+ p⊥Xn, 6∈gr + p⊥Xn̄, 6∈gr

)
(3.27)

An example of how power counting works in this expression is that for the momentum
conservation in the “−” light-cone direction, the contribution of the n sector scales as Q,
while the contributions from the n̄ and soft sectors which respectively scale as λ2Q and λQ
are power suppressed and hence we drop them. The same is true for the “+” component
where only the n̄ sector is relevant. Finally for the ⊥ direction, all momenta scale uniformly
as λQ and hence all contributions are relevant. We will apply this logic again while deriving
factorization at higher orders in the Glauber expansion. The subscript 6∈ gr indicates
collinear radiation that fails the grooming condition. Our factorization now becomes

Σ(0) = V × |C(Q)|2Iµν〈X|T
{
e−i

∫∞
0 dt′Hint,I(t′)JµSCET,I(0)

}
|0〉

〈0|T̄
{
e−i

∫∞
0 dt′Hint,I(t′)JνSCET,I(0)

}
|X〉

× δ(Q− p−Xn
)δ(Q− p+

Xn̄
)δ2

(
p⊥Xn,∈gr + p⊥Xn̄,∈gr + p⊥Xs

+ p⊥Xn, 6∈gr + p⊥Xn̄, 6∈gr

)
× δ2

(
~qT − ~p⊥Xn,∈gr − ~p⊥Xn̄,∈gr

)
Θ (en − en,∈gr) Θ (en̄ − en̄,∈gr)

Without loss of generality, we can assume that the axis of the n̄ ungroomed jet is exactly
aligned with the n̄ direction, in which case its transverse momentum becomes zero.

Σ(0) = V × |C(Q)|2Iµν〈X|T
{
e−i

∫∞
0 dt′Hint,I(t′)JµSCET,I(0)

}
|0〉

〈0|T̄
{
e−i

∫∞
0 dt′Hint,I(t′)JνSCET,I(0)

}
M|X〉

× δ(Q− p−Xn
)δ(Q− p+

Xn̄
)δ2

(
~qT + p⊥Xs

+ p⊥Xn, 6∈gr + p⊥Xn̄, 6∈gr

)
δ2
P⊥n̄

× δ2
(
p⊥Xs
− ~p⊥Xn

)
Θ (en − en,∈gr) Θ (en̄ − en̄,∈gr)

δP⊥n̄
is a Kronecker delta setting the transverse momentum of the n̄ ungroomed jet to

0. We now have a transverse momentum condition δ2
(
p⊥Xs
− ~p⊥Xn

)
, which tells us that

the ungroomed n jet is not exactly aligned with the n axis. However, we can use type 1
Reparameterization invariance (RPI 1) symmetry of SCET [89], to adjust the axis of the
jet without changing any physics. When we choose specific light-like directions n and n̄,
we explicitly break Lorentz symmetry of the QCD Lagrangian. However, there is a residual
Lorentz symmetry left over that allows us to make the transformation nµ → nµ + ∆⊥µ so
long as the shift by ∆⊥ does not change the momentum scaling of the collinear mode. So
this allows a shift of up to Qλ ∼ p⊥Xs

in the perpendicular component of momentum for
the whole collinear sector. This allows us to write δ2(~p⊥Xn

) which now gets us back to the
standard definition of the jet function. We also see that the transverse momentum imbalance
~qT receives contributions from all the modes that fail grooming which is what we expect.
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We can convert the Kronecker delta to a Dirac delta following literature [90]

δ2
P⊥n̄

= πQ2δ2
(
p⊥Xn̄,∈gr

)
(3.28)

The jet mass measurement receives contributions from the collinear modes that pass
grooming. We can now write the final form of our factorized density matrix element

Σ(0)(qT ,en,en̄) =V ×H(Q,µ)S(~qT ;µ,ν)⊗qT J
⊥
n (en,Q,zc,~qT ;µ,ν)⊗qT J

⊥
n̄ (en̄,Q,zc,~qT ;µ,ν)

(3.29)

where ⊗qT indicates a convolution in ~qT . H(Q) is the hard function which also includes the
born level term. The factorized functions have both UV and rapidity divergences which are
regulated by dim. reg. and a rapidity regulator η introduced in [90] to separate the soft
and jet functions which have the same virtuality. The corresponding renormalization scales
are µ and ν. The factorized functions are defined as follows

S(~qT ) = 1
NR

tr〈XS |T
{
e−i
∫∞

0 dt′Hs,int,I(t′)S†n̄Sn(0)
}
|0〉〈0|T̄

{
e−i
∫∞

0 dt′Hs,int,I(t′)S†nSn̄(0)
}
δ2(~qT−P⊥)|XS〉

(3.30)

The trace here is a trace over color and its understood that |XS〉〈XS | includes a sum over
soft states with their phase space integrated over. P⊥ action on an operator is to extract
the transverse momentum ~p⊥ of the states annihilated by that operator. This computes
the Soft function in a vacuum background, but as we know we actually have a background
of the medium particles which also scale as the soft mode. So, in principle, we have

S(~qT ) = 1
NR

tr〈XS |T
{
e−i
∫∞

0 dt′Hs,int,I(t′)S†n̄Sn(0)
}
ρB T̄

{
e−i
∫∞

0 dt′Hs,int,I(t′)S†nSn̄(0)
}
δ2(~qT−P⊥)|XS〉

where we have assumed a time independent QGP background. Of course, we can take into
account the fact that the time scale for the soft emission (which puts the collinear mode
off-shell) is much shorter than the formation time for the QGP, in which case we would
be justified to compute the soft function in a vacuum background, which is what we will
assume for the rest of this paper. The quark jet function is defined as

J ⊥n (en, Q, zc, ~qT ) = (2π)3

Nc
tr〈Xn|T

{
e−i

∫∞
0 dt′Hn,int,I(t′)χ̄n(0)

}
|0〉

〈0|T̄
{
e−i

∫∞
0 dt′Hn,int,I(t′)χn

/̄n

2

}
δ(Q− P−)δ2(P⊥)Θ(en − EXn∈gr)δ2(~qT − P⊥Xn 6∈gr)|Xn〉

where there is a coloor and Dirac trace. In impact parameter space, the convolution in ~qT
turns into a product

Σ(0) = V ×H(Q,µ)×
∫
d2bei~qT ·~bS(~b;µ, ν)J ⊥n (en, Q, zc,~b;µ, ν)J ⊥n̄ (en̄, Q, zc,~b;µ, ν)

(3.31)

where for a function F(~qT ),

F(~b) =
∫

d2~qT
(2π)2 e

−i~qT ·~bF(~qT ) (3.32)
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The jet and soft functions then obey two renormalization group equations, one in µ and
another in ν.

µ
d

dµ
F(~b, µ, ν) = γFµ F(~b, µ, ν)

ν
d

dν
F(~b, µ, ν) = γFν F(~b, µ, ν) (3.33)

The one loop results for all the functions in ~b space are presented in appendix A. The
one loop results reveal that each function has a natural scale for µ and ν at which the
logarithms are minimized. For e.g., looking at eq. (A.3), we see that at one loop, the
logarithms for the soft function are minimized at µ = ν = (beγE )−1, while for the jet
function (eq. (A.9)), the scales appear to be µ = (beγE )−1 ∼ √enEJ , ν = Qzc. For the hard
function, we have µ = Q. Solving the renormalization group equations in µ, ν therefore
allows us to resum large logarithms in the ratio of widely separated scales.

3.2 Next-to-leading order in Glauber

We now consider the next to leading order term in the expansion of the Glauber Hamiltonian
starting from eq. (3.20). In principle, we should start off with a single insertion of HG on
either side of the cut. Since we have a non-trivial soft function consisting of Soft Wilson
lines (eq. (3.30)) at leading order which scales the same way as the soft partons of the
medium, the single HG insertion can lead to interfering diagrams between the soft Wilson
lines and the medium. However, as stated in the previous section, if the time scale for
soft emissions is shorter than the QGP formation time, then we can factorize the QGP
interactions of the jet from the explicit soft radiation off the quark created in the hard
interaction in which case we need to do atleast a quadratic Glauber insertion. This also
follows another approximation we will make in section 4, where we retain only the diagrams
where the partons created in the hard interaction go on-shell before interacting with the
medium. With a quadratic Glauber insertion, we can have two contributions depending
on whether the two Glauber insertions are on the same or opposite sides of the cut. This
respectively corresponds to a single virtual and real interaction of the jet with the medium.

Σ(2)(t) = Σ(2)
R (t) +

{
Σ(2)
V (t) + c.c.

}
(3.34)

We now turn towards deriving factorization for each of these terms.

Glauber insertion on both sides of the cut. We begin with eq. (3.18) and expand
to insert one HG factor on each side of the cut.

σ
(2)
R (t) = |C(Q)|2Iµν

∫
dx̃e−iH

SCETtT
{∫ t

0
dt′HG

Isc
(t′)JµSCET,Isc

(x1)
}
|0〉

〈0|T̄
{∫ t

0
dt̂HG

Isc
(t̂)JνSCET,Isc

(x2)
}
eiH

SCETt (3.35)
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By following the same series of steps as for the leading order term, we can write the
result in terms of the free theory interaction picture indicated henceforth by the subscript I.

σ
(2)
R (t) = |C(Q)|2Iµν

∫
dx̃e−iH

0tT
{
e−i

∫ t

0 dt
′Hint,I(t′)

∫ t

0
dtaH

G
I (ta)JµSCET,I(x1)

}
|0〉

× 〈0|T̄
{
e−i

∫ t

0 dt
′Hint,I(t′)

∫ t

0
dtbH

G
I (tb)JνSCET,I(x2)

}
eiH

0t

The next step is to obtain a factorized formula in terms of our EFT modes. To do
this, we explicitly put in the form of our Glauber operator, considering the case of collinear
partons interacting with the soft partons in the medium. These operators were defined in
eq. (3.10).

