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1 Introduction and summary

Explaining the microscopic origin of the Bekenstein-Hawking entropy of black holes remains
one of the outstanding puzzles of quantum gravity. The first significant breakthrough on
this problem was the Strominger-Vafa enumeration of degenerate supersymmetric vacua
of a D-brane system associated to the five-dimensional extremal Reissner-Nordström so-
lution [2]. While this counting successfully reproduces the entropy, we do not know what
the microstates are in the strong coupling regime of gravity. With the development of
the AdS/CFT correspondence [3–5], one hoped to do better. The 1/2-, 1/4-, and 1/8-th
BPS solutions in AdS5 are incipient black holes with zero horizon area in supergravity [6].
The first supersymmetric black hole with AdS5×S5 asymptopia and a finite sized horizon
preserves two out of thirty-two supercharges [7–11]. Its entropy scales like N2. Until recent
years, it was expected that this entropy was not captured by the superconformal index of
the N = 4 SU(N) super-Yang-Mills gauge theory, which at large-N exhibits only an O(1)
growth of states [12]. However, it turns out that when real chemical potentials are replaced
with complex chemical potentials, subject to a linear constraint, the superconformal index
does exhibit the expected O(N2) asymptotic scaling [13–15]. At large-N , the black hole
entropy is exactly reproduced from a Legendre transformation of the index and corresponds
to the extremization of an entropy functional à la the attractor mechanism [16]. Further
developments on the N = 4 index and its relation to AdS5 black holes include [17–31].
These methods have also been extended to the analysis of superconformal field theories
with N = 1 supersymmetry [32–40]. Connections with AdS3/CFT2, specifically the two-
dimensional Cardy formula and near horizon limits of the AdS5 black holes, were explored
in [41–43]. Finally, there have also been explorations beyond the BPS limit [44].

In previous work [1], we computed the superconformal index of the N = 4 theory
through a residue calculation that leads to a Higgs branch localization type formula for the
index [45–47]. The resulting formula has the schematic form:

I =
∑

ZPZvZav . (1.1)

Here, the sum is over residues; ZP captures the perturbative part of a localization compu-
tation, and Zv and Zav capture the non-perturbative vortex and anti-vortex contributions.
It turns out that ZP consists of elliptic Γ functions whereas Zv and Zav consist of q-θ func-
tions. We collect the definition and important properties of these functions in appendix A.

It is well known that the θ(z; τ) function has modular properties under the Jacobi group
SL(2,Z)nZ2, which can be used to compute its “high temperature” τ → 0 limit explicitly.
Indeed, this is precisely analogous to Cardy’s derivation of his eponymous formula [48].
It is perhaps less well known that the elliptic Γ function has modular properties under
SL(3,Z)nZ3 [49]. Using these modular properties, we were able to calculate a Cardy-like
limit of the superconformal index. The resulting function matches precisely with the free
energy of [16], which they observed to yield the AdS5 black hole entropy upon a Legendre
transformation.

The Cardy-like limit considered in our previous work [1] is evaluated using a specific
modular property of the elliptic Γ function, which is analogous to the modular property
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of ordinary modular forms under the S-transformation in SL(2,Z). In SL(2,Z), the most
general modular transformation has the form:

τ → aτ + b

cτ + d
, ad− bc = 1 . (1.2)

The behavior of a modular form under such a transformation can be used to evaluate what
we will call a generalized Cardy limit of the modular form. This more general limit is
obtained by sending τ → −d

c . Such limits of the partition function can be interpreted on
the gravitational side. In particular, close to the point τ = −d

c the Euclidean gravitational
path integral is dominated by a specific member of the so-called SL(2,Z) family of BTZ
black holes [50–52]. Only the Euclidean BTZ with (c, d) = (1, 0) can be continued to
Lorentzian signature, where it becomes the usual BTZ black hole.

It is natural to ask if more general elements in SL(3,Z) yield modular properties for the
elliptic Γ function that facilitate similar generalized Cardy limits, and subsequently what
the gravitational interpretation of these limits is. This is the question that we address
in the present paper. Such generalized Cardy limits were first studied in [20] and more
recently in [26, 31].

Summary of main results. In this work, we systematically explore SL(3,Z) modular
properties of the elliptic Γ function, which we then apply to a Higgs branch localization type
formula of the N = 4 superconformal index derived in [1], to study its generalized Cardy
limits. In particular, we derive a three integer parameter family of modular properties for
the elliptic Γ function, of which the fully explicit cases are given by:

Γ(z; τ, σ) = e−iπQ
′
m(mz;τ,σ)

Γ
(

z
mσ+1−mn2

; τ−σ+n2−n1
mσ+1−mn2

, σ−n2
mσ+1−mn2

)
Γ
(
z+τ−σ+n2−n1
mτ+1−mn1

; τ−σ+n2−n1
mτ+1−mn1

, τ−n1
mτ+1−mn1

) , (1.3)

which is a generalization of the modular property first described in [49] and used in the
present context in [1, 53]. The function Q′m is essentially the Q polynomial appearing in the
original modular property, but with an overall 1

m rescaling plus a change of arguments and
a constant shift that both depend on three free integers m = (m,n1, n2). This new modular
property is precisely constructed such that one can study certain generalized Cardy limits
of the elliptic Γ function, in which:

τ → n1 − 1
m , σ → n2 − 1

m . (1.4)

In this limit, the right hand side of the modular property (1.3) essentially reduces to the
phase prefactor, giving a simple expression for the limit.

The expression for the superconformal index derived in [1] contains a part which con-
sists of a product of elliptic Γ functions. To leading order in the Cardy limit, this can be
argued to be the only relevant part of the index. Simply applying (1.3) to each elliptic Γ
function and taking the generalized Cardy limit yields a function closely related to the free
energy discussed in [16], which was first derived in field theory in [13–15]. Explicitly, it is
given by:

lim
gen Cardy

log IN = −iπN
2

m

[mφ1][mφ2]([mφ1] + [mφ2] + 1)
(mτ + 1−mn1)(mσ + 1−mn2) . (1.5)
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This formula was derived using different methods in [20, 26, 31]. Upon Legendre transfor-
mation, this leads to an entropy formula that is almost equivalent to the entropy formula
for supersymmetric AdS5 black holes [11, 13–15]:

S = 2π
m

√
Q1Q2 +Q2Q3 +Q1Q3 − 1

2N
2(J1 + J2) . (1.6)

However, it differs from the ordinary AdS5 black hole entropy formula by a factor 1
m .

In [54], this entropy is connected to certain orbifolds of the original supersymmetric AdS5
black hole.

We interpret this reduction by 1
m in the field theory by observing that our expression

for the index in the generalized Cardy limit implies a certain reduction of the original
Hilbert space of the theory, such that the reduced Hilbert space only consists of states with
charges that are multiples of m. On the gravitational side, we observe that the generalized
Cardy limit effectively quotients the Hopf fiber of the S3 by a factor m. Such a quotient
reduces the area element by a factor 1

m , which through the Bekenstein-Hawking formula
leads to the required reduction in the entropy.

Finally, we discuss how the modular properties of the full N = 4 index suggest a
formula for the gravitational path integral in terms of a sum over certain elements in the
modular SL(3,Z) group. In particular, we discuss similarties and differences with the Farey
tail expansion of the elliptic genus of [51, 52] in two dimensions.

Plan of paper. The remainder of this paper is organized as follows. In section 2, we
review the Higgs branch localization type formula for the index derived in our previous
work [1] and the associated Cardy-like limit using the S-transformation of the elliptic Γ
function. In section 3, we generalize the modular property of the elliptic Γ function studied
in [49, 53] to more general SL(3,Z) elements and study the corresponding generalized
Cardy limits. This section is more technical in nature. In section 4, we turn to the physical
application of the results derived in section 3. In particular, we apply the result of section 3
to study the generalized Cardy limit of the N = 4 superconformal index; based on this we
conjecture an expression for the index which resembles a sum over geometries; and finally,
we compute the entropy in these limits and discuss its interpretation from both the field
theory and the gravity side. Section 5 contains a discussion on the relation between the sum
over geometries and modularity of the index, and a selection of open problems. Appendix A
collects relevant properties of q-θ function and the elliptic Γ function; appendix B studies
more general order three elements of SL(3,Z) than the one focused on in the main text;
and finally, appendix C provides a detailed derivation of the Q polynomials associated to
the various modular properties.

Note added. During the completion of this work, the preprint [31] appeared which
studies similar topics using complementary techniques.

2 Superconformal index of the N = 4 SYM theory

The superconformal index of the N = 4 SU(N) super-Yang-Mills theory is defined as the
weighted trace over the Hilbert space H of the theory quantized on S3. A recent review
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is [55]. Explicitly, the index is defined as [12]:

IN = trH(−1)F pJ1qJ2(pq)
r1−r3

2 f r2+r3
1 f r3

2 e−β{Q,Q
†} . (2.1)

The charges J1,2 parameterize the angular momenta along S3 corresponding to the SO(2)×
SO(2) ⊂ SO(4) Cartan generators. We can write them in terms of Cartan generators j1,2
of SU(2)1 × SU(2)2 as J1,2 = j1 ± j2. These charges are half integer valued. The ri
correspond to R-charges associated to the Cartan of SU(4). The SO(6) Cartan generators
Qa used in [15] are related to the ri via:

Q1 = r1 + 2r2 + r3
2 , Q2 = r1 + r3

2 , Q3 = r1 − r3
2 , (2.2)

which are also half integer valued. The supercharge Q has charges:

Q1 = Q2 = Q3 = −J1 = −J2 = 1
2 . (2.3)

Due to the insertion of (−1)F , with F = 2Q3 the fermion number operator, the index
localizes on HBPS, the 1/16-th BPS Hilbert space, corresponding to the vanishing locus of
the operator:

{Q,Q†} = E − J1 − J2 −Q1 −Q2 −Q3 . (2.4)

The fugacities can be expressed in terms of chemical potentials as:

p = e2πiσ , q = e2πiτ , f1 = e2πiφ1 , f2 = e2πiφ2 . (2.5)

Our parameterization is equivalent to the one used in [15] upon identifying fi = yi. As
emphasized in [15], since the charges 2J1,2 and 2Q1,2,3 of any state in H are all equal mod 2,
the expression for the index is manifestly periodic under τ, σ → τ, σ+1 and φ1,2 → φ1,2 +1.

Since the index is independent of continuous deformations of the theory which preserve
Q, one may compute it at weak coupling [12]. In this case, the trace can be explicitly
performed, and the resulting expression is given by [12, 56, 57]:

IN = κN
N !

N−1∏
k=1

∮
|xk|=1

dxk
2πixk

∏
1≤i 6=j≤N

∏3
a=1 Γ(xijfa)

Γ(xij)
. (2.6)

Here, we have defined f3 = pqf−1
1 f−1

2 , xN = (x1 · · ·xN−1)−1, xij = xix
−1
j , and we use

shorthand notation for the elliptic Γ function Γ(x) ≡ Γ(z; τ, σ), defined in appendix A,
with xi = e2πizi . The integral over the gauge fugacities xi ensures the projection onto
gauge invariant states. Furthermore, κN consists of the Cartan factors of both the chiral
multiplets and the vector multiplet and is given by:

κN = (p; p)N−1
∞ (q; q)N−1

∞ (Γ(f1)Γ(f2)Γ(f3))N−1 , (2.7)

where the q-Pochhammer symbol is also defined in appendix A.
Various approaches to evaluating (2.6) exist in the literature. These can be divided

into two main categories: approximation of the integrand in some limit (e.g., large-N limit
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or limits of the chemical potentials) after which the integral can be evaluated through a
saddle point approximation [13, 14, 17–25, 27, 30–34, 37, 38, 40, 41, 44]. On the other hand,
an exact evaluation of the contour integral is also possible, only after which one takes a
large-N or chemical potential limit [1, 15, 26, 36]. The method we employed is of the latter
type, i.e., we first evaluate the contour integral explicitly by picking up residues from the
various poles of the integrand, and subsequently take a limit of the chemical potentials.

In our previous work [1], we obtain the following expression for the index:

I ′N = (Γ(f1)Γ(f2)Γ(f3))N−1

N !Γ(1)N−1

′∑
(ai)

N−1∏
i<j

∏3
b=1 Γ((faif−1

aj )±fb)
Γ((faif−1

aj )±)

N−1∏
i=1

∏3
b=1 Γ(f±aifb)

Γ(f±ai)

×
′∑

(ki),(li)≥(0)
Z

(ai),(ki)
V (φa, σ; τ)Z(ai),(li)

V (φa, τ ;σ) ,
(2.8)

where we use the notation Γ (x±) = Γ (x) Γ
(
x−1). We will make a couple of comments

about this expression, while referring the reader to [1] for full details.

• The expression takes the form of (1.1) as mentioned in section 1. In particular, the
residue sum is realized as the sum over the (N − 1) tuples:

(ai) ≡ (a1, . . . , aN−1) , (ki) ≡ (k1, . . . , kN−1) , (li) ≡ (l1, . . . , lN−1) , (2.9)

where ai = 1, 2, 3 and ki, li ≥ 0. One does not sum over every such tuple, which
is indicated by the primes on the respective sums. The precise summation domains
depend on the values of the chemical potentials, of which we have not found a simple
description in the generic case. Furthermore, the part depending on the elliptic Γ
functions represents ZP (1.1), while the non-perturbative contributions are encoded
in functions ZV, which are expressed purely in terms of θ-functions.

• The precise form of the vortex partition functions of the numerator ZV depends on
the sign of ki − kj and li − lj . For example, if both are positive or both negative for
all i < j, then the vortex partition function is given by:

Z
(ai),(ki)
V (φa, σ; τ) =

N−1∏
i<j

∏ki−kj
m=1 θq(f−1

ai fajp
−m)∏ki−kj−1

m=0 θq(faif−1
aj p

m)

N−1∏
i=1

∏ki
m=1 θq(f−1

ai p
−m)∏ki−1

m=0 θq(faipm)

×
3∏
b=1

(
N−1∏
i<j

∏ki−kj−1
m=0 θq(faif−1

aj fbp
m)∏ki−kj

m=1 θq(f−1
ai fajfbp

−m)

N−1∏
i=1

∏ki−1
m=0 θq(faifbpm)∏ki
m=1 θq(f−1

ai fbp
−m)

)
.

(2.10)

Here, we use the shorthand notation θq(x) ≡ θ(z; τ), which is defined in appendix A.

• The attentive reader will note that the expression (2.8) is not quite equal to the
final expression (2.47) in [1]. In particular, in that paper we canceled the elliptic Γ
functions in the denominator of (2.8) against the m = 0 terms in the denominator of
the first line of (2.10). The reason for doing this is that whenever ai = aj , the factors

1
Γ((faif

−1
aj

)±) and 1
Γ(f±ai )

have a zero. These zeros cancel against the poles coming from
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the vortex partition function, making the whole non-vanishing and well-defined. The
reason to not cancel these zeros and poles facilitates the analysis in sections 4.1
and 5.2.

• The factor Γ(1)N−1 in the denominator is included to cancel the same factor arising
from the product over b of the last product on the first line. This latter factor is not
part of the expression of the index, and therefore should be cancelled. The reason
that it is included is for notational convenience.

• The prime on the index indicates that only a certain class of poles has been taken into
account in the residue sum. This class is singled out by the fact that it contributes
to the residue sum for the most generic values of the chemical potentials. However,
for more special values of the chemical potentials, there may also be other classes
contributing. The associated residue can be obtained from residues included in the
sum by a simple transformation on the fugacities, described in more detail in [1].

• Up to subtleties with the precise summation domain, related to the previous point,
the expression holds for arbitrary complexified chemical potentials τ , σ and φa, as
long as one keeps the φa strictly unequal (modulo integer shifts).1

Given these comments, we note that the expression (2.8) is incomplete and not fully explicit.
Despite this, it can be used to evaluate an exact “Cardy-like” limit of the superconformal
index, as we will now explain.

Firstly, recall that the usual Cardy limit in two-dimensional CFT refers to a high
temperature limit β → 0 of the torus partition function. The superconformal index, due
to the insertion of (−1)F , does not depend on temperature. However, a Cardy-like limit
can still be defined by taking τ and σ, the chemical potentials which couple to the angular
momenta, both to 0+i, while keeping φa, the chemical potentials coupling to the R-charges
Q1,2,3, fixed [14, 19].2 In the microcanonical ensemble, this corresponds to a large charge
limit where the charges scale as Qa ∼ µ2 and Ji ∼ µ3 for µ→∞ [14].

In the Cardy-like limit, there is an important simplification of (2.8). Using modular
properties of both θ functions, of which the ZV consist, and of the elliptic Γ function, it can
be shown that only the perturbative part of the partition function contributes at leading
order. Moreover, the modular property of the elliptic Γ allows an explicit computation of
this limit, which turns out to be a relatively simple function. This eliminates complications
associated to the vortex partition functions. Another advantage of the modular property
is that the resulting Cardy-like limit of the Γ function holds for finite imaginary part of the
φa chemical potentials. In particular, it can be viewed as a justification for the analytic

1However, as explained in appendix B of [1], it is possible to adapt the computation of the index such
that one can also obtain the expression at the unrefined point f1 = f2 = f3. In particular, it turns out that
for purposes of the Cardy-like limit, the unrefined limit can be safely taken in the expression for the Cardy
limit obtained from the refined expression.

2Notice that in our analysis of the Cardy limit, τ
σ
/∈ R in general, in contrast with, for example, [14, 15,

19, 38].
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continuation of earlier works [14, 19], which relied on taking real values of the chemical
potentials.

At this stage, one still has to deal with the summation of various residues labelled by
(ai). It turns out that all residues contribute at leading order in the Cardy limit, but for
generic values of the φa they depend on the tuples (ai), making a resummation necessary to
obtain a useful expression for the limit of the index. However, an additional simplification
occurs in a special region in parameter space, close to the unrefined point f1 = f2 = f3,
and at large-N . Here, it can be shown that each residue included in the expression for
I ′N contributes universally. In particular, this means that one does not need to worry
about interfering phases between various residues as, for instance, in the Bethe Ansatz
scenario [15]. Furthermore, in this region one can also show that residues not included
in the expression for I ′N do not contribute since the associated poles will lie outside the
integration contour. Taken together, this means that (2.8) can be used to derive an exact
expression for the full superconformal index IN in the Cardy-like limit.

It turns out that the resulting limit of the index can be expressed in terms of bracketed
chemical potentials, as also observed in the large-N limit in [15]. The precise definition of
the brackets may be found in [1], or as the special case m = n1 = n2 = 1 of the bracket
defined in section 3.6. For now, it suffices to note that the brackets are periodic with period
1: [z + 1] = [z]. There exist two possible limits of the index, depending on the values of
[φ1] and [φ2]. In one case, the resulting limit is given by:

log IN = −iπN2 [φ1][φ2][φ3]
τσ

+O
(

([φa]− [φb])2

τσ

)
+O(τ−1) +O(σ−1) , (2.11)

where [φ3] = −[φ1]−[φ2]−1, and the expression holds at large-N and close to the unrefined
point:

[φ1] = [φ2] = [φ3] = −1
3 . (2.12)

Furthermore, the pair (a, b) takes the values (1, 2), (1, 3), and (2, 3). Crucially, the integer
−1 in [φ3] emerges from a careful limit of the modular property.

In the second case, we can compute the limit close to another unrefined point, when
[φ3] = −[φ1]− [φ2]− 2, which is given by:

[φ1] = [φ2] = [φ3] = −2
3 . (2.13)

In this case, the Cardy-like limit of the index yields:

log IN = −iπN2 [φ1]′[φ2]′[φ3]′
τσ

+O
(

([φa]′ − [φb]′)2

τσ

)
+O(τ−1) +O(σ−1) . (2.14)

where we defined:
[φa]′ = [φa] + 1 . (2.15)

and [φ3]′ = −[φ1]′ − [φ2]′ + 1. Upon Legendre transformation, these expressions give rise
to the Bekenstein-Hawking entropy for AdS5 black holes with angular momenta J1,2 and
electric charges Q1,2,3 [7–11]. This agrees with the results of [13–15].
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Furthermore, notice that these expressions are periodic under φ1,2 → φ1,2 + 1, which
reflects the same periodicity of the index (2.1) discussed above. However, the expressions
do not reflect the periodicity under τ, σ → τ, σ + 1. We will see that the generalized
Cardy limit of the index results in a very similar expression as above, from which we can
understand how the periodicity in τ and σ emerges.

3 Modular properties of the elliptic Γ function

In this section, we will derive a new modular property for the elliptic Γ function. We
subsequently employ this property to compute a generalized Cardy limit of the Γ function.
Before getting there, we take the first three subsections to review some crucial preliminaries.

The main inspiration for this section is the recent work on modularity of supersym-
metric partition functions [53], which itself is inspired by earlier mathematical work on the
elliptic Γ function [49]. In the first two subsections, we will review relevant parts of [53],
such as the main modular property of four-dimensional supersymmetric partition functions
and aspects of the associated modular group SL(3,Z) nZ3. In the subsequent section, we
will specialize to the partition function of a free chiral multiplet and introduce the formal-
ism of [49], which will help us to find a new modular property of the elliptic Γ function.
After these preliminaries, we will turn to the derivation of a new modular property and
the associated generalized Cardy limit.

3.1 Modularity of supersymmetric partition functions

Consider an N = 1 SCFT defined on a manifold that can be viewed as the gluing of two
solid three-tori along their boundaries. The boundaries may be identified up to the action
of a large symmetry. If the theory has a global symmetry group of rank r, the full group
of large symmetries on the boundary torus is given by G = SL(3,Z) n Z3r. The group
SL(3,Z) acts on the moduli of the torus whereas the Z3r part shifts the global symmetry
chemical potentials by periods of the torus. The manifold glued with a large symmetry
g ∈ G will be denoted by Mg. (A more precise definition for the gluing will be given in
section 3.2.) Manifolds thus constructed include S2 × T 2, where the gluing group element
g is the identity, and L(r, s)× S1 where L(r, s) is a lens space.

The special case S3 × S1 can be obtained when the gluing group element g is an S-
transformation inside a certain SL(2,Z) ⊂ SL(3,Z). In this paper, we will be mainly
concerned with the superconformal index, i.e., the geometry S3 × S1, although we make
some comments about lens spaces in section 4.4.

We will be interested in the (normalized) supersymmetric partition functions defined
on the manifold Mg. We use the short hand notation:

Ẑag (ρ) ≡ Ẑa [Mg] (ρ) , (3.1)

where ρ indicates the full set of chemical potentials, i.e., the complex structure moduli of
Mg and the chemical potentials for the global symmetry:

ρ ≡ (z1, . . . , zr; τ, σ) . (3.2)
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In addition, the hat denotes a normalized partition function, defined as:

Ẑa [Mg] (ρ) ≡ Za [Mg] (ρ)
Za [M1] (g−1ρ) , (3.3)

where Za [Mg] is the supersymmetric partition function on Mg in a given Higgs branch
vacuum |a〉 of the mass deformed theory and M1 = S2 × T 2 is the manifold obtained by
gluing with the identity element.3 The ordinary partition function obtained through Higgs
branch localization would be given by: Z [Mg] = ∑

a Z
a [Mg], where a runs over all the

Higgs branch vacua of the mass deformed theory, which are typically finite in number. In
the case of the index of the N = 4 theory, as reviewed in section 2, a = (ai) in the notation
introduced there.

The action gρ of a group element g ∈ G on ρ will be described in more detail in the
following section. For now, we note that SL(3,Z) acts projectively on τ and σ, while the
Z3 factor is generated by shifts of zi with cycles 1, τ and σ.

