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1 General introduction

High-energy collider physics tries to provide insights into a consistent quantum field the-
ory of nature by accumulating immense amounts of experimental data, and confronting it
with precision calculations — the expectation being that enough data on as many scatter-
ing processes as possible might expose flaws in our current understanding. Unfortunately,
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since calculations in the Standard Model of particle physics quickly become tedious, hints
of new interactions are often explained by phenomena that were omitted in the background
calculation. This has resulted a large and vibrant sub-community producing precise and
detailed calculations of background processes — especially for experiments at the Large
Hadron Collider. The typical model for calculations used by experimentalists is a com-
bination of higher-order QCD (or electroweak) fixed-order calculations (to obtain the best
available prediction of the highest-energy scattering process), combined with an event gen-
erator handling the evolution of the high-energy particles into composite hadrons, energetic
jets and other remnants of the colliding beams.

The first general methods to improve the precision and/or accuracy of such a com-
putational model emerged at the turn of the century, when the matching of NLO QCD
calculations with event generators [1–3] and the merging of multiple leading-order multi-
jet calculations [4–8] were formulated. This kick-started steady progress of incorporating
higher QCD orders and/or a more accurate treatment of the other SM interactions [9–31].
Apart from a few impressive examples [32, 33], this progress has slowed in recent years, and
is being complemented with improvements of all-order parton showers. Parton showers form
the backbone of matching fixed-order calculations to event generators, by e.g. furnishing
differential subtractions to make unweighted (or unweightable) fixed-order event genera-
tion by Monte-Carlo methods possible. Fully-differential matching procedures are presently
only available in NLO QCD, since the (fully differential) singularity-structure of QCD is not
yet captured by any available parton shower. This has however not prevented several suc-
cessful combinations of NNLO predictions and event generators [31, 34–46]. Phase-space
slicing inspired unitarized merging methods offer a convenient stepping stone towards high
accuracy.

Recent years have seen impressive progress in calculating QCD corrections at N3LO,
both to inclusive cross sections [47–51] and even at differential level [52–60]. Most of
the latter results ([53–56, 58–60]) rely on the subdivision (“slicing”) of phase space into
individually manageable sub-calculations. Such a strategy has already proven successful
in combining NNLO calculations with parton showering [34, 35], suggesting that a simi-
lar strategy might be successful also at N3LO precision. This hope is further compounded
by [61], which presented a method to match N3LO calculations to (analytic) jet-veto resum-
mation, and by the very recent progress [58–60] combining N3LO inclusive cross sections
with (analytic) transverse-momentum resummation.

This note aims to present ideas towards matching N3LO QCD calculations to event
generators. The overall philosophy of the approach is straight-forward and based on en-
forcing the desired target precision through all-order subtractions inspired by the unitarity
of parton showers. This allows to combine several calculations executed with minimal
phase-space cuts (to avoid the most singular regions) into a precise matched calculation,
similar in spirit to e.g. q⊥ [62–67] or Njettiness-sliced [68–73] fixed-order results. Section 2
will be used to set the scene for the third-order1 method from a pedagogic angle, while

1The somewhat ill-defined term “third-order” will be used to avoid the impression that N3LO-accurate
results are presented in this note.
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section 3 explains the construction of a toy fixed-order calculation. In the absence of differ-
ential N3LO calculations that produce finite-weight events, it is convenient to work with a
toy example to validate the third-order matching in a very controlled environment. Details
about third-order matching are set out in section 4, and the suggestions are studied with
the help of the toy calculation in section 5. The note also contains detailed appendices with
background information on parton showers and the implementation of matching factors.

2 Introduction to matching up to NNLO precision

Integrating fixed-order calculations into event generators almost always requires removing
the overlap between the parton shower approximation embedded in the event generator
and the fixed-order result. This overlap can be removed by subtraction or by diving phase
space into disjoint fixed-order and shower regions. Both cases yield the benefit of allowing
for event generation, i.e. the production and storage of finite-weight phase-space points
allowing an analysis independent of the computational details. For the purposes of this
note, it is convenient to take the perspective of a (conventional) parton-shower calculation.
This entails that

• n-parton phase-space points Φn can be obtained from parton-shower evolution; the
parton shower sums logarithmic enhancements in perturbation theory

• the “separation” of partons is determined by the parton-shower ordering variable
t calculated from their four-momenta; a sequence of ordering variables (as is nec-
essary to assign parton-shower factors) is defined through a parton-shower his-
tory from the lowest- to the highest-multiplicity state; if necessary to determine
an ordering sequence, one amongst all possible histories is chosen probabilisti-
cally (cf. appendix B.2); the entries in a sequence of ordering variables are called
t(Φ0), t(Φ1) . . . t(Φn) or abbreviated t0, t1 . . . tn

• unitarity of the evolution holds, i.e. the action of the parton shower does not change
inclusive cross sections; due to unitarity, parton-shower resummation assigns finite (or
vanishing) cross sections even to phase-space points with collinear or soft partons;
parton-shower all-order factors can be used to regularize fixed-order cross sections
evaluated at phase-space points containing collinear or soft partons.

The aim of matching a fixed-order calculation to a parton shower is to combine the strengths
of either approximation, while ensuring that the resulting combination is fixed-order ac-
curate and does not impair the accuracy of the parton-shower resummation. The term
“accuracy of the parton shower” is not immediately obvious. The heavily constraining
definition applied in this note is given in appendix B.3. Before diving into specifics of
matching, figure 1 introduces the features of the notation used throughout this note.

Some examples of this notation that will appear repeatedly are given in table 2. Using
this notation, the action F of the parton-shower on an ensemble of particles Φn with
distribution dσ

(0)
n (Φn) either leads to no change in any observable O (i.e. O will be still

evaluated at the phase-space point Φn, i.e. O = O(Φn) ≡ On), or to the decay of one or
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Figure 1. Reference for the sub- and superscript notation used in this note.

more particles:

F (∞)
n (Φn, t+, t−)

:= dσ(0)
n (Φn)∆n(t+, t−)On (2.1)

+ dσ(0)
n (Φn)

t+
∫

t−

dt

t
dzdφ

αs(µ)
2π P (t, z, φ)wn+1(Φn+1)∆n(t+, t)F (∞)

n+1(Φn ∩ {t, z, φ}, t, t−)

=

dσ(0)
n (Φn)− dσ(0)

n (Φn)

t+
∫

t−

dt

t
dzdφ

αs(µ)
2π P (t, z, φ)wn+1(Φn+1)∆n(t+, t)

On (2.2)

+dσ(0)
n (Φn)

t+
∫

t−

dt

t
dzdφ

αs(µ)
2π P (t, z, φ)wn+1(Φn+1)∆n(t+, t)F (∞)

n+1(Φn ∩ {t, z, φ}, t, t−) ,

where P (t, z, φ) is the sum of naive parton-shower branching kernels,2 and ∆n(t+, t−) is the
Sudakov factor encapsulating the no-branching rate. The evolution of incoming partons
typically introduces ratios of parton-distribution functions [74]. Such ratios are suppressed
for the sake for readability in this note. The second equality (2.2) is due to the exponential
form of the Sudakov factor,

∆n(t+, t−) = exp

−
t+
∫

t−

dt

t
dzdφ

αs(µ)
2π P (t, z, φ)wn+1(Φn+1)

 (2.3)

= 1−

t+
∫

t−

dt

t
dzdφ

αs(µ)
2π P (t, z, φ)wn+1(Φn+1)∆n(t+, t) .

2For the sake of not obfuscating the arguments and derivations, the summation over different decay
channels in the parton shower is, though relevant for any implementation, suppressed in the notation of the
main text. In appendix B, the sums are being made explicit when necessary. Furthermore, the fact that
limits of the z-integral may depend on the specific branching is also suppressed.
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The notation wn+1(Φn+1)∆n(t+, t) is a symbolic representation of the actual parton-shower
result, which includes a sum over all possible “paths” to arrive at the real-emission phase
space point. Details of parton-shower factors are given in appendix B.7. The main text
will use the shorter, symbolic notation, to avoid over-crowding.

Equation (2.3) shows that by construction, no interval [t+, t−] will add to the overall
cross section — simply because the integrated radiation pattern between any two scales is
subtracted from the semi-exclusive lowest-multiplicity contribution, such that integrating
over the last line will lead to the original distribution dσ

(0)
n (Φn). Viewed slightly differently,

this “parton-shower unitarity” can also be interpreted as calculating a radiation pattern in
the collinear approximation, regularizing the radiation pattern through all-order Sudakov
factors (i.e. the second line of eq. (2.2)), and subtracting the regularized radiation pattern
from the next-lower multiplicity (i.e. the first line of eq. (2.2)). This reasoning can be
exploited to obtain a more precise calculation, by following the steps

1. Choose a precise target lowest-multiplicity prediction

2. Correct the radiation pattern to the desired accuracy, regularize with Sudakov factors
and remove undesired higher orders introduced by this reweighting

3. Subtract the integrated form of the improved radiation pattern from the lowest-
multiplicity contribution

Table 1. The three main steps of unitarized matching/merging.

This “unitarized merging” approach [21, 24, 27] can be performed for an arbitrary t−
value. The details of this procedure can become rather intricate — but are manageable,
as elaborated on in appendix B. The unitarized merging paradigm rests on the assump-
tion that the parton shower does not change the inclusive cross section. Certain types of
threshold enhancements are known to violate this condition [75], and are thus typically not
included. However, an appropriate redefinition of the “target prediction” may circumvent
this concern.

As a first example of unitarized matching, it is possible to obtain an NLO-correct
calculation from the previous result, by performing the operations3

dσ(0)
n (Φn) → dσ(0+1)[INC]

n (Φn)
dσ(0)

n (Φn)αs(µ)P (t, z, φ)/t → dσ
(0)[Qn+1 > Qc]
n+1 (Φn+1)

where dσ(0+1)[INC]
n (Φn) is the inclusive NLO cross section differential (only) in the variables

Φn. The regularization cut Qn+1 > Qc is necessary to regularize a tree-level calculation
of the real-emission configurations. Any functional form of Qn+1 that isolates the single-
unresolved limits (of one parton becoming soft, or collinear to another parton) is allowed in
principle, see discussion below eq. (2.4) below. For ease of notation, it will be assumed that
Qn+1 → 0 in the single-unresolved limits. The physical interpretation of the “inclusive cross

3These rules are symbolic. In particular, the second replacement rule is only correct up to constants and
Jacobian factors. The complete replacement rule can be found in the dipole factorization formulae in [77].
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Q(Φn) > Qc : constraint on phase space points Φn: Φn should lead to Q-values
above Qc (cf. appendix B). The notation Qn ≡ Q(Φn) will also be
used, for brevity.

dσ
(0)[Q(Φn) > Qc]
n (Φn) : the leading-order fully differential cross section to produce the phase-

space point Φn, under the constraint that the phase-space point Φn

should pass the Q-cut with minimal value Qc

∆(∞)[PS]
n (tn, tc) : the parton-shower Sudakov factor enforcing that the particle ensem-

ble Φn did not change (via decay) between the scales tn ≡ t(Φn) and
tc. For example, if Φn consists of the three particles {q, q̄, g}, then

∆(∞)[PS]
n (tn, tc) = exp

− tn
∫

tc

dt
t dzdφ

αs(t)
2π (Pqq + Pq̄q̄ + Pgg + Pgq)

,
with the splitting kernels Pij defined in [76]. Unless expressly neces-
sary, the abbreviated symbol ∆n(tn, tc) will be used synonymously.

∆(m)
n (tn, tc) : the mth term in the expansion of the parton-shower Sudakov factor

pertaining to no emission off the particle ensemble Φn between the
scales tn and tc.

w
(∞)
n+1(Φn+1) : the combination of all parton-shower all-order factors except Su-

dakov factors that the shower would have applied to the ensemble
Φn+1. For e+e− → jets annihilation, w(∞)

n+1(Φn+1) = αs(tn+1)/αs(µ),
where µ is a fixed value of the renormalization scale. For brevity,
the notation wn+1(Φn+1) will be used synonymously.

w
(m)
n+1(Φn+1) : the mth term in the expansion of the combination above.

dσ
(0+1)[INC]
n (Φn) : the inclusive NLO cross section to produce n additional partons,

differential only in the variables Φn. The real-emission correction
is integrated over the single-parton phase space. The B-cross sec-
tions in the Powheg method [3] fall under this category. Sym-
bolically, dσ

(0+1)[INC]
n (Φn) = dσ

(0)
n (Φn)+

(
dσ

(1)
n (Φn) + In(Φn)

)
+[∑

i∈I

∫

dΦ[i]
1

(
dσ

(0)[i]
n+1 (Φn+1)− S [i]

n+1(Φ̃n,Φ[i]
1 )
)]

Φn
where I is the set of

all singular limits of the real corrections. Since various treatments of
singular limits are possible, this may lead to slightly different defini-
tions of the inclusive cross section. The matching method developed
in this note should be flexible enough to handle differing definitions.