HG(t) =
∑

i,j∈q,g
Cij(Q)

∫
d3~xOAn,i(~x, t)

1
P2
⊥
OAS,j(~x, t) (3.36)

We can now take the trace over the density matrix inserting our measurement as before.

〈X|Mσ
(2)
R (t→∞)|X〉 ≡ Σ(2)

R

= |C(Q)|2Iµν
∫
dx̃〈X|T

{
e−i

∫ t

0 dt
′Hint,I(t′)

∫ t

0
dtaH

G
I (ta)JµSCET,I(x1)

}
|0〉

× 〈0|T̄
{
e−i

∫ t

0 dt
′Hint,I(t′)

∫ t

0
dtbH

G
I (tb)JνSCET,I(x2)

}
M|X〉

We can now follow the same series of steps as for the leading order term, and apply power
counting to measurement functions as well as the momentum conserving δ functions based
on the momentum scaling of each mode. Accordingly, we factorize the Hilbert space of the
final states in terms of the momentum scaling of the modes and pull out the co-ordinate
dependence of each mode by acting with the operators on the final state. This yields the
following co-ordinate integrals

I =
∫
d4x1e

−ix1·(pe+pē−pJn,1−pJS,1−pJn̄)
∫
d4x2e

−ix2·(pe+pē−pJn,2−pJS,2−pJn̄)∫
d4xae

−ixa·(pGn,1+pGs,1) ×
∫
d4xbe

−ixb·(pGn,2+pGs,2) (3.37)

where the subscripts G, J tell us whether the momentum is coming from the action of the
Glauber Hamiltonian fields or the SCET current respectively. To perform the integrals we
take the limit t → ∞. This means that we are making the assumption that the time of
propagation of the jet in the medium or equivalently the length of medium seen by the jet
is larger than all other time scales in problem. So this is the limit of a long lived medium.
This may not always be a realistic assumption, especially in the case of energetic jets where
the jet formation time tF ∼ Q/q2

T can be of the order or longer than the medium lifetime.
However, this a good first step and the case of short lived medium will be considered in an
upcoming paper [91]. Now performing the integrals and applying power counting, we have

I = δ(Q− p−Jn1)δ(Q− p+
n̄ )δ2(p⊥Jn,1 + p⊥Js,1 + p⊥n̄ )

δ(Q− p−Jn2)δ(Q− p+
n̄ )δ2(p⊥Jn,2 + p⊥Js,2 + p⊥n̄ )

δ(p−Gn,1)δ(p+
GS,1 + p+

Gn,1)δ2(p⊥Gn,1 + p⊥GS,1)
δ(p−Gn,2)δ(p+

GS,2 + p+
Gn,2)δ2(p⊥Gn,2 + p⊥GS,2) (3.38)
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This simplification follows from the idea that pGS scales as the Glauber momentum since
we are interested in a t channel exchange between the soft and collinear modes. This
allows us to drop the contribution p−GS from the conservation of “−” momentum while
retaining it for the “+” and ⊥ components. We have ignored any factors of 2π which will
be absorbed in the overall co-efficient for Σ(2)

R . We also have additional constraints since
the total momentum for a particular mode must match on both sides of the cut

pJn,1 + pGn,1 = pJn,2 + pGn,2

pJS,1 + pGS,1 = pJS,2 + pGS,2 (3.39)

We can simplify our measurement δ functions using these set of constraints

δ2(~qT − p⊥Xn,∈gr − p⊥Xn̄,∈gr) ≡ δ2(~qT − p⊥Xn,∈gr − p⊥Xn̄,∈gr)
= δ2(~qT − p⊥Gn,1∈gr − p⊥Jn,1∈gr − p⊥Xn̄,∈gr)
= δ2(~qT + [p⊥GS,1 + p⊥JS,1] + p⊥Jn,1 6∈gr + p⊥n̄, 6∈gr) (3.40)

where the term inside the square brackets is the total contribution from the Soft sector,
which includes both the vacuum as well as medium effects. We have written the total
contribution from the n collinear sector p⊥Xn,∈gr = p⊥Gn,1∈gr + p⊥Jn,1∈gr. As for the leading
order term, we can set the axis of the n̄ jet to be exactly aligned with the n̄ axis. Then
using RPI 1 symmetry of SCET as before, we do the same for the n jet before it interacts
with the medium. Using the rest of the constraints then, once again we have an overall 4d
volume factor of V . Since we are ignoring interference between the soft operators of the
SCET and the Glauber insertion, we can set

pGS,1 = pGS,2 ≡ pGS , so that pJS,1 = pJS,2.

We can now write down our factorization formula for Σ(2)
R , explicitly pulling out the

vacuum Soft function,

Σ(2)
R = V × |CG|2H(Q,µ)

{∫
d2~qJSS(~qJS)

}{∫
d2~qGSdp

+
GSS

AB
G (q⊥GS , p+

GS)
}

{∫
d2~qTn

∫
d2~p⊥Gn,1d

2~p⊥Gn,2dp
+
Gn,1dp

+
Gn,2J

AB
n (en, ~p⊥Gn,1, ~p⊥Gn,2, p+

Gn,1, p
+
Gn,2, ~qTn)

}
×
∫
d2~qT n̄Jn̄(en̄, ~qn̄)δ2(~qT + ~qJS + ~qGS + ~qTn + ~qT n̄)

× δ2(~qGS + ~p⊥Gn,1)δ2(~qGS + ~p⊥Gn,2)δ(p+
GS + p+

Gn,1)δ(p+
GS + p+

Gn,2) (3.41)

In order to simplify notation, its easiest to express this result by rewriting some of the
momentum conserving δ functions in co-ordinate space. This gives us

Σ(2)
R =V ×|CG|2H(Q,µ)

{∫
d2~qJSS(~qJS)

}
×
∫
d4x

∫
d4y

{∫
d2~qGSS̄

AB
G (q⊥GS ,{x⊥,x−},{y⊥,y−})

}{∫
d2~qTnJ

AB
n (en,x,y,~qTn)

}
∫
d2~qn̄J ⊥n̄ (en̄,~qT n̄)δ2(~qT +~qJS+~qGS+~qTn+~qT n̄)
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While most of the functions remain unchanged compared to their vacuum counterparts,
we have two new/modified function S̄ABG and JABn defined as

S̄ABG (q⊥GS ,{x⊥,x−},{y⊥,y−}) = 〈XS |
{
δ2(q⊥GS−P⊥) 1

P2
⊥
OAS (x̂)

}
ρB

1
P2
⊥
OBS (ŷ)|XS〉

JABn (en,x,y) = 〈Xn|T
{
χ̄n(0)

/̄n

2O
A
n (x)

}
|0〉〈0|T̄

{
OBn (y)

[
δ2(P⊥)χn(0)

]}
δ2(Q−P−)Mn|Xn〉

(3.42)

where for the rest of the paper we use x̂ ≡ (x−, 0, ~x⊥) and likewise ŷ, and

Mn = Θ(en − EXn∈gr)δ2(~qTn − P⊥Xn 6∈gr) (3.43)

To derive the factorization formula, we have used the idea that the Wilson coefficient CG
for all the Glauber operators is identical,

CG = 8παs (3.44)

and
OAn =

∑
i

OAn,i, OBS =
∑
j

OBS,j (3.45)

Using the translational invariance of the QGP medium we can write

S̄ABG (q⊥GS , x̂, ŷ) =
∫

d4k

(2π)4k4
⊥
ei(x̂−ŷ)·kDAB

> (k)δ2(q⊥GS − ~k⊥) (3.46)

where DAB
> (k) is the Soft correlator in the medium. The assumption of translational

invariance is an idealized scenario, but it is not a necessary condition for factorization. Since
a single interaction of the jet with the medium is instantaneous and probes it over length
scales inverse of the transverse momentum exchanged ∼ 1/k⊥, the factorization is robust
against inhomogeneties in the medium over length scales � 1/k⊥ ∼ 1/T , i.e. as long as the
jet sees a uniform medium over the length-time scales of a single Glauber exchange. The
factorization formula incorporating such inhomogeneties will be considered in an upcoming
paper [91].

DAB
> (k) =

∫
d4xe−ik·x〈XS |OAS (x)ρOBS (0)|XS〉 (3.47)

We note here that this function is independent of k+.
We can redefine ~qn → ~qn − ~k⊥, and write a compact formula

Σ(2)
R (~qT , en, en̄) = V × |CG|2H(Q,µ)S(~qT )⊗qT J

⊥
n̄ (en̄, ~qT )

⊗qT

∫
d2k⊥dk

−

k4
⊥

DAB
> (k⊥, k−)J ABn (en, ~qT , ~k⊥) (3.48)

where we have

J ABn (en, ~qT ,~k⊥) =
∫
dk+

∫
d4x

∫
d4yei(x̂−ŷ)·kJABn (en, x, y, ~qT − ~k⊥) (3.49)
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The convolution in ~qT turns into a product in impact parameter space. We can now divide
and multiply by the vacuum jet function J ⊥n (en,~b) which allows us to factor out the vacuum
cross section and define a medium structure function and a medium induced jet function

Σ(2)
R (~qT , en, en̄) = |CG|2

∫
d2~bei

~b·~qT Σ(0)(b, en, en̄)
∫
d2k⊥S

AB
G (k⊥)JABn,M (en,~b,~k⊥) (3.50)

where

JABn,M (en,~b,~k⊥) = 1
k2
⊥

J ABn (en,~b,~k⊥)
J ⊥n (en,~b)

SABG (k⊥) =
∫
dk−

1
k2
⊥
DAB
> (k⊥, k−) (3.51)

Glauber insertion on the same side of the cut. We can now look at the piece we
get by doing two Glauber insertions on the same side of the cut starting from eq. (3.20).
Here, I will consider inserting on the bra side and deal with the ket in the same manner
later on.