It is proposed in [53] that Ẑag can be regarded as an element of the first group cohomol-
ogy H1(G,N/M).4 Here, N andM represent, respectively, the spaces of meromorphic and
holomorphic, nowhere vanishing, functions on the associated fugacity space. The space M
can be represented by complex phases eiφ, with φ a holomorphic function of the chemical
potentials. We refer the reader who is interested in more mathematical details to section 7
of [49]. (See also [53].) Instead, we will focus on a concrete implication of this statement,
namely that Ẑag obeys the following property:

Ẑag1·g2 (ρ) = eiφg1,g2 (ρ)Ẑag1 (ρ) Ẑag2

(
g−1

1 ρ
)

= Ẑag1 (ρ) Ẑag2

(
g−1

1 ρ
)

mod M .
(3.4)

Here, eiφg1,g2 (ρ) can be understood as an element in H2(G,M) and satisfies the property:

eiφg1·g2,g3 (ρ)eiφg1,g2 (ρ) = eiφg1,g2·g3 (ρ)eiφg2,g3(g−1
1 ρ). (3.5)

Also, in the last equality of (3.4) we work mod M and may therefore cancel the phase.
Finally, note that (3.4) allows one to compute the normalized partition function on any
manifoldMg as soon as one knows Ẑagi and e

iφg1,g2 (ρ) for gi the generators of G.5 As we will
see below, modulo the phase factor, all normalized partition functions can be expressed in
terms of a single Ẑg for g = S23 ∈ G, whose associated manifold is S3 × S1. This implies
that the normalized partition function on any manifold Mg can be expressed as a product
of normalized superconformal indices.

3See e.g., [45, 53] and references therein for more details on Higgs branch localization and the type of
twist used to preserve supersymmetry on Mg.

4This is partially based on the mathematical work [49], which in physical language establishes the claim
in the special case when Ẑg is a partition function of the free chiral multiplet.

5The phases eiφg1,g2 (ρ) contain all the important information associated with the generalized Cardy limit
we will consider. It turns out that knowing eiφg1,g2 (ρ) for basic relations in G suffices to compute the phase
for any relation in G. We will come back to this in section 3.3 and appendix C in more detail.
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One may compare the property (3.4) to the more standard property of the supercon-
formal index of two-dimensional SCFTs (a.k.a. the elliptic genus [58]) under the Jacobi
group J = SL(2,Z) n Z2:

Z (z; τ) = eiφg(z;τ)Z
(
g−1(z; τ)

)
, g ∈ J . (3.6)

Notice that in this case, the partition function is not labelled by a group element. Indeed,
the two-dimensional index can be thought of as an element in H0(J,N/M), whereas eiφg(z;τ)

sits in H1(J,M). A crucial aspect of (3.6) is that it provides a useful relation between the
torus partition function with parameter τ and the torus partition function on any modular
image of τ . The same is not immediately true for (3.4), since, as it stands, it only allows
one to compute a partition function on some manifold Mg1g2 in terms of a product of
partition functions on Mg1 and Mg2 . (We will discuss the interpretation of this equation
in more detail in section 5.1.)

One way to obtain interesting relations between partition functions on a single manifold
Mg is when g has finite order, i.e., gn = 1 for some n. This is because in this case the
property (3.4) implies:

1 = Ẑagn(ρ) mod M

= Ẑag (ρ) Ẑag
(
g−1ρ

)
· · · Ẑag

(
g−n+1ρ

)
mod M .

(3.7)

Together with the associated phase, this type of equations will play a central role in the
rest of this paper. Notice that the modular property described in [53] is a special case of
this relation for the element Y ∈ SL(3,Z) which cyclically permutes the periods of the
torus.

Over the next two subsections, we will review some background on the group SL(3,Z)n
Z3 and the work [49]. Thereafter, we will describe an interesting set of finite order elements
in SL(3,Z), motivated by (3.7), and derive the associated modular properties for the elliptic
Γ function. In the last subsection, we will detail how this new modular property can be
used to find a generalized Cardy limit of Γ(z; τ, σ).

3.2 The group SL(3,Z) n Z3

In this section, we will closely follow the presentation of Gadde [53] on G = SL(3,Z)nZ3,
adapted to the contents of Felder and Varchenko [49].

The action of G is defined on the complex structure moduli τ̂ and σ̂ of a three torus
T 3 and a chemical potential ẑ, associated to a line bundle over T 3.6 The action is most
conveniently understood by thinking of a rectangular torus and using affine coordinates Ẑ
and x̂i:

(ẑ; τ̂ , σ̂) '
(
Ẑ

x̂1
; x̂2
x̂1
,
x̂3
x̂1

)
. (3.8)

6We use the hatted moduli to indicate moduli of the three torus, while the unhatted moduli denote the
complex structure moduli of the full manifold Mg as in (3.2). Generally, these moduli will be related by
some G transformation. We will describe the explicit map only in section 5, where it will play an important
role.
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The SL(3,Z) acts on the vector x̂i by (left) matrix multiplication. The Z3 factor is gener-
ated by shifts of Ẑ with x̂i. In the four-dimensional geometry, i.e., the solid torus D2×T 2,
we think of x̂1,3 as the cycle lengths of the non-contractible T 2, whereas x̂2 is taken to be
the length of ∂D2.7

The group SL(3,Z) can be generated by 3× 3 elementary matrices {Tij} which obey
certain relations. These matrices Tij with 1 ≤ i 6= j ≤ 3 can be represented as 3 × 3
matrices that differ from the identity matrix by an element 1 at the position ij, e.g.,

T13 =

1 0 1
0 1 0
0 0 1

 , T21 =

1 0 0
1 1 0
0 0 1

 . (3.9)

Note that Tij and Tji comprise the T and STS−1 matrices of the three SL(2,Z) subgroups
of SL(3,Z). These matrices obey the SL(3,Z) relations:

TijTkl = TklTij (i 6= l, j 6= k) , TijTjk = TikTjkTij , (T13T
−1
31 T13)4 = 1 . (3.10)

The last relation holds for any string of the form TijT
−1
ji Tij , as can be checked explicitly

through conjugation of the equation by TklT−1
lk Tkl for appropriate k and l, while making

use of the first two relations.
As one may have guessed, the three S matrices inside SL(3,Z) can be written in terms

of the Tij as:

S12 = T12T
−1
21 T12 , S23 = T23T

−1
32 T23 , S13 = T13T

−1
31 T13 . (3.11)

Explicitly, these are given by:

S12 =

 0 1 0
−1 0 0
0 0 1

 , S23 =

1 0 0
0 0 1
0 −1 0

 , S13 =

 0 0 1
0 1 0
−1 0 0

 . (3.12)

Notice that both S12 and S23 exchange the contractible circle with a non-contractible circle
when viewed as acting on the solid torus. Since one can view S3 as a torus fibration over
an interval, where the (1, 0) cycle shrinks on one end and the (0, 1) cycle on the other end,
we see that the manifolds MS12 and MS23 have the topology of S3 × S1.

More generally, the manifold Mg is constructed as indicated in figure 1. In particular,
one considers two solid three-tori with parameters x̂ and

(
g−1)T x̂, where T indicates the

transpose. Then, one identifies the image of the cycles
(
g−1)T x̂ under gT to the cycles x̂.8

Finally, let us refer to the generators of the Z3 factor of G by t1,2,3. The total group
G is then generated by {Tij , t3}, since t1 and t2 may be obtained from t3 by conjugation
with the appropriate Sij element.

In the following, an important role will be played by the elements of G whose action
cannot be extended to the solid torus D2×T 2. The generators that belong to this class are

7Note that our convention differs from [53] by τ̂ ↔ σ̂.
8Alternatively, as is common in the math literature, one can view the gluing as the right multiplication

with g on the row vector x̂T g−1.
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Figure 1. This figure is directly taken from [53], but includes a small clarification as indicated
in footnote 8. It shows the construction of the manifold Mg for g ∈ G. The left and right part
represent two solid three-tori with cycle lengths x̂ and x̂ ′ =

(
g−1)T x̂ respectively. The shaded

circle indicates the contractible circle. The image of the cycles x̂ ′ under gT is glued to the cycles
x̂, where we suppress orientation reversal on x̂ ′.

the elements T12, T32 and t2. This is because their action, respectively, shifts x̂1, x̂3 and
Ẑ by x̂2, the period of the cycle of T 3 which contracts in the solid torus. Notice that for
the same reason, the actions of S12 and S23 cannot be extended to the solid torus either.
All other generators can be extended and generate the group H = SL(2,Z) n (Z2)2. The
SL(2,Z) is generated by T13 and T31. In addition, t1,3, T21 and T23 make up the additional
(Z2)2.

3.3 Partition functions of the free chiral multiplet and SL(3,Z)

In this section, we will review section 7 of [49]. We focus on establishing the relevant
equations while omitting many of the mathematical details.

As we have commented in footnote 4, the paper [49] establishes the proposal that the
normalized partition function of a free chiral multiplet is an element of the first group
cohomology of G, i.e., Ẑag ∈ H1 (G,N/M). In this case, since the free chiral has a single
vacuum we will drop the superscript a and write Ẑg ≡ Ẑag . It evaluates on the generators
of G outside H in terms of the following representatives:

ẐT12 (x) = Γ
(
Z−x2
x3

; x1−x2
x3

,−x1
x3

)−1
mod M ,

ẐT32 (x) = Γ
(
Z
x1

; x2−x3
x1

, x3
x1

)
mod M ,

Ẑt2 (x) = θ
(
Z−x2
x1

; x3
x1

)
mod M ,

(3.13)
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while for the generators in H it evaluates as:

ẐTij (x) = 1 mod M , for j 6= 2 ,
Ẑti (x) = 1 mod M , for i 6= 2 .

(3.14)

Here, we defined the unhatted affine moduli x ≡ (Z;x1, x2, x3) of Mg, in terms of which
we define its complex structure moduli as ρ = (z; τ, σ) ≡ ( Zx1

; x2
x1
, x3
x1

). This should be
distinguished from the hatted moduli of the T 3 defined in (3.8). We will think of xi as
complex variables. The action of G on x is identical to the action of G on x̂, described in
section 3.2. In the following, we will be using x instead of ρ whenever an action of G is
involved, since this action is easier to describe.

These equations, together with the property (3.4), allow one to determine Ẑg for any
g ∈ G up to a phase. Notice that Ẑg is non-trivial only for the generators g ∈ G which
cannot be extended to the solid torus.9 It is not difficult to check, using the gluing pre-
scription of the previous section, that MT12 and MT32 have the topology of the lens space
L(1, 1)×S1 which is nothing but S3×S1. On the other hand, the generators Tij for j 6= 2
lead to MTij with S2 × T 2 topology, on which one may have anticipated that normalized
partition function should be trivial (up to a phase).

Because of the above, we will introduce the following (abuse of) terminology. We will
refer to an element g inside H as cohomologically trivial. Instead, if the decomposition
of an element in G contains at least one T12, T32 or t2, we will call such an element
cohomologically non-trivial. We will always have in mind that the presentation of an
element g ∈ G is irreducible in the sense that the number of cohomologically non-trivial
generators it consists of cannot be reduced by making use of the SL(3,Z) relations (3.10).
Finally, notice that the property (3.4) implies that Ẑg for g ∈ G containing k1 T12 and k2
T32 factors will be evaluated in general to a partition function which consists of k1 + k2
elliptic Γ functions.

As mentioned in the previous section, the elements S12 and S23 lead to a manifold
Mg with S3 × S1 topology. We will now show that ẐS23 = ẐT23T

−1
32 T23

computes the usual
(normalized) superconformal index of a free chiral multiplet. To this end, we first compute
ẐT23T

−1
32 T23

using the definitions (3.13) and (3.13), and the property (3.4):

ẐT23T
−1
32 T23

(x) = 1
ẐT32

(
T32T

−1
23 x

) mod M

= Γ
(
Z+x3
x1

; x2
x1
, x3
x1

)
mod M ,

(3.15)

where in the last line we simplified using properties of the elliptic Γ function collected in
appendix A, while in the first line we used the fact that:

1 = Ẑg−1·g (x) mod M
= Ẑg−1 (x) Ẑg (g x) mod M .

(3.16)

We can check that this is the correct result for the normalized superconformal index of
the anomaly-free chiral multiplet by comparing with explicit expressions available in the

9See the discussion at the end of the previous section.
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literature [59]. Let us denote by ZS23 the superconformal index and by Z1 the partition
function associated to the theory on S2 × T 2. These are given by:

ZS23 (ρ) = Γ(z; τ, σ) , Z1 (ρ) = 1
θ(z;σ) . (3.17)

The normalized partition function is now given by:

ẐS23 (ρ) = ZS23 (ρ)
Z1
(
S−1

23 ρ
) = Γ(z + σ; τ, σ) , (3.18)

which is precisely what we found in (3.15) if we use the identifications spelled out be-
low (3.14).

Even though the equivalence of the above computations should only hold mod M , we
see that it holds exactly. This can be understood by using the “gauge fixed” formalism
of [49], which allows us to compute Ẑg exactly, i.e., not mod M . This formalism will be
crucial for the computation of the (generalized) Cardy limit of the elliptic Γ function. In
this formalism, one takes the partition functions ẐTij equal to the representatives in (3.13)
and (3.14). In particular, this means that:

Ẑh(x) = 1 for h ∈ H . (3.19)

In addition, using properties of the elliptic Γ function one may notice that for these repre-
sentatives, the relation (3.16) holds without working mod M :

Ẑg−1 (x) = Ẑg (g x)−1 . (3.20)

Furthermore, specific phases are associated to the evaluation of Ẑ(·) on the basic SL(3,Z)
relations (3.10). The meaning of this is summarized by the equations:10

ẐTij (x) ẐTkl
(
T−1
ij x

)
= φk,li,j (x) ẐTkl (x) ẐTij

(
T−1
kl x

)
, i 6= l , j 6= k ,

ẐTij (x) ẐTjk
(
T−1
ij x

)
= φj,ki,j (x) ẐTik (x) ẐTjk

(
T−1
ik x

)
ẐTij

(
T−1
jk T

−1
ik x

)
,

ẐS13 (x) ẐS13

(
S−1

13 x
)
ẐS13

(
S−2

13 x
)
ẐS13

(
S−3

13 x
)

= 1 .

(3.21)

These equations reflect non-trivial Berry curvature on the parameter space [53]. Indeed,
the first equation can be viewed as describing how the partition functions changes under
the non-trivial loop in parameter space:

x→ T−1
kl x→ T−1

ij T
−1
kl x→ TklT

−1
ij T

−1
kl x→ TijTklT

−1
ij T

−1
kl x = x, (3.22)

and similarly for the other equations. Furthermore, φk,li,j (x) ≡ eiπL
k,l
i,j (x) and φj,ki,j (x) ≡

eiπL
j,k
i,j (x) with:

L3,2
1,2(x) = −L1,2

3,2(x) = Q
(
Z−x1
x1

; x2−x3
x1

, x3−x1
x1

)
+Q

(
Z−x1+x3
x1−x3

; x3
x1−x3

, x2−x1
x1−x3

)
,

L1,2
3,1(x) = Q

(
Z−x1
x1

; x2−x3
x1

, x3−x1
x1

)
,

L3,2
1,3(x) = −Q

(
Z−x1+x3
x1−x3

; x2−x1
x1−x3

, x3
x1−x3

)
,

(3.23)

10We will not make use of the Z3 factor of G, generated by the ti. Therefore, we do not include relations
in the group associated to the ti. The interested reader may find these in section 7 of [49].
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where Q is defined by:

Q(z; τ, σ) = z3

3τσ −
τ + σ − 1

2τσ z2 + τ2 + σ2 + 3τσ − 3τ − 3σ + 1
6τσ z

+ 1
12(τ + σ − 1)(τ−1 + σ−1 − 1) .

(3.24)

and all other L vanish.
Consider now some arbitrary relation r = 1 in the group SL(3,Z), where the relation

is a reduced expression r = e1 · · · en in terms of generators ek ∈ {T±1
ij }, where by reduced

is meant that any adjacent ei+1 = e−1
i are canceled. Evaluating the partition function on

this relation [49]:

Ẑe1 (x)
n−1∏
i=1

Ẑei+1

(
e−1
i · · · e

−1
1 x

)
= eiπfr(x) , (3.25)

one can compute the associated phase fr (x) by shuffling around the Ẑei using the rela-
tions (3.21) and simplifying whenever one encounters two adjacent factors expressed as
ẐTij (x)ZT−1

ij
(T−1
ij x) = 1 . Thus, fr (x) is computed as an accumulation of the non-trivial

phases appearing in (3.21). This brings us back to an understanding of why (3.15) repro-
duces the exact superconformal index ẐS23 . There is no phase acquired in the computation
because no basic relation has been used to derive it. More details and non-trivial examples
of phase computations are collected in appendix C.

3.4 Finite order elements of SL(3,Z)

As mentioned at the end of section 3.1, useful modular properties of Ẑg can be derived
from finite order elements in SL(3,Z). For example, evaluating (3.7) for a free chiral
multiplet will give rise to a modular property of the elliptic Γ function involving a multiple
of n Γ functions. It is our goal to find a finite order element that allows us to compute a
generalized Cardy limit of the form τ → − n1

m1
and σ → − n2

m2
, which could for example be

achieved by a relation of the form:

Γ(z; τ, σ) = eiπP (z;τ,σ)Γ
(

z+...
m1τ+n1

; ...
m1τ+n1

, ...
m1τ+n1

)
Γ
(

z+...
m2σ+n2

; ...
m2σ+n2

, ...
m2σ+n2

)
, (3.26)

where we have not explicitly written some linear function of τ and σ in the numerators.
Such a relation would be derived from some order three elements. The point of this property
is that the Γ functions on the right hand side could trivialize in the generalized Cardy limit,
giving a simple expression for the limit of Γ(z; τ, σ) in terms of the phase eiπP (z;τ,σ). In
this section, we will therefore describe in some detail a class of finite order elements in
SL(3,Z).

We start by recalling that the characteristic polynomial of an element of order n in
SL(3,C) should divide λn − 1. Let the corresponding eigenvalues be denoted by the nth
roots of unity ζ1,2,3. For the element to be in SL(3,Z), the determinant and trace constraint
require that ζ1ζ2ζ3 = 1 and ζ1 + ζ2 + ζ3 ∈ Z. It is then not difficult to convince oneself
that the finite order elements in SL(3,Z) are of order 1, 2, 3, 4, and 6. We will now argue
that only specific order three elements lead to modular properties which could result in a
simple expression for a generalized Cardy limit of the elliptic Γ function.
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Clearly, order one and two elements lead to trivial modular properties. Furthermore,
the (cohomologically non-trivial) order four and order six elements lead to modular prop-
erties involving (at least) four or six elliptic Γ functions. This follows from (3.7) when Ẑg
is taken as the partition function of a free chiral multiplet. Although this could potentially
lead to interesting relations, they generally will not lead to an interesting Cardy limit. The
reason for this is best illustrated by returning briefly to the ordinary modular property we
used in [1]:

Γ(z; τ, σ) = e−iπQ(z;τ,σ)
Γ
(
z
τ ; στ ,−

1
τ

)
Γ
(
z−τ
σ ;− τ

σ ,−
1
σ

) , (3.27)

where the ingredients are defined in appendix A. This property follows from (3.7) for the
order three element Y = S−1

23 S13 discussed in [53], as we review in appendix C.2. In the
Cardy limit τ, σ → 0, the two Γ functions on the right hand side trivialize (when restricted
to some domain in z, as discussed in detail in [1]). Therefore, this modular property
provides a useful Cardy-like limit, in the sense that this limit of the elliptic Γ function is
replaced by the simple function e−iπQ(z;τ,σ).

Now, if one were given an order four or order six element, the associated modular
property would result in a similar rewriting of Γ(z; τ, σ), but now with (at least) three or five
elliptic Γ functions on the right hand side. Generically, the denominators of their arguments
do not share the same vanishing locus in (τ, σ) space, implying that not all elliptic Γ
functions trivialize in the same Cardy-like limit. Therefore, such modular properties appear
not useful in the sense explained above.

We pause here to stress that once given a useful modular property, such as (3.27), it
can also be applied to partition functions on manifolds Mg for which g is not necessarily
of finite order. An interesting example is the partition function of a chiral multiplet on a
lens space, which was first acquired in [60] (see also [53, 61, 62]):

ZL(m,1)×S1 = Γ(z + σ; τ, σ)Γ(z;mτ − σ, τ) , m ∈ Z . (3.28)

Here, L(m, 1) can be thought of as Mg for g = S23T
−m
23 S23. Even though this element

is not of finite order, it is clear that applying (3.27) to both Γ functions, one obtains a
modular property for the lens space partition function which has a useful Cardy limit.

For the reasons explained above, we will from now on only be interested in order three
elements. It turns out that in SL(3,Z), there are two conjugacy classes of order three
elements [63]. In terms of generators, simple representatives are given by:

Xk = T23T
−k
13 S23 , k = 0, 1 . (3.29)

We note here that the order three element Y , which cyclically permutes the cycles of the
torus, sits in the conjugacy class of X1, and can be obtained explicitly through conjugation
by T21T31. Let us denote by Xg

k the element obtained from Xk by conjugation with a
general element g ∈ G:

Xg
k ≡ g Xk g

−1 . (3.30)
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We now use (3.4) to evaluate the partition function on the relation
(
Xg
k

)3 = 1:

1 = Ẑ(Xg
k)

3 (ρ) mod M

= Ẑg (ρ) ẐXk
(
g−1ρ

)
ẐXk

(
X−1
k g−1ρ

)
ẐXk

(
X−2
k g−1ρ

)
Ẑg−1

(
g−1ρ

)
mod M

= ẐXk

(
g−1ρ

)
ẐXk

(
X−1
k g−1ρ

)
ẐXk

(
X−2
k g−1ρ

)
mod M ,

(3.31)

where in the last line we used (3.16). Since Xk only contains one factor outside H, namely
S23, the partition function of a free chiral multiplet evaluates to a single elliptic Γ function:

ẐXk (ρ) = ẐS23

(
T k13T

−1
23 ρ

)
= Γ

(
z+σ
kσ+1 ; τ−σ

kσ+1 ,
σ

kσ+1

)
. (3.32)

In particular, if we define ρ′ ≡ g−1ρ, the modular property evaluates to:

1 = Γ
(
z+σ′
kσ′+1 ; τ ′−σ′kσ′+1 ,

σ′

kσ′+1

)
Γ
(
z+τ−σ′
kτ ′+1 ; −τ ′kτ ′+1 ,

τ ′−σ′
kτ ′+1

)
Γ
(
z + τ ′;σ′,−τ ′

)
mod M , (3.33)

where we recall that k = 0, 1. Here, we see that any order three element written as gXkg
−1

for k = 0 does not lead to a useful modular property, since the arguments of the three Γ
functions are clearly not of the desired form written in (3.26). For k = 1, the situation is
slightly better in that (3.33) would now allow us to compute the limit τ, σ → −1 of the
elliptic Γ(z; τ, σ) function, since the Γ function has the following property (see appendix A):

Γ(z; τ, σ) = 1
Γ(z − τ ;σ,−τ) . (3.34)

However, clearly this still falls short of our desired expression (3.26).
It turns out that this can be improved upon, for example, by commuting the S23 factor

of Xk in the conjugate element Xg
k to the right. Let us write this representation Xg

k as:

Xg
k = gT23T

−k
13 g̃

−1S23 , (3.35)

where we defined g̃−1 = S23g
−1S−1

23 . In this case, one finds:

1 = Ẑ(gXkg−1)3 (ρ) mod M

= ẐgT23T
−k
13 g̃−1 (ρ) ẐS23

(
S23

(
Xg
k

)−1
ρ
)
ẐgT23T

−k
13 g̃−1

((
Xg
k

)−1
ρ
)

× ẐS23

(
S23

(
Xg
k

)−2
ρ
)
ẐgT23T

−k
13 g̃−1

((
Xg
k

)−2
ρ
)
ẐS23 (S23ρ) mod M .

(3.36)

In this equation, there are three partition functions labeled by S23. It is not difficult
to check that for generic g these would lead to three Γ functions of the form expressed
in (3.26), although there will be some correlation between the generalized Cardy limit of
τ and σ, i.e., for a given limit of τ → − n1

m1
, the limit of σ → − n2

m2
is not fully independent.