Q(Φn) < Qc : constraint that Φn should lead to Q-values below Qc (cf. appendix B)

dσ
(1)[Qn > Qc ∧Qn+1 < Qc]
n (Φn) is the exclusive NLO correction, i.e. the NLO rate excluding hard real-

emission corrections with Qn+1 > Qc. The cross section is again only
differential in the variables Φn.

Table 2. Some symbols that will feature heavily in this note. More details on (inclusive and
exclusive) fixed-order cross sections can be found in appendix B.1.
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section” should not be over-stretched, since it only provides a suitable model for observables
that cannot resolve any effect of an additional real-emission parton, irrespective of its
hardness. Only very few measurements in a realistic environment have this trait. However,
inclusive cross sections serve, together with differential real-emission cross sections, as
building blocks for more realistic predictions. The steps in table 1 for example suggest
that an NLO matched rate is given by

F (∞)[UNLOPS]
n (Φn, t+, t−)

:=

dσ(0+1)[INC]
n (Φn)−

t+
∫

t−

dΦ1dσ
(0)[Qn+1 > Qc]
n+1 (Φn+1)wn+1(Φn+1)∆n(t+, tn+1)

On

+

t+
∫

t−

dΦ1dσ
(0)[Qn+1 > Qc]
n+1 (Φn+1)wn+1(Φn+1)∆n(t+, tn+1)F (∞)

n+1(Φn+1, tn+1, t−) (2.4)

where Φ1 = {tn+1, z, φ} and Φn+1 = {Φn ∩Φ1}. From this form, it becomes clear that the
most natural functional definition of the cut is Q = (parton shower evolution variable),
making for the most natural value Qc = t−. In this case, the division into an On-component
and a F (∞)

n+1(Φn+1, tn+1, t−) is — by virtue of eq. (2.2) — completely equivalent to the par-
ton shower result. However, eq. (2.4) is still appropriate if Qn+1 6= tn+1 and the parton
shower has (effectively) vanishing support for Qn+1 < Qc. This means that the calcula-
tion is sub-divided into an n-parton contribution and an n+ ≥ 1 part. The latter are
only included fully differentially above Qc, so that Qc should be chosen as small as pos-
sible. The presence of many high-energy n-parton contributions might lead to spuriously
large hadronization effects, since these parton ensembles are directly hadronized, with-
out dressing the states with further soft or collinear radiation. Similar concerns may be
raised in any event generator prediction that employs a parton-shower cut-off, since the
no-emission contribution in eq. (2.1) also consists of high-energy few-parton states. In that
case, though, no-emission events are typically rare, such that their hadronization only pro-
duces marginal effects. In eq. (2.4), two contributions that are numerically sampled with
many events cancel to produce a small effective no-emission event count. This procedure
may lead to a higher sensitivity to statistical outliers in the hadronization procedure, i.e.
concerns about hadronization are of technical, not theoretical nature. Nevertheless, for
jet observables that guarantee that states with no emissions or emissions with Qn+1 < Qc
are treated inclusively, it is permissible to replace On with the action of a parton shower
F (∞,Qn+1<Qc)
n (Φn, t+, t−) that omits emissions with Qn+1 > Qc. This might improve the

transition to the non-perturbative regime. This note will continue to use the notation
“On”, leaving the possibility of such a replacement implicit. Further comments on this
“sliced” or “binned” approach are given in appendix C.

The extension to a unitarized NNLO matching scheme is possible once an NLO-accurate
rate beyond lowest multiplicity is available. This can be combined with an inclusive NNLO
cross section dσ

(0+1+2)[INC]
n (Φn) that is differential (only) in the lowest-multiplicity variables

– 7 –
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Φn. It is useful to introduce the short notation4

t+
∮

t−

σi+1(Φi+1) =
∫

dΦ1 Θ[t(Φi+1)− t−] Θ[t+ − t(Φi+1)] σi+1(Φi+1) ,

Φ1 = {ti+1, zi+1, φi+1} , Φi+1 = {Φi ∩ Φ1}

for the integrations in the all-order subtraction terms. Assuming that Oi is a measurement
of all degrees of freedom of the phase-space point Φi (so that the second integral in eq. (2.4)
can be omitted for lighter notation), the UN2LOPS matching formula then reads

F (∞)[UN2LOPS]
n (Φn, t+, t−) :=

dσ(0+1+2)[INC]
n (Φn) (2.5)

−

t+
∮

t−

dσ
(0)[Qn+1 > Qc]
n+1 (Φn+1)

(
1− w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

)
∆n(t+, tn+1) w(∞)

n+1(Φn+1)

−

t+
∮

t−

dσ
(1)[Qn+1 > Qc]
n+1 (Φn+1) w

(∞)
n+1(Φn+1)∆n(t+, tn+1)

On

+

 dσ
(0)[Qn+1 > Qc]
n+1 (Φn+1)

(
1− w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

)
∆n(t+, tn+1) w(∞)

n+1(Φn+1)

+dσ(1)[Qn+1 > Qc]
n+1 (Φn+1) w

(∞)
n+1(Φn+1)∆n(t+, tn+1)

−

t+
∮

t−

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2) w

(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)∆n(t+, tn+1)∆n+1(tn+1, tn+2)

On+1

+ dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2) w

(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)∆n(t+, tn+1)∆n+1(tn+1, tn+2)

⊗ F (∞)
n+2(Φn+2, tn+2, t−) .

Upon integration over both one- and two-parton states, the terms in (and multiplying) the
boxes · , · and · cancel pairwise, leaving only the desired NNLO inclusive cross section.
Integrating only over two-parton states, the terms in · cancel, so that for observables that
require (n+ 1)-parton ensembles, NLO precision is guaranteed. Note that for these (n+ 1)-
parton observables, the impact of (parton-shower) resummation at higher orders remains
if t+ � tn+1, as desired. The accuracy of the resummation procedure is not jeopardized by
the matching, as the all-order factors are only shifted by finite, multiplicative, fixed-order
factors (e.g. dσ(1)[Qn+1 > Qc]

n+1 (Φn+1)). Also, no assumption on the logarithmic accuracy of the
parton shower needs to be made.

4The method to numerically generate such
∮

integrals is based on the parton shower, and is described
in appendix B.4.
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To avoid over-complicating the discussion at this point, eq. (2.5) assumes that all two-
parton states admit an interpretation as ordered sequence of parton-shower transitions at
scales tn+1 and tn+2 < tn+1. This assumption heavily depends on the details of the parton-
shower, as well as the hard-scattering process, and does not necessarily hold in all regions of
phase space. The bulk of the cross section is captured by configurations with parton-shower
interpretation, but additional “non-shower” configurations (called unordered in [23, 78], and
exceptional in [34]) need to be considered for an accurate prediction of sub-dominant phase-
space regions. This complication (and related complications when matching three-parton
states) are neglected in the main text, as well as the for the closure test in section 5. A
detailed discussion based on parton-shower ideas is given in appendix C.1. In a full-fledged
matching implementation, the treatment of non-shower configurations will also depend on
the details of the necessary fixed-order (input) calculations.

The use of inclusive cross sections allows for particularly simple pairwise cancella-
tion between configurations differing always by one parton. However, cross sections like
dσ

(0+1)[INC]
n (Φn) or dσ(0+1+2)[INC]

n (Φn) are often difficult to obtain due to the required integra-
tions over the real-emission phase space. While inclusive cross sections are not available,
it is easy to adjust the unitarized prescription to rely on “jet-vetoed” (“exclusive”) cross
sections instead.5 If the veto scale is sufficiently small, these can be obtained by expanding
resummed analytic calculations. A sufficiently small veto scale further allows to combine
these jet-vetoed cross sections with higher-multiplicity cross sections to form precise results
that differ from the exact fixed-order results only by very small power corrections. This
strategy is e.g. employed by q⊥- or Njettiness-sliced fixed-order calculations. When using
only jet-vetoed cross sections, and introducing another short-hand,

t+�
t−

σi+2(Φi+2) =

∫

dΦ̄1 Θ[t(Φi+1)− t−] Θ[t+ − t(Φi+1)]
∫

dΦ1 Θ[t(Φi+2)− t−] Θ[t+ − t(Φi+2)] σi+2(Φi+2)

where Φ̄1 = {ti+1, zi+1, φi+1}, Φ1 = {ti+2, zi+2, φi+2}, Φi+1 = {Φi ∩ Φ̄1}, Φi+2 = {Φi+1 ∩
Φ1} , the unitarized NNLO matching prescription becomes

F (∞)[UN2LOPS]
n (Φn, t+, t−) :=

dσ(0+1+2)[Qn+1 < Qc ∧Qn+2 < Qc]
n (Φn)

+

t+
∮

t−

dσ
(0)[Qn+1 > Qc]
n+1 (Φn+1)

[
1
n+1
n −

(
1− w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

)
∆n(t+, tn+1)w(∞)

n+1(Φn+1)
]

5As was the case for “inclusive cross sections”, the physical meaning of “exclusive cross section” should
not be over-stated. Exclusive cross sections are employed as one component of a realistic prediction.
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+

t+
∮

t−

dσ
(1)[Qn+1 > Qc ∧Qn+2 < Qc]
n+1 (Φn+1)

[
1
n+1
n − w

(∞)
n+1(Φn+1)∆n(t+, tn+1)

]

+

t+�
t−

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2)

[
1
n+2
n − w

(∞)
n+1(Φn+1)∆n(t+, tn+1)1n+2

n+1
]On

+

dσ(0)[Qn+1 > Qc]
n+1 (Φn+1)

(
1− w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

)
∆n(t+, tn+1)w(∞)

n+1(Φn+1)

+ dσ
(1)[Qn+1 > Qc ∧Qn+2 < Qc]
n+1 (Φn+1) w

(∞)
n+1(Φn+1)∆n(t+, tn+1)

+

t+
∮

t−

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2)

[
w

(∞)
n+1(Φn+1)∆n(t+, tn+1)1n+2

n+1

− w
(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)∆n(t+, tn+1)∆n+1(tn+1, tn+2)
]On+1

+ dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2) w

(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)∆n(t+, tn+1)∆n+1(tn+1, tn+2)

⊗ F (∞)
n+2(Φn+2, tn+2, t−) . (2.6)

The main difference to the previous result is that the improved radiation patterns are only
partially subtracted from the lower-multiplicity configurations, so that the full inclusive
cross section is recovered upon integration. The coupling-independent kinematic factors
1
i+j
i ≈ 1 ensure that the method to generate complementary i-parton contributions from
i + j-parton contributions does not introduce Φi-dependent biases that are not present
in an inclusive fixed-order calculation. These factors need to be included to reconcile
the requirement that the parton-shower accuracy is preserved (see appendix B.3 for the
definition of “shower accuracy”), and the requirement that the result is unbiased when
expanded to fixed order. It is sufficient to think of 1i+ji = 1 on first reading.6

The cancellation mechanism between matched contributions in eq. (2.6) is now slightly
more involved than in eq. (2.5), since the two-jet contributions · now also cancel between
one- and zero-jet observables. Note that eq. (2.6) deviates slightly from the matching
formula presented in [34], since the original proposition builds on an MC@NLO-matched
one-jet radiation pattern, and handles the running QCD coupling differently. The matching

6The reason for non-unity 1
i+j
i factors is explained in appendix B.4. While inclusive predictions us-

ing eq. (2.6) are prone to methodological bias (since exact complements need to be generated), exclusive
predictions using eq. (2.5) can exhibit related issues, since the first term in the expansion of the unitarity
subtraction should remove integrated hard jet configurations — which again has should avoid unwanted
bias. Any unitary matching or merging method is prone to these issues. The similarity of using unitarity
subtractions to the subtractions in the recent Projection-to-Born method [79] suggests that, if a selection
between several Born-level states were required in that method, similar considerations may also become
relevant. An assessment of 1i+ji factors required for the present note is given in appendix B.5.
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formula (2.6) is closely related to the UNLOPS-PC prescription in [80]. Either method has
benefits and down-sides, as discussed in appendix C.

Generalizations of the unitarized matching procedure to higher precision will also follow
the logic suggested in table 1. Section 4 employs this reasoning to introduce a third-order
prescription, reusing eq. (2.6) in the process.

3 Constructing a toy fixed-order implementation for closure testing

To extend the precision of an event generator calculation to higher order, precise fixed-
order calculations are required. This serves both as testing ground for new developments
as well as physics deliverable. This note will only be concerned with the testing aspect
of the method, since no differential N3LO calculations are available at present. A very
controlled testing environment is in itself quite useful when developing a concrete matching
implementation. To this end, a toy third-order calculation is constructed by combining and
rescaling readily available tree-level results. This allows maximal control, and enables tests
that would not be possible in a theoretically more rigorous calculation.

Gluonic corrections to e+e− → uū form the simplest laboratory for third-order match-
ing ideas, due to the uncolored, non-composite initial state. To be applicable to hadron
collider predictions, the matching prescription presented in section 4 would require a de-
tailed — and currently absent — understanding of the interplay between the factorization
of parton distribution functions (PDFs) and renormalization within parton shower resum-
mation.7 The toy third-order calculation for e+e− → uū is constructed by

1. Producing tree-level event samples dσ(0)
0 (Φ0), dσ(0)[S(Φ1) > Sc]

1 (Φ1), dσ(0)[S(Φ2) > Sc]
2 (Φ2)

and dσ
(0)[S(Φ3) > Sc]
3 (Φ3) for e+e− → uū + ng where 0 ≤ n ≤ 3. For n > 0, very

minimal regularization cuts S(Φn) > Sc are applied on the projection of the (sum of)
gluon four-momenta onto the four-momenta of the other partons, see appendix B.5.