σ
(2)
V (t) = (−i)2

2 Iµν |C(Q)|2
∫
dx̃e−iH

SCETtT
{∫ t

0
dt′HG

Isc
(t′)

∫ t

0
dt̂HG

Isc
(t̂)JµSCET,Isc

(x1)
}
|0〉

〈0|T̄
{
JνSCET,Isc

(x2)
}
eiH

SCETt

Following the same series of steps as in the previous section, we arrive at a similar
factorization formula

Σ(2)
V =−1

2V ×|CG(Q)|2H(Q,µ)
∫
d2~qJSS(~qJS)

∫
d2~qT n̄J ⊥n̄ (en̄,~qT n̄)∫

d4x

∫
d4yS̄ABG (x̂, ŷ)

∫
d2~qTnJ

AB
n (en,~qTn,x,y)δ2(~qTn+~qJS+~qTn+~qT n̄) (3.52)

with the following definitions

S̄ABG (x̂, ŷ) = 〈XS |T
{
OAS (x̂)OBS (ŷ)

}
ρB|XS〉

JABn (en,~qTn,x,y) = 〈Xn|T
{
χ̄n(0)

/̄n

2O
A
n (x)OBn (y)

}
|0〉〈0|

[
δ2(P⊥)χn(0)

]
δ2(Q−P−)Mn|Xn〉

(3.53)

The term with Glauber insertions on the other side of the cut can now be trivially obtained
from this result.

4 Decoherence of the hard interaction from medium scattering in a long
lived medium

One aspect of this factorization which is different compared to a vacuum factorization result
is the presence of the environment. Since the QGP medium in not coherently connected with
the hard interaction that produces the jet, the phase space of the jet allows the partons to
go on-shell before they interact with the medium. In fact, the most dominant contribution
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to the cross section comes from this region of phase space. This is only true if there is
enough time for the partons created in the jet to go on-shell which happens when the time
of jet propagation in the medium tM is much greater than the formation time of the jet
tF ∼ Q/q2

T . As already alluded to earlier, this is the case of a long-lived medium. This may
not always be a realistic scenario especially for the case of high energy jets which have a
long formation time. In this case quantum interference between the hard interaction and
the medium interaction becomes important. This is a more involved case and I will detail
in section 8 how this scenario, which will be considered in an upcoming paper [91], will
modify the form of factorization.

Coming back to the case of a long lived medium, we can look at the tree level result
for our modified jet function defined in eq. (3.42) that appears in the factorized formula for
Σ(2)
R in eq. (3.48)

J AB(0)
n =

∫
dk+

∫
d4x

∫
d4ye−ik·(x̂−ŷ)eip·(x−y)

∫
d̃pTr

[
ū(p)TA

/̄n

2D(x)
/̄n

2D
†(y)

/̄n

2T
Bu(p)

]
δ2(p⊥)δ(Q−p−)δ2(~qn−~k⊥)

=
∫
dk+

∫
d4x

∫
d4ye−ik·(x̂−ŷ)eip·(x−y)

∫
d̃p

Tr
[
ū(p)TA

/̄n

2

∫
d4q

/n

2
q−e−iq·x

q2−iε
/̄n

2

∫
d4q′

/n

2
(q′)−eiq′·y
(q′)2+iε

/̄n

2T
Bu(p)

]
δ2(p⊥)δ(Q−p−)δ2(~qn−~k⊥)

(4.1)

where henceforth we will reserve the notation d̃p to mean the integral over the phase space
of the on-shell massless particle p

d̃p = d3p

2Ep
≡ d4pδ+(p2) (4.2)

The integrals over the co-ordinates x and y now sets q = q′ = p+k. Since we are integrating
over k, we see that there is a pinch singularity in the integral over k+ and the dominant
contribution comes from the region when the intermediate propagators (in q = q′) go
on-shell. So we can replace the propagators with their on-shell (cut) forms.The pinch
singularity seems to yield a divergence. However, we notice that the integrals over dx0, dy0

are actually over a finite time interval ∈ {0, t} and hence, what naively appears as an
infinite result actually yields a factor of t, which is just the time of propagation of the jet
in the medium. We are effectively expanding in ti/t, where ti are all other time scales in
the problem, namely the formation time of the soft and collinear radiation.

We can therefore revisit our factorized functions and simplify them by looking at this
dominant contribution where the intermediate partons produced in the hard interaction
go on-shell before interacting with the medium one at a time. This will capture all the
corrections enhanced by a factor of t, which will be the dominant correction.

Σ(2)
R . The medium induced jet function is defined in eq. (3.51) as

JABn,M (en,~b,~k⊥) = 1
k2
⊥

J ABn (en,~b,~k⊥)
J ⊥n (en,~b)

(4.3)
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Since we are working in a regime where the intermediate partons are going on-shell, we
can do a further factorization of the jet function to separate out the Glauber and vacuum
terms explicitly. At the same time, in anticipation of the fact that the jet function will give
a result proportional to t, we can define

J ABn,M (en,k⊥, b) = 1
k2
⊥tJ ⊥n (en,~b)

∫
d2qne

i~qn·~b

(2π)2

∫
dk+

∫
d4x

∫
d4ye−ik·(x̂−ŷ)

×〈Xn|OAn (x)δ2(P⊥)δ(Q−p−)χn(0)χ̄
/̄n

2 |0〉〈0|χn(0)OBn (y)M|Xn〉 (4.4)

where
M = Θ(en − EXn∈gr)δ2

(
~qn − P⊥Xn 6∈gr − ~k⊥

)
(4.5)

and we have dropped the time ordering between the SCET and Glauber currents. We look
at the numerator(sans the Fourier transform) and we can insert a complete set of on-shell
states separating the hard and Glauber operator, thus placing the intermediate partons
on-shell.

J AB(en, k⊥, ~qn) =
∫
dk+

∫
d4x

∫
d4ye−ik·(x̂−ŷ)〈Xn|OAn (x)|Yn〉

〈Yn|δ2(P⊥)δ(Q− p−)χn(0)χ̄
/̄n

2 |0〉〈0|χn(0)|Ỹn〉〈Ỹn|OBn (y)M|Xn〉 (4.6)

where its understood that there is an integral over the phase space of all the inserted
states Yn, Ỹn and the measurementM acts on all final state Xn. We can now perform the
co-ordinate integrals to give

J AB(en,k⊥,~qn) (4.7)
= δ(p−X−p

−
Y )δ(p+

Ỹ
−p+

Y )δ2(k⊥+p⊥Y −p⊥X)δ(p−X−p
−
Ỹ

)δ2(k⊥+p⊥
Ỹ
−p⊥X)

〈Xn|OAn (0)|Yn〉〈Ỹn|OBn (0)M|Xn〉〈Yn|δ2(P⊥)δ(Q−p−)χ̄n(0)
/̄n

2 |0〉〈0|χn(0)|Ỹn〉MXn

The δ functions then imply pY = pỸ , where pY = ∑
i pY i is the sum of momentum of the

Yn states and so on.
The terms proportional to t are obtained from those diagrams where one of the partons

created in the hard vertex interacts with the medium. We can therefore write |Yn〉 ≡ |Y1〉|Yn〉
where we have explicitly separated out the parton with momentum pY1 which will interact
with the medium. Likewise |Ỹn〉 ≡ |Ỹ1〉|Ỹn〉. The partons with total momenta pY , pỸn

do
not interact with the medium. At the same time, we need to drop any interference diagrams
between the hard vertex and Glauber vertex to retain the t enhanced terms which allows
us to write

J AB(en,k⊥,~qn) = δ(p−X−p
−
Y 1−p

−
Y )δ(p+

Ỹ1
+p+
Ỹ−p

+
Y1
−p+
Y )δ2(k⊥+p⊥Y1 +p⊥Y−p⊥X)

δ(p−X−p
−
Ỹ1
−p−Ỹ )δ2(k⊥+p⊥

Ỹ 1+p⊥Ỹ−p
⊥
X)〈X̃n|OAn (0)|Y1〉〈Ỹ1|OBn (0)M|X̃n〉

×〈Y1Y|δ2(P⊥)δ(Q−p−)χ̄n(0)
/̄n

2 |0〉〈0|χn(0)|Ỹ1Ỹ〉MXn〈X̄n|Y〉〈Ỹ|X̄n〉

(4.8)

– 21 –



J
H
E
P
1
1
(
2
0
2
1
)
0
6
4

where we have split |Xn〉 ≡ |X̄n〉|X̃n〉 We can now eliminate the phase space integrals over
all the partons that make up pY and pỸ

J AB(en, k⊥, ~qn) (4.9)
= δ(p−

X̃
− p−Y1

)δ(p+
Ỹ1
− p+

Y1
)δ2(k⊥ + p⊥Y1 − p

⊥
X̃

)δ(p−
X̃
− p−

Ỹ1
)δ2(k⊥ + p⊥

Ỹ 1 − p
⊥
X̃

)

〈X̃n|OAn (0)|Y1〉〈Ỹ1|OBn (0)M|X̃n〉〈Y1X̄n|δ2(P⊥)δ(Q− p−)χ̄n(0)
/̄n

2 |0〉〈0|χn(0)|Ỹ1X̄n〉MXn

which tells us that pY 1 = pỸ 1 = pX − pX̄ − k = pX̃ − k. We can now perform the phase
space integrals over pY 1, pỸ 1, which yields a redundant δ function which is just the factor
of t that we expected. We can therefore write

J AB(en, k⊥, ~qn) = t

[p−
X̃

]2
〈pX̃ − k, X̄n|δ2(P⊥)δ(Q− p−)χ̄n(0)