However, the issue with this equation is that if gT23T
−k
13 g̃

−1 /∈ H, there will be additional
elliptic Γ functions in the modular property. These will generically spoil the existence of
a useful Cardy limit for similar reasons as in the case of the order four and six elements
discussed above. Therefore, to obtain a useful modular property, we need to constrain g

such that
gT23T

−k
13 g̃

−1 ∈ H . (3.37)
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An example of such g is given by:

g = Tn1
21 T

n2
31 T

m
12T

m
13 , (3.38)

for arbitrary integers m and n1,2. Slightly more generally, we can also write

g = Tn1
21 T

n2
31 T

m
12T

m+k
13 T32T

−1
23 , (3.39)

where the integers are again arbitrary and k = 0, 1.
More systematically, we can equivalently approach this problem by considering ele-

ments of the form A = h ·S23 for h ∈ H such that the element has order three. The matrix
A will have the general form:

A =

A11 A12 0
A21 A22 A23
A31 A32 0

 , (3.40)

where the zeros reflect the fact that h does not contain T12 and T32 matrices. The matrix
A has order three when the following equations are satisfied:

det
(
A− (ω3)` I

)
= 0 , (3.41)

where ω3 = e2πi/3 and ` = 0, 1, 2 gives the three cubic roots of unity, and I is the identity
matrix. In addition, the entries of A are constrained to be integral. An intermediate step
yields constraints for A2j and A31, such that A and A2 now read:

A =

 n m 0
−n2+p

m −n 1
1+n p
m p 0

 , A2 =

 −p 0 m
1+n p
m 0 −n

n−p2

m 1 p

 , (3.42)

with m,n, p ∈ Z. To obtain an integral matrix, we solve for p = −n2 − km with k ∈ Z.
Then, the matrix is integral for m | 1− n3, i.e.:

(1− n)(n2 + n+ 1) = dm , d ∈ Z . (3.43)

Given a solution to this equation, we may already anticipate a result that will become more
clear in section 3.6. Namely, the modular property associated to A3 = 1 will yield a useful
generalized Cardy limit for:

τ → − n
m , σ → −n2

m − k . (3.44)

This is because the first rows of A and A2 determine the denominators of the arguments of
the elliptic Γ functions on the right hand side of the modular property. Therefore, we see
that the solution space to (3.43) determines the possible useful Cardy limits of the elliptic Γ
function which can be obtained through order three elements. Notice in particular that the
solution space of (3.44) does not contain arbitrary coprime n and m, in contrast to Cardy
limits that can be taken in two-dimensional CFTs. In section 5.3, we will suggest other
types of relations in SL(3,Z) which may lead to modular properties that allow arbitrary
rational limits of τ and σ.
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In the following, we will focus on the simplest family of solutions to (3.43) for which
we can find a manifestly integral matrix:

1− n = n1m, n1 ∈ Z . (3.45)

It will turn out that this order three element already yields a modular property which
essentially captures all of the non-trivial physics corresponding to the generalized Cardy
limit. In addition, for this element we are able to rigorously determine the modular prop-
erty, including the phase in appendix C.3. A more detailed classification of the total space
of solutions to (3.43) will be given in appendix B, and a partial derivation of the phase
associated to the more general modular property will be given in appendix C.4.

Before plugging the solution (3.45) into the matrix A, we find it convenient to replace
k by:

k ≡ n1 (2−mn1)− n2 , (3.46)

for n2 ∈ Z arbitrary. We will write m = (m,n1, n2) and refer to the resulting matrix as
Xm, which is given by:

Xm =

 1−mn1 m 0
(2−mn1)n1 − n2 mn1 − 1 1
(1−mn1)n2 + n1 mn2 − 1 0

 ,

X2
m =

 1−mn2 0 m

(1−mn1)n2 + n1 0 mn1 − 1
(2−mn2)n2 − n1 1 mn2 − 1

 .

(3.47)

It is easy to check that X3
m = I. Notice that the order three element Y = S−1

23 S13, which
permutes the periods of the torus cyclically and has been the focus of [1, 53], corresponds
to the special case m = n1 = n2 = 1; more precisely: X(1,1,1) = Y −1. We also anticipate,
similarly to (3.44), that the associated generalized Cardy limit will be:

τ → n1 − 1
m , σ → n2 − 1

m . (3.48)

We will close this section by noting that the element Xm can be decomposed into generators
as follows:

Xm = T23T
n1−n2
21 Tn2

31 T
−m
13 Tn1

31 T
−n2
21 S23 . (3.49)

Notice that this has the expected form of Xm = h · S23 with h ∈ H. This decomposition
is crucial for the computation of the phase in the modular property, which we perform in
appendix C.3. We also notice that conjugation by T21 and T31 shifts n1,2:

T21X(m,n1,n2)T
−1
21 = X(m,n1+1,n2) ,

T31X(m,n1,n2)T
−1
31 = X(m,n1,n2+1) .

(3.50)

Finally, one may check, using the gluing prescription described in section 3.2, that the
topology of MXm is S3 × S1. This is due to the fact that the decomposition of Xm into
generators only contains a single factor of T23 and S23. A lens space L(m, 1) for m > 1 is
associated instead to the element S23T

−m
23 S23.
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3.5 New modular property

In this section, we will derive a new modular property for the elliptic Γ function associated
to the order three elementXm found in the previous subsection. Even though our derivation
only holds for a free chiral multiplet, the result is still relevant for more general N = 1
SCFTs, including the N = 4 theory. This is because the perturbative part ZP of their
partition functions can be written in terms of elliptic Γ functions, as reviewed in section 2
for the N = 4 theory. This turns out to be the only relevant part of the partition function
to leading order in Cardy-like limits, as we will see in more detail in section 4.2. Therefore,
modular properties for the chiral multiplet partition function, consisting of a single elliptic
Γ function, can be applied to (at least) any gauge theory partition function to find the
leading order behavior in the Cardy-like limit.

The new modular property is obtained by evaluating Ẑg on the relation X3
m = 1. We

will work in the gauge fixed formalism, mentioned at the end of section 3.3. The explicit
computation of the phase associated to X3

m = 1 can be found in appendix C.3. Here, we
will just quote the result:

ẐXm (ρ) ẐXm

(
X−1

m ρ
)
ẐXm

(
X−2

m ρ
)

= eiπQm(mz;τ,σ) , (3.51)

where in the first equality we used (3.4). The function Qm (mz; τ, σ) is defined as:

Qm (mz; τ, σ) = 1
mQ (mz − 1;mτ + 1−mn1,mσ + 1−mn2) + (m+1)(m+3)

4m , (3.52)

where Q is the function appearing in the original modular property [1, 49] and is defined in
appendix A. As mentioned, this property only holds for Ẑg being the normalized partition
function of a free chiral multiplet. However, following [53] it is natural to conjecture
that (3.51) holds for a general N = 1 SCFT if one replaces the Q function in the definition
of Qm with the anomaly polynomial of the theory. More precisely, this proposal reads:

ẐaXm (ρ) ẐaXm

(
X−1

m ρ
)
ẐaXm

(
X−2

m ρ
)

= eiπPm(ρ) , (3.53)

where we remind the reader that a labels the Higgs branch vacua of the mass deformed
theory. Here, Pm (ρ) given in terms of the anomaly polynomial P (zi; τ, σ) as follows:

Pm (ρ) = 1
3mP (mzi;mτ + 1−mn1,mσ + 1−mn2) + C (m+1)(m+3)

4m . (3.54)

Here, we refer for the definition of P (mzi; τ, σ) to appendix A. Moreover, C is the weighted
sum of the number of elliptic Γ functions in the partition function, for which Γ functions
in the numerator are counted with a plus sign and Γ functions in the denominator with a
minus sign. We will verify this proposal explicitly for the N = 4 theory in section 4.1.

Let us now evaluate the modular property when Ẑg is the partition function of a chiral
multiplet, i.e., when it is evaluated on the generators described in section 3.3. First, we
use (3.4) and the expression for Xm in terms of generators (3.49) to find:

ẐS23 (S23ρ) = eiπQm(mz;τ,σ)

ẐS23

(
S23X

−1
m ρ

)
ẐS23

(
S23X

−2
m ρ

) , (3.55)
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where we used the fact that Ẑh = 1 for h ∈ H in the gauge described in section 3.3. Notice
that even though the right hand side of this equation may seem to depend on the element
Xm, the left hand side shows that it does not.

Using the expression for ẐS23 given in (3.18) and properties of the elliptic Γ function
collected in appendix A, we can rewrite this as:

Γ(z; τ, σ) = e−iπQ
′
m(mz;τ,σ)

Γ
(

z
mσ+1−mn2

; τ−σ+n2−n1
mσ+1−mn2

, σ−n2
mσ+1−mn2

)
Γ
(
z+τ−σ+n2−n1
mτ+1−mn1

; τ−σ+n2−n1
mτ+1−mn1

, τ−n1
mτ+1−mn1

) , (3.56)

where
Q′m(mz; τ, σ) = 1

mQ (mz;mτ + 1−mn1,mσ + 1−mn2) + m2−1
12m . (3.57)

Note that Q′m is related to Qm by a shift of the z argument. The property (3.56) will
be the main modular property that we will use to compute the generalized Cardy limit of
the N = 4 superconformal index. We will discuss its interpretation as a generalization of
holomorphic blocks for the chiral multiplet [47] in section 5.2.

The rewriting in (3.56) ensures that the product expression for all three Γ functions,
defined in appendix A, is convergent for Im(τ) > 0, Im(σ) > 0 and:

Im
(
τ−σ+n2−n1
mσ+1−mn2

)
> 0 . (3.58)

This is because all the other arguments are SL(2,Z) transformations of the above:
τ−n1

mτ+1−mn1
= ST−mS−1T−n1 · τ ,

σ−n2
mσ+1−mn2

= ST−mS−1T−n2 · σ ,
τ−σ+n2−n1
mτ+1−mn1

= ST−mS−1 · τ−σ+n2−n1
mσ+1−mn2

.

(3.59)

We note that this way of writing the modular property is the most direct generalization of
the property used in [1], which we wrote in (3.27) and which also appears in Theorem 4.1
of [49].

We end this section by analyzing the τ = σ limit of the modular property. This limit
was analyzed for the ordinary modular property in Theorem 5.2 of [49], and played an
important role in [15]. For us, the limit is subtle when n1 = n2 ≡ n, since in this case
the second arguments of the Γ functions on the right hand side of (3.56) hit a zero. This
means that the Γ functions themselves diverge. As in Theorem 5.2 of [49], this divergence
cancels. Indeed, it should cancel given that the left hand side of the modular property is
well-defined for τ = σ. Since the derivation of the τ = σ limit is completely analogous to
the proof of Theorem 5.2 given in [49], we will only state the result. We have:

Γ(z; τ, τ) = e−iπQ
′
m(mz;τ,τ)

θ
(

z
mτ+1−mn ; τ−n

mτ+1−mn

) ∞∏
k=0

ψ
(m,k+1)

(
−z− (k+1)

m
mτ+1−mn

)
ψ(m,k)

(
z− k

m
mτ+1−mn

)

m

. (3.60)

Here, the function ψ(m,k)(t) is defined for Im(t) > 0 as:

ψ(m,k)(t) = exp
[
−t log

(
1− e2πi(t+ k

m))− 1
2πiLi2

(
e2πi(t+ k

m))] , (3.61)
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where the branch of the logaritm is taken such that log (1− x) = −∑∞j=1
xj

j and Li2 (x) ≡∑∞
j=1

xj

j2 . The function clearly only depends on kmod m, and in the following we will take
0 ≤ k < m.11 Let us make some further comments about this function:

• Taking m = n = 1 gives rise to the original theorem of [49]:

Γ(z; τ, τ) = e−iπQ(z;τ,τ)

θ
(
z
τ ;− 1

τ

) ∞∏
k=0

ψ
(
−(k+1)−z

τ

)
ψ
(
z−k
τ

) , (3.62)

where we used that ψ(1,k)(t) = ψ(t) coincides with the definition from [49]:

ψ(t) = exp
[
−t log

(
1− e2πit

)
− 1

2πiLi2
(
e2πit

)]
, (3.63)

The reason for the overall minus signs in the arguments of ψ(t) in (3.62) is due to
the fact that we have defined ψ(t) for Im(t) > 0 as opposed to Im(t) < 0.

• The function ψ(m,k)(t) shares many properties with ψ(t) (see [49]). In particular, we
can write it as:

ψ(m,k)(t) = exp
(
−2πi

∫ i∞

t

s ds

e−2πi(s+ k
m) − 1

)
. (3.64)

This way of writing ψ(m,k)(t) makes clear that it can only have singularities at t ∈
Z− k

m . To study the analytic structure further, we first note it satisfies the functional
equation:

ψ(m,k)(t+ 1) =
(
1− e2πi(t+ k

m))−1
ψ(m,k)(t) . (3.65)

We note in passing that this equation implies that even the explicit appearance of
k in the argument of ψ(m,k)(t) can be reduced to a dependence on kmod m, at the
cost of introducing additional factors as in (3.65). Let us now take t = − k

m . For this
value, we have that the mth power of ψ(m,k)(t), which is what appears in (3.60), has
an order k zero: (

ψ(m,k)
(
− k
m

))m
= e

iπm
12
(
1− e2πi(t+ k

m))k (3.66)

where we used that Li2(1) = π2

6 . Together with (3.65), it now follows that for
t = − k

m + j, j ∈ Z>0,
(
ψ(m,k) (t)

)m
has a pole of order jm− k. On the other hand,

for t = − k
m − j, j ∈ Z>0, it has zeros of order mj + k.

• Finally, the estimate for Im(t) → ∞ of ψ(m,k) (t) is the same as it is for ψ(t), and
reads [49]:

ψ(m,k) (t) = 1 +O
(
|Im(t)| e−2π|Im(t)|

)
, (3.67)

as Im(t)→∞.
11Note that in (3.60) k appears explicitly in the argument of ψ(m,k)(t) as well. This means that those

functions do depend on the exact value of k.

– 22 –



J
H
E
P
1
1
(
2
0
2
1
)
0
4
7

3.6 Generalized Cardy limit associated to the new modular property

In this section, we will define and compute the generalized Cardy limit of the elliptic Γ
function. We will first compute this limit by simply making use of the summation formula
for Γ(z; τ, σ). After that, we will employ the modular property (3.56) to compute the limit,
and comment on how this leads to a more general expression for the generalized Cardy
limit than obtained in the first approach.

Recall that the ordinary Cardy-like limit takes the chemical potentials τ and σ, which
couple to the angular momenta J1 and J2, respectively (see section 2), to 0+i such that
the ratio τ

σ /∈ R [1]. The generalized Cardy limit, anticipated in (3.48), is defined similarly,
except that it keeps the real parts of τ and σ finite. More precisely:12

τ → n1 −
1
m
, with ατ ≡

m Im(τ)
mRe(τ) + 1−mn1

fixed ,

σ → n2 −
1
m
, with ασ ≡

m Im(σ)
mRe(σ) + 1−mn2

fixed ,

and ατ 6= ασ .

(3.68)

The constraint on ατ and ασ is the generalization of τσ /∈ R in the ordinary case, and follows
from (3.58). To study the limits for ατ = ασ, at least when n1 = n2, one can make use
of (3.60).

Let us now take this limit of Γ(z; τ, σ), making use of its summation formula (see
appendix A for details on notation):

log Γ(z; τ, σ) =
∞∑
l=1

1
l

xl − (x−1pq)l
(1− pl)(1− ql) . (3.69)

The generalized Cardy limit of this function diverges, and to leading order one finds:13

lim
gen Cardy

log Γ(z; τ, σ) = − 1
4π2 (mτ + 1−mn1) (mσ + 1−mn2)

∞∑
l′=1

xml
′ − x−ml′

(l′)3

= πiB3(−mz)
3 (mτ + 1−mn1) (mσ + 1−mn2) .

(3.70)

The second equality only holds for − 1
m ≤ z ≤ 0, where we used the Fourier series of the

Bernoulli polynomial B3(z):
B3(z) = z3 − 3

2z
2 + 1

2z . (3.71)

Let us point out that the first line of (3.70) implies that Γ(z; τ, σ) develops a finer periodicity
under z → z + 1

m . In particular, if we define the fractional part of z to be

[z] = z + n such that 0 < z + n < 1 , (3.72)
12One may naively think the integer shifts of τ and σ are not important to keep, since the index (2.1)

is periodic under integer shifts of τ and σ. However, we will see that n1,2 play an important role in
understanding how this periodicity is reproduced in generalized Cardy limits.

13A more precise estimate, including subleading corrections, was recently given in [31]. See also [64] for
earlier work.
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we can express the limit for any z ∈ R \ 1
mZ as:

lim
gen Cardy

log Γ(z; τ, σ) = πiB3 ([−mz])
3 (mτ + 1−mn1) (mσ + 1−mn2) . (3.73)

This finer periodicity exhibited in the generalized Cardy limit will play an important role
later on.

Now we turn to a derivation of the generalized Cardy limit using the modular property.
We will see that the resulting limit generalizes (3.73) in two ways: it contains subleading
corrections and analytically extends the expression to finite imaginary parts of z. For
convenience, we repeat the modular property here:

Γ(z; τ, σ) = e−iπQ
′
m(mz;τ,σ)

Γ
(

z
mσ+1−mn2

; τ−σ+n2−n1
mσ+1−mn2

, σ−n2
mσ+1−mn2

)
Γ
(
z+τ−σ+n2−n1
mτ+1−mn1

; τ−σ+n2−n1
mτ+1−mn1

, τ−n1
mτ+1−mn1

) , (3.74)

where Q′m is defined in (3.57). In the limit (3.68), again using the summation formula for
Γ(z; τ, σ), we find that the numerator on the right hand side of (3.74) becomes:

Γ
(

z
mσ+1−mn2

; τ−σ+n2−n1
mσ+1−mn2

, σ−n2
mσ+1−mn2

)
= exp

∞∑
l=1

1
l

e
2πil z

mσ+1−mn2 − e2πil τ−n1−z
mσ+1−mn2

(1− e2πil τ−σ+n2−n1
mσ+1−mn2 )(1− e2πil σ−n2

mσ+1−mn2 )



−→ exp

 ∞∑
l=1

1
l

e
2πil z

mσ+1−mn2 − e2πil −z− 1
m

mσ+1−mn2

1− e2πil τ−σ+n2−n1
mσ+1−mn2

 .

(3.75)

A similar formula can be obtained for the Γ function in the denominator on the right hand
side of (3.74). These two limits converge if z lies inside the respective domains:

− 1
m

Im
( 1
mσ + 1−mn2

)
> Im

(
z

mσ + 1−mn2

)
> 0 ,

− 1
m

Im
( 1
mτ + 1−mn1

)
> Im

(
z

mτ + 1−mn1

)
> 0 .

(3.76)

In addition, we have to require that τ̃ = aσ̃n for a /∈ R as σ̃ → 0,14 where τ̃ and σ̃ are
defined by:

τ̃ ≡ mτ + 1−mn1 , σ̃ ≡ mσ + 1−mn2 . (3.77)

In this case, both Γ functions on the right hand side of the modular property trivialize.
Depending on the sign of m and ατ,σ, the respective domains can represent four types of
strips with slope ατ,σ, as illustrated in figure 2.

The full regime of convergence consists of the intersection of the two types of strips,
which represents a diamond shaped domain. In the following we will denote the diamond
shaped domain associated to the modular property for Xm by D

(0)
1/m. The upper index

indicates where the right boundary intersects the real axis, while the lower index indicates
14We thank Sameer Murthy for discussions on this point.
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(a) m > 0, ασ > 0 (b) m > 0, ασ < 0

(c) m < 0, ασ < 0 (d) m < 0, ασ > 0

Figure 2. The four distinct types of strips.

(a) n = −2 (b) n = −1 (c) n = 0

(d) n = 1 (e) n = 2 (f) n = 4

Figure 3. Diamond domains for m > 0 and various values of n1 = n2 = n. Values of τ and
σ are chosen such that they are consistent with the constraint (3.58). For very negative n, the
domain aligns with the real axis. As one increases n, the domain rotates anti-clockwise until it
again realigns with the real axis.
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the width of the domain along the real axis. Some examples for the diamond domains for
m > 0 and n1 = n2 are given in figure 3. Recall that m = n1 = n2 = 1, in figure 3d,
corresponds to the diamond domain of the original modular property analyzed in [1].

We notice that the strips will never fully overlap due to the constraint (3.58), which
as we noted above implies ατ 6= ασ. This implies that the diamond domains will always
be of finite extent in the z-plane.15 As we already alluded to in [1], figure 3 illustrates how
those values of z that fall outside the diamond domain of the modular property for some
m, may fall inside the domain for another modular property m′.

The diamond domain implies an upper bound on the allowed imaginary part of z. For
concreteness, we take ατ > ασ > 0. The top and bottom of the diamond lie respectively at:

Im(z) = ± ατασ
m(ατ − ασ) . (3.78)

We notice that for large values of m the diamonds becomes not only small in width but
also in height.

The conclusion of the above discussion is that the generalized Cardy limit of the
modular property (3.56) yields the following expression for Γ(z; τ, σ):

lim
gen Cardy

Γ(z; τ, σ) = e
− iπ
m

[
Q(mz;mτ+1−mn1,mσ+1−mn2)+m2−1

12

]
for z ∈ D(0)

1/m . (3.79)

Instead, if z lies outside the diamond shaped domain, the Γ functions will not trivialize,
and we cannot find a simple expression for the limit using the specific modular property.

As we mentioned in the beginning of this section, the limit (3.79) generalizes (3.70) in
two ways. Firstly, it holds for finite Im(z). Secondly, it contains subleading corrections.
To leading order, it is easy to check that (3.79) reduces to (3.70). One way to think about
this result is that the modular property justifies the analytic continuation of the Fourier
series in the first line of (3.70) to imaginary values of z, through B3(z), even though the
naive extension of the series is divergent.

In the beginning of this section, recall that we were able to extend the generalized
Cardy limit from the interval z ∈

(
− 1
m , 0

)
to z ∈ R \ 1

mZ, as indicated in (3.73). The
identity theorem for analytic functions then implies that (3.79) holds more generally, i.e.:

lim
gen Cardy

Γ(z; τ, σ) = e
− iπ
m

[
Q([mz];mτ+1−mn1,mσ+1−mn2)+m2−1

12

]
. (3.80)

The Q polynomial is evaluated on the bracketed potential [mz], to be defined momentarily,
which has the crucial property that it is periodic under z → z+ 1

m . In particular, this implies
that in the generalized Cardy limit, Γ(z; τ, σ) develops the finer periodicity z → z + 1

m ,
as compared to its original periodicity under z → z + 1. In particular, this means that
the initial domain of convergence D(0)

1/m is extended to an infinite set of diamond shaped
domains D(k)

1/m which intersect the real axis in the intervals
(
k−1
m , km

)
.

15Again, one can analyze the case ατ = ασ for n1 = n2 by using (3.60). The essence of the analysis is
similar to the case ατ 6= ασ, and we refrain from giving the explicit details.
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Since the Q polynomial only depends on mz, it is convenient to introduce a rescaled
variable z̃ = mz. In terms of this variable, the original domain of convergence, D(0)

1/m
becomes of width one, and we denote it D(0). The full domain of convergence now consists
of arbitrary integral horizontal shifts of D(0), which intersect the real axis in the intervals
(k − 1, k). Let these intervals be denoted by D(k). Then, the bracket is defined similarly
to the case of the ordinary modular property used in [1]:

[z̃] ≡ z̃ + n, n ∈ Z such that z̃ + n ∈ D(0) , (3.81)

Clearly, the bracket [z̃] is only defined for z̃ ∈ D(k) for some k ∈ Z. If both z̃ ∈ D(k) and
−z̃ ∈ D(k′) for some k, k′, it has the properties:

[z̃ +m] = [z̃] , m ∈ Z , [−z̃] = −[z̃]− 1 , (3.82)

As in the case of the original modular property analyzed in [1] and opposed to bracket
defined in [15], the brackets do not satisfy:

[z̃ + τ̃ ] = [z̃] + τ̃ , [z̃ + σ̃] = [z̃] + σ̃ , (3.83)

where τ̃ and σ̃ were defined in (3.77). This is due to the fact that enough translations by
τ̃ (or σ̃) will take the point outside the diamond domain. The lack of this latter property
will not be an issue for our purposes, since in the generalized Cardy limit (3.68), τ̃ and σ̃
are vanishing.