2. Constructing a sequence of toy fixed-order calculations. A toy exclusive NLO calcula-
tion for four-parton states is constructed from dσ

(0)[S(Φ2)>Sc]
2 (Φ2) and dσ(0)[S(Φ3)>Sc]

3 (Φ3) by

dσ
(0+1)[TOY]
2 (Φ2) (3.1)

=
{∫

dΦ2dσ
(0)[S(Φ2) > Sc ∧Q(Φ2) > Qc]
2 (Φ2)

·
[
1 + αs

2π
(
aqq̄2 yqq̄ + aqg1

2 yqg1 + aqg2
2 yqg2 + aq̄g1

2 yq̄g1 + aq̄g2
2 yq̄g2 + agg2 ygg

)]
−
∫

dΦ3dσ
(0)[S(Φ3) > Sc ∧Q(Φ2) > Qc]
3 (Φ3)

}
O2

+
∫

dΦ3dσ
(0)[S(Φ3) > Sc ∧Q(Φ2) > Qc ∧Q(Φ3) < Qc]
3 (Φ3) O2

7Also, current N3LO calculations for hadron collider processes employ NNLO PDF fits (as N3LO PDF fits
are not yet available), leading to further PDF-related ambiguities, see e.g. [51]. Lepton colliders provide a
more solid environment for developing N3LO+PS methods.
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=
∫

dΦ2

{
dσ

(0+1)[TOY INC]
2 (Φ2)

−
∫

dΦRdσ
(0)[S(Φ3) > Sc ∧Q(Φ2) > Qc ∧Q(Φ3) > Qc]
3 (Φ3)

}
O2 (3.2)

≈ dσ
(0+1)[Q(Φ2) > Qc ∧Q(Φ3) < Qc]
2 (Φ2) ,

where the “TOY INC” contribution is a short-hand for term ∝ αs
2π [· · · ], dΦR are the

degrees of freedom for one additional parton, and yij = 2pipj/M2
Z . The method

to produce dΦR integrals and the application of Q-constraints are explained in ap-
pendix B.5. The term in · serves as proxy of logarithmic contributions of loop
integrals, the · term as real contribution below the jet veto scale, and the rescaling
αs
2π [· · · ] mimics the deformation of the spectra at NLO, after cancellation of logarithms
between real and virtual corrections. The · term in eq. (3.2) only depends on five-
parton states away from the phase space boundaries (since Q(Φ2) > Qc∧Q(Φ3) > Qc)
— the cancellation of real and virtual corrections close to the boundary is explicit,
as is the miscancellation away from the boundary due to the veto condition. This
also means that a dependence on the regularization criterion S(Φn) is effectively ab-
sent. Overall, this toy prediction has features typical for fixed-order jet-vetoed cross
sections, e.g. a strongly negative contribution.

A toyNNLO calculation for three-parton states is constructed from dσ
(0)[S(Φ1)>Sc]
1 (Φ1)

and dσ
(0+1)[TOY INC]
2 (Φ2) by

dσ
(0+1+2)[TOY]
1 (Φ1) (3.3)

=
{∫

dΦ1dσ
(0)[S(Φ1) > Sc ∧Q(Φ1) > Qc]
1 (Φ1)

·
[
1 + αs

2π
(
aqq̄1 yqq̄ + aqg1 yqg + aq̄g1 yq̄g

)
+
(
αs
2π

)2 (
bqq̄1 yqq̄ + bqg1 yqg + bq̄g1 yq̄g

)]
−
∫

dΦ2dσ
(0+1)[TOY INC, Q(Φ1) > Qc]
2 (Φ2)

}
O1

+
∫

dΦ2dσ
(0+1)[TOY INC, Q(Φ1) > Qc ∧Q(Φ2) < Qc]
2 (Φ2) O1

=
∫

dΦ1

{
dσ

(0+1+2)[TOY INC]
1 (Φ1) (3.4)

−
∫

dΦRdσ
(0+1)[TOY INC, Q(Φ1) > Qc ∧Q(Φ2) > Qc]
2 (Φ2)

}
O1

≈ dσ
(0+1+2)[Q(Φ1) > Qc ∧Q(Φ2) < Qc ∧Q(Φ3) < Qc]
1 (Φ1) .

Again, the term in · approximates loop integrals, the · term implements jet-
vetoed real-contributions, and a rescaling that mimics finite NNLO corrections is
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included. Again, the miscancellation due to the veto condition is again explicit.
Finally, the toy N3LO calculation for two-parton states is assembled from dσ

(0)
0 (Φ0)

and dσ
(0+1+2)[TOY INC]
1 (Φ1) by

dσ
(0+1+2+3)[TOY]
0 (Φ0) (3.5)

=
{∫

dΦ0dσ
(0)
0 (Φ0)

·
[
1 + αs

2π
(
aqe0 yqe + aq̄e0 yq̄e

)
+
(
αs
2π

)2 (
bqe0 (1− yqe) ln yqe + bq̄e0 (1− yq̄e) ln yq̄e

)
+
(
αs
2π

)3 (
cqe0 yqe cos 2πyqe + cq̄e0 yq̄e sin 2πyq̄e

)]
−
∫

dΦ1dσ
(0+1+2)[TOY INC]
1 (Φ1)

}
O0

+
∫

dΦ1dσ
(0+1+2)[TOY INC, Q(Φ1) < Qc]
2 (Φ1) O0

=
∫

dΦ0

{
dσ

(0+1+2+3)[TOY INC]
0 (Φ0) (3.6)

−
∫

dΦRdσ
(0+1+3)[TOY INC, Q(Φ1) > Qc]
1 (Φ1)

}
O0

≈ dσ
(0+1+2+3)[Q(Φ1) < Qc ∧Q(Φ2) < Qc ∧Q(Φ3) < Qc]
0 (Φ0) .

The argument for including the terms in colored boxes is identical to the previous
cross sections. The peculiar functional dependences multiplying the coefficients a0,
b0 or c0 would never arise from QCD corrections, but are chosen to allow for very
clean closure testing.

3. Choosing the coefficients aXn , bXn and cX0 in the toy calculation to produce exaggerated
higher-order effects. The reproduction of these effects in the full third-order matched
calculation will serve as affirmation of the correctness of the matching implementa-
tion. Explicit values are given in table 5.

The resulting toy calculations exhibit the typical features of jet-vetoed cross sections, and
thus serve as a realistic laboratory to test third-order matching ideas.

4 Third-order matching

Having constructed a toy third-order calculation, one step towards concrete third-order
event generators has been taken. This calculation should now be combined with parton
shower evolution in a manner that guarantees that neither the accuracy of the fixed-order
inputs nor of the parton shower are impaired. A unitarized matching ansatz offers a
convenient route, since it does not put stringent (and not yet obtainable) restrictions on the
parton shower implementation. The only relevant constraint is that on-shell intermediate
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states should exist at each step in the parton shower evolution, and that the parton-shower
rate of any (pre-generated) phase-space point can be calculated numerically. The outlook
in section 6 will theorize on other potential third-order matching methods. A third-order
matching method should fulfill the criteria

1. 3rd-order precision for inclusive zero-jet observables

2. 2nd-order precision for one-jet observables, combined with resummation when the
jet becomes unresolved

3. 1st-order precision for two-jet observables, combined with resummed effects when
either of the two jets becomes unresolved individually

4. 0th-order precision for three-jet observables, combined with resummed effects
when any of the three jets become unresolved individually

5. parton-shower resummation of any observable sensitive to unresolved partons
should not be impaired

Table 3. The criteria for a consistent N3LO matching method.

The starting point for a simple third-order matching is the availability of an NNLO+PS-
matched +1-parton calculation F (∞)[UN2LOPS, Q(Φ1) > Qc]

n+1 (Φn, t+, t−) performed using eq. (2.6),
and the availability of an N3LO jet-vetoed +0-jet cross section

dσ(0+1+2+3)[Q(Φ1) < Qc ∧Q(Φ2) < Qc ∧Q(Φ3) < Qc]
n (Φ0) (≡ dσ(0+1+2+3)[EXC]

n (Φ0) for brevity).

The recent emergence of N3LO differential cross sections in q⊥ subtraction and Projection-
to-Born methods suggests that this is not a particularly far-fetched requirement. The
construction of the simple third-order matching method proceeds in the same spirit as the
UN2LOPS matching prescription. Concretely, the method is constructed in the following
steps:

A. Regularize a one-jet UN2LOPS calculation with ∆n(t+, tn+1) factors so that the
hardest jet can become unresolved.

B. Remove unwanted NNLO terms from the regularized one-jet spectrum.

C. Unitarize, i.e. subtract one-jet spectrum from zero-jet terms.

D. Include an N3LO jet-vetoed zero-jet cross section.

The result is a valid third-order matching method, and will be referred to as Tomte (for
third-order matched transition events). It should be noted that the prescription does not
depend on the toy fixed-order calculation introduced before — the Tomte method would
yield an N3LO+PS prediction given appropriate inputs. Furthermore, the scheme does not
depend on the details of the parton shower, meaning that improved showers with reduced
uncertainty will directly improve the Tomte method and decrease its uncertainty in regions
dominated by partons becoming unresolved.
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4.1 Constructing the improved radiation pattern

The baseline for producing a precise radiation pattern is eq. (2.6) after performing
the shift n → n + 1. In this case, NNLO accuracy means that no unwanted terms
are introduced at O(α3

s). Conversely, this means that reweighting most contributions
in F (∞)[UN2LOPS]

n+1 (Φn+1, t+, t−) with Sudakov- and running-coupling factors will only re-
sult in O(α4

s) shifts. There are two terms that, when reweighted, threaten to intro-
duce undesirable contributions. The first is the is the jet-vetoed 1-parton cross section
dσ

(0+1+2)[Qn+2 < Qc ∧Qn+3 < Qc]
n+1 (Φn+1). The potentially problematic term can be isolated by

dσ
(0+1+2)[Qn+2 < Qc ∧Qn+3 < Qc]
n+1 (Φn+1) (4.1)

= dσ
(2)[Qn+2 < Qc ∧Qn+3 < Qc]
n+1 (Φn+1) + dσ

(1)[Qn+2 < Qc]
n+1 (Φn+1) + dσ

(0)
n+1(Φn+1) .

Any reweighting of the first term will only introduce terms of O(α4
s) or higher, while the

second term requires careful consideration. Further unsafe terms are highlighted through
· in eq. (2.6). An appropriate weighting strategy is outlined in section 4.2. Performing the
replacement in eq. (4.1), and introducing the placeholders u1, u2, u3 and u4 for the correct
weights of dangerous terms, the one-jet contribution for Tomte can be written as

F (∞)[UN2LOPS 4 TOMTE ]
n+1 (Φn+1, t+, t−)

:= On+1

dσ(2)[Qn+2 < Qc ∧Qn+3 < Qc]
n+1 (Φn+1) w(∞)

n+1(Φn+1)∆n(t+, tn+1)

+ dσ
(0)[Qn+2 < Qc]
n+1 (Φn+1) u1 + dσ

(1)[Qn+2 < Qc]
n+1 (Φn+1) u2

+

t+
∮

t−

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2) u3

+

t+
∮

t−

dσ
(1)[Qn+2 > Qc ∧Qn+3 < Qc]
n+2 (Φn+2) w(∞)

n+1(Φn+1)∆n(t+, tn+1)

⊗
[
1
n+2
n+1 − w

(∞)
n+2(Φn+2)∆n+1(t(Φn+1, tn+2)

]

+

t+�
t−

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3) w(∞)

n+1(Φn+1)∆n(t+, tn+1)

⊗
[
1
n+3
n+1 − w

(∞)
n+2(Φn+2)∆n+1(tn+1, tn+2) · 1n+3

n+2
]
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+ On+2

 dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2) u4

+ dσ
(1)[Qn+2 > Qc ∧Qn+3 < Qc]
n+2 (Φn+2)

⊗ w
(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)∆n(t+, tn+1)∆n+1(t[Φn+1, tn+2)

+

t+
∮

t−

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)

[
w

(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)∆n(t+, tn+1)∆n+1(tn+1, tn+2) · 1n+3
n+2

− wn+1(Φn+1)wn+2(Φn+2)wn+3(Φn+3)∆n(t+, tn+1)∆n+1(tn+1, tn+2)∆n+2(tn+2, tn+3)
]

+ dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)

⊗ wn+1(Φn+1)wn+2(Φn+2)wn+3(Φn+3)∆n(t+, tn+1)∆n+1(tn+1, tn+2)∆n+2(tn+2, tn+3)

⊗ F (∞)
n+3(Φn+3, tn+3, t−) , (4.2)

where tn+1 was chosen as upper scale in ∆n+1 to ensure non-overlapping resummation
regions, as required to maintain the parton-shower accuracy.