/̄n

2 |0〉〈0|χn(0)|pX̃ − k, X̄n〉

× 〈X̃n|OAn (0)|pX̃ − k〉〈pX̃ − k|O
B
n (0)|X̃n〉MXn (4.10)

which allows us to rewrite our factorization formula for Σ(2)
R from eq. (3.50) as

Σ(2)
R (~qT , en, en̄) = t|CG|2

∫
d2bei~qT ·~bΣ(0)(~b, en, en̄)

∫
d2k⊥S

AB
G (k⊥)J ABn,R (en, b,~k⊥) (4.11)

with

J ABn,R (en,~qT ,~k⊥) = 1
J ⊥n (en, b)k2

⊥

1
[p−
X̃

]2
∫
d2qne

−i~qn·~b

(2π)2 〈pX̃−k,X̄n|δ2(P⊥)δ(Q−p−)χ̄n(0)
/̄n

2 |0〉

×〈0|χn(0)|pX̃−k,X̄n〉〈X̃n|OAn (0)|pX̃−k〉〈pX̃−k|O
B
n (0)|X̃n〉MXn

(4.12)

Σ(2)
V . We can now do a similar simplification for the virtual piece. The factorized form

for this piece was derived in eq. (3.52) in terms of the functions SG convoluted with a jet
function with the following definitions

S̄ABG (x̂, ŷ) = 〈XS |T
{

1
P2
⊥
OAS (x̂) 1

P2
⊥
OBS (ŷ)

}
ρB|XS〉

JABn (en,~qn,x,y) = 〈Xn|T
{
χn(0)

/̄n

2O
A
n (x)OBn (y)

}
|0〉〈0|T̄

{
χ̄n(0)

}
δ2(P⊥)δ2(Q−P−)MV |Xn〉

(4.13)

where
MV = Θ(en − EXn∈gr)δ2(~qn − P⊥Xn 6∈gr) (4.14)

Once again we are going to put the intermediate particles on-shell before they interact with
the medium. This allows us to simplify our jet function by inserting a complete basis on
on-shell states

JABn (x, y) = 〈Xn|T
{
OAn (x)OBn (y)

}
|Yn〉〈Yn|χn(0)

/̄n

2 |0〉〈0|χ̄n(0)δ2(P⊥)δ2(Q− P−)MV |Xn〉

(4.15)
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Following the same logic as for Σ(2)
R , we look at the scenario where a single parton created in

the hard vertex(Y1) interacts with the medium at a time ignoring any interference diagrams
between the two vertices.

JABn (x, y) = 〈X̃n|T
{
OAn (x)OBn (y)

}
|Y1〉〈Y1Y|χn(0)

/̄n

2 |0〉

× 〈0|χ̄n(0)δ2(P⊥)δ2(Q− P−)MV |X̃nX̄n〉〈X̄n|Y〉 (4.16)

which allows us to eliminate the phase space integrals over Y. Once again we have split
|Xn〉 ≡ |X̄n〉X̃n〉. At the same time since we are ignoring interference diagrams between
the hard and Glauber vertices, this necessarily means that X̃n is a single particle state.

JABn (x, y) = 〈X̃n|T
{
OAn (x)OBn (y)

}
|Y1〉〈Y1X̄n|χn(0)

/̄n

2 |0〉

〈0|χ̄n(0)δ2(P⊥)δ2(Q− P−)MV |X̃nX̄n〉 (4.17)

We can now look at the combination of the Soft and jet function and completely separate
out the medium dependent piece

G =
∫
d4x

∫
d4ySABG (x̂, ŷ)JABn (x, y)

= 2
∫
d4x

∫
d4yΘ(x0 − y0)〈XS |

1
P2
⊥
OAS (x̂) 1

P2
⊥
OBS (ŷ)ρB|XS〉〈X̃n|OAn (x)OBn (y)|Y1〉

〈Y1X̄n|χn(0)
/̄n

2 |0〉〈0|χ̄n(0)δ2(P⊥)δ2(Q− P−)MV |X̃nX̄n〉 (4.18)

We can now write Θ(t) = 1/2(1 + sgn(t)) separating out the terms corresponding to Unitary
evolution from the dissipative.

G = GU + GD (4.19)

The piece corresponding to unitary evolution reads

GU =
∫
d4x

∫
d4ysgn(x0 − y0)〈XS |

1
P2
⊥
OAS (x̂) 1

P2
⊥
OBS (ŷ)ρB|XS〉〈X̃n|OAn (x)OBn (y)|Y1〉

〈Y1X̄n|χn(0)
/̄n

2 |0〉〈0|χ̄n(0)δ2(P⊥)δ2(Q− P−)MV |X̃nX̄n〉 (4.20)

This piece cancels out with the corresponding Unitary evolution term from double Glauber
insertions on the other side of the cut (By interchanging the variables pY1 and pX̃n

). The
Dissipative piece, on the other hand no longer contains any time ordering. Then, as before
in eq. (3.47), using the translational invariance of the QGP medium,

〈XS |
1
P2
⊥
OAS (x⊥, x−) 1

P2
⊥
OBS (y⊥, y−)ρB|XS〉 =

∫
d4k

(2π)4k4
⊥
ei(x̂−ŷ)·kDAB

> (k)

The factorization formula now becomes

Σ(2)
V = −1

2V × |CG(Q)|2H(Q,µ)
∫
d2~qJSS(~qJS)

∫
d2~qn̄J ⊥n̄ (en̄, ~qn̄)∫

d4k

(2π)4k4
⊥
DAB
> (k)

∫
d2~qn

∫
d4x

∫
d4yei(x̂−ŷ)·kJABn (en, ~qn, x, y)

× δ2(~qT + ~qJS + ~qn + ~qn̄) (4.21)
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with

JABn (en, ~qn, x, y) = 〈X̃n|OAn (x)OBn (y)|Y1〉〈Y1X̄n|χn(0)
/̄n

2 |0〉〈0|χ̄n(0)δ2(P⊥)δ2(Q− P−)MV |X̃nX̄n〉

We can now insert a complete set of states and perform the integrals over x, y, This will
enable us to eliminate the phase space integrals pY 1 and X̃n, resulting in a factor of t.∫

d4xd4ye−ik·(x̂−ŷ)JABn (en, ~qnx, y)

= t

[p−
Ỹ

]2
〈pỸ + k|OAn (0)|Ỹn〉〈Ỹn|OBn (0)|pỸ + k〉〈pỸ + k, X̄n|χn(0)

/̄n

2 |0〉

〈0|χ̄n(0)δ2(P⊥)δ2(Q− P−)MV |pỸ + k, X̄n〉 (4.22)

We can factor out the vacuum cross section as before and write,

Σ(2)
V = −1

2 t× |CG(Q)|2
∫
d2bei

~b·~qT Σ(0)(~b, en, en̄)
∫
d2k⊥
(2π)4S

AB
G (k⊥)J ABn,V (en, b,~k⊥) (4.23)

where the Soft function SABG is identical to the one for Σ(2)
R defined in eq. (3.51) and

J ABn,V (b) = 1
k2
⊥J ⊥n (en, b)

1
[p−
Ỹ

]2
∫
d2qne

−i~qn·~b

(2π)2 〈pỸ + k|OAn (0)|Ỹn〉〈Ỹn|OBn (0)|pỸ + k〉

〈pỸ + k, X̄n|χn(0)
/̄n

2 |0〉〈0|χ̄n(0)δ2(P⊥)δ2(Q− P−)MV |pỸ + k, X̄n〉 (4.24)

We can now combine the two simplified terms to write the final form of our factorization
formula

Σ(2)
R +

{
Σ(2)
V + c.c

}
= t× |CG(Q)|2Σ(0)(~qT , en, en̄)⊗qT

∫
d2k⊥S

AB
G (k⊥)J ABn,Med(en, ~qT , k⊥)

(4.25)

with an effective medium induced jet function

J ABn,Med(en, ~qT ) = J ABn,R (en, ~qT ,~k⊥)− J ABn,V (en, ~qT ,~k⊥) (4.26)

in terms of J ABn,R and J ABn,V defined in eq. (4.12) and eq. (4.24).
In the next section, we will consider the one loop corrections for the functions in this

factorization formula.

5 One loop results for medium induced functions

The factorization formula at next to leading order in the Glauber operator expansion reveals
two new functions beyond those already present in the vacuum result: a medium Soft
function and a medium induced jet function. Of these, the medium soft function SABG
defined in eq. (3.51) contains all the information about the structure of the medium and is
independent of the observable defined on the final state jet. Hence, it can be thought of as
a universal structure function for the medium. An explicit computation of this function
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now requires us to assume some form for the medium density matrix. A relevant choice is a
medium in thermal equilibrium at temperature T � Q where the EFT applies for which

ρB = e−βHs

Tr
[
e−βHs

] (5.1)

where Hs is the Soft sector Hamiltonian which is identical to the full QCD Hamiltonian.
The medium induced jet function encodes the modification of the jet due to the

interaction with the medium. The complete set of corrections for this function at one loop
involves:

• Elastic collisions of the jet partons with the medium.

• Medium induced radiation.

In this paper, we will only consider the one loop corrections for the hard vertex, which
correspond to the corrections from elastic collisions of the vacuum evolved jet partons with
the medium. The corrections to the Glauber vertex which corresponds to medium induced
radiation are presented elsewhere [92]. Since the medium Soft function is a correlator of
the Galuber Soft operator, we therefore compute the Soft function to tree level. With the
assumption of a thermal medium, the tree level soft function is then simply the Wightman
function in the thermal bath. This was already computed in [84]. We present the result
here for convenience.