Whenever Im(z) is close to the value (3.78), z itself will generically lie outside any
diamond domain. In this case, since the bracket is not defined, the divergence of the
generalized Cardy limit cannot be isolated inside the Q function as in (3.80). To avoid
restrictions on z̃, we will consider the following regime in parameter space:

|Im(z̃)| � ατασ
ατ − ασ

. (3.84)

This limit zooms into the area around the intersection of the diamond with real axis. Again,
for ατ ≈ ασ close enough, (3.84) is not very constraining. In this regime, z̃ ∈ D(k) for some
k for generic values of z̃, and we can rewrite the domains in (3.76) as follows:

Im (z̃) > 0 : −1 < z̃s+ < 0 ,
Im (z̃) < 0 : −1 < z̃s+ < 0 .

(3.85)

where we defined z̃s± as the coordinate which measures the distance for fixed Im(z̃) from
the upper and lower right boundary of the diamond respectively:

zs+ = Re(z)− 1
ατ

Im(z) ,

zs− = Re(z)− 1
ασ

Im(z) .
(3.86)

These coordinates will play an important role in section 4.2, where they are used to specify
the various domains in which the brackets appearing in the index take on different values.
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4 Revisiting the N = 4 superconformal index

In this section, we will take the generalized Cardy limit of the full superconformal index
of the N = 4 theory. Based on this, we conjecture an expression for the full index which
suggests an interpretation as a sum over geometries on the gravitational side. Subsequently,
we will analyze the associated free energy and the resulting entropy formula. Finally, we
end the section with an interpretation of the entropy formula. Before getting there, we first
examine the computation of the anomaly polynomial through the new modular property,
as this will provide some useful hints on what to expect for the generalized Cardy limit.

4.1 Anomaly polynomial

There exists an interesting relation between the modular property of the elliptic Γ function,
the anomaly polynomial, and the supersymmetric Casimir energy as discussed in [47, 65, 66]
and more recently in [53]. In this section, we wish to point out how the new modular
property also yields expressions which can be interpreted as an anomaly polynomial. This
is perhaps not surprising, since the new modular property is structurally very similar to
the ordinary one. However, we will point out some interesting differences that will also be
important in the following sections.

The basic relation between modularity and the anomaly polynomial can be obtained
as follows. First, one replaces each of the elliptic Γ functions that make up the perturbative
part of the partition function with the right hand side of the modular property (3.27). The
sum of Q polynomials one thus obtains represents a version of the anomaly polynomial,
defined in appendix A.

We now apply the exact same idea for the new modular property. We will use the ex-
pression for the index derived in [1] and reviewed in section 2. Focusing on the perturbative
part of the index, we have:

Z
(ai)
P = (Γ(f1)Γ(f2)Γ(f3))N−1

N ! Γ(1)N−1

N−1∏
i<j

∏3
b=1 Γ((faif−1

aj )±fb)
Γ((faif−1

aj )±)

N−1∏
i=1

∏3
b=1 Γ(f±aifb)

Γ(f±ai)
. (4.1)

We remind the reader about the third comment below (2.8) concerning the Γ functions in
the denominators, To include them in the perturbative part turns out to be natural for the
anomaly polynomial computation, as we explained in [1] and to which we refer for more
details.

Thus, we replace the Γ functions using the modular property (3.56) and collect the
total Q polynomial. Notice that each Q polynomial only depends on:

φ̃1,2 ≡ mφ1,2 . (4.2)

There, we write it as a function of φ̃1,2 and furthermore suppress the dependence on τ
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and σ:

Q
(ai)
tot (φ̃a) = (N − 1)

(
−Qm(0) +

3∑
c=1

Qm(φ̃c)
)

+
∑

φ̃∈{φ̃ai ,φ̃ai−φ̃aj }

[ 3∑
b=1

(
Qm(φ̃+ φ̃b) +Qm(−φ̃+ φ̃b)

)

−Qm(φ̃)−Qm(−φ̃)
]
,

(4.3)

Recall that for the ordinary modular property, the analogous polynomial evaluates to the
anomaly polynomial for φ3 = τ +σ−φ1−φ2−1, although without an a priori justification
for the integer −1 since in principle it could have been any (odd) integer. In particular,
for this choice of φ3, the total Q polynomial does not depend on (ai), i.e., the specific
residue. Interpreting a residue as a vacuum, as instructed by the Higgs branch localization
computation, this matches the physical expectation that the anomaly polynomial of a
theory should not depend on the choice of vacuum [53].

It turns out that in this more general case, there is an analogue of this. In particular,
suppose we define:16

φ̃3 = τ̃ + σ̃ − φ̃1 − φ̃2 − 1 , (4.4)

where we recall:
τ̃ ≡ mτ + 1−mn1 and σ̃ ≡ mσ + 1−mn2 . (4.5)

For this value of φ̃3, one finds that Q(ai)
tot does not depend on the choice of (ai). In particular,

one finds that the second and third line do not depend on the summation variable φ.
Plugging in the definition of Qm and dropping the superscript (ai), we obtain:

Qtot(φa) = (N2 − 1)
m

(
φ̃1φ̃2φ̃3
τ̃ σ̃

+ m2 − 1
6

)
. (4.6)

Notice this expression is exact, i.e., we have not taken any Cardy-like limit to obtain it.17
The function is very closely related to the supersymmetric Casimir energy and the anomaly
polynomial [65, 67]. However, let us point out some differences:

• The polynomial Q(ai)
tot depends only on the rescaled chemical potentials φ̃1,2, τ̃ and

σ̃, the latter two of which are also shifted.

• When written in terms of the original variables, the expression for φ̃3 in (4.4) reads:

φ3 = τ + σ − φ1 − φ2 + 1
m
− n1 − n2 . (4.7)

Notice that this expression of φ3 is not related by integer shifts to the expression in
the original case [1]. A naive interpretation of this equation as a constraint on φ3

16This expression for φ̃3 will be derived in section 4.2 when we consider the generalized Cardy limit.
17For future reference, we note here that together with (5.11), this equation verifies our claim (3.53) for

the N = 4 theory.
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might seem problematic, for the following reason. We can rewrite the index (2.1) in
terms of f3:

IN = trH(−1)F pJ1qJ2fQ1
1 fQ2

2 fQ3
3 e−β{Q,Q

†} . (4.8)

Now, the supercharge Q only anticommutes with the operator in the trace if φ3 =
τ +σ−φ1−φ2 + 2k with k ∈ Z. Naively, the above constraint therefore would imply
the “index” is not protected. However, notice that the supercharge will anticommute
with the operator in the trace if the Hilbert space H is reduced to a subspace Hm
which consists of only those states whose charges are multiples of m. In the next
subsection, we will see that such a projection on H is precisely what occurs in the
generalized Cardy limit, thus explaining the peculiar constraint (4.7).

• There is an additional constant term which was not present for the anomaly polyno-
mial derived using the ordinary modular property. Clearly, this term is of subleading
order in the Cardy limit, so it will not play an important role in the following. We do
note here that the constant term in the generalized Cardy limit has been related to
the partition function of SU(N)k Chern-Simons theory on S3 and lens spaces [24, 31].

In the next section, we will see how the generalized Cardy limit of the index leads to a
derivation and explanation of (4.4) and (4.6).

4.2 Generalized Cardy limit of the index

To compute the generalized Cardy limit of the index, we again only focus on the perturba-
tive part of the partition function. This is because the limit of the elliptic Γ function, as
captured by Qm, diverges as O

(
1
τ̃ σ̃

)
. Instead, the limit of the vortex partition functions,

which is captured by the B polynomial defined in (A.15), diverges as O
(

1
τ̃

)
or O

(
1
σ̃

)
.

Thus, we need to consider the following function:

ZP = (Γ(f1)Γ(f2)Γ(f3))N−1

N ! Γ(1)N−1

′∑
(ai)

3∏
b=1

N−1∏
i<j

Γ((faif−1
aj )±fb)

N−1∏
i=1

Γ((fai)±fb) , (4.9)

where we now canceled the elliptic Γ functions in the denominator of (4.1) against the
same factors in the vortex partition functions, because they will not contribute at leading
order. See the third comment below (2.8) and [1] for more information.

Now, we plug in the new modular property (3.74) for each of the elliptic Γ functions
ZP and take the generalized Cardy limit. Consider a single term in the sum labelled by
some (N − 1) tuple (ai), which we call Z(ai)

P as in (4.1). Its generalized Cardy limit is
simply the application of (3.80) for each individual Γ function and reads:

lim
gen Cardy

logZ(ai)
P = −iπQ(ai)

tot

(
[φ̃a]

)
+O

(
1
τ̃

)
+O

(
1
σ̃

)
, (4.10)
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where the bracket is defined in (3.81) and φ̃1,2 in (4.2), we again suppress dependence on
τ and σ, and:

Q
(ai)
tot

(
[φ̃a]

)
= (N − 1)

(
−Q′m(0) +

3∑
b=1

Q′m([φ̃b])
)

+
∑

φ̃∈{φ̃ai ,φ̃ai−φ̃aj }

3∑
b=1

Q′m

(
[φ̃+ φ̃b]

)
+Q′m

(
[−φ̃+ φ̃b]

)
.

(4.11)

Notice that in terms of the brackets, [φ̃3] is unambiguously defined:

[φ̃3] = [τ̃ + σ̃ − φ̃1 − φ̃2] = [−φ̃1 − φ̃2] , (4.12)

where we have used f3 = pq(f1f2)−1, as required for the cancellation of non-BPS states
to the index (4.8), and in the last equation we evaluated the generalized Cardy limit
τ̃ = σ̃ = 0.

To proceed, we evaluate all the brackets that appear in the arguments of the Qm
polynomial. Similar to our previous work, we focus on the part of Q(ai)

tot which scales as
N2, i.e., the part of the summation of the second line of (4.11) for:

φ ∈ {φ̃ai − φ̃aj} . (4.13)

Depending on the choice of residue (ai), one can have two types of contributions. There
will be terms in the sum with ai = aj and terms with ai 6= aj . For the terms with ai = aj ,
the sum over b is most easily performed. We obtain:

Q
(ai)
tot ≈ 2N2

3∑
b=1

Q′m

(
[φ̃b]

)
=−

2N2

m
[φ̃1][φ̃2][φ̃3]

τ̃ σ̃ +O(τ̃−1) +O(σ̃−1) +O(N) if [φ̃1] + [φ̃2] ∈ D(0) ,

−2N2

m
[φ̃1]′[φ̃2]′[φ̃3]′

τ̃ σ̃ +O(τ̃−1) +O(σ̃−1) +O(N) if [φ̃1] + [φ̃2] ∈ D(−1) ,

(4.14)

where we note that the answer does not depend on the value of ai, we have defined:

[φ̃a]′ ≡ [φ̃a] + 1 , (4.15)

and used the fact that there are two possible ways to evaluate the bracket [φ̃3]:

[φ̃3] = [−φ̃1 − φ̃2] =

−[φ̃1]− [φ̃2]− 1 if [φ̃1] + [φ̃2] ∈ D(0) ,

−[φ̃1]− [φ̃2]− 2 if [φ̃1] + [φ̃2] ∈ D(−1) .
(4.16)

If instead [φ1]+ [φ2] /∈ D(0) or D(−1) we cannot proceed, as explained in section 3.6. Notice
that here, for the first time, we see how the constraint (4.4) arises in the generalized Cardy
limit. We will discuss the meaning of this in more detail in section 4.4.

When ai 6= aj , we have three possibilities: (ai, aj) = (1, 2), (1, 3), (2, 3). The analysis of
the sums over b for these values of (ai, aj) is completely identical to the analysis in section
3.2.2 of [1]. In particular, it turns out that for generic values φ̃s±1,2 (see the end of section 3.6

– 31 –



J
H
E
P
1
1
(
2
0
2
1
)
0
4
7

Figure 4. This figure shows the −1 < φ̃s±
1,2 < 0 plane, where the φ̃s±

1,2 were defined in (3.86).
There are various domains in this region which correspond to regions where the brackets appearing
in (4.19) take on a fixed value. We only illustrated the relevant domains, blue and yellow, which
correspond to the domains that contain the unrefined points φ1 = φ2 = φ3 ≡ φ with [mφ] = − 1

3
and [mφ] = − 2

3 , respectively.

for the definition of φ̃s±1,2), the Q polynomials for the pairs (ai, aj) will not agree at leading
order in the generalized Cardy limit. This implies that Q(ai)

tot depends on the residue (ai),
as opposed to the anomaly polynomial derived in section 4.1. In particular, to extract a
useful Cardy limit of the full index, this would require some sort of resummation of the
full residue sum in (4.9). The difficulty in this resummation is that one needs to take into
account subleading terms in the Cardy limit, since the summation depends on the relative
phases of the residues. We have not been able to do this so far.

However, the crucial observation in [1] is that there exists a special region in φ̃s±1,2 space,
where the residues take on a universal form, i.e., they become independent of (ai). The
special regions correspond to the regions which include the unrefined points:

[φ̃] ≡ [φ̃1] = [φ̃2] = [φ̃3] . (4.17)

This equation can be solved in the two cases mentioned in (4.16):

[φ̃] = −1
3 if [φ̃1] + [φ̃2] ∈ D(0) ,

[φ̃] = −2
3 if [φ̃1] + [φ̃2] ∈ D(1) .

(4.18)

Notice that these unrefined points are distinct by a factor 1
m from the unrefined point of

the original index, reviewed in section 2, which would correspond to [φ] = −1
3 or [φ] = −2

3 .
Let us define:

Qij =
3∑
b=1

Q′m

(
[φ̃+ φ̃b]

)
+Q′m

(
[−φ̃+ φ̃b]

)
, φ̃ = φ̃ai − φ̃aj . (4.19)

As explained in section 3.2.2 of [1], the various bracketed potentials appearing in this
expression divide the φ̃s±1,2 space into various domains where the set of brackets takes on a
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set of fixed values. The domains which contain the unrefined points (4.18) are depicted in
figure 4. In the blue domain, for which [φ̃1] + [φ̃2] ∈ D(0), we then have:

Q12 = − 2
m

[φ̃1][φ̃2][φ̃3]
τ̃ σ̃

+ ([φ̃1]− [φ̃2])2

mτ̃σ̃
+O(τ−1) +O(σ−1) ,

Q13 = − 2
m

[φ̃1][φ̃2][φ̃3]
τ̃ σ̃

+ ([φ̃1]− [φ̃3])2

mτ̃σ̃
+O(τ−1) +O(σ−1) ,

Q23 = − 2
m

[φ̃1][φ̃2][φ̃3]
τ̃ σ̃

+ ([φ̃2]− [φ̃3])2

mτ̃σ̃
+O(τ−1) +O(σ−1) ,

(4.20)

where:
[φ̃3] = −[φ̃1]− [φ̃2]− 1 . (4.21)

This shows that, close enough to the unrefined point, the residues take on a universal
form: Q12 = Q23 = Q13. It is also clear from the full expression of the index in (2.8) that
subleading corrections, whether in τ̃ , σ̃ or N , will not spoil this universality. Therefore, we
may replace Z(ai)

P with the full index IN in the generalized Cardy limit and write:18

lim
gen Cardy

log IN = −iπN
2

m

[φ̃1][φ̃2][φ̃3]
τ̃ σ̃

+O
(

([φ̃a]− [φ̃b])2

mτ̃σ̃

)
+O

(
1
τ̃

)
+O

(
1
σ̃

)
. (4.22)

Analogously, for the yellow region in figure 4, we can write:

lim
gen Cardy

log IN = −iπN
2

m

[φ̃1]′[φ̃2]′[φ̃3]′
τ̃ σ̃

+O
(

([φ̃a]′ − [φ̃b]′)2

mτ̃σ̃

)
+O

(
1
τ̃

)
+O

(
1
σ̃

)
, (4.23)

where now:
[φ̃3]′ = −[φ̃1]′ − [φ̃2]′ + 1 , (4.24)

using the definition (4.15) and that [φ̃3] = −[φ̃1]− [φ̃2]− 2 in the yellow domain.
The expression (4.22) shows how the generalized Cardy limit of the index reproduces

the anomaly polynomial of the theory, discussed in section 4.1, close to the unrefined
point and at large-N . In this case, however, the constraint (4.4) is derived rigorously. In
particular, writing the limit (4.22) in terms of the original chemical potentials, we have:

lim
gen Cardy

log IN = −iπN
2

m

[mφ1][mφ2]([mφ1] + [mφ2] + 1)
(mτ + 1−mn1)(mσ + 1−mn2) , (4.25)

where we see that the correct interpretation of the constraint (4.7) in the generalized Cardy
limit is:

[φ̃3] = −[mφ1]− [mφ2]− 1 . (4.26)

Also, let us note that the generalized Cardy limit for m > 1 exhibits a finer periodicity in
the chemical potentials φa than the full index (2.1):

φ1,2 → φ1,2 + 1
m
. (4.27)

18For a more detailed argument for the replacement, see the review of [1] in section 2.
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We will return to this observation in section 4.4. Furthermore, at the end of section 4.3,
we will discuss the relation of our result to the analysis of [20].

We close this section by making some comments about (4.25). First of all, we see
that (4.25) for any value of m is periodic under:

φ1,2 → φ1,2 + 1 . (4.28)

This is consistent with the fact that the trace definition of the index has the same periodic-
ity, as discussed in section 2. This periodicity was already observed in the original τ, σ → 0
limit, performed in [1]. However, we now observe that the appearance of n1,2 could also
reflect the periodicity of the index under:

τ → τ + 1, σ → σ + 1 . (4.29)

The idea is that we think of (part of) the index as the following formal expression:19

IN =
∑

m,n1,n2∈Z
m 6=0

exp
(
−iπN

2

m

[mφ1][mφ2]([mφ1] + [mφ2] + 1)
(mτ + 1−mn1)(mσ + 1−mn2)

)
× α(m) , (4.30)

where α(m) denotes some unknown function. Let us first discuss some motivations to
write the index as such, after which we will turn to discuss some of its deficiencies. First
of all, this expression is manifestly periodic in all chemical potentials, consistent with the
trace definition of the index in (2.1). Secondly, if we assume that α(m) regularizes the
possibly divergent sum and that moreover in the generalized Cardy limit associated to m
the dominating term in the sum has:

α(m) = 1 + corrections , (4.31)

and the corrections are subleading, the expression reproduces the result (4.25). Thirdly,
if we interpret the generalized Cardy limits in (4.25) as providing the on-shell action of
some Euclidean gravitational saddles,20 which generalizes the case of ordinary AdS5 black
hole for m = (1, 1, 1) to arbitrary m, the expression takes on a natural form from the
gravitational perspective. Indeed, the sum would correspond to a sum over gravitational
saddles, and the summand corresponds to e−Son-shell with Son-shell the on-shell action of
the solution. This third motivation is inspired by the familiar Farey tail expansion in two
dimensions [51, 52], where the elliptic genus of a two-dimensional CFT is rewritten in a
form that resembles the expected form of a Euclidean gravitational path integral. We will
discuss this analogy extensively in section 5.

The formula (4.30) only includes the saddles reached by the Cardy limits (3.68). Let
us now include the saddles from more general order three SL(3,Z) elements, of the form
A = h · S23 with h ∈ H, studied in section 3.4. (The Xm correspond to a special case of

19This sum may be divergent and then needs to be regularized.
20See [20, 31, 37] for further evidence for this interpretation, and [68] for a recent explicit construction

of the saddles.
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such elements.) The most general element of this form leads to a similar modular property
as that of Xm (see section 3.5) but with Q′m polynomial given by:21

Qgen(z; τ, σ) = Q(mz ;mτ + n ,m(σ + k) + n2) + constant , (4.32)

where m and n are subject to the constraint m|n3 − 1, k is a free integer, and we have
not been able to determine the constant. For an element giving rise to (4.32), there exists
another element which leads to a modular property with Q polynomial:

Qgen(z; τ, σ) = Q(mz ;m(τ + k) + n2 ,mσ + n) + constant . (4.33)

Since the constant is irrelevant at leading order in the generalized Cardy limit, the analysis
in the beginning of this section applies equally well to these more general modular proper-
ties. In particular, the associated generalized Cardy limits for the modular properties are
now:

(τ , σ)→
(
− n
m
,−n

2

m
− k

)
and (τ , σ)→

(
−n

2

m
− k ,− n

m

)
. (4.34)

The expressions for the index in the respective limits now read:

lim
gen Cardy

log IN = −iπN
2

m

[mφ1][mφ2]([mφ1] + [mφ2] + 1)
(mτ + n)(m(σ + k) + n2) ,

lim
gen Cardy

log IN = −iπN
2

m

[mφ1][mφ2]([mφ1] + [mφ2] + 1)
(m(τ + k) + n2)(mσ + n) .

(4.35)

Even though each of these limits separately breaks the symmetry between τ and σ, the
symmetry would be restored in a sum formula like (4.30). After including this more general
class of saddles, the sum in (4.30) is enlarged into

IN =
∑
m̂

e−S
m̂
on-shell × α(m̂) , (4.36)

where m̂ = (m,n, k) such thatm|n3−1 and k ∈ Z and −Sm̂
on-shell is given by (4.25) or (4.35),

depending on the type of m̂.
The formula (4.36) includes all the phases associated to the modular properties studied

in this paper. However, there are reasons to believe that this sum is still incomplete,
and in particular should at least contain terms with the denominator of Son-shell equal to
(mτ + n1)(mσ + n2) for arbitrary coprime m and ni [20, 26, 31, 68]. To find the modular
properties that allow for these more general Cardy limits, we will need to find relations in
the group G beyond the order three elements. We will suggest a different type of relation
in section 5.3, which may allow one to take such more general limits and thus complete the
sum.

21For a discussion of these more general elements, see appendix B. For a (partial) derivation of the
associated Q polynomial, see section C.4.
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4.3 Entropy

In this section, we will compute the entropy from the free energy derived in the previous
subsection by a Legendre transformation. The analysis will be similar to the case of
the AdS5 black hole studied in [13–16]. We will focus on the free energy in the blue
domain (4.22), which we can write as:

F ≡ lim
gen Cardy

log IN = −iπN
2

m

φ̃1φ̃2φ̃3
τ̃ σ̃

. (4.37)

Here, φ̃3 = −φ̃1 − φ̃2 − 1 and the tilded chemical potentials are defined in (4.2) and (4.5).
Furthermore, we have suppressed the brackets and only check that the saddle point values
of the φ̃1,2,3 all lie in the domain D(0) at the end of the calculation. Finally, we have written
the free energy in a fully refined manner, but caution the reader that our derivation of the
expression is only valid parametrically close to the unrefined point.

The entropy associated to the generalized Cardy limit of the index is given by the
Legendre transformation of F for charges J1,2 and Q1,2,3:

S = extφa,τ,σ,Λ
[
F − 2πi

(
τJ1 + σJ2 + φaQa + Λ

(
φ̃1 + φ̃2 + φ̃3 − τ̃ − σ̃ + 1

))]
, (4.38)

where the Lagrange multiplier Λ enforces the constraint (4.21). Notice that we reinstated
τ̃ and σ̃ in the constraint, even though they do not contribute to the constraint in the
generalized Cardy limit, as we discussed in section 4.2. This is done for completeness, but
at the end of this section we will indeed see that consistency of the saddle points with the
generalized Cardy limit implies that their reinstatement is immaterial to the extremization
to leading order.