4.2 Removing undesirable O(α3
s) terms from the radiation pattern

To obtain an appropriate radiation pattern, a correct weighting strategy for the terms
proportional to

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2) and (4.3)

dσ
(0+1)[Qn+2 < Qc]
n+1 (Φn+1) = dσ

(0)
n+1(Φn+1) + dσ

(1)[Qn+2 < Qc]
n+1 (Φn+1) (4.4)

has to be established. This weighting should not introduce unwanted O(α3
s) terms, while

ensuring that the resulting terms are regularized as Qc → 0. Luckily, the On+1 contribution
to the UN2LOPS matching formula for n-parton processes (eq. (2.6)) can act as a blueprint,
since that calculation can be regarded as an approximation to the On+1 contribution in
Tomte. In the On+1 contribution of UN2LOPS, the tree-level components are multiplied
by the subtracted parton-shower factors[

1− w(1)
n+1(Φn+1)−∆(1)

n (t+, tn+1)
]
∆n(t+, tn+1)w(∞)

n+1(Φn+1) ,

to avoid over-counting universal virtual corrections [34]. The same logic can be applied to
the parton-shower reweighting for the O(α2

s) contributions to eq. (4.4), i.e.

dσ
(1)[Qn+2 < Qc]
n+1 (Φn+1)

eq. (2.6)−−−−→ dσ
(1)[Qn+2 < Qc]
n+1 (Φn+1) ∆n(t+, tn+1)w(∞)

n+1(Φn+1)
repair O(α1

s) weights−−−−−−−−−−−→ dσ
(1)[Qn+2 < Qc]
n+1 (Φn+1) ∆n(t+, tn+1)w(∞)

n+1(Φn+1) (4.5)
·
[
1− w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

]
.

This determines u2.
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The weighting of the O(α1
s) pieces of eq. (4.4) also need careful consideration. Starting

from eq. (2.6), reweighting with subtracted parton-shower factors is appropriate. However,
the subtracted parton-shower terms need to be expanded to second order to avoid spurious
O(α3

s) terms. This suggests the shifts

dσ
(0)
n+1(Φn+1)

eq. (2.6)−−−−→ dσ
(0)
n+1(Φn+1) ∆n(t+, tn+1) w(∞)

n+1(Φn+1)

·
[
1−w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

]
repair O(α2

s) weights−−−−−−−−−−−→ dσ
(0)
n+1(Φn+1) ∆n(t+, tn+1)w(∞)

n+1(Φn+1) (4.6)

⊗
[
1−w(1)

n+1(Φn+1)−w(2)
n+1(Φn+1)−∆(1)

n (t+, tn+1)−∆(2)
n (t+, tn+1)

+
(
∆(1)
n (t+, tn+1)

)2
+
(
w

(1)
n+1(Φn+1)

)2
+ w

(1)
n+1(Φn+1)∆(1)

n (t+, tn+1)
]

to ensure an appropriately weighted NLO cross section for exclusive (n+ 1)-parton config-
urations. The last line removes undesirable O(α2

s) terms in the expansion of the all-order-
reweighted O(α1

s) subtractions, and determines u1.
Finally, the two-jet leading-order contribution (eq. (4.3)) requires care, since it appears

with observable dependence On+2, and, through unitarization and to complement the jet-
vetoed cross section, with On+1 dependence. This leads to several boundary conditions on
suitable weights, as discussed in appendix C. A suitable strategy is to use

On+2 dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2) u4 = On+2 dσ

(0)[Qn+2 > Qc]
n+2 (Φn+2) (4.7)

⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)

⊗
(
1− w(1)

n+1(Φn+1)− w(1)
n+2(Φn+2)−∆(1)

n (t+, tn+1)−∆(1)
n+1(tn+1, tn+2)

)
,

as contribution to On+2 observables, fixing u4. The contribution to On+1 cross sections
contains the complement to a jet-vetoed cross section, and the unitarity subtraction of the
On+2 contribution. Thus,

On+1 dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2) u3 = On+1 dσ

(0)[Qn+2 > Qc]
n+2 (Φn+2) (4.8)

⊗
[

∆n(t+, tn+1)w(∞)
n+1(Φn+1) ·

(
1− w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

)
−∆n(t+, tn+1)w(∞)

n+1(Φn+1)∆n+1(tn+1, tn+2)w(∞)
n+2(Φn+2)

·
(
1− w(1)

n+1(Φn+1)− w(1)
n+2(Φn+2)−∆(1)

n (t+, tn+1)−∆(1)
n+1(tn+1, tn+2)

)]
.

This then defines u3, and concludes the discussion of terms that cannot be trivially
reweighted. After these considerations, the complete (n+ 1)-parton spectrum for Tomte
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is finally given by

F (∞)[UN2LOPS 4 TOMTE ]
n+1 (Φn+1, t+, t−) :=

On+1


dσ

(2)[Qn+2 < Qc ∧Qn+3 < Qc]
n+1 (Φn+1) ∆n(t+, tn+1)w(∞)

n+1(Φn+1)

+ dσ
(0)
n+1(Φn+1) ∆n(t+, tn+1)w(∞)

n+1(Φn+1)

⊗
[
1− w(1)

n+1(Φn+1)− w(2)
n+1(Φn+1)−∆(1)

n (t+, tn+1)−∆(2)
n (t+, tn+1)

+
(
∆(1)
n (t+, tn+1)

)2
+
(
w

(1)
n+1(Φn+1)

)2
+ w

(1)
n+1(Φn+1)∆(1)

n (t+, tn+1)
]

+ dσ
(1)[Qn+2 < Qc]
n+1 (Φn+1)∆n(t+, tn+1)w(∞)

n+1(Φn+1)⊗
[
1− w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

]

+

t+
∮

t−

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2) ∆n(t+, tn+1)w(∞)

n+1(Φn+1)

⊗
[ (

1− w(1)
n+1(Φn+1)−∆(1)

n (t+, tn+1)
)
· 1n+2

n+1

−
(

1− w(1)
n+1(Φn+1)− w(1)

n+2(Φn+2)−∆(1)
n (t+, tn+1)−∆(1)

n+1(tn+1, tn+2)
)

⊗ ∆n+1(tn+1, tn+2)w(∞)
n+2(Φn+2)

]

+

t+
∮

t−

dσ
(1)[Qn+2 > Qc ∧Qn+3 < Qc]
n+2 (Φn+2) ∆n(t+, tn+1)w(∞)

n+1(Φn+1)

⊗
[
1
n+2
n+1 − w

(∞)
n+2(Φn+2)∆n+1(t(Φn+1, tn+2)

]

+

t+�
t−

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3) ∆n(t+, tn+1)w(∞)

n+1(Φn+1)

⊗
[
1
n+3
n+1 − w

(∞)
n+2(Φn+2)∆n+1(tn+1, tn+2) · 1n+3

n+2

]

+ On+2

 dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2)
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⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)

⊗
[
1− w(1)

n+1(Φn+1)− w(1)
n+2(Φn+2)−∆(1)

n (t+, tn+1)−∆(1)
n+1(tn+1, tn+2)

]
+ dσ

(1)[Qn+2 > Qc ∧Qn+3 < Qc]
n+2 (Φn+2)

⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)

+

t+
∮

t−

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)

[
∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)

n+1(Φn+1)w(∞)
n+2(Φn+2) · 1n+3

n+2

− ∆n(t+, tn+1)∆n+1(tn+1, tn+2)∆n+2(tn+2, tn+3)wn+1(Φn+1)wn+2(Φn+2)wn+3(Φn+3)
]

+ dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)

⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)∆n+2(tn+2, tn+3)wn+1(Φn+1)wn+2(Φn+2)wn+3(Φn+3)

⊗ F (∞)
n+3(Φn+3, tn+3, t−) . (4.9)

Although a somewhat more complicated combination than the UN2LOPS prescription
in eq. (2.6), the only two new factors that need to be calculated are w

(2)
n+1(Φn+1) and

∆(2)
n (t+, tn+1). Both factors are simple to generate in the absence of incoming hadrons.

Were PDFs to enter the parton-shower evolution, then the generation would become more
cumbersome.8 However, it might be feasible to evaluate the pieces for color-singlet produc-
tion processes at hadron colliders, since the terms are related to the evolution of zero-parton
configurations and dynamical scale choices for the one-jet contributions alone. For example,
a hybrid approach similar to the Minlo method [81] could be possible: employ analytical
Sudakov factors and their expansion for the factors related to the evolution of zero-jet con-
figurations (∆(∞)

n , ∆(1)
n , ∆(2)

n ), and use numerical parton-shower results everywhere else.
It should be noted that eq. (4.9) is an NNLO+PS matching formula for processes with an
“additional” parton. The benefits of eq. (4.9) over, e.g., UN2LOPS matching are that the
additional parton is allowed to become soft, or collinear to another parton. Furthermore,
eq. (4.9) offers a clear, resummation-based, strategy for setting the argument of the running
coupling for Φn+1 states.

8The appearance of ratios of PDFs in the Sudakov exponents would lead to contributions from the first-
order expansion of the Sudakov factor mixing with the first-order expanded PDF evolution, the product of
first-order expanded running-coupling factors with the first-order expansion of PDF evaluations at dynamical
factorization scales, and the second-order expansion of PDFs evaluated at dynamical factorization scales.
The latter depends on the treatment of running couplings within the PDF fitting/evolution procedure.
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4.3 Unitarizing

After constructing an appropriate radiation pattern, unitarization is necessary to ensure
that the target inclusive N3LO zero-jet is retained after matching. Unitarization further
embeds the effects of parton-shower resummation at higher orders into zero-jet exclusive
predictions. To this end, all observables in eq. (4.9) are replaced with On, and the whole
contribution is subtracted from the previous result. Using On in eq. (4.9) triggers, as
desired, the cancellation between the terms highlighted in · , · , · and · . After this, the
prototype subtraction for unitarization reads9

dσ(∞)[SUBT]
n (Φn) := On


−

t+
∮

t−

dσ
(2)[Qn+2 < Qc ∧Qn+3 < Qc]
n+1 (Φn+1) ∆n(t+, tn+1)w(∞)

n+1(Φn+1)

−

t+
∮

t−

dσ
(0)
n+1(Φn+1) ∆n(t+, tn+1)w(∞)

n+1(Φn+1)

⊗
[
1− w(1)

n+1(Φn+1)− w(2)
n+1(Φn+1)−∆(1)

n (t+, tn+1)−∆(2)
n (t+, tn+1)

+
(
∆(1)
n (t+, tn+1)

)2
+
(
w

(1)
n+1(Φn+1)

)2
+ w

(1)
n+1(Φn+1)∆(1)

n (t+, tn+1)
]

−

t+
∮

t−

dσ
(1)[Qn+2 < Qc]
n+1 (Φn+1)

[
1− w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

]
∆n(t+, tn+1)w(∞)

n+1(Φn+1)

−

t+�
t−

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2)

[
1− w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

]
∆n(t+, tn+1)w(∞)

n+1(Φn+1)

−

t+�
t−

dσ
(1)[Qn+2 > Qc ∧Qn+3 < Qc]
n+2 (Φn+2) ∆n(t+, tn+1)w(∞)

n+1(Φn+1)

−

t+�
t−

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3) ∆n(t+, tn+1)w(∞)

n+1(Φn+1)

 . (4.10)

9Using Φ̄1 = {ti+1, zi+1, φi+1}, Φ̃1 = {ti+2, zi+2, φi+2}, Φ1 = {ti+3, zi+3, φi+3}, Φi+1 = {Φi ∩
Φ̄1}, Φi+2 = {Φi+1 ∩ Φ̃1} and Φi+3 = {Φi+2 ∩ Φ1}, and defining the notation

t+�
t−

σi+3(Φi+3) =
∫

dΦ̄1 Θ[t(Φi+1)− t−] Θ[t+ − t(Φi+1)]
∫

dΦ̃1 Θ[t(Φi+2)− t−] Θ[t+ − t(Φi+2)]

∫

dΦ1 Θ[t(Φi+3)− t−] Θ[t+ − t(Φi+3)] σi+3(Φn+3) .
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4.4 Completing the N3LO cross section to obtain the matching formula

The last step in construction the Tomte matching method is to complement the match-
ing formula with an N3LO exclusive cross section dσ

(0+1+2+3)[EXC]
n (Φn), and to ensure that

the complementary parts (with real-emission configurations above the veto scale Qc) are
correctly included. This can be achieved by shifting the unitarization subtraction to not
remove the necessary terms:

dσ(∞)[SUBT]
n (Φn)

→ dσ(∞)[SUBT + COMPLEMENT]
n (Φn) := On


t+
∮

t−

[
1
n+1
n − ∆n(t+, tn+1w

(∞)
n+1(Φn+1)

]
dσ

(2)[Qn+2 < Qc ∧Qn+3 < Qc]
n+1 (Φn+1)

+

t+
∮

t−

[
1
n+1
n − ∆n(t+, tn+1)w(∞)

n+1(Φn+1)
(

1−w(1)
n+1(Φn+1)−w(2)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

−∆(2)
n (t+, tn+1) +

(
∆(1)
n (t+, tn+1)

)2
+
(
w

(1)
n+1(Φn+1)

)2
+w

(1)
n+1(Φn+1)∆(1)

n (t+, tn+1)
)]

dσ
(0)
n+1(Φn+1)

+

t+
∮

t−

[
1
n+1
n − ∆n(t+, tn+1)w(∞)

n+1(Φn+1)
(

1−w(1)
n+1(Φn+1)−∆(1)

n (t+, tn+1)
)]

dσ
(1)[Qn+2 < Qc]
n+1 (Φn+1)

+

t+�
t−

[
1
n+2
n − ∆n(t+, tn+1)w(∞)

n+1(Φn+1)
(

1−w(1)
n+1(Φn+1)−∆(1)

n (t+, tn+1)
)]

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2)

+

t+�
t−

[
1
n+2
n − ∆n(t+, tn+1)w(∞)

n+1(Φn+1)
]
dσ

(1)[Qn+2 > Qc ∧Qn+3 < Qc]
n+2 (Φn+2)

+

t+�
t−

[
1
n+3
n − ∆n(t+, tn+1)w(∞)

n+1(Φn+1)
]
dσ

(0)[Qn+3 > Qc]
n+3 (Φn+3)

 (4.11)

where the necessary factors to complement the exclusive cross sections are highlighted
in red. It should be stressed that these factors are introduced because the combination
with a jet-vetoed N3LO cross section is foreseen. The combination with an inclusive N3LO
calculation can be accommodated by simply ignoring the highlighted factors.