S
AB,(0)
G (~k⊥) = δAB

2k2
⊥

∫
d2p⊥
(2π)3

∫ ∞
0

dp+
{
nF

(
|p

+

2 + p2
⊥
2 |
)[

1− nF
(
|p

+

2 + (~p⊥ + ~k⊥)2

2p+ |
)]

+ nF

(
|p

+

2 + (~p⊥ + ~k⊥)2

2p+ |
)[

1− nF
(
|p

+

2 + p2
⊥
2 |
)]}

This result is written in terms of the Fermi distribution function assuming that the thermal
bath has fermions. A complete calculation would also include a similar term with Bose
distribution functions to account for gluons in the thermal bath, but for simplicity we will
not consider those terms till we do a phenomenological analysis.

We can now look at the medium jet function, specifically considering the one loop
corrections from elastic scattering. At tree level we have in impact parameter space

J AB,(0)
n,Med (~k⊥, b, en) = e−i

~k⊥·~b − 1
k2
⊥

(5.2)

The details of the one loop computation for the elastic collisions are computed in
appendix B.

J AB(1)
n,Med =

1
2δ
AB

k2
⊥

(Q(b) +G(b)) (5.3)
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where the result is written in terms of Quark and Gluon Glauber operator contributions

Q(b) = αsCF e
−i~k⊥·~b

2π

[∫ 1−zc

zc

dzpgq(z)
{

Θ
(
zc−

y

en+y

)
ln
( −B(z)
en(1−z)

)
−Θ

(
zc−

en
en+y

)
ln B(z)en

yM

}

+Θ
(

en
en+y−zc

)
Θ
(

y

en+y−zc
){∫ en

en+y

zc

dzpgq(z) ln
( −B(z)
en(1−z)

)
−
∫ 1−zc

en
en+y

dzpgq(z) ln B(z)en
yM

}]

+αsCF
2π

(
e−i

~k⊥·~b−1
)∫ 1

1−zc

pgq(z) lnm
2
Db

2e2γE (1−z)
4 (5.4)

The Gluon operator contribution G(b) is given by the difference Rg − Vg, where

Rg = αsNce
−i~k⊥·~b

2π

[∫ 1−zc

zc

dzpgq(z)
{

Θ
(
zc−

y

en+y

)
ln A(z)

M
−Θ

(
zc−

en
en+y

)
ln
( −A(z)
y(1−z)

)}

−Θ
(

en
en+y−zc

)
Θ
(

y

en+y−zc
){∫ y

en+y

zc

dzpgq(z) ln
( −A(z)
y(1−z)

)
−
∫ 1−zc

y
en+y

dzpgq(z) ln A(z)
M

}]

−αsNc

2π e−i
~k⊥·~b

∫ 1

1−zc

pgq(z) lnm
2
Db

2e2γE (1−z)
4 (5.5)

written in terms of

pgq(z) = 1+(1−z)2

z
, y= 4k2

⊥
Q2 , M = 4m2

D

Q2 , A(z) = enz−(1−z)y, B(z) = zy−en(1−z)

and Vg is obtained by simply evaluating Rg ay k⊥ = 0. The integrals over z can be done
exactly analytically but are not too illuminating. The contributions Q(b) and G(b) go to 0 as
k⊥ goes to 0 so that it is a purely medium induced result. There are two effects to note here

• These radiative corrections result from purely elastic collisions of the jet with the
medium and do not include any medium induced Bremsstrahlung, which will be
accounted for in a companion paper [92]. The result does not have any UV or rapidity
divergences and hence does not induce any anomalous dimension for the medium
jet function. Therefore, there is no resummation to be done for elastic collision
contributions.

• The result is sensitive to the IR cut-off mD in the form of a logarithm of ∼ ln en/M ,
ln bmD. This appears due to the IR pole when the gluon becomes collinear to the
quark. For a purely vacuum background, the collinear pole cancels between real and
virtual diagrams for an IRC (Infra Red Collinear) safe observable like the jet mass.
However, incoherent elastic collision of the jet parton with the medium can transfer
enough transverse momentum which can remove this pole from the real diagram
if the resulting jet mass is greater than the imposed values of en. This leaves the
contribution from the virtual diagram uncanceled resulting in the sensitivity to mD.
Similarly for the qT measurement, the collinear pole shifts away from qT = 0 due to
the gain of additional kT from the medium resulting in non-cancellation. A possible
resummation of these logarithms would require us to separate the scale en, qT from
M2, which will require a further matching to the EFT at the scale mD. This is beyond
the scope of this paper.
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6 The master equation

We can now gather all the pieces and write down the Master equation for the density matrix
evolution. Since the radiative corrections to the medium induced corrections that we have
considered in the previous section do not lead to any new anomalous dimensions, we simply
include these corrections as a fixed order correction on top of a resummed vacuum cross
section (appendix A). Combining all the pieces from the previous section and using them in
eq. (3.21), we can write

Tr[ρ(t)M]≡Σ(en, ~qT , t)

=
[
Σ(0)

Resum(en, ~qT )+ t|CG(Q)|2Σ(0)
Resum(en, ~qT )⊗qT

∫
d2k⊥S

AB
G (k⊥)J ABn,Med

]
+O(H3

G)+ . . .

We can write the evolution equation in a suggestive form by going to impact parameter
space (~b) which is conjugate to ~qT ,

Σ(t,~b) = Σ(0)(~b)
[
1 + t

λmfp(~b)

]
(6.1)

where
λ−1

mfp(b) = |CG|2
∫
d2k⊥S

AB
G (k⊥)J ABn,Med(~b) (6.2)

is an emergent energy scale that can be thought of as the inverse mean free path of the jet
in the medium. t is the time of propagation of the jet in the medium. If the medium is very
dilute then the mean free path (mfp) can be large compared to t in which case eq. (6.1) is
a good enough approximation. On the other hand, for the case of a denser medium we can
have t ∼ λmfp, in which case it becomes necessary to resum the series in t/λmfp to all orders.

We first relate the trace over the density matrix to the scattering cross section, noting
that

dσ(en)
d2~qT

(t) = N Tr[ρ(t)M]
V

(6.3)

where N is a normalization factor that depends on the initial state kinematics which we
can absorb in the born level cross section.

dσ(en, en̄, t)
d2~qT

= dσ(en, en̄)
d2~qT

∣∣∣Vac

Resum
+ t|CG(Q)|2dσ(en, en̄)

d2~qT

∣∣∣Vac

Resum
⊗qT

∫
d2k⊥S

AB
G (k⊥)J ABn,Med

Throughout this paper, we have worked in the regime where the medium lifetime t and the
mean free path λmfp are much longer than the formation time tF of the jet partons and
the relaxation time in the QGP bath 1/T . This means that after each interaction with the
medium, the jet partons go on-shell before the next interaction with the medium. At the
same time, the medium loses any memory of the jet between successive interactions. The
hierarchy of scales also implies that there is no quantum interference between successive
interactions of the jet with the medium so that the LPM effect is not relevant here. Therefore,
the evolution of the jet at any time depends entirely on the state of the jet partons at that
time, making this a Markovian process. We can therefore consider a evolution time step
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t − 0 = ∆t � 1/T, tF and at the same time ∆t � λmfp. This allows us to take the limit
t→∞ while talking about a single interaction of the jet with the medium, thus imposing
momentum conservation, while at the same time taking t→ 0 while talking about multiple
jet medium interactions.

We can therefore write an evolution equation for our observable as a function of the
time of propagation in the QGP medium.

∂t
dσ(en, en̄, t)

d2~qT
= |CG(Q)|2dσ(en, en̄, t)

d2~qT
⊗qT

∫
d2k⊥S

AB
G (k⊥)J ABn,Med(en, ~qT ,~k⊥) (6.4)

The solution for this equation will resum the leading “t” enhanced terms for all higher
power contributions of HG. The physical picture we have is a summation of multiple
incoherent interactions of the jet with the medium. This can now be solved by going to
impact parameter space. This yields the result

dσ(en, en̄, t)
d2~qT

=
∫
d2~bei

~b·~qT σvac
resum(en, en̄,~b)et|CG(Q)|2

∫
d2k⊥S

AB
G (k⊥)JAB

n,Med(en,~b,~k⊥) (6.5)

where σvac(en, en̄,~b) is just the inverse Fourier transform for the resummed vacuum cross
section.

σvac
resum(en, en̄,~b) =

∫
d2~qT e

−i~qT ·~b

(2π)2
dσ(en, en̄)
d2~qT

∣∣∣Vac

Resum
(6.6)

Eq. (6.5) is the main result of this paper. While the result gives us a closed form expression,
we still need to do the integrals numerically from this point onwards. A realistic comparison
with data will need us to include the effects of nuclear/ hadronic pdfs and we leave a
detailed phenomenological study based on this framework for the future. At the same
time, the corrections to the Glauber vertex, which we have not included in this paper will
likely induce new UV and rapidity divergences in our medium soft and jet functions whose
computation and resummation is considered in [92].