It will be convenient to rewrite the extremization in terms of tilded chemical poten-
tials as:

S = 1
m

extφ̃1,2,τ̃ ,σ̃,Λ̃

[
−iπN2 φ̃1φ̃2φ̃3

τ̃ σ̃
− 2πi

(
τ̃ J̃1 + σ̃J̃2 + φ̃aQ̃a

+Λ̃
(
φ̃1 + φ̃2 + φ̃3 − τ̃ − σ̃ + 1

)) ]
,

(4.39)

where we defined Λ̃ = mΛ, simply pulled out a factor 1
m , and introduced the shifted charges:

J̃i = Ji + C and Q̃a = Qa − C , (4.40)

with the constant C given by:

C = (mn1 − 1)J1 + (mn2 − 1)J2 . (4.41)

Notice that the arguments of the extremizations in (4.38) and (4.39) are only equal on the
saddle point. The final entropy from (4.39) should be C-independent, which can be seen
after integrating out Λ̃. The result can be written as the extremization over C-independent
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combinations of charges multiplying the chemical potentials and an additional constant C-
dependent term:

S = 1
m

extφ̃1,2,τ̃ ,σ̃,Λ̃

[
−iπN2 φ̃1φ̃2φ̃3

τ̃ σ̃
− 2πi

(
τ̃(J̃1 + Q̃3) + σ̃(J̃2 + Q̃3)

+φ̃1(Q̃1 − Q̃3) + φ̃2(Q̃2 − Q̃3)
)

+ 2πiQ̃3

] (4.42)

Clearly, the saddle point values of the chemical potentials will be C-independent. Plugging
these values back into the entropy function, we will acquire an entropy of the form S =
1
m(S0 + 2πiQ̃3) with S0 C-independent. Imposing reality of the entropy requires that
2πQ̃3 = −Im(S0). This leads to an expression for the entropy purely in terms of the saddle
point values of the chemical potentials, which are C-independent.22 For this reason, we
will may remove all the tilded symbols in the charges Qa and Ji in the rest of this section.

The rewriting in (4.39), while removing the tildes, makes the similarity to the extrem-
ization in the original case manifest [13, 16]. In particular, we can immediately borrow the
saddle point values for the chemical potentials in terms of the charges from [13]:

φ̃∗1 = −ΘQ̂2Q̂3 , φ̃∗2 = −ΘQ̂1Q̂3 , φ̃∗3 = −ΘQ̂1Q̂2 ,

τ̃∗ = −1
2N

2ΘĴ2 , σ̃∗ = −1
2N

2ΘĴ1 ,
(4.43)

where we have defined:
Ĵi ≡ Ji − Λ̃∗ , Q̂a ≡ Qa + Λ̃∗ , (4.44)

and
Θ ≡ 1

(Q̂1Q̂2 + Q̂2Q̂3 + Q̂1Q̂3)− N2

2 (Ĵ1 + Ĵ2)
. (4.45)

In (4.44), Λ̃∗ is the saddle point value of the Lagrange multiplier Λ̃, satisfying the cubic
equation:

Λ̃3 + p2Λ̃2 + p1Λ̃ + p0 = 0 , (4.46)

where:

p0 ≡ Q1Q2Q3 + 1
2N

2J1J2 ,

p1 ≡ Q1Q2 +Q2Q3 +Q1Q3 − 1
2N

2(J1 + J2) ,
p2 ≡ Q1 +Q2 +Q3 + 1

2N
2 .

(4.47)

Similar to the computation of the entropy for AdS5 black hole, reality of the entropy selects
one out of the three roots of (4.46). In particular, on the saddle the expression for the
extremum simplifies significantly:

S = −2πi
m

Λ̃∗ . (4.48)

Hence, we see that for the entropy to be real, we need a purely imaginary positive root for
Λ̃∗. Similar to the original case, this can only happen when:

p0 = p1p2 . (4.49)
22We thank Alejandro Cabo-Bizet for discussions regarding this point.
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which is equivalent to the non-linear charge constraint obeyed by the ordinary AdS5 black
hole [7–11].23 When the charges obey (4.49), the cubic equation (4.46) can be rewritten as

(Λ̃2 + p1)(Λ̃ + p2) = 0 . (4.50)

The solution for which the entropy is real and positive is given by Λ̃∗ = i
√
p1. The entropy

is then given by:24

S = 2π
m

√
p1 = 2π

m

√
Q1Q2 +Q2Q3 +Q1Q3 − 1

2N
2(J1 + J2) . (4.51)

We will interpret this formula in section 4.4. We also notice that the computation of
the entropy for the more general modular properties, mentioned at the end of section 4.2
in (4.35), is completely equivalent to the above. In the remainder of this section, we check
self-consistency of the analysis, and at the end comment on the relation to [20].

First of all, we derived the free energy in the generalized Cardy limit and close to the
unrefined point:

τ̃ , σ̃ → 0 , [φ̃1,2,3] ≈ −1
3 . (4.52)

The saddle point values of the chemical potentials in (4.43) should be consistent with this
limit. It is not difficult to check that this can be achieved if the charges scale as follows [14]:

Qa = O
(
µ2
)
, Ji = O

(
µ3
)
, µ→∞ . (4.53)

We now check that the values of φ̃1,2,3 lie inside the domain D(0), described in sec-
tion 3.6. Following [15], we first use (4.43) to find:

φ̃∗a
τ̃∗

= −
J1 − i

√
p1

Qa + i
√
p1
,

φ̃∗a
σ̃∗

= −
J2 − i

√
p1

Qa + i
√
p1
,

σ̃∗

τ̃∗
=
J1 − i

√
p1

J2 − i
√
p1
. (4.54)

The imaginary parts of these expressions are given by:

Im
(
φ̃∗a
τ̃∗

)
=

(J1 +Qa)
√
p1

p1 +Q2
a

, Im
(
φ̃∗a
σ̃∗

)
=

(J2 +Qa)
√
p1

p1 +Q2
a

,

Im
(
σ̃∗

τ̃∗

)
=

(J1 − J2)√p1

p1 + J2
2

, Im
(
τ̃∗

σ̃∗

)
=

(J2 − J1)√p1

p1 + J2
1

.

(4.55)

Notice that the upper expressions are manifestly positive if Ji + Qa > 0. Furthermore,
the lower two expressions vanish in the generalized Cardy limit.25 We can then use the
constraint to leading order to find:

Im
(−1
τ̃∗

)
= Im

(
φ̃∗1 + φ̃∗2 + φ̃∗3

τ̃∗

)
, Im

(−1
σ̃∗

)
= Im

(
φ̃∗1 + φ̃∗2 + φ̃∗3

σ̃∗

)
. (4.56)

23See also [13, 14, 44, 69] for more recent discussions.
24In v1 of this paper, we expressed the entropy in terms of the shifted charges (4.40). This incorrectly

suggested a dependence of the entropy on C. As we explained below (4.42), the entropy is independent of
C. The present result for the entropy coincides with the entropy found for (m,n) saddles in [20, 37]. We
compare our result in more detail at the end of this section.

25This implies that ατ = ασ on the saddle point (see (3.68)), which is a divergent limit of the modular
property. This divergence can be dealt in a similar way as is done in Theorem 5.2 in [49], as we discussed
at the end of section 3.5. Keeping this in mind, the above analysis is self-consistent. At the moment, it is
not clear how to make the saddle point analysis consistent with the generalized Cardy limit for ατ 6= ασ.
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From the previous two equations we can conclude:

Im
(−1
τ̃∗

)
> Im

(
φ̃∗a
τ̃∗

)
> 0 , Im

(−1
σ̃∗

)
> Im

(
φ̃∗a
σ̃∗

)
> 0 , (4.57)

which shows that φ̃∗a lie inside the diamond domain (3.76), which is what we wanted to
show. For them to be parametrically close to the unrefined point, we should take:

Q1 ≈ Q2 ≈ Q3 . (4.58)

Finally, we wish to compare our result for the entropy to the work [20]. In that
paper, the authors compute the superconformal index by a saddle point approximation
in the large-N limit. Using an elliptic extension of the gauge integrand into the complex
plane, they find saddle points labelled by two integers (m,n). Such a saddle dominates
their ensemble in the region around τ = − n

m , and the associated free energy they find is
given by:

Seff = iπN2

27m
(2τ̃ − 1)3

τ̃2 + iπN2ϕ(m,n) , τ̃ = mτ + n , (4.59)

with ϕ(m,n) an unknown real constant independent of τ and m + n = 2 mod 3. Up to
conventions and the constant, this agrees precisely with the free energy we find in the
generalized Cardy limit for (m,n) = (m, 1−mn1), although we used an analytic extension
of the gauge integrand to compute the index. Their solution for m + n = 1 mod 3 agrees
with our computation when we sit at the unrefined point in the yellow domain of figure 4.
Finally, saddles for which m + n = 0 mod 3 never dominate the ensemble. For us, these
constraints on the sum of m and n are not seen. In particular, m+ 1−mn1 can take any
value mod 3 and for each generalized Cardy limit, we find two free energies: one in the
blue domain and one in the yellow domain.

In the subsequent analysis of [20], the constraint 2τ−2φ = −1 was integrated out such
that their extremization becomes:26

S(m,n) = extτ
[
− Seff − 2πiτ(2J + 2Q)− 2πiQ

]
, (4.60)

Notice that the extremization only depends on the combination J + Q. In our case, the
extremization similarly only depends on J1,2 +Q3 and Q1,2−Q3. In addition, the entropy
is independent of the added constant ϕ(m,n) for the same reason that our entropy does
not depend on C, as described below (4.42).

To compare with our extremization problem (4.38), we note that at the unrefined point
φ ≡ φ1 = φ2 = φ3 and τ̃ = σ̃ our constraint becomes:

3φ− 2τ = 1
m

+ 2n1. (4.61)

Notice that the 2n1 on the right hand side ensures that in the generalized Cardy limit,
φ ∈ D(0)

1/m as discussed in section 3.6. Integrating out the constraint and taking J ≡ J1 = J2
and Q ≡ Q1 = Q2 = Q3, we find:

S = extτ
[
F − 2πiτ(2J + 2Q)− 2πi

m
(1− 2mn1)Q

]
, (4.62)

26There is a factor of 2 difference in the normalization of R-charges Q from the original work [20].
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which is different from (4.60) in the last term due to different constraints on chemical
potentials. Since the final entropy does not depend on this shift in the imaginary part we
can conclude the final entropy will agree with the results from elliptic extension method [20].

4.4 Interpretation

In this subsection, we will interpret the entropy formula derived in section 4.3. The formula
is very similar to the entropy formula for ordinary AdS5 black holes, up to a reduction by
an overall factor 1

m . We will give an interpretation of this reduction on both the field
theory and the gravity sides.

Field theory interpretation. Recall from section 4.2 that the generalized Cardy limit
of the index (4.25) results in the finer periodicity (4.27). This new periodicity is not satisfied
by the full superconformal index, as can for example be seen from the trace definition of
the index (2.1), which we repeat in a slightly rewritten form:

IN = trHBPSe
2πiσJ1e2πiτJ2e2πiφ1Q1e2πiφ2Q2e2πiφ3Q3 . (4.63)

Here, HBPS denotes the Hilbert space of BPS states on which the index (4.8) localizes,
and we have used that F = 2Q3 such that now for φ3 = τ + σ − φ1 − φ2 + 2k + 1, k ∈ Z
the supercharge anticommutes with the operator in the trace. As discussed in section 2,
this index is only periodic under φ1,2 → φ1,2 + 1. Moreover, it depends on non-scaled
variables φ1,2, τ , and σ. Therefore, the new periodicity observed in (4.25) suggests that
in generalized Cardy limits (3.68) with fixed m but arbitrary n1,2, the Hilbert space is
effectively projected onto a subsector HmBPS that only consists of states with charges

HmBPS : Ji = mJ ′i and Qa = mQ′a , (4.64)

where J ′i , Q′a ∈ 1
2Z. Indeed, in the subsector HmBPS, the index can be rewritten as follows:

I
(m)
N ≡ trHmBPS

e2πiσ̃J ′1e2πiτ̃J ′2e2πiφ̃1Q′1e2πiφ̃2Q′2e2πiφ̃3Q′3 , (4.65)

where we used that for any state:

e2πi((mn1−1)(J ′1+Q′3)+(mn2−1)(J ′2+Q′3)) = 1 . (4.66)

Note that (4.65) is periodic under the finer periodicity (4.27): φ̃1,2 → φ̃1,2 + 1. Also, in
this case we have:

φ̃3 = τ̃ + σ̃ − φ̃1 − φ̃2 +m (2k + 1) . (4.67)

The index only depends on the mod 2 value m(2k+ 1): for even m, the states are counted
with a plus sign while for odd m with a minus sign. Taking m(2k + 1) = −1 for odd
m and m(2k + 1) = −2 for even m reproduces the bracketed values of φ̃3 in (4.16). To
conclude, we observe that if the generalized Cardy limit effectively projects the theory onto
the subsector (4.64), a finer periodicity (4.27) emerges from the trace point of view that is
consistent with the result (4.25). It would be interesting to understand if this projection
of the Hilbert space can be related to observations in [31], where it is shown that in the
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generalized Cardy limit an effective Chern-Simons theory appears on a lens space. We will
comment on this point more extensively at the end of this section.

The reduced Hilbert space HmBPS helps us to understand the reduction of the entropy.
In particular, since HmBPS only contains states with Q1,2,3 = mQ′1,2,3, we expect less mi-
crostates and therefore a smaller entropy. Some intuition for the precise reduction may be
obtained by comparing the entropy formula to the Hardy-Ramanujan formula. In partic-
ular, the Hardy-Ramanujan formula tells us that for large n, the number of partitions is
given by p(n) ∼ e

√
n. If we want to compute the number of partitions where the parts are

only allowed to multiples of m, we would find: p(n) ∼ e
√

n
m .27

The entropy formula (4.51) we derived in section 4.3 is rather similar to the Hardy-
Ramanujan formula, as is the entropy formula for AdS5 black holes, except that the de-
pendence on the analogue of n, i.e., the charges Qi, is quadratic.28 We now see that if we
replace the charges Q1,2,3 in the ordinary AdS5 black hole entropy formula with the Q′1,2,3,
as instructed by the analogy with Hardy-Ramanujan, we obtain:

S = 2π
√
Q′1Q

′
2 +Q′2Q

′
3 +Q′1Q

′
3 = 2π

m

√
Q1Q2 +Q2Q3 +Q1Q3 . (4.68)

Here, we have omitted the dependence on angular momenta since it is subleading in the
generalized Cardy limit, as explained in section 4.3. Thus, we see how this analogy correctly
predicts the entropy formula we find.

Let us discuss also a more geometric interpretation of the reduction of the entropy by
the factor 1

m , still on the field theory side. For this, we first recall that one can think of
the background geometry on which the field theory lives, S3 × S1, as the primary Hopf
surface: C2 \ {(0, 0)}/Z, where Z acts as:

(z, z′) ∼ (pz, qz′), (4.69)

and p = e2πiσ and q = e2πiτ , with Im(τ) and Im(σ) > 0. From this description it is clear
that τ and σ correspond to geometric parameters. In particular, we can ask what happens
to the geometry in the generalized Cardy limit. To understand this, it is useful to write
the identifications on z = e2πi(ζ1+iζ2) and z′ = e2πi(ζ′1+iζ′2) as:

ζ1 ∼ ζ1 + Re(σ) , ζ2 ∼ ζ2 + Im(σ) ,
ζ ′1 ∼ ζ ′1 + Re(τ) , ζ ′2 ∼ ζ ′2 + Im(τ) .

(4.70)

Notice that we can think of the thermal circle as generated by ζ2 + ζ ′2, which is non-
contractible since (z, z′) = (0, 0) is excluded. Similarly, we can think of the ζ1 and ζ ′1 as
the Euler angles on S3, which contract at z = 0 and z′ = 0 respectively [67]. Since the
generalized Cardy limit is defined as:

τ → n1 − 1
m , σ → n2 − 1

m , (4.71)
27The number of unrestricted partitions of n is given by the generating function

∑
n
p(n)qn =

∏∞
j=1(1−

qj)−1. The number of partitions where all the parts are multiples of m is given by the generating function∑
n
pm(n)qn =

∏∞
j=1(1− qjm)−1.

28Since the index can be computed at weak coupling, one indeed expects the counting of states by the
index for fixed charges to be related to some version of the counting of partitions.
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we see that at the geometric level the Euler angles are quotiented by 1
m whereas the thermal

circle pinches.29 This quotient is exactly the same as what one expects for a lens space
L(m, 1).

Aside on lens space partition functions. Before turning to the gravitational inter-
pretation of the entropy formula, let us point out some analogies and differences between
HmBPS, which appears in the generalized Cardy limit of the superconformal index, and the
Hilbert space of a theory quantized on a lens space L(m, 1). The lens space L(m, 1) can
be thought of as S3/Zm, where Zm quotients the Hopf fiber. Supersymmetric partition
functions on such spaces were discussed in [61, 62, 70]. In the following, we collect some
facts from [62].

Let us first consider a free chiral multiplet. Its lens space partition function can be
obtained by projecting onto states invariant under Zm action on a Hopf fiber. Since our
supercharge Q has j2 = 0 (see section 2), this projection can be achieved in the trace by
adding a holonomy along the Hopf fiber associated to j2. This simply projects onto the
class of states with:

j2 = 1
2(J1 − J2) = 0 mod m, (4.72)

which we will call the untwisted sector. On the other hand, there also exist twisted sectors.
For a theory with only global symmetries, one can project onto a specific twisted sector
by also adding a holonomy for the global symmetry along the Hopf fiber. In this case, one
projects onto states with

j2 = ±k mod m for some k ∈ {0, . . .m− 1} . (4.73)

In contrast, for a gauge theory one has to sum over all twisted sectors. Schematically:

IN =
∑
k

∮
Ik , (4.74)

where the sum is over all twisted sectors, the integral is over gauge holonomies along the
temporal circle S1, and the integrand Ik is the usual plethystic exponential of single particle
indices but now with a gauge holonomy labelled by k inserted along the Hopf fiber.

We notice that there are some similarities between the lens space partition function
and the projected Hilbert space HmBPS. In particular, we see that the states in HmBPS satisfy
the condition (4.72): j2 = 0 mod m. However, there are some important differences:

• The constraint j2 = 0 mod m only constrains the difference of J1 and J2, while
in HmBPS both J1 and J2 are 0 mod m. Moreover, the charges Q1,2,3 are similarly
constrained in HmBPS. Apparently, this cannot directly be understood from the lens
space partition function. One way in which similar constraints on the Q1,2,3 can
arise is when there are lens like non-contractible cycles in the transverse space. In
that case, one could add holonomies for these cycles with charges Q1−Q2, Q2−Q3,
for which the supercharge Q has vanishing charge. This seems to be realized in the
explicit orbifold solutions presented in [68].

29Similar conclusions recently appeared in [31, 54].
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• For a gauge theory such as the N = 4 theory, there should also be twisted sectors.
At least naively, these are not seen in the generalized Cardy limit. A priori, this may
seem surprising, since for example in symmetric orbifolds in the two-dimensional
context, it is usually the (maximally) twisted sector which provides the dominant
contribution to the entropy. It would be very interesting to understand if and how
such twisted sectors are encoded in our expression for the (generalized Cardy limit of)
the superconformal index. To study this, it may be helpful to compare to [31], where
such twisted sectors are found in generalized Cardy limits. A complicating factor in
this comparison is the fact that in our approach we perform the gauge integral before
analyzing the generalized Cardy limit, whereas they first take the generalized Cardy
limit and then compute the gauge integral. This different order seems to be crucial
in their identification of the twisted sectors.

Gravitational interpretation. We will now present some ideas on how to interpret the
entropy formula from the gravitational point of view. Again, we recapitulate the entropy
formula for convenience:

S = 2π
m

√
Q1Q2 +Q2Q3 +Q1Q3 , (4.75)

where we recall from section 4.3 that the generalized Cardy limit in the microcanonical
ensemble reads:

Qa = O(µ2) , Ji = O(µ3) , (4.76)

for µ→∞. Let us first emphasize that this formula is obtained from the index by Legendre
transformation with respect to unshifted charges Q1,2,3 and J1,2. In particular, this means
that it is obtained for states with the same energy as ordinary AdS5 black holes with
charges Q1,2,3 and J1,2. The entropy of the latter can be obtained by setting m = 1 to find
to leading order in the Cardy limit:

S = 2π
√
Q1Q2 +Q2Q3 +Q1Q3 . (4.77)

As already hinted at in the field theory interpretation, the reduction of the entropy by a
factor 1

m could be interpreted in terms of a black hole with L(m, 1) horizon topology.30
Indeed, the generalized Cardy limit (4.71) induces a Zm quotient of S3, which can be
extended into the bulk. However, we are not aware of any explicitly known solutions for
black lenses with AdS5 asymptotics, and therefore cannot compare the entropy formula
with the actual horizon area of such a solution.31

30Another possible gravitational interpretation can be elicited from the giant graviton configuration ap-
pearing in the near extremal static black holes [71]. In the absence of one R-charge, the central charge of
the black hole is proportional to the intersection number between two species of giant gravitons. The form
of the entropy in (4.77) indicates that this could potentially be described by intersections between unknown
gravitational configurations. The 1/m factor can then be understood as reducing the degrees of freedom
in each gravitational species by m, thus lowering the intersections between these configurations by 1/m2,
which results in the 1/m factor in the entropy.

31Solutions like this were announced as orbifold solutions in [54] and appeared in [68] after v1 of the
present paper appeared. Also, similar to our geometric analysis above, the asymptotics of such solutions
were recently discussed in [31].
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5 Discussion

In this work, we have derived a three-integer family of modular properties for the elliptic Γ
function. We applied these properties to the study of generalized Cardy-like limits of the
superconformal index of the N = 4 super-Yang-Mills theory. A more detailed summary of
our main results is given at the end of section 1.

The elliptic Γ function can be thought of as the superconformal index of a free chiral
multiplet. The reason that we can use its modular properties to study the N = 4 theory
is that the index of the N = 4 theory consists of a collection of elliptic Γ functions and
θ functions, and only the Γ functions are relevant to leading order in the generalized
Cardy limits. However, on general grounds one expects that the normalized superconformal
indices of arbitrary N = 1 SCFTs, including the N = 4 theory, by themselves obey similar
modular properties [53]. In this section, we will discuss how these modular properties could
constrain the ordinary superconformal index and whether they have a natural interpretation
on the gravitational side, specifically in terms of the gravitational path integral.

Let us start by recalling how the SL(2,Z) modularity in AdS3/CFT2 is reflected on
the gravitational side. In the two-dimensional CFT, the superconformal index Z(z1,...,r; τ)
(a.k.a. the elliptic genus) is invariant, up to a phase, under arbitrary transformations in
the Jacobi group J = SL(2,Z) n Z2r:

Z (zi; τ) = eiφg(zi;τ)Z
(
g−1(zi; τ)

)
, g ∈ J . (5.1)

This property is crucial in defining a Farey tail transform of the elliptic genus [51, 52, 72],
which can be interpreted naturally in terms of the dual gravitational path integral. In par-
ticular, the expression for the elliptic genus obtained in [52] reflects the covariance (5.1) by
being written as an average over (part of) the modular group SL(2,Z). The gravitational
interpretation of this average is in terms of a sum over gravitational saddle points, corre-
sponding to the SL(2,Z) family of Euclidean BTZ black holes [50]. From the gravitational
path integral point of view, this family of saddles arises due to the fact that gravity can
fill in any cycle of the boundary torus.

We now want to ask whether the modular properties of four-dimensional normalized
partition functions, discussed in [53] and this work, similarly have a natural interpretation
on the gravitational side. More precisely: do the modular properties imply a covariance
property like (5.1) for the four-dimensional superconformal index? And could such a prop-
erty be used to argue for the existence of an averaged expression for the index, which can
subsequently be interpreted as a sum over saddles in the gravitational theory?

Let us start by noting that our work has shown that, using modular properties of the
elliptic Γ functions, one can compute generalized Cardy limits for the full superconformal
index. The resulting expressions match precisely with the on-shell actions of the supersym-
metric AdS5 black hole solution and certain orbifolds thereof.32 The modular properties
of the elliptic Γ function are generally labeled by relations in G = SL(3,Z) n Z3r, in
this work specifically a three-integer parameter family of order three elements X3

m = 1.
32Our prediction for the on-shell action is the same as obtained for the (m,n) saddles in [20] — see also

the more recent discussion in [31, 37, 68].
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Thus, the associated gravitational saddles can be labeled similarly. This generalizes the
observation of Gadde in [53] and our previous work [1], which associates the order three
element Y ∈ SL(3,Z) to the ordinary AdS5 black hole. This is somewhat reminiscent of
AdS3/CFT2, although there Euclidean gravitational saddles are labeled by SL(2,Z) ele-
ments. However, it is not straightforward to push this analogy further, for the following
conceptual and technical reasons.