Combining dσ
(0+1+2+3)[EXC]
n (Φ0) with eq. (4.11) and eq. (4.9) allows to construct the

Tomte matching formula. As before, pairwise canceling terms will indicated with identical
(hyperlinked) boxes. This acts as visual help to allow the reader to confirm that the criteria
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listed in table 3 are indeed fulfilled. The final Tomte matching formula reads

F (∞)[TOMTE ]
n (Φn, t+, t−)

:= On


dσ(0+1+2+3)[EXC]

n (Φn)

+

t+
∮

t−

dσ
(2)[Qn+2 < Qc ∧Qn+3 < Qc]
n+1 (Φn+1)

 1
n+1
n − ∆n(t+, tn+1)w(∞)

n+1(Φn+1)



+

t+
∮

t−

dσ
(0)
n+1(Φn+1)

⊗

 1
n+1
n −

∆n(t+, tn+1)w(∞)
n+1(Φn+1)

·
(

1− w(1)
n+1(Φn+1)− w(2)

n+1(Φn+1)−∆(1)
n (t+, tn+1)−∆(2)

n (t+, tn+1)

+
[
∆(1)
n (t+, tn+1)

]2
+
[
w

(1)
n+1(Φn+1)

]2
+ w

(1)
n+1(Φn+1)∆(1)

n (t+, tn+1)
)



+

t+
∮

t−

dσ
(1)[Qn+2 < Qc]
n+1 (Φn+1)

⊗

 1
n+1
n − ∆n(t+, tn+1)w(∞)

n+1(Φn+1)
(

1− w(1)
n+1(Φn+1)−∆(1)

n (t+, tn+1)
) 

+

t+�
t−

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2)

⊗
[
1
n+2
n − ∆n(t+, tn+1)w(∞)

n+1(Φn+1)
(

1− w(1)
n+1(Φn+1)−∆(1)

n (t+, tn+1)
)
1
n+2
n+1

]

+

t+�
t−

dσ
(1)[Qn+2 > Qc ∧Qn+3 < Qc]
n+2 (Φn+2)

⊗
[
1
n+2
n − ∆n(t+, tn+1)w(∞)

n+1(Φn+1)1n+2
n+1

]
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+

t+�
t−

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)

⊗
[
1
n+3
n − ∆n(t+, tn+1)w(∞)

n+1(Φn+1)1n+3
n+1

]


+ On+1


dσ

(2)[Qn+2 < Qc ∧Qn+3 < Qc]
n+1 (Φn+1) ∆n(t+, tn+1)w(∞)

n+1(Φn+1)

+ dσ
(0)
n+1(Φn+1)

⊗

∆n(t+, tn+1)w(∞)
n+1(Φn+1)

·
(

1− w(1)
n+1(Φn+1)− w(2)

n+1(Φn+1)−∆(1)
n (t+, tn+1)−∆(2)

n (t+, tn+1)

+
[
∆(1)
n (t+, tn+1)

]2
+
[
w

(1)
n+1(Φn+1)

]2
+ w

(1)
n+1(Φn+1)∆(1)

n (t+, tn+1)
)

+ dσ
(1)[Qn+2 < Qc]
n+1 (Φn+1)

⊗
[
1− w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

]
∆n(t+, tn+1)w(∞)

n+1(Φn+1)

+

t+
∮

t−

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2)

⊗ ∆n(t+, tn+1)w(∞)
n+1(Φn+1)

⊗
[ (

1− w(1)
n+1(Φn+1)−∆(1)

n (t+, tn+1)
)
1
n+2
n+1

− ∆n+1(tn+1, tn+2)w(∞)
n+2(Φn+2)

⊗
(

1− w(1)
n+1(Φn+1)− w(1)

n+2(Φn+2)−∆(1)
n (t+, tn+1)−∆(1)

n+1(tn+1, tn+2)
) ]
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+

t+
∮

t−

dσ
(1)[Qn+2 > Qc ∧Qn+3 < Qc]
n+2 (Φn+2)

⊗
[

∆n(t+, tn+1)w(∞)
n+1(Φn+1)1n+2

n+1

− ∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)

]

+

t+�
t−

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)

⊗
[

∆n(t+, tn+1)w(∞)
n+1(Φn+1)1n+3

n+1

− ∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)1n+3
n+2

]


+ On+2


dσ

(0)[Qn+2 > Qc]
n+2 (Φn+2)

⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)

⊗
[
1− w(1)

n+1(Φn+1)− w(1)
n+2(Φn+2)−∆(1)

n (t+, tn+1)−∆(1)
n+1(tn+1, tn+2)

]
+ dσ

(1)[Qn+2 > Qc ∧Qn+3 < Qc]
n+2 (Φn+2)

⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)

+

t+
∮

t−

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)

[
∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)

n+1(Φn+1)w(∞)
n+2(Φn+2)1n+3

n+2

− ∆n(t+, tn+1)∆n+1(tn+1, tn+2)∆n+2(tn+2, tn+3)wn+1(Φn+1)wn+2(Φn+2)wn+3(Φn+3)

]
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+ dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)

⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)∆n+2(tn+2, tn+3)wn+1(Φn+1)wn+2(Φn+2)wn+3(Φn+3)

⊗ F (∞)
n+3(Φn+3, tn+3, t−) . (4.12)

This is the main result of this note. As is always the case when matching fixed-order
calculations to parton showers, this is not necessarily the only possible N3LO+PS matching
scheme, provoking the question if the matching scheme uncertainty will outweigh renormal-
ization scale uncertainties at N3LO. Scale variations in leading-order parton showers can be
large [82–85], so that non-inclusive observables can be burdened with large uncertainties.
By design, eq. (4.12) will immediately apply also when using higher-accuracy showers,
since its derivation did not make assumptions on the shower accuracy. Thus, the scale
uncertainties will immediately be reduced once higher-order showers become available.
Matching scheme variations related to choices of the functional form of renormalization
scales have been observed to introduce uncertainties in NLO merging [80]. Similarly, fixed-
order NNLO calculations have been shown to exhibit a dependence on the functional form
of renormalization scales that may be larger than conventional renormalization scale vari-
ations by constant factors [86]. The Tomte method employs very specific functional form
of renormalization scales inherited from parton-shower resummation. Other scale setting
mechanisms might be possible in N3LO+PS matching, potentially leading to non-negligible
scheme dependence. At present, there is no sound way to assess this issue, without first
building some intuition about matching at N3LO. Thus, to allow for toy studies, the match-
ing formula (4.12) has been implemented in the Dire plugin to the Pythia event generator.
The fixed-order methods presented in [55, 56] appear particularly interesting for a future
full-fledged N3LO+PS implementation, as do the fixed-order components of the resummed
calculations [59, 60]. Since [56] partly relies on an inclusive N3LO calculation, appendix D
documents a rearrangement of eq. (4.12) using an inclusive N3LO calculation for n-parton
states.

5 Numerical closure test

The toy fixed-order calculation constructed in section 3 allows for detailed tests of the im-
plementation of the matching formula eq. (4.12). All the conditions for N3LO+PS accuracy
listed in table 3 can be tested in a controlled environment. These tests are presented in fig-
ure 2.10 The toy fixed-order calculation makes use of the renormalization scale µ = ŝ = M2

Z

and αs(µ) = 0.118, while all parton-shower factors use the running coupling

αs(t) = αs

(
4 (pradiator · pemission)(pemission · precoiler)

(pradiator · pemission) + (pemission · precoiler) + (pradiator · precoiler)

)
.

10Matched results use inputs with tighter Q(Φn) cuts. Directly using S(Φn)-regularized toy fixed-order
calculations for matching leads to identical Tomte results, but is less practical for efficiency reasons, due
to an excessively high Sudakov rejection rate: any contribution with Q(Φn) < Qc (identifying Qc with the
parton-shower cut-off) will be removed by the application of vanishing ∆n−1(t, tn) factors.
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The prefactor in the argument of αs is chosen so that αs(t) → αs(µ) in fixed-order domi-
nated phase-space regions.

That the tree-level result for observables requiring three or more additional partons
is recovered is illustrated by figure 2a. This shows that for well-separated jets, the fixed-
order result is approached adequately. However, the agreement is largely accidental, since
the pure fixed-order region is exceedingly small: the whole distribution receives signifi-
cant Sudakov suppression (as illustrated by the dashed gray curve in figure 2a), and the
running-coupling effects present in the matched calculation have a significant impact also
for well-separated configurations. When approaching phase-space regions with unresolved
partons, the all-order factors included in the matched calculation produce a physically
meaningful regularization of the cross-section. In conclusion, the matched calculation be-
haves as expected, combining fixed-order accuracy with parton-shower resummation. The
NLO accuracy of observables requiring two additional partons is assessed in figure 2b. Again,
the inclusive fixed-order result is approached as desired, although the pure fixed-order re-
gion (measured with the absence of Sudakov effects) is small, and running-coupling effects
are large. As before, the matched calculation exhibits the desired Sudakov suppression
when approaching phase-space regions containing unresolved partons. The two extremes
are again consistently matched. The same conclusions can also be drawn for the NNLO
accuracy of inclusive observables requiring at least one additional parton (as shown in fig-
ure 2c), for which the fixed-order region is larger, and the agreement in the hard region
is sound. Finally, the N3LO accuracy of inclusive observables relying only on the particles
present at Born level is checked in figure 2d. For such observables, the matched calculation
should recover the toy N3LO calculation exactly, since no parton-shower factors rescale the
inclusive lowest-multiplicity prediction. This is indeed the case, confirming that the imple-
mentation of the Tomte N3LO+PS matching method is consistent. Auxiliary distributions
are discussed in appendix A. Extensions to hadron collisions are conceivable, and would
benefit from similar closure tests.

6 Summary and outlook

This note introduces a straight-forward method to match N3LO calculations to parton
shower resummation, thus allowing for the construction of N3LO-precise event generators.
The construction of the method is based on the simple idea of unitary matching, and is an
extension of the UN2LOPS method. The final formula eq. (4.12) appears a bit daunting at
first glance, but should be easy to understand with the visual help of pairwise cancelling
boxes. The Tomte matching formula had been implemented in the Pythia + Dire
generator, assuming that the fixed-order results can be supplied by external calculations.
A toy fixed-order calculation was constructed, and a closure test of the matching scheme
was performed.

Although the necessity for N3LO+PS accurate event generators is not completely ob-
vious, the development might be an interesting alternative to other avenues of improving
event generators. In particular, given the limited application of NLO-merged predictions
combining more than three NLO calculations in experimental analyses, it could be argued
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(b) Separation of the 3rd and 4th hardest jets, as
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least four partons.
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(c) Separation of the 2nd and 3rd hardest jets, as
proxy for (inclusive) observables depending on at
least three partons.
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(d) Angle of the leading jet and the electron, when
always clustering to two jets, as proxy for two-
parton observables.

Figure 2. Comparison of toy fixed-order curves (with conservative S(Φn) regularization), toy
matching applying only Sudakov factors, and full Tomte results. Plots were produced with
Rivet [87]. Bars denote statistical errors.

that there is little need for merging more than two NNLO calculations. If so, then it would
seem that an N3LO+PS matching method would be adequate for the foreseeable future.
However, if the goal of improved event generators is a decreased uncertainty throughout
the spectrum, then improving the fixed-order precision only should not be considered an
end on its own, but rather be accompanied by a better understanding of all-order pertur-
bative effects. The derivation of the Tomte matching formula requires no reference to the
actual logarithmic accuracy of the parton shower. Thus, eq. (4.12) is a valid method to
combine N3LO calculations with high-precision analytic resummation.