7 Comparison with other formalisms

The most direct comparsion of the formalism introduced in this paper can be made with
the earlier attempt to use SCET for heavy ion collisions [53–57]. This SCETG approach
treats the interaction of the jet with the medium in terms of a background Glauber gauge
field, integrating out the propagating degrees of freedom of the medium. The framework
also employs an expansion in the interaction with the medium, called the opacity expansion,
which is similar to the expansion in the Glauber Hamiltonian made in this paper. The main
difference is the treatment of soft physics, which is altogether absent in the SCETG approach
since the soft medium degrees of freedom at the scale of the temperature and the radiation
that appears at this scale are not incorporated. Only collinear physics is included and this
is insufficient to establish gauge invariance or consistency of factorization. In particular,
as is shown in [92], which is a companion paper to the formalism introduced here, the
radiative corrections for the medium structure function which captures the soft physics in
the medium lead to UV and rapidity divergences which are absent in the SCETG framework
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since the medium is treated as a classical background field. The corresponding rapidity
renormalization group is just the BFKL equation, which is a new result in Heavy Ion physics
that has not been captured by any previous formalism.The rapidity divergence is then
canceled by the collinear jet function, while the UV divergences are canceled by the Hard
function thus establishing renormalization scale independence of the cross section. This
also induces large logarithms which can then be resummed by solving the renormalization
group equations which are also absent in earlier formalisms. It is to be noted that, the
inclusion of soft physics of the medium is not dependent on the details of jet observable but
is part of the medium structure function defined in eq. (3.46) which can be thought of as the
Parton Distribution function of the medium. The other advantage of having a factorization
formula, which is not available so far in literature is that it allows for a systematic way
to improve the accuracy of the calculation simply by computing each factorized function
(whose operator definitions are known) to better accuracy. There are other formalisms in
literature such as BDMPS-Z [4, 6], AMY [14], deal with multiple coherent interactions of
the jet with the medium which is true when the mean free path of the jet in the medium is
comparable to its coherence length leading to interference between successive interactions
with the medium (LPM effect). The case considered in this paper is that of a long lived
dilute medium where such interference effects are not important. This precludes a direct
comparison with the formalisms above until a future work where the framework here can
be extended to a dense medium. However, none of these frameworks include soft physics at
the scale of the temperature. which appears to be an important piece of the full story. We
can still say a lot about what the structure of the factorization and radiative corrections
in our approach should look like for these cases, which is discussed at the end of the next
section. We can also compare the general approach to the problem highlighting why an
EFT can be considered advantageous over other formalisms

• It provides an explicit separation of physics at widely separated scales in the form of
a factorization formula for the jet observables.

• It gives a gauge invariant operator definition for the factorized functions.

• The factorization does not rely on perturbation theory but only on a separation
of scales. So the factorization holds even when some of the functions become non-
perturbative. Thus, it gives a clear boundary between the perturbatively calculable
and non-calculable physics. This is in exact analogy with factorization formulas for
ep and pp experiments such as Deep Inelastic scattering (DIS) and Drell-Yan where
the universal physics of the proton is defined by a Parton Distribution Function
(PDF). This has the advantage that if some of the factorized functions become
non-perturbative, there is a possibility of computing them from lattice/quantum
computers.

• Lastly, the separation of scales allows us to resum large logarithms in the ratio of
these scales via Renormalization group equation for the factorized functions. This is
systematically improvable order by order in Logarithmic accuracy and has already
led to precise predictions in pp and ep experiments.
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8 Summary and outlook

In this paper, I develop an Effective Field Theory (EFT) framework to compute jet
substructure observables for heavy ion collision experiments. I consider dijet events that
happen at the periphery of the collision so that one of the jets evolves through vacuum
while the other travels through the Quark Gluon Plasma medium that is created in the
background. The jets are groomed using a grooming algorithm in order to mitigate effects
of soft contamination from Multi-parton interactions as well as the QGP medium. This
means that the final state measurements do not include any soft hadrons from the cooling
QGP medium. We can then only follow the evolution of the reduced density matrix of the
jet tracing over the QGP bath. This effectively treats the jet as an open quantum system
interacting with a thermal bath and allows us to derive a Lindblad type master equation
for the density matrix evolution.

I measure two quantities on the final state di-jet configuration: the transverse momentum
imbalance between the jets as well as a jet mass constraint imposed on each jet which
restricts the radiation inside the large radius jets to a collinear core. This automatically
ensures that we select events where the radiation is not sensitive to the edge of the jet.
This translates to an insensitivity to jet selection bias and allows a direct comparison of jet
substructure modification for the same hard events in pp and HIC.

I work in the simple case where the length of the medium and the mean free path
of the jet are much longer than all other time scales, particularly the jet formation time
tF , which is the time scale over which jet partons maintain coherence, and the relaxation
time in the bath 1/T. As a result, the dominant contribution to the evolution of the jet
in the medium comes from the regime where the partons created in the hard interaction
and subsequent vacuum shower go on-shell before they interact with the medium. This
happens due to the lack of quantum coherence between the hard and medium interactions.
I derive a factorization formula for the observable assuming a forward scattering of the jet.
This allows us to cleanly separate out the physics at different scales in terms of manifestly
gauge invariant operators. The factorization holds independent of the exact form of the
medium density matrix, with the only qualification that the medium be translationally
invariant. As explained after eq. (3.46), this is not a necessary condition for factorization
and can be relaxed. The final formula is derived in terms of the vacuum cross section and a
medium soft and jet function. The factorization formula will serve as a template for any jet
substructure observable that we may wish to compute and reveals certain universal features.

• The physics of the medium is completely captured by a medium Soft function which
is a correlator of Soft scaling fields in the background of the medium density matrix.
This can be thought of as a “Medium Structure Function” (MSF) which is analogous
to the Parton Distribution function (PDF) which encodes the longitudinal structure of
hadrons. In this paper, I have only computed this to tree level in a thermal background.
The radiative corrections have been considered in a companion paper [92] which lead
to both UV and rapidity anomalous dimensions for this function. In particular, they
lead to a BFKL evolution equation for the medium structure function.
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• The modification of the jet due to its interaction with the medium is captured by
the medium jet function. In this paper, we have only considered the corrections
from elastic collisions of the jet partons with the medium. This leads to UV finite
corrections, which are however sensitive to medium IR cut-off scale mD. In a high
temperature-weak coupling regime, mD ∼ gT is hierarchically separated from the
scale of the observable and leads to large logarithms. These can be resummed by doing
a further matching of the jet function to an EFT at scale mD, which we leave for the
future. The other radiative corrections arise due to medium induced Bremsstrahlung
have been computed in another paper [92].

The jet-medium interaction leads to an emergent time scale λmfp which is the mean
free path of the jet in the medium. If the medium size is comparable to or larger than this
length scale, then it becomes necessary to resum multiple incoherent interactions of the jet
with the medium. This is achieved by solving a Lindblad type evolution equation which can
be solved analytically in terms of a resummed vacuum cross section and medium induced
functions.

The assumption of a long lived medium which renders all interactions of the jet
incoherent is an idealization but is an important step towards addressing a realistic scenario.
In particular, we would like to consider the following phenomenologically relevant cases of
increasing complexity

1. The medium exists for a short time comparable to or shorter than the formation time
of the jet but the medium is dilute. This means that the mean free path is large
compared to the medium size and only a single interaction of the jet with the medium
is relevant. In this case the jet partons wont go on-shell before they interact with the
medium. This would mean a hard interaction that creates the jet and the forward
scattering from the medium can have interference diagrams. Since the formation time
for Soft radiation is small, we conjecture that the medium structure function remains
unchanged and only the jet function will get modified. This case of a dilute short
lived medium is currently being investigated [91].

2. A more complicated case would be that the mean free path can be comparable to or
smaller than the formation time of the jet which in turn is comparable to the size of
the medium. This would mean that apart from hard-medium interaction interference,
multiple interactions of the jet with the medium are important and there is quantum
interference between successive interactions (LPM effect). Again, this will only impact
the jet function. This entails defining and computing jet functions at higher orders
in the Glauber Hamiltonian and summing the series along with all the radiative
corrections at each order. This case of a dense short lived medium will be considered
in a future work.

While I have treated the initial hard interaction as an e+e− collision for ease of analysis, this
can be easily extended to the realistic case of hadronic collisions which will also require us to
input nuclear pdfs for comparison with data. The factorization for the case pf pp collisions is
more involved and is written in terms of the so called Beam function [93] which includes the
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effects of initial state radiation. So we will get a contribution to our perturbative transverse
momentum observable ~qT from the initial state radiation. For ~qT � ΛQCD, this beam
function can be matched to the usual parton distribution functions. As a concrete example,
the authors in [94] extended the factorization for the jet observable called angularities
for the case of dijet production in pp collisions which is closely related to the jet mass
measurement we have imposed in this paper. We leave the detailed phenomenological
analysis based on this framework for future work.
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A Operator definitions and one loop results for vacuum evolution

In this appendix we give the operator definitions of the factorization elements that appear
in the vacuum and their NLO expansions. From those we determine the renormalization
group equations, and corresponding anomalous dimensions. Part of these results are already
available in literature. The jet function is the one we compute here while quoting results
for other functions.

A.1 Hard function

The one loop hard function for the process e+e− → qq̄ is ([95, 96])

H(µ) = 1 + αsCF
2π

(
− ln2 µ

2

Q2 − 3 ln µ2

Q2 − 8 + 7
6π

2
)

(A.1)

which yields the anomalous dimension

γHµ = −2αsCF
π

ln µ2

Q2 − 3αsCF
π

(A.2)

A.2 Jet function

The vacuum jet function with a cumulative jet mass measurement along with transverse
momentum imbalance is given by

J ⊥n (~qT , en) = (2π)3

Nc
tr〈0|

/̄n

2χnδ(Q− P
−)δ2(P⊥)δ2(~qT − P⊥Xn /∈gr)Θ(en − EXn∈gr)|Xn〉〈Xn|χ̄n(0)|0〉

This defines the vacuum evolved n jet function and we have a similar definition for the
vacuum evolved n̄ jet function. The Renormalization group equations for each of these
vacuum jet functions is identical and hence we will only present the result for the n jet
function. We will work in impact parameter space and give results for

J ⊥n (~b, en) =
∫

d2~qT
(2π)2 e

−i~qT ·~bJ ⊥n (~qT , en) (A.3)

– 32 –



J
H
E
P
1
1
(
2
0
2
1
)
0
6
4

Figure 2. Real emission diagrams for vacuum jet function at the amplitude square level. The
dashed line indicates the cut. Diagram (a) has a real gluon emission from the collinear Wilson line
attached to the hard vertex which creates the initiating n quark, denoted by ⊗ along with a single
insertion from Hn,int which describes interactions between n collinear partons. Diagram (b) comes
from two insertions of Hn,int. Since this is vacuum evolution there are no Glauber exchanges with
the medium here.