First of all, in AdS5/CFT4 either the S3 or the S1 factor from the boundary geometry
can contract in the bulk, corresponding to thermal AdS or an AdS black hole, respec-
tively [73]. However, unlike the case for a two-dimensional boundary, there seems to be no
natural combination of these cycles which can contract. The fact that the large diffeomor-
phism group of S3 × S1 is presumably small (or trivial) is a reflection of this fact. Indeed,
the relevant modular group in four dimensions is the group of large diffeomorphisms of a
three torus, which arises in a Heegaard-like decomposition of a class of four manifolds (see
section 3.2). As such, it does not correspond to the large diffeomorphism group of the full
four manifold, such as S3 × S1. It is precisely for this reason that the four-dimensional
(normalized) index is a rather different modular object than the two-dimensional elliptic
genus.

This brings us to two more technical issues. Firstly, it is really the ordinary, i.e.,
unnormalized, partition function Zg that features in the AdS/CFT correspondence. It
is not immediately obvious whether modular properties of normalized partition functions
have useful implications for the former. Secondly, the fact that the normalized partition
functions are rather different modular objects than ordinary automorphic forms will in
particular complicate the interpretation of their modular properties in terms of a covariance
such as (5.1). Such a covariance is crucial to argue for an averaged expression of the index
over a modular group, which could have a natural interpretation in terms of a gravitational
path integral.

In the following, we will first examine this second point in section 5.1. In particular,
we will discuss in detail how the modular property of normalized partition functions differs
from the two-dimensional case, and how one can still interpret it as a type of covariance.
However, it seems somewhat awkward to give this covariance property a gravitational inter-
pretation. We then return to the first point in section 5.2, where we show that modularity of
the normalized superconformal index still implies an interesting covariance of the ordinary
superconformal index. This covariance turns out to allow for a more natural gravitational
interpretation, which we will discuss.

5.1 Modularity of the normalized index

We recall from sections 3.1 and 3.2 that the modular property of Ẑag under G = SL(3,Z)n
Z3r is as follows:

Ẑag1·g2 (ρ) = eiφg1,g2 (ρ)Ẑag1 (ρ) Ẑag2

(
g−1

1 ρ
)
, g1,2 ∈ G . (5.2)

In mathematical terms, Ẑag is an element of the first group cohomology H1(G,N/M), as
opposed to the elliptic genus which can be thought of as an element of H0(J,N/M) [53].
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This property differs crucially from the two-dimensional case in that it involves three parti-
tion functions which are generically defined on non-diffeomorphic manifolds. Therefore, it
cannot be interpreted straightforwardly as a covariance of a partition function defined on
a single manifold. In addition, the property is labeled by a relation in the modular group
G, in this case:

r = (g1 · g2) · (g2)−1 · (g1)−1 = 1 . (5.3)

This is opposed to the modular property for the elliptic genus, which is labeled by an
element in the modular group J . Notice that (5.2) can be viewed as a factorization property
of a normalized partition function, up to a phase, on some manifold Mg1·g2 in terms of
partition functions on Mg1 and Mg2 .

There is a close relation between the modular property (5.2) and the holomorphic block
factorization [45–47]. Holomorphic blocks can be viewed as partition functions on the solid
torus D2× T 2. An ordinary supersymmetric partition function on Mg can sometimes33 be
factorized into two such holomorphic blocks BaL(ρ) and BaR(g−1ρ):

Z[Mg](ρ) '
∑
a

BaL(ρ̂)BaR(g−1ρ̂), (5.4)

where the sum runs over all Higgs branch vacua |a〉 of the mass deformed theory, the
equality should be understood modulo a phase, and BaR(z; τ, σ) = BaL(z;−τ, σ) are related
by orientation reversal. The factorization is a reflection of the Heegaard-like decomposition
of Mg, and the fact that the associated supersymmetric partition function only depends
on the complex structures of Mg [74].

Holomorphic block factorization underlies the derivation of the modular property for
normalized partition functions, modulo the phase [53]. In figure 5, we illustrate the deriva-
tion for an order three element A3 = 1, such that g1 = g2 = A−1 and g1g2 = A. This figure
serves to illustrate the geometric interpretation of (5.2): normalized partition functions Ẑa(·)
are covariant under the splitting of a manifoldMg1g2 into the disjoint unionMg1∪Mg2 , with
an appropriate mapping of the moduli. The non-trivial phase is a reflection of non-trivial
Berry curvature on the space of parameters [53], to which the partition functions are sen-
sitive. Indeed, the property (5.2) can be viewed as describing the Berry phase associated
to the loop:

ρ→ g−1
1 ρ→ g−1

2 g−1
1 ρ→ g1g2g

−1
2 g−1

1 ρ = ρ . (5.5)

Notice that this loop is precisely captured by the relation (5.3).
Admittedly, the above describes a rather different type of covariance than the one

appearing in two dimensions, where the partition function on a single manifold is covariant
under large diffeomorphisms of the geometry. In particular, it seems awkward to interpret
the splitting of the (boundary) manifold on the AdS side. However, here we recall that we
are describing properties of normalized partition functions, which are not directly related to

33As discussed in [53], holomorphic blocks provide a local trivialization of the normalized partition func-
tion. Since the normalized partition functions are non-trivial elements of H1(G,N/M), holomorphic block
factorization does not hold for all generators of G. This implies that also ordinary partition functions
cannot be factorized in blocks for all generators.
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Figure 5. This figure depicts the covariance of the normalized partition function Ẑa
(·) under the split

MA →MA−1 ∪MA−1 . Summation over the a, b indices is not implied, i.e., Ẑa only corresponds to a
single (normalized) term in (5.4) (see section 3.1). In the top part, the manifold MA with complex
structure moduli ρ is represented as two solid three-tori with moduli ρ̂ and A−1ρ̂, which are glued
by the element A (and orientation reversal). The hatted versus unhatted notation, introduced in
section 3.2, serves to indicate the distinction between the T 3 moduli and the MA moduli. The
relation between these moduli will be made explicit in section 5.2. In the lower part, the splitting
of MA → MA−1 ∪MA−1 is illustrated by stretching the cylinder and factorizing it into two solid
three-tori through a resolution of the identity: A = A−11A−1 [53]. The equality denoted should be
understood mod M .

the gravitational description. Instead, we should understand the implications of modularity
for the ordinary superconformal index. We will see in section 5.2 that this understanding
will lead to a more natural interpretation on the gravitational side. Before turning to this,
let us analyze the modular properties of normalized partition functions in more detail.

The property (5.2) may seem closer related to the two-dimensional case when g1 is
an element of the subgroup H = SL(2,Z) n Z2+2r ⊂ G (see sections 3.2 and 3.3). The
partition functions evaluate trivially (mod M) on elements of H, such that (5.2) becomes:

Ẑah·g (ρ) = eiφh,g(ρ)Ẑag

(
h−1ρ

)
, h ∈ H, g ∈ G . (5.6)

We notice that this equation holds for the ordinary partition function as well, since the
normalization factors on both sides are equal and therefore can be canceled. Even though
this equation superficially resembles (5.1), an interpretation in terms of a similar covariance
does not seem to go through.34 To make the point, let us take for concreteness g = S23 such
that Mg

∼= S3 × S1. The equation then states that the partition function on the manifold
Mh·S23 with moduli ρ may be equivalently computed on the manifold MS23 with moduli
h−1ρ (up to a phase). However, even though these manifolds are both diffeomorphic to S3×

34This is a correction of an opposing statement in v1 of this paper.

– 47 –



J
H
E
P
1
1
(
2
0
2
1
)
0
4
7

S1 for any h ∈ H, it seems that their moduli cannot be related by a large diffeomorphism.
Indeed, the large diffeomorphism group of S3 × S1 is expected to be small or trivial,
whereas h ∈ H generate in particular a full SL(2,Z). Therefore, the left and right hand
side should be treated as inequivalent partition functions, even though they are related
computationally.35 For similar reasons, the partition functions Ẑh·g for distinct h describe
inequivalent partition functions. All of this is to say that (5.6) cannot be interpreted like
the covariance (5.1), and consequently cannot be used to argue for an expression of the
(normalized) index in terms of some average over H. Indeed, viewed in the context of
AdS/CFT, the partition functions would correspond to distinct boundary conditions on
the AdS side. Therefore, also from the AdS side an averaged expression over H is not
expected since the gravitational path integral should sum only over geometries with the
same boundary conditions.

To end this section, we will describe a concrete family of examples of (5.2), which will
help us to address the ordinary superconformal index in section 5.2. This is the three-
integer family of order three elements Xm studied in section 3.4, which we will denote by
A to avoid clutter. As described in section 3.5, applying the main modular property (5.2)
to the specific relation A3 = 1 leads to:

ẐaA (ρ) ẐaA
(
A−1ρ

)
ẐaA

(
A−2ρ

)
= eiπPm(ρ), (5.7)

where Pm is related to the anomaly polynomial of the theory. The advantages of evaluating
on relations associated to order three elements are as follows. First of all, we see that this
equation involves partition functions which are all defined on MA, even though the distinct
moduli mean that these partition functions are still inequivalent for the reasons discussed
above. Furthermore, for the elements Xm we can compute the Berry phase explicitly and,
as already mentioned at the beginning of this section, these phases correspond to the on-
shell actions of Euclidean gravitational solutions. In this case, the Berry phase is associated
to the loop:

ρ→ Aρ→ A2ρ→ ρ . (5.8)

To make the covariance manifest, we find it useful to rewrite (5.7), using properties of Ẑag
described in section 3.3, as follows:

ẐaA (ρ)
ẐaA−1 (ρ) ẐaA−1 (Aρ)

= eiπPm(ρ) . (5.9)

On the left hand side the numerator is the normalized partition function on the manifold
MA. Due to the order three property, we have MA

∼= MA−2 . The denominator, then,
reflects the factorization of the normalized partition function on MA−2 , being the partition
function on the disjoint union MA−1 ∪ MA−1 . This equation was already illustrated in
figure 5.

The property (5.9) may seem specific to the normalized partition function on the man-
ifold MA. However, we now show that it implies a family of covariances for the normalized

35This fact will still turn out very useful in a different context to be described below.
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superconformal index, i.e., ẐaS23
, by making use of (5.6). We first recall the explicit form

of the order three elements Xm = h ·S23 with h ∈ H constrained such that X3
m = 1. Since

Ẑh = 1 for any h ∈ H, we find a useful rewriting of (5.9):

ẐaS23
(S23ρ)

Ẑa
S−1

23
(Xmρ) Ẑa

S−1
23

(X2
mρ)

= eiπPm(ρ) , (5.10)

where we redefined ρ → Xmρ and used Pm (Xmρ) = Pm (ρ). This is the form of the
modular property used in the main text (3.55). In particular, it is expressed purely in terms
of normalized superconformal indices, i.e., partition functions on MS23 . A disadvantage of
this representation is that the geometric picture of figure 5 is somewhat obscured, which
is due to the fact that we evaluated Ẑah = 1. However, the key point is that the covariance
of Ẑa(·) as expressed in (5.9) can be understood as a family of covariances of the normalized
superconformal index under the splitting MS23 → MS−1

23
∪MS−1

23
for any h ∈ H such that

X3
m = 1.

5.2 A covariance property of the ordinary index

As mentioned in the previous section, it is important to understand what (5.10) implies for
the ordinary, i.e., unnormalized, superconformal index, since this would equal a gravita-
tional path integral on the AdS side. To see this, we first use that the product of normalized
superconformal indices appearing in (5.10) can be expressed in terms of a product of the
perturbative part of ordinary superconformal indices:

Ẑa
S−1

23
(ρ) Ẑa

S−1
23

(Xmρ) Ẑa
S−1

23

(
X2

mρ
)

= Z
(ai)
P (ρ)Z(ai)

P (Xmρ) Z(ai)
P

(
X2

mρ
)
. (5.11)

Here, Z(ai)
P is defined in (4.1) (see also section 2). This identity was proven in [53] for

Xm = Y in the context of SQED, but a completely analogous proof applies to the N = 4
theory for general Xm. The proof uses that the vortex partition function Z(ai),(ki)

V (φa, τ ;σ),
defined in (2.10), is invariant under H. In particular, one may easily verify invariance under
T31 and S13, generating SL(2,Z) ⊂ H, using modular properties of θ(z;σ) and the fact
that f3 = pq(f1f2)−1. Furthermore, invariance under T21 is trivial, while invariance under
T23 : τ → τ + σ is shown by first solving for f3 = pq(f1f2)−1 in the expression for ZV, and
only then transform q → pq.

We now use (5.11) to rewrite (5.10) once more:

Z
(ai)
P (ρ)Z(ai)

P (Xmρ) Z(ai)
P

(
X2

mρ
)

= e−iπPm(ρ) . (5.12)

Note that the phase is independent of (ai), and indeed one can explicitly show that the
product on the left hand side is independent of (ai) as well (see section 4.1). One might
worry that this equation is ill-defined due to the fact that the explicit expression for Z(ai)

P
given in (4.1) is vanishing. In the full index of the N = 4 theory, the simple zeros of Z(ai)

P
cancel against simple poles of Z(ai)

V , making the whole index non-vanishing and well-defined
(see the third comment below (2.8)). The reason to not cancel these parts outright is to
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facilitate the proof of invariance of Z(ai)
V under H. Cancelling the poles and zeros first gives

the same result, of course.
Since the vortex partition functions cancel among themselves in (5.11), including the

poles, we should check that the zeros of the Z(ai)
P factors cancel from this equation as well.

And indeed, one can also show this by plugging in the explicit expression for Z(ai)
P while

ensuring that each of the Γ functions has a convergent product expansion (see, e.g., the
comments around (3.58)). Keeping in mind that (5.12) is to be read stripped from the
simple zeros, we note that it is well-defined also in the case of the N = 4 theory.

It should not be surprising that Z(ai)
P obeys a similar property as the normalized

partition functions. Indeed, it consists of a product of elliptic Γ functions, each of which is
understood as a non-trivial element in H1(G,N/M). In fact, (5.12) is a direct consequence
of the main modular property of the elliptic Γ function, derived in section 3.5:

Γ(z; τ, σ) = e−iπQ
′
m(mz;τ,σ)Γ

(
z

mτ+n ; σ−τ
mτ+n ,

τ−n1
mτ+n

)
Γ
(

z
mσ+n ; τ−σ

mσ+n ,
σ−n1
mσ+n

)
, (5.13)

where we have specialized n1 = n2 and written n ≡ 1 −mn1. Applying this equation to
each elliptic Γ function in Z(ai)

P gives (5.12), as we explicitly showed in section 4.1.
Now, one could interpret (5.12) or (5.13) similarly as in the previous section, in terms

of a covariance under the splitting of a closed manifoldMS23 into two other closed manifolds
MS23 ∪MS23 . However, inspired by holomorphic block factorization [47], we propose an
alternative interpretation. First, let us recall that Γ(z; τ, σ) not only describes a supersym-
metric partition function of the (anomaly-free) chiral multiplet on S3 × S1 with complex
structure moduli τ and σ [59], but can also be interpreted as the partition function on
the solid torus D2 × T 2 where the boundary T 3 has moduli τ and σ [47, 75]. As above,
we denote these functions by BaL,R. Then, we may read (5.13) as a factorization, up to a
phase, of the S3 × S1 partition function with moduli ρ into the two holomorphic blocks
BaL(ρ̂1) and BaR(ρ̂2) where:

ρ̂1 = S2
23Xm ρ =

(
z

mτ + n
; τ − σ
mτ + n

,
τ − n1
mτ + n

)
mod 1

ρ̂2 = S−1
23 X

2
m ρ =

(
z

mσ + n
; τ − σ
mσ + n

,
σ − n1
mσ + n

)
mod 1 ,

(5.14)

where we recall that BaL,R are related by orientation reversal. Here, the last entry is as-
sociated to the modulus of the non-contractible T 2 ⊂ D2 × T 2 while the middle entry
corresponds to the modulus of the T 2 which contains the contractible cycle. This interpre-
tation is depicted in figure 6, where for the chiral multiplet we note that the sum would
only contain a single term as in (5.13). The somewhat complicated relation between the
complex structure moduli of the solid tori and the S3 × S1 geometry can be traced to the
fact that the gluing element, which identifies ρ̂1 and ρ̂2, involves all three cycles of the
boundary T 3. This is also the case for the original holomorphic blocks [47].

Thus, we see that (5.13) provides a family of holomorphic blocks for the chiral multiplet
superconformal index. In particular, the original example studied in [47] can be obtained
by specializing to m = n1 = 1 such that n = 0.
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Figure 6. On the left side, a supersymmetric partition function on S3×S1 geometry with moduli
ρ is depicted. Up to a phase, the partition function on this geometry can be written as a sum
of a product of two solid tori partition functions, i.e., holomorphic blocks, with moduli ρ̂1 and ρ̂2
defined in (5.14). The red dotted line indicates how we may think of the geometry on the left as
being split into the geometry on the right.

Let us pause here briefly to comment on this interpretation in the case when τ = σ, a
somewhat subtle limit of the modular property discussed at the end of section 3.5. As we
saw there, the elliptic Γ functions on the right hand side of the modular property become
singular in this limit. Viewing these Γ functions as holomorphic blocks, as above, we note
that these divergences result geometrically from pinching cycles on the solid tori associ-
ated to the blocks. This can be seen for example from the complex structure parameters
in (5.14), where one may note that one entry of ρ̂1,2 obtains a vanishing imaginary part.
On the other hand, it is clear that the left hand side of the modular property is completely
well-defined for τ = σ. Correspondingly, the S3 × S1 geometry is also completely regular
for τ = σ. It is therefore not surprising that the divergences cancel and one obtains the
modular property associated to τ = σ, which we repeat here for convenience:

Γ(z; τ, τ) = e−iπQ
′
m(mz;τ,τ)

θ
(

z
mτ+1−mn ; τ−n

mτ+1−mn

) ∞∏
k=0

ψ
(m,k+1)

(
−z− (k+1)

m
mτ+1−mn

)
ψ(m,k)

(
z− k

m
mτ+1−mn

)

m

. (5.15)

If one follows the explicit computation (by setting σ = τ(1 + ε) and taking ε → 0), one
finds that the left holomorphic block in (5.13) cancels entirely against a large part of the
holomorphic block on the right. The finite remainder exhibited in (5.15) can thus be
ascribed to a single holomorphic block. We postpone a detailed interpretation of this to
future work. For now, let us roughly sketch what we suspect is happening. If we think
of the S3 as a torus fibration over an interval, we usually have in mind that the solid tori
comprising the left and right halve of the interval are glued at the middle of the interval.
The pinching limit τ = σ, instead, should correspond to a limit of this fibration where one
solid torus comprises essentially the entire interval, while the other “solid torus” sits at the
end point. Both these solid tori have a pinched cycle in a sense: one has a cycle which
blows up, while the other has a cycle which pinches. However, it is clear that the S3 has
not changed; we just changed our perspective of the torus fibration. We expect then that
the finite remainder is due to the solid torus with blown up cycle, while a remainder of

– 51 –



J
H
E
P
1
1
(
2
0
2
1
)
0
4
7

pinched torus has completely vanished.
We end this section by stating a covariance property for the full, ordinary supercon-

formal index. Recall from section 2 that we can write the index as:

IN =
∑
(ai)

Z
(ai)
P (fa; τ, σ)Z(ai)

V (fa, σ; τ)Z(ai)
V (fa, τ ;σ). (5.16)

Here, the sum is over N − 1 tuples (a1, . . . , aN−1) with each entry taking three possible
values ai = 1, 2, 3, and we have written:

Z
(ai)
V (fa, σ; τ) ≡

∑
(ki)

Z
(ai),(ki)
V (fai , σ; τ) . (5.17)

Now, we plug in the holomorphic blocks for Z(ai)
P , use the fact that the associated phase

does not depend on (ai) and finally use invariance of Z(ai)
V under H. This allows us to

write:

IN = e−iπPm(ρ)∑
(ai)

[
Z

(ai)
P

(
σ−τ
mτ+n ,

τ−n1
mτ+n

)
Z

(ai)
V

(
τ−n1
mτ+n

)]
×
[
Z

(ai)
P

(
τ−σ
mσ+n ,

σ−n1
mσ+n

)
Z

(ai)
V

(
σ−n1
mσ+n

)]
,

(5.18)

where we have bracketed the two holomorphic blocks and suppressed the dependence on
fa. The total phase was computed explicitly in section 4.1 and is given by:

Pm(ρ) ≡ Qtot(φa; τ, σ) = (N2 − 1)
m

(
φ̃1φ̃2φ̃3

(mτ + n)(mσ + n) + m2 − 1
6

)
. (5.19)

Here, the φ̃a were defined in (4.2) and (4.4).
This brings us finally to the four-dimensional analogy with the two-dimensional mod-

ular property (5.1). Instead of covariance under large diffeomorphisms of the background
geometry, the covariance property in four dimensions relies on the various ways in which
one can factorize the superconformal index. These factorizations are labeled (so far) by
the order three elements Xm.36 Similar to two dimensions, the covariance suggests an ex-
pression for the index where one averages over all possible factorizations. We imagine the
each summand in such an expression contains the associated phase and further corrections.
As mentioned before, the associated phases correspond to the on-shell actions of Euclidean
gravitational solutions. Therefore, such an expression has the form of a sum over Euclidean
gravitational saddles. It will be very interesting to further exploit the covariance to also
find subleading corrections, as achieved by the (modern) Farey tail [51, 52]. Perhaps one
should look separately at a Farey tail-like expression for ZP and an ordinary one for the
ZV, since the latter are described by ordinary automorphic forms.

The covariance described above is also more appealing for the gravitational interpre-
tation, since the factorization into holomorphic blocks can still be viewed as describing

36We note here that there may be more ways in which to factorize the index, and return to this point in
section 5.3.
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the partition function on a single closed boundary geometry, in this case S3 × S1. A con-
crete proposal for a gravitational interpretation of this factorization was presented in [76],
where the holomorphic blocks of [47] were interpreted in AdS and were dubbed gravitational
blocks. The geometric interpretation of the gravitational blocks is analogous to holomorphic
blocks (see figure 6). In particular, the blocks are defined on the north and south pole of
the S3 in the near-horizon geometry of the black hole solution respectively. The blocks are
then glued with a specific identification on the attractor values of the supergravity fields.
Our work suggests that the Euclidean saddles which generalize the black hole, discussed
already in [20, 31, 37] and now explicitly constructed in [68], can be thought of as a more
general gluing of the gravitational blocks. We will return to a more explicit description in
future work.

5.3 Future directions

Let us briefly conclude the previous two sections, and then sketch some future directions.
In section 5.1, we have discussed the strict interpretation of modularity in four dimensions
as a covariance property of normalized partition functions under the splitting of a closed
manifold Mg1g2 into two closed manifolds Mg1 ∪Mg2 . However interesting, this property
is quite distinct from the automorphic property in two dimensions. Moreover, normalized
partition functions represent a somewhat artificial object and in particular do not have
a clear gravitational interpretation through AdS/CFT. We then observed in section 5.2
that for specific relations in the group, corresponding to a family of order three elements,
the modular property of the normalized partition functions implies a similar property
for the perturbative part of the ordinary superconformal index. We reinterpreted the
modular properties as a statement about the existence of a familiy of holomorphic block
factorizations of the ordinary superconformal index, including the non-pertubartive vortex
part, which generalizes the original holomorphic blocks discussed in [47]. Geometrically,
this expresses the various ways in which the partition function on S3×S1 can be factorized
into partition functions on two solid three-tori, where the moduli of the solid three tori
are related to the moduli of S3×S1 by certain SL(3,Z) relations. This type of covariance
suggests an averaged expression for the superconformal index that would be the four-
dimensional analogue of the (modern) Farey tail expression for the elliptic genus [52]. On
the gravitational side, this suggests an interpretation as a more general gluing of the so-
called gravitational blocks of [76], which would give rise to the family of Euclidean saddles
of [68], whose existence was already predicted by the superconformal index [20, 31, 37] and
this work.