This note offers a first proof of concept for N3LO+PS matching. Future research could
apply the Tomte method to processes of interest, using realistic sliced fixed-order calcu-
lations. The current proposal could be improved with ease by using an MC@NLO-matched
2-jet component, or tailored to (in spirit similar) Projection-to-Born calculations. Is is also
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potentially possible to employ a fully differential NNLO+PS calculation as one-jet compo-
nent. No fully-differential NNLO+PS methods for such processes exist to date, since they
would require the parton shower to recover the complete singularity structure of QCD at
O(α+2

s ). Nevertheless, such improvements could materialize within the next years.
In any case, for simple processes, N3LO+PS matching is feasible with our current un-

derstanding of event generators.

Acknowledgments

This note is supported by funding from the Swedish Research Council, contract numbers
2016-05996 and 2020-04303.

A Further distributions

The observables discussed in section 5 are chosen to illustrate the consistency of the Tomte
method, and confirm the correctness of the implementation. They do, however, by no means
exhaust potential comparisons of N3LO+PS matched results. The current section hopes to
highlight other aspects, by discussing further distributions.

The p+ distribution of jets shown in figure 3a (created by clustering to exactly two jets,
and histogramming the p+ of both jets) should allow to verify that the Tomte method
yields N3LO accurate results for two-parton observables. This expectation is confirmed
away from the kinematic boundaries. However, for both very low and very high values of
p+, Tomte results do not match the toy N3LO calculation. The difference stems from using
the E-scheme11 in the jet clustering algorithm. For Tomte contributions containing more
than two partons, the E-scheme may lead to massive jets, whereas the toy N3LO calculation
only contains two-parton configurations, which will be associated with two massless jets.
The observable thus serves as a reminder that even well-separated n-parton states only
approximate n-jet states within certain regions. Given this caveat, the agreement between
the toy N3LO calculation and the Tomte results is promising.

A similar effect can be observed in the ∆φ distribution (when clustering to exactly
three jets) in figure 3b. Any value 6= π signals the presence of a third jet, such that ∆φ is
a proxy of a three-jet observable. The agreement of the two calculations is excellent over
all of phase space, except very close to the two-jet limit ∆φ→ π. As before, the difference
is due to the use of the E-scheme in the jet clustering algorithm leading to massive jets for
some Tomte configurations, and three strictly massless jets — one for each parton — in
the toy fixed-order calculation.

Figures 3c and 3d employ “non-standard” measures of the distance between jets. This
allows to verify that Tomte results agree with the relevant toy fixed-order calculations
also for jets not defined through the Durham algorithm. Figure 3c reports results on the
Njettiness [89] ratio τ32. The ratio is constructed by clustering all particles into one jet,
and then extracting the value of τ32 from that jet. Non-zero values require configurations
with at least four parton, i.e. τ32 may act as four-jet observable. In the fixed-order regime
τ32 → 1, matched and fixed-order results agree, whereas for τ32 → 0, the resummation

11See [88] for an enlightening discussion of recombination schemes.
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(a) p+ = E + pz of jets, when always clustering to
two jets, as proxy for two-jet observables.
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est jets, as proxy for three-jet observables.
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servables.

Incl. 5-jet LO
TOMTE N3LO matched

1

10 1

10 2

10 3

Scaled invariant mass of fourth and fifth highest energy jets

d
σ
/
d
lo
g 1

0(
m

45
/
ŝ)

[p
b]

-4 -3.5 -3 -2.5 -2 -1.5
0.2
0.4
0.6
0.8
1

1.2
1.4

log10(m45 / ŝ)
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(d) Invariant mass of the 4th and 5th hardest jets,
as proxy for five-jet observables.

Figure 3. Comparison of toy fixed-order curves (with conservative S(Φn) regularization) and full
Tomte results. Bars denote statistical errors. See main text for details.

effects in Tomte produce the expected Sudakov suppression. Figure 3d shows the jet
separation at which the fourth- and fifth-hardest jets would be clustered when using the
JADE jet algorithm [90]. Again, the matched result agrees well with the toy calculation
in the “fixed-order” region. As noted above (see dicussion of figure 2a), the significance
of this agreement should not be over-stated, given that the whole distribution receives
non-negligible all-order corrections.

Overall, the quality of agreement is similar to the findings of section 5. It is thus rea-
sonable to conclude that Tomte describes jet observables as expected, and independently
of the details of the jet definition.

B Details of an implementation

The main text assumed that all factors in the various matching formulae (eqs. (2.4), (2.6)
and (4.12)) are known and can be generated numerically. The main aim of this appendix is
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to assess and confirm this assumption for all parton-shower-related terms. The availability
of appropriate fixed-order results is still left assumed.

B.1 Fixed-order cross sections

The formulae in the main text rely on differential fixed-order predictions, which are then
combined with each other and the parton shower to obtained matched predictions. This
section gives symbolic definitions of such calculations. Unless explicitly stated otherwise,
n-parton configurations will be assumed to only contain well-separated phase-space re-
gions, i.e.

dσ(0+1+... )[qualifier]
n (Φn) ≡ dσ(0+1+... )[qualifier]

n (Φn)Θ (Qn+1 −Qc) . (B.1)

The inclusive NLO cross section is given by

dσ(0+1)[INC]
n (Φn) = dσ(0)

n (Φn) + dσ(1)[INC]
n (Φn)

= dσ(0)
n (Φn) +

(
dσ(1)

n (Φn) + In(Φn)
)

+
∫

dΦ1
(
wFO
n+1(Φn+1,Φn)dσ(0)

n+1(Φn+1)− Sn+1(Φ̃n,Φ1)
)

(B.2)

where In is the analytically integrated analogue of the real-emission subtraction Sn+1.
The projection rate wFO

n+1(Φn+1,Φn) for replacing real-emission kinematics with underlying-
Born-kinematics is discussed in appendix B.4. The exclusive (jet-vetoed) next-to-leading
order cross section can be obtained from its inclusive counter-part by restricting the phase-
space for real-emission contributions:

dσ(0+1)[Qn+1 < Qc]
n (Φn) = dσ(0)

n (Φn) + dσ(1)[Qn+1 < Qc]
n (Φn)

= dσ(0)
n (Φn) +

(
dσ(1)

n (Φn) + In(Φn)
)

+
∫

dΦ1
(
wFO
n+1(Φn+1,Φn)dσ(0)

n+1(Φn+1)Θ (Qc −Qn+1)− Sn+1(Φ̃n,Φ1)
)
.

(B.3)

Note that the regularizing subtractions should be unaffected by the phase-space constraint.
At NNLO, the inclusive cross section is given, symbolically, by

dσ(0+1+2)[INC]
n (Φn) = dσ(0)

n (Φn) + dσ(1)[INC]
n (Φn) + dσ(2)[INC]

n (Φn)
dσ(2)[INC]

n (Φn) =
(
dσ(2)

n (Φn) + IVV
n (Φn)

)
+
∫

dΦ1
(
wFO
n+1(Φn+1,Φn)dσ(1)

n+1(Φn+1)− SRV
n+1(Φ̃n,Φ1)

)
+
∫

dΦ2
(
wFO
n+2(Φn+2,Φn)dσ(0)

n+2(Φn+2)− SRR
n+2(Φ̃n,Φ2)

)
(B.4)

where it is assumed that the subtractions SRV
n+1, SRR

n+2 and the integrated subtractions IVV
n

add to zero in infrared-safe observables. The exclusive (jet-vetoed) counterpart can be
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obtained from the inclusive cross section by restricting the phase-space for real-emission
contributions:

dσ(0+1+2)[Qn+1 < Qc ∧Qn+2 < Qc]
n (Φn)
= dσ(0)

n (Φn) + dσ(1)[Qn+1 < Qc]
n (Φn) + dσ(2)[Qn+1 < Qc ∧Qn+2 < Qc]

n (Φn)
dσ(2)[Qn+1 < Qc ∧Qn+2 < Qc]

n (Φn) (B.5)
=

(
dσ(2)

n (Φn) + IVV
n (Φn)

)
+
∫

dΦ1
(
wFO
n+1(Φn+1,Φn)dσ(1)

n+1(Φn+1)Θ (Qc −Qn+1)− SRV
n+1(Φ̃n,Φ1)

)
+
∫

dΦ2
(
wFO
n+2(Φn+2,Φn)dσ(0)

n+2(Φn+2)Θ (Qc −Qn+1) Θ (Qc −Qn+2)− SRR
n+2(Φ̃n,Φ2)

)
.

The same relation between inclusive and exclusive cross sections persists at N3LO. In this
case, the inclusive N3LO cross section is given, symbolically, by

dσ(0+1+2+3)[INC]
n (Φn) = dσ(0)

n (Φn) + dσ(1)[INC]
n (Φn) + dσ(2)[INC]

n (Φn) + dσ(3)[INC]
n (Φn)

dσ(3)[INC]
n (Φn) =

(
dσ(3)

n (Φn) + IVVV
n (Φn)

)
+
∫

dΦ1
(
wFO
n+1(Φn+1,Φn)dσ(2)

n+1(Φn+1)− SRVV
n+1 (Φ̃n,Φ1)

)
+
∫

dΦ2
(
wFO
n+2(Φn+2,Φn)dσ(1)

n+2(Φn+2)− SRRV
n+2 (Φ̃n,Φ2)

)
+
∫

dΦ3
(
wFO
n+3(Φn+3,Φn)dσ(0)

n+3(Φn+3)− SRRR
n+3 (Φ̃n,Φ3)

)
, (B.6)

where the subtractions SRVV
n+1 , SRRV

n+2 , SRRR
n+3 and the integrated subtractions IVVV

n add to
zero for infrared-safe observables. The exclusive cross-section then reads

dσ(0+1+2+3)[Qn+1 < Qc ∧Qn+2 < Qc ∧Qn+3 < Qc]
n (Φn) (B.7)
= dσ(0)

n (Φn) + dσ(1)[Qn+1 < Qc]
n (Φn) + dσ(2)[Qn+1 < Qc ∧Qn+2 < Qc]

n (Φn)
+ dσ(3)[Qn+1 < Qc ∧Qn+2 < Qc ∧Qn+3 < Qc]

n (Φn)

where

dσ(3)[Qn+1 < Qc ∧Qn+2 < Qc ∧Qn+3 < Qc]
n (Φn) =

(
dσ(3)

n (Φn) + IVVV
n (Φn)

)
(B.8)

+
∫

dΦ1
(
wFO
n+1(Φn+1,Φn)dσ(2)

n+1(Φn+1)Θ (Qc −Qn+1)− SRVV
n+1 (Φ̃n,Φ1)

)
+
∫

dΦ2
(
wFO
n+2(Φn+2,Φn)dσ(1)

n+2(Φn+2)Θ (Qc −Qn+1) Θ (Qc −Qn+2)− SRRV
n+2 (Φ̃n,Φ2)

)
+
∫

dΦ3
(
wFO
n+3(Φn+3,Φn)dσ(0)

n+3(Φn+3)Θ (Qc −Qn+1) Θ (Qc −Qn+2) Θ (Qc −Qn+3)

− SRRR
n+3 (Φ̃n,Φ3)

)
.

B.2 Histories

Parton-shower histories are crucial for calculating the matching terms. This note also
employs parton-shower histories for the construction of cuts and integrated contributions
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Figure 4. Histories for one additional parton: the gluon can be recombined with the other partons
in two distinct ways.

in the toy fixed-order calculation described in section 3. Some background on histories may
thus be helpful.

Showers generate multi-parton configurations through a sequence of parton branchings.
A key realization of shower-centered matching — and, particularly, merging — methods is
to invert this picture when treating fixed-order calculations that contain multiple partons
as input to the event generator. This leads to the concept of parton-shower histories, which
are then utilized for many of the necessary tasks.