At tree level,
J ⊥(0)
n = 1

(2π)2 (A.4)

At one loop we have two real and two virtual diagrams. Since we know that the vacuum
cross section is an IR finite quantity, we can directly use dim reg for regulating both UV
and IR divergences. In that case, the virtual diagrams are scaleless and evaluate to 0 in
dim. reg. This function obeys two RG equations

µ
d

dµ
J ⊥n (~b, en, µ, ν) = γJµJ ⊥n (~b, en, µ, ν)

µ
d

dν
J ⊥n (~b, en, µ, ν) = γJν J ⊥n (~b, en, µ, ν) (A.5)

The two real diagrams are shown in figure 2.

Ra = 4g2CFµ
2ενη

∫
ddq

(2π)d−1 δ(q
2) Q|q−|−η

q−Q(q++ q2
⊥

Q−q− )
MJ (A.6)

Rb = 2g2CFµ
2ε
∫

ddq

(2π)d−1 δ(q
2) q2

⊥

q−(Q−q−)2(q++ q2
⊥

Q−q− )2
MJ (A.7)

MJ =
{

Θ(q−−Qzc)Θ((Q−q−)−Qzc)Θ
(
E2
Jen−Q

(
q++ q2

⊥
Q−q−

))

+δ2(~qT−~q⊥)Θ((Q−q−)−Qzc)Θ(Qzc−q−)+δ2(~qT +~q⊥)Θ(q−−Qzc)Θ(Qzc−(Q−q−))
}

(A.8)
This evaluates to the renormalized result in impact parameter space,

J ⊥(1)
n (en, b,µ,ν) =−αsCF(2π)3 ln µ2

E2
Jen

(
2ln 1−zc

zc
−2(1−zc)+2zc+

(1−zc)2

2 − z
2
c

2

)

−αsCF(2π)3 ln µ
2b2e2γE

4

(
−2ln ν

Qzc
−4zc−2ln(1−zc)+ z2

c

2 + 1
2−

(1−zc)2

2

)
(A.9)

– 33 –



J
H
E
P
1
1
(
2
0
2
1
)
0
6
4

and therefore gives the anomalous dimensions

γJµ = αsCF
π

(
2 ln ν

Q
+ 3

2

)
γJν = αsCF

π
ln µ

2b2e2γE

4 (A.10)

A.3 Soft function

The soft function that appears in the factorization theorems in eq. (3.29) is defined in
eq. (3.30) and it has been calculated in several schemes at higher orders in QCD, as in [97].
and satisfies the following renormalization group equations

d

d lnµS(µ, ν) = γs(µ, ν)S(µ, ν) , d

d ln ν S(µ, ν) = γsν(µ, ν)⊗ S(µ, ν) . (A.11)

Therefore we find for the one-loop corresponding impact parameter space quantities

S(µ, ν) = 1 + αs(µ)Ci
π

{
4 ln

(
µE
µ

)
ln
(
ν

µ

)
− 2 ln2

(
µE
µ

)
− π2

12

}
+O(α2

s) , (A.12)

with

γs(µ,ν) =−4αs(µ)Ci
π

ln
(
ν

µ

)
+O(α2

s) , γsν(µ,ν) = 4αs(µ)Ci
π

ln
(
µE
µ

)
+O(α2

s) , (A.13)

where µ−1
E = beγE with b = |~b| is the impact parameter variable conjugate to ~qT .

A.4 Resummation

The vacuum cross section can be resummed by solving the renormalization group equations
in µ and ν using standard techniques. We will refer the reader to [88] for details on the
resummation. In this paper, we are working in a different hierarchy so the details, if not the
procedure for resummation, will differ but we postpone presenting the explicit equations
till we do a phenomenological study in a future publication.

B Medium jet function

In this section we present the one loop results for the modified jet function defined in
eq. (4.26) as the difference of a real (eq. (4.4)) and virtual (eq. (4.24)) medium jet function.

J ABn,R (en,~qT ,~k⊥) = 1
J ⊥n (en, b)k2

⊥

1
[p−
X̃

]2
∫
d2qne

−i~qn·~b

(2π)2 〈pX̃−k,X̄n|δ2(P⊥)δ(Q−p−)χ̄n(0)
/̄n

2 |0〉

×〈0|χn(0)|pX̃−k,X̄n〉〈X̃n|OAn (0)|pX̃−k〉〈pX̃−k|O
B
n (0)|X̃n〉MXn

(B.1)

J ABn,V (b) = 1
k2
⊥J ⊥n (en, b)

1
[p−
Ỹ

]2
∫
d2qne

−i~qn·~b

(2π)2 〈pỸ +k|OAn (0)|Ỹn〉〈Ỹn|OBn (0)|pỸ +k〉

〈pỸ +k,X̄n|χn(0)
/̄n

2 |0〉〈0|χ̄n(0)δ2(P⊥)δ2(Q−P−)MV |pỸ +k,X̄n〉

(B.2)
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and the medium jet function
J ABn,Med = J ABn,R − J ABn,V (B.3)

J ⊥n (en, b) being the vacuum jet function.
The complete one loop corrections include corrections to the Glauber vertex and the cor-

rections to the hard vertex(SCET current). In this paper, we will only consider one loop cor-
rections for the hard vertex which correspond to elastic collisions with the medium. Both of
these corrections are equally important and will be needed for any phenomenological analysis.

Therefore, we will evaluate the Glauber collinear current to tree level. The Glauber
collinear currents (OAn , OBn ) can be either quark or gluon currents, so we need to consider
both cases. However, there will be no contributions proportional to t from the interference
term between these currents so we can write the one loop corrections as a sum over the
quark and gluon terms.

Quark operator. We begin with the quark operator OAn = χ̄nW
†
n
/̄n
2T

AWnχn.
For the quark operator, this will create and annihilate a single quark at tree level so

that |X̃n〉 ≡ |X1〉 and X̄n ≡ |Xi〉, with i ∈ {2,∞}.
We can separately consider the contribution from the Real and virtual medium jet

functions and combine them later.

J ABn,R (en,k) = 1
J ⊥n (en, b)k2

⊥

∫
d2qne

−i~qn·~b

(2π)2 Θ

en− 8
Q2

∑
i,j∈gr

pXi ·pXj

δ2

~qn−∑
i 6∈gr

~p⊥Xi−~k⊥


Tr
[
TATB〈pX1−k,pXi|δ2(P⊥)δ(Q−p−)χ̄n(0)

/̄n

2 |0〉〈0|χn(0)|pX1−k,pXi〉
]
(B.4)

we can make a change of variables taking pX1−k → pX1 . We can rearrange the measurement
function for the jet mass as

M =
∑
i,j

pXi · pXj =
∑
j 6=1

pX1 · pXj +
∑
i,j 6=1

pXi · pXj →
∑
i,j

pXi · pXj +
∑
j

k · pXj − k · pX1

Now using the fact that ∑j p
−
Xj = Q, ∑j ~p

⊥
Xj = 0 and using the power counting of our

Glauber mode,

M =
∑
i,j

pXi · pXj + 1
2k

+Q− 1
2k

+p−X1
+ ~k⊥ · p⊥X1 (B.5)

Given the on-shell condition on pX1 − k from eq. (B.4),

k+p−X = 2~p⊥X1 · ~k⊥ + ~k2
⊥ (B.6)

M =
∑
i,j

pXi · pXj + Q

2p−X1

2~p⊥X1 · ~k⊥ +
~k2
⊥

2p−X1

(
Q− p−X1

)
(B.7)
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so that our jet function becomes

J AB(en, k)

= 1
J ⊥n (en, b)k2

⊥

∫
d2qne

−i~qn·~b

(2π)2 Θ
(
en −

[
8
~k⊥ · p⊥X1

Qp−X1

+ 8 k2
⊥

2p−XQ2 (Q− p−X1
)
]
X1∈gr

− 8
Q2

∑
i,j∈gr

pXi · pXj

)
δ2
(
~qn −

∑
i 6∈gr

~pXi,⊥ − ~k⊥
∣∣∣
X1∈gr

)
〈Xi|δ2(P⊥)δ(Q− p−)χ̄n(0)

/̄n

2 |0〉〈0|χn(0)|Xi〉

(B.8)

So the definition of the jet mass measurement is altered from its standard definition by
a function of k⊥ due to the interaction of the parton X1 with the medium. Even though
we have worked this out for the case of jet mass measurement, this is a general property
for all jet substructure observables. pX1 here is the momentum of a quark so that when
we compute the jet function, it will automatically sum over all the quarks in the jet as it
should. When we include the gluon-medium interaction, we will have a similar sum over
gluon states.

J AB,(0)
n,R (en, ~k⊥,~b) =

1
2δ
AB

k2
⊥

e−i
~k⊥·~b (B.9)

The vacuum jet function which appears in the denominator is just 1 at tree level.
At one loop, I have both real and virtual diagrams. The gluon emitted as a radiative

correction interacts with the medium and acquires a mass mD with the hierarchy mD � en
since we are working in a weak coupling regime. If the jet function is IR finite, then the
mD scale is irrelevant and we can use dimensional regularization which does not distinguish
between UV and IR divergences. However, we expect that the medium will induce non-
trivial Infra-Red physics of this function, it is no longer guaranteed that this function is IR
finite, in the sense that it can be sensitive to scale mD. We are dividing out by the vacuum
jet function which, at one loop is equivalent to subtracting the one loop result in impact
parameter(b) space. This immediately tells us that the virtual diagrams simply cancel out
between the numerator and denominator and the answer will just be the difference between
the real diagrams which we now consider. There are two Feynman diagram that contribute
as shown in figure 3.