For future work, we note that there are reasons to believe that the family of modular
properties described above is incomplete, as already discussed in section 4.2. In particular,
this family cannot be used to compute the Cardy limits for arbitrary rational values of τ
and σ.37 Recall that our modular properties resulted from relations in SL(3,Z) obeying the
following criterion: when evaluating the chiral multiplet partition function on the relation,

37Such limits were obtained in [31] using different methods. The fact that the resulting expression is very
similar to the phases obtained from our modular properties suggests that there should exist more general
modular properties which allow the more general Cardy limits.
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there should not be more than three elliptic Γ functions involved. This ensures that the limit
of the elliptic Γ function can be expressed in terms of a simple phase. Moreover, it is also
crucial to the interpretation of the modular property in terms of holomorphic blocks. The
criterion landed us on a specific family of order three elements Xm. However, let us note
that there exist other relations in G, not corresponding to order three elements, which also
result in modular properties obeying the same criterion. For example, the basic modular
property of the elliptic Γ function, associated to the relation Y 3 = 1, can also be derived
from the relation T13T32(T12T32T13)−1 = 1. The latter relation is clearly inequivalent to
the order three relation Y 3 = 1, even though they give rise to the same modular property.
Perhaps generalizations of this relation will give rise to more general relations among three
elliptic Γ functions, which would allow the computation of the limit of the Γ function for
arbitrary rational values of τ and σ in terms of a simple phase. In particular, this would
probably provide a complete set of saddles and their associated on-shell actions. It will be
interesting if the summation over this set has a natural interpretation in terms of (some
subgroup of) SL(3,Z).

We have seen that the phases Pm(ρ), which capture (a version of) the anomaly poly-
nomial of the N = 4 theory, can be related to the on-shell actions of the Euclidean gravita-
tional saddles. It should also be possible to compute Pm as the action of a five-dimensional
Chern-Simons theory on a cobordism which interpolates between the manifolds MXm ,
MX−1

m
and MX−1

m
[53]. It would be interesting to understand the connection of this five-

dimensional Chern-Simons theory, if any, to the supergravity path integral.
Finally, a different type of modular property between two four-dimensional lens space

partition functions corresponding to different quotients of S3 has been studied in [77] in
the context of conformal field theories without supersymmetry. Lens spaces are included in
the manifolds Mg and therefore carry SL(3,Z) modular properties. It would be interesting
to study if the SL(3,Z) modularity is related to the modularity reported by [77], which
might provide a hint on how to generalize the SL(3,Z) modularity to non-supersymmetric
theories.
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A Definitions and properties of special functions

In this appendix, we collect definitions and properties of the special functions used in the
main text.

A.1 The q-Pochhammer symbol

The q-Pochhammer symbol is defined as

(a; q)n :=
n−1∏
j=0

(1− aqj) , (a; q)0 = 1 . (A.1)

This can be extended to an infinite product so that we may write (a; q)∞. Hence,

(a; q)n = (a; q)∞
(aqn; q)∞

. (A.2)

This enables us to define the q-Pochhammer symbol for negative values of the subscript.
Noting that

(a; q)−1
∞ =

∞∏
j=0

1
1− aqj , (A.3)

the coefficient of amqn is the number of partitions of n into at most m parts. Enumeration
problems of this type are at the heart of microstate counting [78], so it is no surprise that
such expressions make an appearance in discussing the index.

A.2 The q-θ function

The q-θ function, or modified Jacobi theta function θ(z; τ), is defined as

θq(x) ≡ θ(z; τ) = exp
(
−
∞∑
m=1

xm + x−mqm

m(1− qm)

)
=
∞∏
n=0

(1− xqn)(1− x−1qn+1) , (A.4)

where we have put q = e2πiτ and x = e2πiz. The summation formula is valid for 0 <

Im(z) < Im(τ), and the product formula is valid for |q| < 1. Commonly used properties of
the θ(z; τ) function include the transformations under translation and reflection:

θ(z +mτ + n; τ) = (−x)−mq−
m(m−1)

2 θ(z; τ) , θ(−z; τ) = θ(z + τ ; τ) . (A.5)

Moreover,
θ(z;−τ) = −x

θ(z; τ) . (A.6)

Under the S-transformation, the q-θ function enjoys the modular property:

θ

(
z

τ
;−1

τ

)
= eiπB(z,τ)θ(z; τ) ,

B(z, τ) = z2

τ
+ z

(1
τ
− 1

)
+ 1

6

(
τ + 1

τ

)
− 1

2 .
(A.7)
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Apart from the S-transformation, we will need to determine what happens to q-θ functions
under a general SL(2,Z) transformation. This will generalize the expression in (A.7). We
derive this formula following [79].

First of all, the Jacobi theta function is defined as

ϑ(z; τ) =
∞∏
n=0

(1− qn+1)(1 + xqn+ 1
2 )(1 + x−1qn+ 1

2 ) , (A.8)

which is related to q-θ function by

ϑ(z; τ) = e−
πiτ
12 η(τ)θ

(
z + τ + 1

2 ; τ
)
. (A.9)

Here, η(τ) is the Dedekind η function, which can be defined in terms of the q-Pochhammer
symbol as η(τ) = q

1
24 (q; q)∞. It is shown in [79] that given ab and cd even, the SL(2,Z)

action on ϑ(z, τ) is

ϑ

(
z

cτ + d
; aτ + b

cτ + d

)
= ζ
√
cτ + d exp

(
πicz2

cτ + d

)
ϑ(z; τ) . (A.10)

The phase ζ depends on whether c is taken to be odd or even:

ζ =

 e−
πic

4
(
d
c

)
J

if c ∈ 2Z + 1 ,

e
πi(d−1)

4
(
c
|d|

)
J

if c ∈ 2Z ,
(A.11)

where the (·)J is the Jacobi symbol. The general SL(2,Z) action on the η function is

η

(
aτ + b

cτ + d

)
= ε(a, b, c, d)

√
cτ + d η(τ) , (A.12)

where

ε(a, b, c, d) =
{

exp
(
iπ
[
a+d
12c − s(d, c)−

1
4

])
for c 6= 0 ,

exp(iπb/12) for c = 0 ,
(A.13)

with

s(d, c) = −1
c

∑
ω

1
(1− ωd)(1− ω) + 1

4 −
1
4c , ωc = 1 and ω 6= 1 , (A.14)

the Dedekind sum of a pair of coprime integers. Then taking (A.9) and (A.12) into (A.10),
we obtain:

θ

(
z

cτ + d
; aτ + b

cτ + d

)
= θ(z; τ)eiπB(z,τ ;a,b,c,d) , (A.15)

with:

B(z, τ ; a, b, c, d) = cz2

cτ + d
+ z

( 1
cτ + d

− 1
)

+ cτ2

6(cτ + d)

+c(3− 6d) + 6(−1 + d)d+ b(−2 + 3c2 − 6cd+ 3d2)
12(cτ + d) (A.16)

+(−2a+ 3(−2 + a)c2 − d− 6(−1 + a)cd+ 3ad2)τ
12(cτ + d) + δ(a, b, c, d) ,
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where δ(a, b, c, d) is a constant that depends only on the SL(2,Z) element:

eiπδ(a,b,c,d) = ε(a, b, c, d)
ζ

. (A.17)

The result (A.15) is only valid when ab and cd are both even, because of the requirement
that (A.10) holds. Although it is possible to generalize to cases where one of the products
is odd, in this paper we will be satisfied with using (A.15).

A.3 The elliptic Γ function

The elliptic Γ function can be defined as an infinite product when Im(τ) > 0 and Im(σ) > 0
as follows:

Γ(x) ≡ Γ(z; τ, σ) =
∞∏

m,n=0

1− x−1pm+1qn+1

1− xpmqn , (A.18)

where q = e2πiτ , p = e2πiσ, and x = e2πiz. For Im(τ) > 0, Im(σ) > 0 and 0 < Im(z) <
Im(τ) + Im(σ), the elliptic Γ function can also be defined through the summation formula:

Γ(z; τ, σ) = exp
( ∞∑
`=1

x` − (x−1pq)`
`(1− p`)(1− q`)

)
. (A.19)

Basic properties that are manifest from these expressions include:

Γ(z; τ, σ) = Γ(z;σ, τ) ,
Γ(z + 1; τ, σ) = Γ(z; τ + 1, σ) = Γ(z; τ, σ + 1) = Γ(z; τ, σ) .

(A.20)

Furthermore, the elliptic Γ function satisfies the shift properties:

Γ(z + τ ; τ, σ) = θ(z;σ)Γ(z; τ, σ) ,
Γ(z + σ; τ, σ) = θ(z; τ)Γ(z; τ, σ) .

(A.21)

The product of two Γ functions with reflected z arguments simplifies:

Γ(z; τ, σ)Γ(−z; τ, σ) = 1
θ(z;σ)θ(−z; τ) . (A.22)

Even though the definitions of the elliptic Γ function in terms of the product formula
only hold for positive imaginary parts of its arguments, it can also be extended to negative
imaginary part Im(τ) < 0 or Im(σ) < 0 via the summation formula (A.19). In particular,
one has:

Γ(z;−τ, σ) = 1
Γ(z + τ ; τ, σ) = Γ(σ − z; τ, σ)

Γ(z; τ,−σ) = 1
Γ(z + σ; τ, σ) = Γ(τ − z; τ, σ)

(A.23)

Thus, the elliptic Γ function is defined for τ, σ ∈ C− R.
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A modular property of the elliptic Γ function was first derived in [49]:

Γ(z; τ, σ) = e−iπQ(z;τ,σ)
Γ
(
z
τ ; στ ,−

1
τ

)
Γ
(
z−τ
σ ;− τ

σ ,−
1
σ

) , (A.24)

whose Q polynomial is defined as:

Q(z; τ, σ) = z3

3τσ −
τ + σ − 1

2τσ z2 + τ2 + σ2 + 3τσ − 3τ − 3σ + 1
6τσ z

+ 1
12(τ + σ − 1)(τ−1 + σ−1 − 1) .

(A.25)

Relations with Bernoulli polynomials may be found in [47].

A.4 Anomaly polynomial

The anomaly polynomial encodes the ’t Hooft anomalies of a supersymmetric gauge theory
in its coefficients. We use the parameterization of the anomaly polynomial of a general
N = 1 theory given in [53]:

P (za;xi) = 1
x1x2x3

(
kijkzizjzk + 3kijRzizjX + 3kiRRziX2 + kRRRX

3 − kiziX̃ − kRXX̃
)
,

(A.26)

where the various k indicate the (mixed) R- and flavor symmetry anomalies, and:

X = 1
2

3∑
i=1

xi , X̃ = 1
4

3∑
i=1

x2
i . (A.27)

B More general order three elements of SL(3,Z)

In this appendix, we consider the general form of the matrix A in (3.42) and (3.43), namely

A =

 n m 0
k −n 1

d− nk −(mk + n2) 0

 , (B.1)

subject to the constraint

(1− n)(n2 + n+ 1) = dm, d ∈ Z . (B.2)

The matrix A will reproduce Xm in (3.47) once the parameters are specified as

n = 1−mn1 , k = n1(2−mn1)− n2 , d = n1(m2n2
1 − 3mn1 + 3) . (B.3)

The integer k is generically unconstrained.
In the Cardy limit, the complex structure τ approaches the ratio −n/m, which cannot

be any rational number due to the constraint n3 + dm = 1. In principle, n can be any
integer whereas the allowed values of m are more restricted. The constraint indicates that
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n,m are coprime, i.e., gcd(m,n) = 1. Then Euler’s theorem, which generalizes Fermat’s
little theorem, states that

nφ(m) ≡ 1 (mod m) , (B.4)

for a generic pair of coprime integers (m,n), where φ(m) is the Euler totient function.
Integers m coprime to n thus form a finite group called the multiplicative group of integers
modulo m, which is usually denoted as (Z/mZ)×. The order of the group is exactly φ(m).

Integers n satisfying the constraint m|n3−1 form an order three subgroup of (Z/mZ)×.
There are two different kinds of subgroup elements. The identity element satisfies the order
three criterion trivially, which corresponds to n ≡ 1 (mod m). The corresponding SL(3,Z)
matrices are the Xm we have studied in section 3.4. More non-trivial group elements are
those not of the identity type. Lagrange’s theorem states the order of a subgroup of a finite
group divides the order of the entire group, which in our case is (Z/mZ)×. Thus, when
n 6= 1− n1m for integer n1, we conclude that 3|φ(m).

Let us focus on the non-trivial solutions of 3|φ(m). The values of m fall on two
branches: multiples either (i) of 9 or (ii) of a prime of the form 6` + 1 [80]. A few low
values of allowed m are

m = 7, 9, 13, 14, 18, 19, 21, 26, 27, 28, . . . . (B.5)

This set comprises almost all the integers, i.e., the asymptotic density of m among integers
approaches unity [81]. The integer pairs (m,n) can have non-identity type solutions when
m takes the values in (B.5). A few non-trivial examples are (m,n) = (7, 2), (7, 4), (9, 4).

The non-trivial subgroup satisfying 3|φ(m) is the cyclic group Z3, which is due to the
fact all the finite groups of the prime order are cyclic group. The solutions of integer pairs
(m,n) are thus characterized by neat algebraic structures, even without referring to explicit
solutions. We will not be able to characterize the complete set of solutions explicitly. In
the following, with a number of simplifying assumptions, we will investigate special cases
for which the constraint n3 + dm = 1 can be parameterized by free integers.

We construct the free parameters of integer solutions by simplifying the constraint
equations further. The factorization of the cubic polynomial 1− n3 = (1− n)(1 + n+ n2)
can help us reduce the cubic congruence equation to quadratic equations if we only focus
on the 1 + n + n2 part. For simplicity, we further restrict ourselves to the case where
m

1−n = r ∈ Z. Then the problem reduces to solve

n2 + n+ 1 ≡ 0 (mod r) . (B.6)

One can also consider (B.6) to be a three variable Pell type equation in number theory:

(2n+ 1)2 + (r − u)2 − (r + u)2 = −3 . (B.7)

The basic idea behind solving a Pell equation is to find a special solution and apply recursive
relations between solutions. A simple solution to (B.7) is (n, r, u) = ±(0, 1, 1). If (n, r, u)
is a solution to (B.7), then (n + 2r, 2 + 4n + 4r + u, r) is also a solution. This results
in a solvable recursive sequence. The disadvantage of this procedure is that the solutions
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to (B.7) are always parameterized by powers of irrational numbers, even though they are
integers in nature.

In the following, we will search for solutions to (B.6) by considering it as a congruence
equation. The solutions are classified by the congruence class of the integer r. Therefore,
we parameterize n and m by

n = 1− rα− αi , m = r(rα+ αi) , (B.8)

where the αis are the remainders such that αi ∈ {0, . . . , r − 1} with n satisfying (B.6).
Then the solutions of αi are

{αi} =
{r + 1

2 (3 +
√
−3)

}
(B.9)

in the sense of congruence class.
To have solutions of m,n in terms of free integers, we still need to write

√
−3 in αi

as an integer modulo r. In the following we will study the case where r is a prime of the
form 6` + 1. The m manifestly satisfies 3|φ(m) as it falls into the branch (ii) mentioned
above where non-trivial solutions are allowed. Fermat’s little theorem states that any such
integers are of the form

r = t2 + 3s2 , (B.10)

with one of (t, s) being an odd integer. Then the solutions to x2 = −3 (mod r) are

x ≡ ts−1 (mod n) (B.11)

The parameterization problem of (m,n) then reduces to finding r such that x is manifestly
an integer. Take (t, s) = (2p, 1) as an example. We can find (r, x) = (4p2 + 3, 2p). Then

α1 = 2p2 + 3 (mod r) , α2 = −2p2 − p (mod r) . (B.12)

In terms of the parameters p and α, we can write (m,n) as

m = (4p2 + 3)2α− (4p2 + 3)(2p2 + p) , n = −(4p2 + 3)α+ 2p2 + p+ 1 . (B.13)

What we have shown above supplies hints to generalize the integer pair (m,n) to
other cases. Note that r = 4p2 + 3 is not generically a prime integer, but the manifest
integer parameterization of (m,n) is still valid for any p. As generalizations of this, one
can consider r in (B.10) to be multiples of prime of the form 6`+ 1. Alternatively, one can
also consider m/(1− n) to be general rational numbers.

C Derivation of Q polynomials

In this appendix, we will derive the phases associated to the modular properties used in
the main text. For this, we will use the “gauge fixed” formalism of [49]. We will first
briefly review the relevant parts of [49] before turning to the computation of the phase
for the relations Y 3 = 1 and X3

m = 1, respectively. The computations we describe are
straightforward but also somewhat involved. We provide the details for the purpose of
completeness.
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C.1 General strategy

For convenience, we repeat some of the relevant formulae already mentioned in section 3,
to which we refer for more details. We will make frequent use of the main property of the
normalized partition function of a free chiral multiplet, for which we omit the superscript
Ẑag = Ẑg as in section 3.3:

Ẑg1·g2 (x) = Ẑg1 (x) Ẑg2

(
g−1

1 x
)
mod M . (C.1)

In [49], the functions φk,li,j are introduced to “gauge fix” the evaluation of Ẑg of a chiral
multiplet, i.e., the elliptic Γ function, on the basic SL(3,Z) relations:

ẐTij (x) ẐTkl
(
T−1
ij x

)
= φk,li,j (x) ẐTkl (x) ẐTij

(
T−1
kl x

)
, i 6= l , j 6= k ,

ẐTij (x) ẐTjk
(
T−1
ij x

)
= φj,ki,j (x) ẐTik (x) ẐTjk

(
T−1
ik x

)
ẐTij

(
T−1
jk T

−1
ik x

)
,

ẐS13 (x) ẐS13

(
S−1

13 x
)
ẐS13

(
S−2

13 x
)
ẐS13

(
S−3

13 x
)

= 1 .

(C.2)

Here, φk,li,j (x) = eiπL
k,l
i,j (x) and φj,ki,j (x) = eiπL

j,k
i,j (x) with:

L3,2
1,2(x) = −L1,2

3,2(x) = Q
(
Z−x1
x1

; x2−x3
x1

, x3−x1
x1

)
+Q

(
Z−x1+x3
x1−x3

; x3
x1−x3

, x2−x1
x1−x3

)
,

L1,2
3,1(x) = Q

(
Z−x1
x1

; x2−x3
x1

, x3−x1
x1

)
,

L3,2
1,3(x) = −Q

(
Z−x1+x3
x1−x3

; x2−x1
x1−x3

, x3
x1−x3

)
.

(C.3)

All the other L vanish, and the function Q is defined in (A.25). The combination of (C.1)
and (C.2) allows one to compute the modular properties exactly, i.e., beyond mod M , as
we will see in detail below.

Also, recall from section 3.3 that the only Tij such that ẐTij 6= 1 are T12 and T32.
Explicitly,

ẐT12 = Γ
(
Z−x2
x3

; x1−x2
x3

,−x1
x3

)−1
, (C.4)

ẐT32 = Γ
(
Z
x1

; x2−x3
x1

, x3
x1

)
. (C.5)

This collection of formulae is sufficient to derive the phase fr (x) for any relation r = 1 in
the group, where r = e1 · · · en is a reduced expression in terms of the generators ek ∈ {T±1

ij }.
Evaluating the partition function on this relation:

Ẑe1 (x)
n−1∏
i=1

Ẑei+1

(
e−1
i · · · e

−1
1 x

)
= eiπfr(x) . (C.6)

For notational convenience, in the following we will write:

Ẑe1···en (x) ≡ Ẑe1 (x)
n−1∏
i=1

Ẑei+1

(
e−1
i · · · e

−1
1 x

)
. (C.7)

Even though this notation by (C.1) is correct mod M , it is misleading in the gauge fixed
formalism. Indeed, when r = e1 · · · en = 1, Ẑe1···en (x) = 1 exactly. The non-trivial phase

– 61 –



J
H
E
P
1
1
(
2
0
2
1
)
0
4
7

in (C.6) is only present for the product of partition functions labeled by a single group
element Ẑei . Similarly, the basic relations written in this notation become:

ẐTijTkl(x) = φk,li,j (x)ẐTklTij (x) , i 6= l , j 6= k ,

ẐTijTjk(x) = φj,ki,j (x)ẐTikTjkTij (x) ,
ẐS4

13
(x) = 1 .

(C.8)

These equations are again misleading because the partition functions appearing on the left
and right hand side are simply equal, i.e., strictly speaking there should not be a phase.
The expressions only hold when we understand them as the notation defined in (C.7), in
which case one finds the relations (C.2).

To illustrate how one can use the basic SL(3,Z) relations in (C.2) to compute phases
for relations in the group, let us consider first consider two simple examples:

ẐT32T31 (x) = φ3,1
3,2 (x) ẐT31T32 (x) . (C.9)

This implies that

ẐT32 (x) = ẐT32

(
T−1

31 x
)
,

Γ
(
Z
x1

; x2−x3
x1

, x3
x1

)
= Γ

(
Z
x1

; x2−x3+x1
x1

, x3−x1
x1

)
,

(C.10)

where the left and right hand sides of the two expressions above are exactly the same. We
have used φ3,1

3,2 (x) = 1 and the property (C.1) of Ẑg. Periodicity of the elliptic Γ function
can now be used to see that this equation is indeed correct.

More non-trivially, we have:

ẐT12T32 (x) = φ3,2
1,2 (x) ẐT32T12 (x)

⇐⇒ ẐT12 (x) ẐT32

(
T−1

12 x
)

= φ3,2
1,2 (x) ẐT32 (x) ẐT12

(
T−1

32 x
)

⇐⇒
Γ
(

Z
x1−x2

; x2−x3
x1−x2

, x3
x1−x2

)
Γ
(
Z−x2
x3

; x1−x2
x3

,−x1
x3

) = eiπL
3,2
1,2(x) Γ

(
Z
x1

; x2−x3
x1

, x3
x1

)
Γ
(
Z−x2
x3−x2

; x1−x2
x3−x2

,− x1
x3−x2

) .
(C.11)

We have not encountered this relation explicitly in the literature. One way to prove it is
by adapting the proof of Theorem 4.1 in [49] to this relation. In particular, one may check
that the function

A (x) =
Γ
(

Z
x1−x2

; x2−x3
x1−x2

, x3
x1−x2

)
Γ
(
Z−x2
x3−x2

; x1−x2
x3−x2

,− x1
x3−x2

)
Γ
(
Z−x2
x3

; x1−x2
x3

,−x1
x3

)
Γ
(
Z
x1

; x2−x3
x1

, x3
x1

) e−iπL
3,2
1,2(x) (C.12)

is periodic under Z → Z + xi for i = 1, 2, 3. Since the function is then a triply periodic
meromorphic function, this implies that it is equal to a constant. The constant itself can
be fixed by evaluating the equation on a special value of Z at which both sides simplify
greatly.

When we wish to compute the phases associated to relations that are more complicated
than the basic relations, such as Y 3 = 1 and X3

m = 1, we will make use of the following
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strategy. First, one proves the relation, e.g., Y 3 = 1, through a combination of the basic
SL(3,Z) relations. The total phase is then an accumulation of phases corresponding to the
basic relations (C.2). Explicitly, we use:38

Ẑg1TijTklg2 (x) = φk,li,j

(
g−1

1 x
)
Ẑg1TklTijg2 (x) , i 6= l , j 6= k ,

Ẑg1TijTjkg2 (x) = φj,ki,j

(
g−1

1 x
)
Ẑg1TikTjkTijg2 (x) .

(C.13)

Let us quickly prove the first relation:

Ẑg1TijTklg2(x) = Ẑg1(x) ẐTijTkl(g−1
1 x) Ẑg2(T−1

kl T
−1
ij g

−1
1 x)

= Ẑg1(x)φk,li,j (g−1
1 x) ẐTklTij (g−1

1 x) Ẑg2(T−1
ij T

−1
kl g

−1
1 x)

= φk,li,j (g−1
1 x) Ẑg1TklTijg2(x) .