A parton shower history is the set of all possible sequences of branchings that may
have lead to the multi-parton state. Figure 4 shows the shower history for the production
of a qgq̄ final state: two distinct sequences — starting from different states Φ[i]

0 , and
transitioning at different evolution variable t[i] — can lead to the same final state Φ1.
Thus, the parton-shower prediction for an observable O1 is an admixture of the rate of two
paths. Assuming that Φ1 can be parametrized by the dimensionless variables (τ, ζ, ϕ), and
that the phase-space points fulfill τ < τ+, then the prediction reads,

OPS
1 (Φ1) =

τ+
∫

dτ̄
∫

dζ
∫

dϕ
2π (B.9)

⊗
[
J [1]

0

∣∣∣M0(Φ[1]
0 )
∣∣∣2 J [1]

1 ∆0(t(τ+), t[1](τ̄))αs(t
[1](τ̄))

αs(µ)
αs(µ)

2π
P

[1]
1 (z[1](ζ))
q2[1](τ̄)

+ J [2]
0

∣∣∣M0(Φ[2]
0 )
∣∣∣2 J [2]

1 ∆0(t(τ+), t[2](τ̄))αs(t
[2](τ̄))

αs(µ)
αs(µ)

2π
P

[2]
1 (z[2](ζ))
q2[2](τ̄)

]

with the symbols defined in table 4. Note that a spurious αs(µ)-factor was inserted for
later convenience. Equation (B.9) highlights that parton-shower resummation produces
a particular admixture of functional forms of the argument of αs, and of Sudakov factors
with differing integration regions ([t(τ+), t[1](τ̄)] vs. [t(τ+), t[2](τ̄)]). The same admixture of
all-order factors should be employed when calculating parton-shower factors for fixed-order
matching. The parton-shower accuracy of the prediction may otherwise be in danger.
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superscript “[1]” : factors pertaining to transitions where parton “1” emits ( · in fig-
ure 4)

superscript “[2]” : factors pertaining to transitions where parton “2” emits ( · in fig-
ure 4)∣∣∣M0(Φ[i]

0 )
∣∣∣2 : the lowest-multiplicity transition probability, evaluated at the phase

space point Φ[i]
0

J [i]
0 : other factors (of ŝ, π . . . ) such that the combination with |M0(Φ[i]

0 )|2
results in σ(0)

0

J [i]
1 : Jacobian factors to the phase-space mapping Φ[i]

0 ∩ {τ, ζ, ϕ} →
Φ[i]

0 ∩ {t[i], z[i], ϕ} → Φ1, and other factors to ensure that the split-
ting kernel P [i](z[i](ζ)) will be divided by the virtuality of the in-
termediate propagator q2[i](τ̄). This note employs the mapping
Φ[i]

0 ∩ {t[i], z[i], ϕ} → Φ1 of [76]

t[i](τ̄) : the evolution scale assigned to parton i emitting at integration point
τ̄ . This note uses the definition of t[i] found in [76]

z[i](ζ) : the auxiliary variable (e.g. the light-cone momentum fraction) as-
signed to parton i emitting at integration point ζ. The definition of
z[i] in terms of two-particle invariants is taken from [76]

P
[i]
1 (z[i](ζ)) : the (dimensionless) splitting kernel determining the rate of emissions

off parton i.

Table 4. Definition of the symbols used in eq. (B.9).

For a clear picture of how to generate parton-shower factors for matching, it is useful
to perform a “matrix-element correction” shift on the splitting kernels
P [i](z[i](ζ))
q2[i](τ̄)

(B.10)

−→ P
[i]MEC
1 (z[i](ζ))
q2[i](τ̄)

= P
[i]
1 (z[i](ζ))
q2[i](τ̄)

⊗ |M1(Φ1)|2∣∣∣M0(Φ[1]
0 )
∣∣∣2 αs(µ)

2π
P

[1]
1 (z[1](ζ))
q2[1](τ̄) +

∣∣∣M0(Φ[2]
0 )
∣∣∣2 αs(µ)

2π
P

[2]
1 (z[2](ζ))
q2[2](τ̄)

.

After this shift, the parton shower will recover the complete tree-level transition probability
|M1(Φ1)|2 when starting from the prior distribution |M0(Φ[i]

0 )|2,
2∑
i=1

∣∣∣M0(Φ[i]
0 )
∣∣∣2 αs(µ)

2π
P [i]MEC(z[i](ζ))

q2[i](τ̄)
= |M1(Φ1)|2 .
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Introducing the shift (B.10) in (B.9) leads to

OPS
1 (Φ1) =

τ+
∫

dτ̄
∫

dζ
∫

dϕ
2π ⊗ |M1(Φ1)|2 (B.11)

⊗

J [1]
0 J

[1]
1 ∆0(t(τ+), t[1](τ̄))αs(t

[1](τ̄))
αs(µ)

∣∣∣M0(Φ[1]
0 )
∣∣∣2 αs(µ)

2π
P

[1]
1 (z[1](ζ))
q2[1](τ̄)∣∣∣M0(Φ[1]

0 )
∣∣∣2 αs(µ)

2π
P

[1]
1 (z[1](ζ))
q2[1](τ̄) +

∣∣∣M0(Φ[2]
0 )
∣∣∣2 αs(µ)

2π
P

[2]
1 (z[2](ζ))
q2[2](τ̄)

+ J [2]
0 J

[2]
1 ∆0(t(τ+), t[2](τ̄))αs(t

[2](τ̄))
αs(µ)

∣∣∣M0(Φ[2]
0 )
∣∣∣2 αs(µ)

2π
P

[2]
1 (z[2](ζ))
q2[2](τ̄)∣∣∣M0(Φ[1]

0 )
∣∣∣2 αs(µ)

2π
P

[1]
1 (z[1](ζ))
q2[1](τ̄) +

∣∣∣M0(Φ[2]
0 )
∣∣∣2 αs(µ)

2π
P

[2]
1 (z[2](ζ))
q2[2](τ̄)


It is now permissible to assume that the phase-space points Φ1 were originally distributed
according to the tree-level transition probability |M1(Φ1)|2. Then, eq. (B.11) gives a unique
prescription for obtaining the correct (admixture of) parton-shower factors for Φ1:

• Construct the parton-shower history in figure 4.
• Calculate the factors highlighted by · and · , and include the factors for both paths

according to these proportions. For example, this can be achieved by probabilistically
picking one path according to these factors.12

• Calculate the ∆0(t(τ+), t[i](τ̄))αs(t
[i](τ̄))

αs(µ) for the chosen path (i), and include this as
rescaling of the cross section for the phase-space point Φ1.

This reasoning extends beyond this one-emission example [5, 23]. Relevant histories for
two-gluon and three-gluon states are shown in figure 5 and figure 6, respectively. The
weight of a path in a history for more than one additional parton is given by the product of
the weights for all the individual transitions in the path, potentially including shifted rates
due to matching or merging fixed-order matrix elements, and including matrix-element
correction factors and ordering constraints [78]. If the history H(Φn) is the collection of all
paths p0, p1, . . . , pm from any Φ0 to Φn, then the mixing weight for path pa becomes

wpan (Φn) =

∣∣∣M0
(
Φ[pa]

0

)∣∣∣2∏n
i=1

P
[pa]
i

(
z

[pa]
i

)
q
2 [pa]
i∑

pb∈H(Φn)
|M0 (Φpb

0 )|2∏n
i=1

P
[pb]
i

(
z
[pb]
i

)
q
2 [pb]
i

. (B.12)

where the variables z[r]
i and q2 [r]

i are calculated from Φi and knowledge of its production
from Φ[r]

i−1. All parton-shower factors necessary for matching n-parton configurations are
calculated by constructing the full parton-shower history of Φn and employing the method
above. For example, the calculation of the · terms in eq. (4.12) require sequences (Φ0, t+)→
(Φ1, t1) → (Φ2, t2), while the calculation of the · terms assumes knowledge of (Φ0, t+) →
(Φ1, t1)→ (Φ2, t2)→ (Φ3, t3).

12Explicit summation is also possible, though computationally more intensive, since more higher-order
factors need to be evaluated per phase-space point.
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Figure 5. Histories for two additional gluons: an individual gluon can be recombined with the
other partons in several ways, leading to several underlying states with one additional gluons. Each
of these underlying states leads to a parton shower history illustrated by figure 4, i.e. the history
exhibits a recursive structure.
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Figure 6. Histories for three additional gluons: an individual gluon can be recombined with the
other partons in several ways, leading to several underlying states with two additional gluons. Each
of these underlying states leads to a parton shower history illustrated by figure 5.

The sequences for products of all-order factors are thus constructed in analogy to the
CKKW-L merging scheme [5], as admixture of contributions from all paths in the history.
Subtracted factors (e.g. · in eq. (4.12)) also rely on the construction of the parton-shower
history, since the all-order factors being subtracted are determined from the history. More
details on parton-shower factors can be found in appendix B.7.

B.3 Definition of parton-shower accuracy

The logarithmic accuracy of parton showers is notoriously difficult to define, since parton
showers are tools to produce event samples, i.e. are not observable-specific. Thus, defin-
ing the accuracy by discussing individual observables or small sets of observables can be
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misleading. Furthermore, the parton shower is, ultimately, a numerical algorithm. This
algorithm should remain self-consistent even in matching procedures.

This note thus employs an operational definition of the term “parton-shower accuracy”
that is of algorithmic nature, and stricter than typical log-counting arguments: the all-order
factors of the parton-shower should be reproduced exactly, such that no measurement could
distinguish the parton-shower and the matched prediction if all fixed-order cross section
were calculated using the same approximations employed to derive parton-shower splitting
kernels. When using exact fixed-order calculations, three levels of defining a criterion for
“maintaining the parton-shower accuracy” may be considered:

1. Strict parton-shower accuracy criterion.
All parton-shower all-order factors are reproduced identically, particularly including
their admixture (cf. eqs. (B.11) and (B.12)), and their (approximated fixed-order)
prefactors. No other sources of higher-order contributions exist. This would also
entail that sub-leading or finite fixed-order contributions should not multiply all-
order factors, and could only enter as corrections at a fixed coupling power. This
strict condition may be considered undesirable, since it e.g. ignores arguments about
the treatment of hard virtual corrections [91]. Consequently, no matching or merging
method in the literature fulfills this overly strict condition. This strict criterion is
not used in this note.

2. Balanced parton-shower accuracy criterion.
All parton-shower all-order factors are reproduced identically, particularly includ-
ing their admixture (cf. eqs. (B.11) and (B.12)). The fixed-order prefactors of all-
order factors may differ from strict parton-shower result by sub-leading contributions.
Thus, complete fixed-order calculations (including finite and power-suppressed contri-
butions) may multiply parton-shower all-order factors. This is the norm for matching
methods. This note will apply this criterion when assessing changes to the all-order
behavior due to matching.

3. Weak parton-shower accuracy criterion.
Parton-shower all-order factors are reproduced in the strongly ordered limit, where
a single parton-shower path saturates the rate to produce the configuration. This
condition allows subtleties about the admixture of all-order factors, and is thus closely
related to an accuracy definition by enumerating logarithms of the shower evolution
variable. In this approximation, it may be possible to replace numerical parton-
shower factors by analytic expressions, as e.g. advocated in [4]. This weak criterion
is not invoked in this note.
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This note will employ the balanced parton-shower accuracy criterion. It follows that the
“symbolic parton-shower factor notation” of the main text is defined by

n+m∏
i=n

∆i(ti, ti+1)w(∞)
i+1 (Φi+1)

=
∑

pa∈H(Φn+m)

∣∣∣Mn

(
Φ[pa]
n

)∣∣∣2∏n+m
i=n+1

P
[pa]
i

(
z

[pa]
i

)
q
2 [pa]
i∑

pb∈H(Φn+m)

∣∣∣Mn

(
Φ[pb]
n

)∣∣∣2∏n+m
i=n+1

P
[pb]
i

(
z
[pb]
i

)
q
2 [pb]
i

⊗ ∆n(t+, t(Φ[pa]
n+1))∆n+1(t(Φ[pa]

n+1), t(Φ[pa]
n+2)) · · ·∆n+m(t(Φ[pa]

n+m−1), t(Φ[pa]
n+m))

⊗ w
(∞)
n+1(Φ[pa]

n+1)w(∞)
n+2(Φ[pa]

n+2) · · ·w(∞)
n+m+1(Φ[pa]

n+m+1) . (B.13)

Terms multiplied by an expansion of shower factors should be calculated by multiplying
each term in the sum by its own expansion.

In order to claim compliance with parton-shower accuracy, the value of such “parton-
shower factors” for a fixed Φi+1 should be numerically identical, irrespective of Φi+1 having
been sampled by the shower, or if Φi+1 had been pretabulated (by a fixed-order calculation)
prior to showering, and the “shower factor” had been calculated post facto.

B.4 Generation of real-emission integrals and bias correction factors

Understanding the mixed weighting of the “radiation pattern” |M1(Φ1)|2 in eq. (B.11)
also leads to a definite method how to generate the (all-order) subtractions necessary for
unitary matching. Since the shower produces an admixture of factors for fixed emission
states Φ1, and the mixture is applied when matching an externally generated radiation
pattern, the mixing should also be employed when projecting Φ1 onto lower-multiplicity
phase space points Φ[i]

0 . This ensures eq. (2.4) (as an extension of eq. (2.2)) are accurately
reproduced. The integration over the spectrum that is necessary to produce the

∮

(and
�
,�

) integrals in subtractions for unitarization, and to produce the
∫

dΦR integrations for
the toy fixed-order calculation are thus produced numerically. To give a concrete example,
the (n + 1)-parton dependence of the third-to-last line of eq. (2.6) (highlighted by · ) can
be obtained by

a) tabulating two-gluon phase space points and constructing the history in figure 5,

b) calculating the probability wqn+2 of each path q, and picking a path according to its
probability,

c) multiplying the all-order factors for the chosen path p, and performing the replace-
ment Φn+2 → Φ[p]

n+1, and subtracting the result.
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This method will lead to the desired result

t+
∮

t−

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2) w(∞)

n+1(Φn+1)w(∞)
n+2(Φn+2)∆n(t+, tn+1)∆n+1(tn+1, tn+2) On+1

=
∫

dσ
(k)
i+j(Φi+j)

∑
p∈H(Φn+2)

wpn+2 (Φn+2)w(∞)
n+1(Φ[p]

n+1)w(∞)
n+2(Φn+2) (B.14)

∆n(t+, t(Φ[p]
n+1))∆n+1(t(Φ[p]

n+1), t(Φn+2)) On+1(Φ[p]
n+1) .