J AB,(1)
n,R =

1
2δ
AB

k2
⊥

{
(Ra(~b)− e−i

~k⊥·~bRVac
a (~b)) + (Rb(~b)− e−i

~k⊥·~bRVac
b (~b))

}
≡

1
2δ
AB

k2
⊥

R(b)

Depending on which partons pass the grooming condition, we have three contributions
just as for the vacuum diagram. For the diagram (a), we have

Ra = 8g2CF

∫
d2qn
(2π)2 e

−i~qn·~b
∫
d4pδ+(p2)

∫
d4q

(2π)3 δ
+(q2−m2

D)δ(Q−p−−q−)δ2(~q⊥+~p⊥)p
−(p−+q−)
q−(p+q)2{

Θ
(
en−8

~k⊥ ·~p⊥
Qp−

−8k
2
⊥(Q−p−)
2p−Q2 − 8

2Q
(
p++q+

))
δ2(~qn−~k⊥)Θ(q−−Qzc)Θ(p−−Qzc)

+Θ(Qzc−q−)Θ(p−−Qzc)δ2(~qn−~q⊥−~k⊥)+Θ(Qzc−p−)Θ(q−−Qzc)δ2(~qn−~p⊥)
}

(B.10)
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(a) (b)

Figure 3. Real emission diagrams for the medium induced jet function. The ⊗ is the hard vertex
that creates the quark. The Gluon in diagram (a) is from the n collinear Wilson line attached to
the hard vertex. The dotted line indicates the Glauber gluon exchange with the medium. We also
indicate that the quark goes on-shell before interacting with the medium. Diagram (b) comes from
insertions of Hn,int which describes interactions between n collinear partons.

we can shift ~qn → ~qn + ~k⊥ and subtract the corresponding vacuum diagram in figure 2.
Doing the same for diagram (b), we get

R= 4g2CF

∫
d2qn
(2π)2 e

−i(~qn+~k⊥)·~b
∫

d4q

(2π)3 δ
+(q2−m2

D)


(Q−q−)

q−
(
q++ q2

⊥
Q−q−

)+ q2
⊥

2(Q−q−)2(q++ q2
⊥

Q−q− )2

{(
Θ
(
en−8

~k⊥ ·~p⊥
Qp−

−8k
2
⊥(Q−p−)
2p−Q2 − 8

2Q

(
q2
⊥

Q−q−
+q+

))
−Θ

(
en−

8
2Q

(
q2
⊥

Q−q−
+q+

)))

δ2(~qn)Θ(q−−Qzc)Θ(p−−Qzc)+Θ(Qzc−p−)Θ(q−−Qzc)
[
δ2(~qn+~k⊥+~q⊥)−δ2(~qn+~q⊥)

]}

The other piece of the medium jet function is J ABn,V defined in eq. (B.2). Once again we
consider the quark operator and evaluate the Glauber current at tree level, which leads to

J ABn,V (b) =
1
2δ
AB

k2
⊥J ⊥n (en, b)

∫
d2qne

−i~qn·~b

(2π)2 〈pỸ + k, X̄n|χn(0)
/̄n

2 |0〉

〈0|χ̄n(0)δ2(P⊥)δ2(Q− P−)MV |pỸ + k, X̄n〉

=
1
2δ
AB

k2
⊥

(B.11)

where the numerator is simply proportional to the vacuum jet function and hence cancels
out with the denominator leaving behind a very simple result. Therefore, for the Quark
Glauber operator, our result is

J AB,qn,Med =
1
2δ
AB

k2
⊥

{
e−i

~k⊥·~b − 1 +R(b)
}

(B.12)
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R(b) evaluates to

R = αsCF e
−i~k⊥·~b

2π

[ ∫ 1−zc

zc

dzpgq(z)
{

Θ
(
zc −

y

en + y

)
ln
( −B(z)
en(1− z)

)
−Θ

(
zc −

en
en + y

)
ln B(z)en

yM

}

+ Θ
(

en
en + y

− zc
)

Θ
(

y

en + y
− zc

){∫ en
en+y

zc

dzpgq(z) ln
( −B(z)
en(1− z)

)
−
∫ 1−zc

en
en+y

dzpgq(z) ln B(z)en
yM

}]

+ αsCF
2π

(
e−i

~k⊥·~b − 1
) ∫ 1

1−zc

pgq(z) ln m
2
Db

2e2γE (1− z)
4 (B.13)

where

pgq(z) = 1 + (1− z)2

z
, B(z) = zy − en(1− z), y = 4k2

⊥
Q2 , M = 4m2

D

Q2 (B.14)

The integral over z can be done analytically with little difficulty. However, the resulting
final expression is long and not very illuminating, so we present the result as an integral
over z. The result is finite and there are no UV or rapidity divergences. However, it is
sensitive to the IR cut-off mD.

Gluon operator. We will now consider the contribution to the one loop modified jet
function from the gluon operator OAn,g = i

2f
ABCBBn⊥,µ

n̄
2 · (P + P†)BCµn⊥, which creates and

annihilates a single gluon at tree level.
Following the same series of steps as for the quark operator, we arrive at

J AB,gn,R (en,~k⊥)

= 1/2
k2
⊥J ⊥n (en, b)

∫
d2qne

−i~qn·~b

(2π)2 Θ(en−
[
8
~k⊥ ·p⊥X1

Qp−X1

+8 k2
⊥

2p−X1
Q2 (Q−p−X1

)
]
X1∈gr

− 8
Q2

∑
i,j∈gr

pXi ·pXj)δ2

~qn−∑
i 6∈gr

~p⊥Xi−~k⊥
∣∣∣
X1∈gr

〈pXi|δ2(P⊥)δ(Q−p−)χ̄n(0)
/̄n

2 |0〉〈0|χn(0)|pXi〉

× f
AbcfBbcεµ(pX1)ε∗ν(pX1)

(p−X1
)2

[
(p−X1

)2gµν⊥ −n̄
µp⊥νX1p

−
X1
−n̄µn̄νp2

X1,⊥−n̄
νp−X1

pµX1⊥

]
(B.15)

where pX1 is now the momentum of a gluon. The contribution from the gluon operator only
starts at O(αs), hence for a one loop calculation, we can evaluate the vacuum J ⊥n (en, b) in
the denominator to tree level.

J AB,g(1)
n,R (en, ~k⊥, b) =

1
2δ
AB

k2
⊥

Rg (B.16)

We can now compute the one loop results which correspond to the diagram figure 4. However,
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Figure 4. Gluon real interaction with the medium.

diagram (a) reduces to 0 and we only get a contribution form (b). This gives us

Rg = 4g2Nc

∫
d2qn
(2π)2 e

−i~qn·~b
∫
d4pδ+(p2)

∫
d4q

(2π)3

δ+(q2 −m2
D)δ(Q− p− − q−)δ2(~q⊥ + ~p⊥) Q2 + (p−)2

p−(q−)2[(p+ q)2]2{
Θ
(
en − 8

~k⊥ · ~q⊥
Qq−

− 8k
2
⊥(Q− q−)

2q−Q2 − 8
2Q

(
p+ + q+

))
δ2(~qn − ~k⊥)Θ(q− −Qzc)Θ(p− −Qzc)

+ Θ(Qzc − q−)Θ(p− −Qzc)δ2(~qn − ~q⊥) + Θ(Qzc − p−)Θ(q− −Qzc)δ2(~qn − ~p⊥ − ~k⊥)
}
(B.17)

We can now do a similar analysis for the gluon operator contribution to J ABn,V which at
one loop yields

J AB,g(1)
n,V (en,~k⊥, b) =

1
2δ
AB

k2
⊥

V g (B.18)

These are the diagrams where the Glauber insertion happens on the same side of the cut as
shown in figure 5. Given that the gluon is on-shell, this will merely give us the real vacuum
diagram dressed with the virtual interaction of the gluon with the medium.

Vg = 4g2Nc

∫
d2qn
(2π)2 e

−i~qn·~b
∫
d4pδ+(p2)

∫
d4q

(2π)3 δ
+(q2 −m2

g)δ(Q− p− − q−)δ2(~q⊥ + ~p⊥)

Q2 + (p−)2

p−(q−)2[(p+ q)2]2
{

Θ
(
en −

8
2Q

(
p+ + q+

))
δ2(~qn)Θ(q− −Qzc)Θ(p− −Qzc)

+ Θ(Qzc − q−)Θ(p− −Qzc)δ2(~qn − ~q⊥) + Θ(Qzc − p−)Θ(q− −Qzc)δ2(~qn − ~p⊥)
}

(B.19)

which is just the same as Rg (eq. (B.17)) in the limit ~k⊥ → 0. We can then combine the
two terms to give us the full contribution from the gluon current

J AB,gn,Med(en, ~k⊥, b) =
1
2δ
AB

k2
⊥

{
Rg − Vg

}
(B.20)

– 39 –



J
H
E
P
1
1
(
2
0
2
1
)
0
6
4

Figure 5. Gluon virtual interaction with the medium.

where Rg evaluates to

Rg = αsNce
−i~k⊥·~b

2π

[∫ 1−zc

zc

dzpgq(z)
{

Θ
(
zc−

y

en+y

)
ln A(z)

M
−Θ

(
zc−

en
en+y

)
ln
( −A(z)
y(1−z)

)}

−Θ
(

en
en+y−zc

)
Θ
(

y

en+y−zc
){∫ y

en+y

zc

dzpgq(z) ln
( −A(z)
y(1−z)

)
−
∫ 1−zc

y
en+y

dzpgq(z) ln A(z)
M

}]

−αsNc

2π e−i
~k⊥·~b

∫ 1

1−zc

pgq(z) lnm
2
Db

2e2γE (1−z)
4 (B.21)

which again is sensitive to lnmD and

A(z) = enz − (1− z)y (B.22)

Vg is obtained by simply evaluating Rg at k⊥ = 0.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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