(C.14)

The second relation is established by means of a similar argument. Finally, in order to
compute the phases for the relations Y 3 = 1 and X3

m = 1, it will be convenient to collect
similar formulae to (C.2) for when some of the Tij are replaced with their inverse T−1

ij :

ẐTijT−1
kl

(x) = (ψ1)k,li,j (x)ẐT−1
kl

Tij
(x) , i 6= l , j 6= k ,

ẐT−1
ij Tkl

(x) = (ψ2)k,li,j (x)ẐTklT−1
ij

(x) , i 6= l , j 6= k ,

ẐT−1
ij T−1

kl
(x) = (ψ3)k,li,j (x)ẐT−1

kl
T−1
ij

(x) , i 6= l , j 6= k ,

(C.15)

where we have defined:

(ψ1)k,li,j (x) = 1
φk,li,j (y)

, y = Tklx ,

(ψ2)k,li,j (x) = 1
φk,li,j (y)

, y = Tijx ,

(ψ3)k,li,j (x) = φk,li,j (y) , y = TijTklx .

(C.16)

Similarly,

ẐTjkTij (x) = (ξ1)i,jj,k(x)ẐT−1
ik

TijTjk
(x) ,

ẐT−1
ij T−1

jk
(x) = (ξ2)j,ki,j (x)ẐT−1

jk
T−1
ij Tik

(x) ,

ẐT−1
jk

T−1
ij

(x) = (ξ3)i,jj,k(x)ẐT−1
ij T−1

jk
T−1
ik

(x) ,

ẐTijT−1
jk

(x) = (ξ4)j,ki,j (x)ẐT−1
jk

T−1
ik

Tij
(x) ,

ẐT−1
ij Tjk

(x) = (ξ5)j,ki,j (x)ẐTjkT−1
ij T−1

ik
(x) ,

ẐTjkT−1
ij

(x) = (ξ6)i,jj,k(x)ẐT−1
ij TikTjk

(x) ,

ẐT−1
jk

Tij
(x) = (ξ7)i,jj,k(x)ẐTikTijT−1

jk
(x) ,

(C.17)

38Note that we are using the slightly misleading notation defined in and explained around (C.7).
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where
(ξ1)i,jj,k(x) = 1

φj,ki,j (y)
, y = Tikx ,

(ξ2)j,ki,j (x) = φj,ki,j (y) , y = TijTjkx ,

(ξ3)i,jj,k(x) = 1
φj,ki,j (y)

, y = TijTjkx ,

(ξ4)j,ki,j (x) = 1
φj,ki,j (y)

, y = TikTjkx ,

(ξ5)j,ki,j (x) = 1
φj,ki,j (y)φj,ki,k(y)

, y = Tijx ,

(ξ6)i,jj,k(x) = φj,ki,j (y) , y = Tijx ,

(ξ7)i,jj,k(x) = φj,ki,j (y)φj,ki,k(y) , y = Tjkx .

(C.18)

With these preliminaries, we are now finally ready to compute the phases associated to the
arbitrary relations in the group.

C.2 Q polynomial for the order three element Y

In this section, we will compute the phase associated to the relation Y 3 = 1, which played a
central role in [53]. To do this, we will prove algebraically that Y 3 = 1, where Y = S−1

23 S13,
making use only of the basic SL(3,Z) relations. The accumulated phase we acquire by
repetitive use of (C.13) will provide the total phase f (x) such that:39

ẐY 3 (x) = eiπf(x) . (C.19)

To prove Y 3 = 1 algebraically, we first notice that:

S−1
23 S13 = S13S

−1
12 , S−1

12 S13 = S13S23 , S−1
12 S

−1
23 = S−1

23 S13 . (C.20)

Using these relations, we have:

S−1
23 S13S

−1
23 S13S

−1
23 S13 = S13S

−1
12 S13S

−1
12 S

−1
23 S13

= S13S13S23S
−1
12 S

−1
23 S13

= S13S13S23S
−1
23 S13S13 = 1 .

(C.21)

To compute the accumulated phase of these manipulations, we need to compute the phases
associated to:

ẐS−1
23 S13

(x) = χ1 (x) ẐS13S
−1
12

(x) ,

ẐS−1
12 S13

(x) = χ2 (x) ẐS13S23 (x) ,

ẐS−1
12 S

−1
23

(x) = χ3 (x) ẐS−1
23 S13

(x) .

(C.22)

For the last step, the phase is trivial since:

ẐS23S
−1
23

= ẐS4
13

= 1 . (C.23)

39In the following, we will use the slightly misleading notation defined in and explained around (C.7).
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To compute the total phase, we therefore first determine the phases χ1, χ2 and χ3. Recall
that:

S−1
23 = T−1

23 T32T
−1
23 , S13 = T13T

−1
31 T13 , S−1

12 = T21T
−1
12 T21 . (C.24)

Thus, we find:

ẐT−1
23 T32T

−1
23 T13T

−1
31 T13

(x) =
ẐT13T

−1
31 T13T21T

−1
12 T21

(x)

φ3,2
1,3 (T12T23x) φ1,2

3,1

(
T31T12T23T

−1
13 x

) , (C.25)

where we made repetitive use of (C.13). Similarly, we have:

ẐT21T
−1
12 T21T13T

−1
31 T13

(x) =
φ3,2

1,3

(
T32T12T

−1
23 T31T

−1
13 x

)
φ3,2

1,2

(
T32T12T

−1
23 T31T

−1
13 x

)
φ1,2

3,1

(
T31T12T

−1
21 T

−1
23 T

−1
13 x

)
× ẐT13T

−1
31 T13T23T

−1
32 T23

(x) .

(C.26)

Finally, we have:

ẐT21T
−1
12 T21T

−1
23 T32T

−1
23

(x) = φ3,2
1,3

(
T12T

−1
21 T23x

)
ẐT−1

23 T32T
−1
23 T−1

31 T13T
−1
31

(x) . (C.27)

This provides us with explicit expressions for the phases χ1,2,3:

χ1 (x) = 1
φ3,2

1,3 (T12T23x) φ1,2
3,1

(
T31T12T23T

−1
13 x

) = 1 ,

χ2 (x) =
φ3,2

1,3

(
T32T12T

−1
23 T31T

−1
13 x

)
φ3,2

1,2

(
T32T12T

−1
23 T31T

−1
13 x

)
φ1,2

3,1

(
T31T12T

−1
21 T

−1
23 T

−1
13 x

) = 1 ,

χ3 (x) = φ3,2
1,3

(
T12T

−1
21 T23x

)
= e
−iπQ

(
Z−x2
x2

;x1
x2
,
x3
x2

)
,

(C.28)

from where we see that only χ3 is non-trivial.
The total accumulated phase can now be computed:40

ẐY 3 (x) = Ẑ(S−1
23 S13)3 (x) = ẐS13S

−1
12 S13S

−1
12 S

−1
23 S13

(x) = ẐS13S13S23S
−1
12 S

−1
23 S13

(x)

= χ3
(
S−1

23 S
−2
13 x

)
ẐS13S13S23S

−1
23 S13S13

(x) = χ3
(
S−1

23 S
−2
13 x

)
.

(C.29)

Thus, we find:

ẐY (x) ẐY
(
Y −1x

)
ẐY

(
Y −2x

)
= e
−iπQ

(
Z−x2
x2

;x1
x2
,
x3
x2

)
. (C.30)

The function on the right hand side is symmetric under any exchange of the x1,2,3. In
particular, if we exchange x2 and x1 and identify z = Z

x1
, τ = x2

x1
, and σ = x3

x1
, we can

evaluate this property explicitly as:

Γ (z; τ, σ) Γ
(
z
σ ; τσ ,

1
σ

)
Γ
(
z
τ ; στ ,

1
τ

)
= e−iπQ(z−1;τ,σ) , (C.31)

40Note that we are using the slightly misleading notation defined in and explained around (C.7).
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where we used that ẐS23 = Γ(z + σ; τ, σ) (see (3.15)) and properties of the elliptic Γ
function. One may easily verify that this expression matches with the modular property
written in [53]. Finally, we can rewrite this expression as

Γ(z; τ, σ) = e−iπQ(z;τ,σ)
Γ
(
z
τ ; στ ,−

1
τ

)
Γ
(
z−τ
σ ;− τ

σ ,−
1
σ

) , (C.32)

which is the alternative form of the modular property that we employed in [1].

C.3 Q polynomial for the order three element Xm

We would now like to perform a similar analysis for the element:

Xm =

 1−mn1 m 0
(2−mn1)n1 − n2 mn1 − 1 1
(1−mn1)n2 + n1 mn2 − 1 0

 , (C.33)

which may be written in terms of generators as:

Xm = T23T
n1−n2
21 Tn2

31 T
−m
13 Tn1

31 T
−n2
21 S23 . (C.34)

This element is also of order three. Thus we would like to compute:41

ẐX3
m

(x) = eiπf(x) . (C.35)

Following the same strategy as in the Y 3 = 1 case, we first prove algebraically that this
element has order three, using only to the fundamental relations of SL(3,Z). Specifically,
we will first show that:

X2
m = S3

23T
n2
21 T

−n1
31 Tm13T

−n2
31 Tn2−n1

21 T−1
23 = X−1

m . (C.36)

To show this, it is useful to record the following identities and their associated phases:

Tm12S23 = S23T
m
13 , T−m13 S23 = S23T

m
12 ,

T−n1
21 S23 = S23T

−n1
31 , Tn1

31 S23 = S23T
−n1
21 ,

(C.37)

where the phases are given by:

ẐTm12S23 (x) =
m−1∏
k=0

[
(ψ1)3,2

1,2

(
T−k12 T

−1
23 T

−m
13 x

)
(ξ4)3,2

1,3

(
T−k13 T

−1
23 x

)]
ẐS23Ta13

(x) ,

ẐT−m13 S23
(x) =

m−1∏
k=0

[
(ξ2)3,2

1,3

(
T k13T

−1
23 x

)]
ẐS23Tm12

(x) ,

Ẑ
T
−n1
21 S23

(x) = Ẑ
S23T

−n1
31

(x) ,

ẐTn1
31 S23

(x) = Ẑ
S23T

−n1
21

(x) .

(C.38)

Here, the ψi and ξi were defined in (C.16) and (C.18), respectively.
41In the following, we are using the slightly misleading notation defined in and explained around (C.7).
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The first step is to commute the S23T23 in the middle to the left:

X2
m = T23T

n1−n2
21 Tn2

31 T
−m
13 Tn1

31 T
−n2
21 S23T23T

n1−n2
21 Tn2

31 T
−m
13 Tn1

31 T
−n2
21 S23

= T23S23T23T
n1−n2
31 T−n1

21 Tm12T
n1
31 T

−n2
21 S23 =: M1 .

(C.39)

The only non-trivial phase occurs when commuting T−m13 and S23, and yields:

ẐX2
m

(x) =
m−1∏
k=0

[
(ξ2)3,2

1,3

(
T k13T

−1
23 T

−n2
31 Tn2−n1

21 T−1
23 x

)]
ẐM1 (x) . (C.40)

Since S23 = T23T
−1
32 T23 = T−1

32 T23T
−1
32 we have:

T23S23T23 = T23T
−1
32 T23T

−1
32 T23 = S2

23T32 . (C.41)

Notice that we only inserted the definition of S23 and an insertion of the identity. Therefore,
this step will not acquire any phase. Thus, we arrive at:

X2
m = S2

23T32T
n1−n2
31 T−n1

21 Tm12T
n1
31 T

−n2
21 S23 =: M2 . (C.42)

Now we continue to commute through the S23 on the right all the way to the left. One
finds:

X2
m = S2

23T32S23T
n2−n1
21 T−n1

31 Tm13T
−n1
21 T−n2

31

= S3
23T
−1
23 T

n2−n1
21 T−n1

31 Tm13T
−n1
21 T−n2

31 =: M3 ,
(C.43)

where in the last line we used T32S23 = T32T
−1
32 T23T

−1
32 = S23T

−1
23 . The only non-trivial

phase in this manipulation is when commuting Tm12 and S23, and is given by:

ẐM2 (x) =
m−1∏
k=0

[
(ψ1)3,2

1,2

(
T−k12 T

−1
23 T

−k
13 T

n1
21 T

n2−n1
31 T−1

32 S
2
23x
)]

×
m−1∏
k=0

[
(ξ4)3,2

1,3

(
T−k13 T

−1
23 T

n1
21 T

n2−n1
31 T−1

32 S
2
23x
)]
ẐM3 (x) .

(C.44)

Now one can commute T−1
23 to the right to finally obtain:

X2
m = S3

23T
n2
21 T

−n1
31 Tm13T

−n2
31 Tn2−n1

21 T−1
23 , (C.45)

which is what we wanted to show. There is no non-trivial phase associated to these last
moves. Thus, we see that

ẐX3
m

(x) =
m−1∏
k=0

[
(ξ2)3,2

1,3

(
T k13T

−1
23 T

−n2
31 Tn2−n1

21 T−1
23 x

)
(ψ1)3,2

1,2

(
T−k12 T

−1
23 T

−m
13 Tn1

21 T
n2−n1
31 T−1

32 S
2
23x
)]

×
m−1∏
k=0

[
(ξ4)3,2

1,3

(
T−k13 T

−1
23 T

n1
21 T

n2−n1
31 T−1

32 S
2
23x
)]
ẐX−1

m Xm
(x) .

(C.46)
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Notice that:
ẐX−1

m Xm
(x) = ẐS4

23
(x) . (C.47)

There is still a non-trivial phase associated with ẐS4
23

(x), which we will now compute.
First, note that:

ẐS−1
12 S

4
13S12

(x) = 1 . (C.48)

This is due to the basic relations ẐS4
13

= 1 and ẐT−1
ij Tij

= 1. Now, we wish to compute
the phase associated to the relation S23 = S−1

12 S13S12. Since S12 = T12T
−1
21 T12 and S13 =

T13T
−1
31 T13, one may derive the following two identities:

ẐS−1
12 T13S12

(x) = ẐT23 (x) ,

ẐS−1
12 T

−1
31 S12

(x) = (ξ5)1,2
3,1 (S12x) (ψ2)1,2

3,2 (T12x) ẐT−1
32

(x) .
(C.49)

These relations imply:

ẐS−1
12 S13S12

(x) = (ξ5)1,2
3,1

(
S12T

−1
23 x

)
(ψ2)1,2

3,2

(
T12T

−1
23 x

)
ẐS23 (x) . (C.50)

Let us define the associated phase as:

λ (x) = (ξ5)1,2
3,1

(
S12T

−1
23 x

)
(ψ2)1,2

3,2

(
T12T

−1
23 x

)
. (C.51)

We then have:

1 = ẐS−1
12 S

4
13S12

(x) = λ (x) λ
(
S−1

23 x
)
λ
(
S−2

23 x
)
λ
(
S−3

23 x
)
ẐS4

23
(x) . (C.52)

From this, we conclude that

ẐS4
23

(x) = e
iπ

2Z+x1
x1 . (C.53)

This then leads to the final answer:

ẐX3
m

(x) =
m−1∏
k=0

[
(ξ2)3,2

1,3

(
T k13T

−1
23 T

−n2
31 Tn2−n1

21 T−1
23 x

)
(ψ1)3,2

1,2

(
T−k12 T

−1
23 T

−m
13 Tn1

21 T
n2−n1
31 T−1

32 S
2
23x
)]

×
m−1∏
k=0

[
(ξ4)3,2

1,3

(
T−k13 T

−1
23 T

n1
21 T

n2−n1
31 T−1

32 S
2
23x
)]
e
iπ

2Z+x1
x1 .

(C.54)

Plugging in the definitions of the functions, we find that the phase can written as:42

ẐX3
m

(x) = e
iπ
m

[
Q

(
mZ−x1
x1

;mx2+(1−mn1)x1
x1

,
mx3+(1−mn2)x1

x1

)
+ (m+1)(m+3)

4

]
=: e

iπ
m
Qm(mz;τ,σ) .

(C.55)
42We recall that we are using the slightly misleading notation defined in and explained around (C.7).
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Notice that this function is invariant under the exchanges:

x1 ↔ mx2 + (1−mn1)x1 ,

x1 ↔ mx3 + (1−mn2)x1 ,

x2 + (1−mn1)x1 ↔ mx3 + (1−mn2)x1 .

(C.56)

Also, we note that for m = n1 = n2 = 1, this property reduces to the property (C.31), as
it should since X(1,1,1) = Y −1.

Evaluating the relation (C.55) explicitly, we find:

Γ
(

z+σ−n2
mσ+1−mn2

; τ−σ+n2−n1
mσ+1−mn2

, σ−n2
mσ+1−mn2

)
Γ
(
z+2τ−σ+n2−2n1
mτ+1−mn1

; τ−σ+n2−n1
mτ+1−mn1

, τ−n1
mτ+1−mn1

)
Γ(z; τ, σ)

= e
iπ
m
Qm(mz;τ,σ) , (C.57)

where we made the usual identifications z = Z
x1
, τ = x2

x1
and σ = x3

x1
. We have performed

a number of consistency checks on this formula. For example, one may verify that both
the left and right hand sides have the symmetries listed in (C.56). Moreover, the left and
right hand sides transform in the same way under the shifts z → z + 1, z → z + τ , and
z → z+σ. This implies that the product of the left hand side with the inverse of the right
hand side is a triply periodic meromorphic function, and hence a constant.

In the main text, we use a slightly different version of (C.57), which is the direct
generalization of the property (C.32). One can derive it using properties of the θ and
elliptic Γ functions collected in appendix A. This property is given by:

Γ(z; τ, σ) = e−
iπ
m
Q′m(mz;τ,σ)

Γ
(

z
mσ+1−mn2

; τ−σ+n2−n1
mσ+1−mn2

, σ−n2
mσ+1−mn2

)
Γ
(
z+τ−σ+n2−n1
mτ+1−mn1

; τ−σ+n2−n1
mτ+1−mn1

, τ−n1
mτ+1−mn1

) , (C.58)

where
Q′m (mz; τ, σ) = Q (mz;mτ + 1−mn1,mσ + 1−mn2) + m2−1

12 . (C.59)

C.4 Q polynomial for more general order three element of SL(3,Z)

In this section, we derive the modular property of the elliptic Γ function that corresponds
to more general order three elements of SL(3,Z), given by the matrix (B.1) under the
constraint (B.2). The matrix A can be decomposed as

A = T−k31 ΛTn23T
k
21S23 , (C.60)

where the Λ matrix is given by an element in SL(2,Z):

Λ =

 n 0 −m
0 1 0
d 0 n2

 , n3 + dm = 1 . (C.61)

The corresponding modularity property for A would be

1 = ZS23(S23A
−1ρ)ZS23(S23A

−2ρ)ZS23(S23ρ) mod M . (C.62)

– 69 –



J
H
E
P
1
1
(
2
0
2
1
)
0
4
7

The generalization of e−iπ
Q
m in (3.56) would be

A(z; τ, σ) ≡
Γ
(

z
m(σ+k)+n2 ,

τ−n2(σ+k)+nd
m(σ+k)+n2 , n(σ+k)−d

m(σ+k)+n2

)
Γ(z, τ, σ)Γ

(
z+nτ−(σ+k)

mτ+n , n
2τ−d
mτ+n ,

nτ−(σ+k)
mτ+n

) . (C.63)

We can see explicitly that k works as the integer shift of σ modulus. Due to the
periodicity under integer shift, k would not introduce any new physical effects. We therefore
set k = 0 without loss of generality below. To avoid overloading notation, we will use the
following expressions for the moduli:

z̃ = z

m τ + n
, τ̃ = n2 τ − d

mτ + n
, σ̃ = n τ − σ

mτ + n
, (C.64)

ẑ = z

mσ + n2 , τ̂ = τ − n2 σ + nd

mσ + n2 , σ̂ = nσ − d
mσ + n2 . (C.65)

To calculate A(z; τ, σ), we are going to follow the method of Theorem 4.1 from [49], namely
to consider ratios like A(z + τ ; τ, σ)/A(z; τ, σ). Due to the quasi-periodicity of elliptic Γ
functions, this ratio will be reduced to ratios between q-theta functions, which is calcu-
lable. Without loss of generality, we will show explicitly how to calculate τ -shift ratio
A(z + τ ; τ, σ)/A(z; τ, σ). Other ratios like σ-shift ratio and 1-shift ratio can be calculated
similarly.

Although we cannot solve the constraint analytically, it is still useful to for calculating
the τ shift. Note the following facts:

τ = n(n2τ − d) + d(mτ + n) ,
τ = (τ − n2σ + nd) + n(nσ − d) .

(C.66)

Then
Γ
(

z+τ
mσ+n2 ,

τ−n2σ+nd
mσ+n2 , nσ−d

mσ+n2

)
= Γ(ẑ + τ̂ + nσ̂, τ̂ , σ̂) = θ(ẑ + nσ̂, σ̂)Γ(ẑ, τ̂ , σ̂)

n−1∏
l=0

θ(ẑ + lσ̂, τ̂) ,

Γ
(
z+τ+nτ−σ
mτ+n , n

2τ−d
mτ+n ,

nτ−σ
mτ+n

)
= Γ(z̃ + σ̃ + nτ̃ , τ̃ , σ̃) = θ(z̃ + nτ̃ , τ̃)Γ(z̃, τ̃ , σ̃)

n−1∏
l=0

θ(z̃ + lτ̃ , σ̃) .

(C.67)

The τ -shift ratio is
A(z + τ ; τ, σ)
A(z; τ, σ) = θ(ẑ, σ̂)

θ(z, σ)e
2πi(z̃−ẑ)n+πi(τ̃−σ̂)n(n−1)

n−1∏
l=0

θ(ẑ + lσ̂, τ̂)
θ(z̃ + lτ̃ , σ̃) . (C.68)

To simplify this expression, we need to use the formula (A.16) which explicit shows the
ratio between two q-theta functions related by general SL(2,Z) transformation.43 Note
that

(ẑ, σ̂) = ΛS · (z, σ) , ΛS ≡
(
n −d
m n2

)
(C.69)

43For (A.16) being valid to use, we need to require nd and mn2 to be even simultaneously. For example,
n to be even are the sets of solution which actually covers majority portion of solutions to the constraint.
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which tells us
θ(ẑ, σ̂)
θ(z, σ) = exp

[
iπB(z, σ;n,−d,m, n2)

]
, (C.70)

where we use the B polynomial calculated in (A.15). Similarly

θ(ẑ + l σ̂, τ̂)
θ(z̃ + l τ̃ , σ̃) = θ(ẑ + l σ̂, τ̂)

θ(z̃ + l τ̃ − ln σ̃, σ̃)
θ(z̃ + l τ̃ − lnσ̃, σ̃)

θ(z̃ + l τ̃ , σ̃) (C.71)

= θ(ẑ + l σ̂, τ̂)
θ(z̃ + l τ̃ − lnσ̃, σ̃) exp

[
iπln+ 2πiln(z̃ + l τ̃)− πiσ̃ln(ln+ 1)

]
.

The moduli (ẑ + lσ̂, τ̂) and (z̃ + lτ̃ , σ̃) are again related by ΛS transformation. Therefore,

θ(ẑ + lσ̂, τ̂)
θ(z̃ + lτ̃ − lnσ̃, σ̃) = exp[−iπB(ẑ + lσ̂, τ̂ ;n,−d,m, n2)] . (C.72)

Collecting all of these results, we have

A(z + τ ; τ, σ)
A(z; τ, σ) = exp

[
iπB(z, σ;n,−d,m, n2) + 2πi(z̃ − ẑ)n+ πi(τ̃ − σ̂)n(n− 1)

]
(C.73)

×
n−1∏
l=0

exp
[
iπln+ 2πiln(z̃ + lτ̃)− πiσ̃ln(ln+ 1)− iπB(ẑ + lσ̂, τ̂ ;n,−d,m, n2)

]
.

Since we should think of (C.73) as exponentials of the difference between two polynomials,
we can identify A with the following Q polynomial after some admittedly cumbersome
manipulations:44

logA(z; τ, σ) = iπ

m
Q(mz;mτ + n,mσ + n2) + constant . (C.74)

The equation (C.74) is the Q polynomial for most general SL(3,Z) transformation, as a
generalization of (3.57). The constant term would be hard to be written concisely due to
several reasons. First of all, there is an ambiguity between Q polynomial and log of A
ratios since the difference up to an even integer is trivial due to the exponential structure.
The constant term in the Q polynomial also contains the Dedekind sum, which is hard to
simplify generically.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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