Note that the requirement to recover the correct admixture relies on the weights wpn+2,
which depend on the details of both the (n + 1)- and the (n + 2)-parton configurations.
That the probability to assign an (n + 1)-parton states depends on the (n + 1)-parton
configuration is necessary from the shower perspective. However, this is not appropriate
for generating the complements to exclusive cross sections, since it can introduce artificial
deformations of inclusive spectra. Take · in eq. (2.6) as an example. Since the sum of
all wpn+2 is unity, any method to assign (n + 1)-parton states is equivalent if the degrees
of freedom of the(n + 1)th parton are integrated over. This is however not the case for
differential distributions. In fact, using eq. (B.12) to assign underlying states will favor
(n + 1)-parton states with small inter-parton separation, due to collinear enhancements.
Thus, the transverse momentum spectrum of the (n + 1)th parton will be deformed such
that low transverse momenta become more likely than high values. Similar deformations
were observed in [27], and erroneously attributed to mismatched phase-space mappings,
casting doubt on that implementation. Furthermore, in the integration of real corrections
to form B-cross sections in the Powheg method, similar artifacts may naively arise when
using Catani-Seymour subtraction, and if the Born matrix element values vary significantly
across phase space, and would have to be regularized [3].

The introduction of correction factors 1
i+j
i allows to overcome such issues. These

factors should ensure that a) inclusive fixed-order i-parton cross sections do not accumulate
undue biases, and that b) a potential admixture of all-order factors for transitions from 0
to i additional partons is identical for all contributions to the inclusive cross section. For
example, the factor 1n+3

n+2 in the · terms in eq. (4.12) arranges that the integration matches
the real-emission integral in the fixed-order prefactors of · terms. At the same time, it
establishes that the method to produce all-order factors in · and · is equivalent.

It will be assumed that all parton-shower factors multiplying a specific fixed-order
contribution will be calculated simultaneously. This calculation will proceed by construct-
ing the history of phase-space points entering the fixed-order term. To obtain the correct
admixture of shower factors, a path is chosen probabilistically according to eq. (B.12). If
the path is also used to replace phase-space points with underlying configurations (e.g. for
the sake of creating a subtraction), then an undesirable bias (relative to the fixed-order in-
clusive calculation) has been introduced. For Tomte matching, the bias correction factors
1n+1
n , 1n+2

n , 1n+3
n 1n+2

n+1 1
n+3
n+1 and 1n+3

n+2 have to be defined.
The most straight-forward bias-correction factors is 1n+1

n , since its coefficients in
eq. (4.12) does not include parton-shower factors. Introducing the symbol wFO

n+m for the
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rate at which a real-emission phase-space point Φn+m would have been replaced by an un-
derlying phase-space point Φ[p]

n in an inclusive fixed-order calculation, this bias correction is

1n+1
n =

wFO
n+1

(
Φn+1,Φ[p]

n

)
∑

q∈H(Φn+1)
wqn+1 (Φn+1) δ

(
Φ[p]
n − Φ[q]

n

) . (B.15)

This is obtained by reading off from the expected wFO weighting of the complementary low-
separation real-emission contributions in dσ(1)[Qn > Qc ∧Qn+1 < Qc]

n (Φ[p]
n ), and dividing by the

rate at which the shower method would have suggested the replacement Φn+m → Φ[p]
n . The

sum in the denominator is necessary if multiple shower paths might lead to the underlying
state Φ[p]

n ,13 so that the sum of the paths needs to be replaced.
The coefficients of the factors 1n+2

n and 1n+3
n do not contain parton-shower factors

either. They depend on the details of how the inclusive N3LO prediction in defined, and
in particular on whether new functions “wFO

n+m” are used. In the toy calculation described
in section 3, no new fixed-order biases beyond wFO

n+m are introduced, since the generation
proceeds in successive multiplicity steps. This means that 1n+2

n and 1n+3
n take the forms

1n+2
n =

wFO
n+2

(
Φn+2,Φ[p]

n+1

)
wFO
n+1

(
Φ[p]
n+1,Φ

[p]
n

)
∑

q∈H(Φn+2)
wqn+2 (Φn+2) δ

(
Φ[p]
n+1 − Φ[q]

n+1

)
δ
(

Φ[p]
n − Φ[q]

n

) (B.16)

1n+3
n =

wFO
n+3

(
Φn+3,Φ[p]

n+2

)
wFO
n+2

(
Φ[p]
n+2,Φ

[p]
n+1

)
wFO
n+1

(
Φ[p]
n+1,Φ

[p]
n

)
∑

q∈H(Φn+3)
wqn+3 (Φn+3) δ

(
Φ[p]
n+2 − Φ[q]

n+2

)
δ
(

Φ[p]
n+1 − Φ[q]

n+1

)
δ
(

Φ[p]
n − Φ[q]

n

) , (B.17)

which are again obtained by dividing the expected wFO weighting by the rate at which the
shower method would have replaced the state.

All other bias-correction factors (1n+2
n+1,1

n+3
n+2,1

n+3
n+1) should also guarantee the correctly

weighted mixture of parton-shower factors for the underlying states. This is luckily already
guaranteed by analogous definitions

1n+2
n+1 =

wFO
n+2

(
Φn+2,Φ[p]

n+1

)
∑

q∈H(Φn+2)
wqn+2 (Φn+2) δ

(
Φ[p]
n+1 − Φ[q]

n+1

) (B.18)

1n+3
n+2 =

wFO
n+3

(
Φn+3,Φ[p]

n+2

)
∑

q∈H(Φn+3)
wqn+3 (Φn+3) δ

(
Φ[p]
n+2 − Φ[q]

n+2

) (B.19)

1n+3
n+1 =

wFO
n+3

(
Φn+3,Φ[p]

n+2

)
wFO
n+2

(
Φ[p]
n+2,Φ

[p]
n+1

)
∑

q∈H(Φn+3)
wqn+3 (Φn+3) δ

(
Φ[p]
n+2 − Φ[q]

n+2

)
δ
(

Φ[p]
n+1 − Φ[q]

n+1

) . (B.20)

13For example, both paths figure 4 may lead to the leftmost underlying state in figure 5.
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This can be seen by combining the rate with which the parton-shower would have “mixed
in” the chosen path and bias-correction factor, for example leading to

wpn+2 (Φn+2)1n+2
n+1

= wFO
n+2

(
Φn+2,Φ[p]

n+1

) wpn+2 (Φn+2)∑
q∈H(Φn+2)

wqn+2 (Φn+2) δ
(
Φ[p]
n+1 − Φ[q]

n+1

)

= wFO
n+2

(
Φn+2,Φ[p]

n+1

) C
(
Φn+2,Φ[p]

n+1

)
w
p∈H

(
Φ[p]
n+1

)
n+1

C
(
Φn+2,Φ[p]

n+1

) ∑
t∈H
(

Φ[p]
n+1

)wtn+1

(
Φ[p]
n+1

)

= wFO
n+2w

p∈H
(

Φ[p]
n+1

)
n+1

(
Φ[p]
n+1

)
,

by virtue of eq. (B.12), thus leading to the desired result. The same conclusion applies
to 1n+3

n+2 and 1n+3
n+1. While the factors 1

i+j
i guarantee the correct fixed-order behavior,

they unfortunately complicate the assessment of changes to the parton-shower accuracy
for exclusive (i > n)-parton observables. To determine their impact, it is useful to note
that terms related to 1

i+j
i typically enter exclusive predictions in the form

t+
∮

t−

dσ
(k)
i+j(Φi+j)

[
1
i+j
i f

(∞)
i (Φi)− f (∞)

i (Φi)f (∞)
i+j (Φi+j)

]
(B.21)

=

t+
∮

t−

dσ
(k)
i+j(Φi+j)(1i+ji − 1)⊗ f (∞)

i (Φi) +

t+
∮

t−

dσ
(k)
i+j(Φi+j)f (∞)

i (Φi)
[
1− f (∞)

i+j (Φi+j)
]

with f
(∞)
i (Φi) a placeholder for parton-shower factors relating to transitions from 0-

additional-parton to (at most) i-additional-parton configurations, and f (∞)
i+j (Φi+j) for fac-

tors for transitions from i- to (i+ j)-additional-parton states.
The · term is the typical parton-shower contribution, for which the first term in the

expansion of f (∞)
i+j (Φi+j) removes hard real-emission terms, while the remaining higher

orders resum the effect of the jet veto. Thus, this term does not impair the accuracy.
The (1i+ji − 1) factor does not contain any large logarithms. It measures the difference
between the fixed-order bias and the admixture of shower paths, and would vanish for
an ideal fixed-order calculation that employs the method of appendix B.2 to produce the
real-emission integrals in the inclusive cross sections, or if there is a single dominant path
from a phase-space point Φ[p]

i to Φi+j . Thus, log-counting suggests that the term can be
omitted when discussing the all-order accuracy of exclusive observables. The term however
changes the “accuracy of the parton shower” in the strictest sense, i.e. when requiring that
the admixture of all-order factors is completely equivalent to the shower. The · term
basically suggests that in a matched calculation, the definition of a fixed-order exclusive
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cross section should ideally be determined by the parton-shower method. Thus, the change
in all-order accuracy is at the same level as attaching parton-shower resummation to finite
parts of fixed-order cross sections — and may thus be deemed acceptable. A detailed
study of the impact of different Φi-selection procedures could be an interesting addition to
a future publication.

The functional form of the wFO
i+j factor may differ between fixed-order methods that

produce inclusive cross sections. The toy calculation described in appendix B.5 will employ
a non-trivial wFO

i+j to allow the validation of the correctness of the 1
i+j
i implementations.

B.5 Details on generating the toy fixed-order calculation

The toy third-order calculation used in this note in constructed from tree-level event sam-
ples generated with Madgraph5_aMc@nlo. It should again be stressed that this is a toy
calculation that only serves to assess the implementation of the Tomte formula eq. (4.12).
Since tree-level events are used, the generation of samples containing additional gluons
requires regularization cuts S(Φn) > Sc. Thus, minimal cuts are applied on the projection
of the (sum of) gluon four-momenta onto the four-momenta of the other partons. The
notation S(Φn) > Sc implies very inclusive cuts,

pupgi , pūpgi , pgipgj 6=i > Sc , 1 ≤ i, j ≤ n
pu(pgi + pgj 6=i), pū(pgi + pgj 6=i), (pgk + pgi 6=j,k + pgj 6=i,k)/2 > Sc , 1 ≤ i, j, k ≤ n
pu(pgi 6=j,k + pgj 6=i,k + pgk 6=i,j ), pū(pgi 6=j,k + pgj 6=i,k + pgk 6=i,j ) > Sc , 1 ≤ i, j, k ≤ n ,

with Sc = 0.1 GeV2. These cuts should be minimal enough to ensure that the majority
of the radiation spectra is retained, and allow to assemble reasonable approximations for
jet-vetoed fixed-order calculations.

These tree-level samples are then used to construct the toy jet-vetoed cross sections
defined in eqs. (3.2), (3.4) and (3.6). Parton-shower histories are used to perform the dΦR
integration, and to apply the jet veto constraints Q(Φn)>Qc:14

1. A small value of Qc is chosen. The results in section 5 use Qc = 1 GeV2.
2. The parton-shower history for a pre-tabulated phase-space point Φn is constructed

(cf. appendix B.2 and figures 4, 5 and 6)
3. Only paths that satisfy tn >Qc are retained, where tn is the parton-shower evolution

variable assigned to the transition Φ[i]
n−1 → Φn.15 Note that this criterion depends

on the path.
14Note that the final form of the toy calculations only depend on constraints Q(Φn)>Qc that remove

configurations too close to the phase-space boundaries.
15Another strategy would be to ignore this constraint and retain the paths, resulting in all phase-space

points passing the slicing cut. The state would then be employed in matching, and reweighted with parton-
shower factors. At this stage, the path selection weight in eq. (B.12) would favor paths with tn <Qc,
so that no-emission factors ∆n(tstart, t(Φn)<Qc) would multiply Φn states. Such contributions would
be absent in the parton shower if Qc is identified with the parton-shower cut-off (as is assumed in this
note), since the evolution would have terminated before being able to produce an emission at t(Φn), i.e.
∆n(tstart, t(Φn)<Qc) ≡ 0 when applied to Φn states. Thus, retaining the paths will have no impact on the
final, matched result for Φn states, nor on their unitarity subtraction. The path may still contribute to the
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aqq̄2 = −50, aqg1
2 = 10, aqg2

2 = 50, aq̄g1
2 = 10, aq̄g2

2 = 50, agg2 = 100
aqq̄1 = 50, aqg1 = 100, aq̄g1 = 100, bqq̄1 = 0, bqg1 = −7000, bq̄g1 = −7000
aqe0 = 2, aq̄e0 = 10, bqe0 = −100, bq̄e0 = −100, cqe0 = 10000, cq̄e0 = 10000

Table 5. Values of the coefficients a, b and c used in eqs. (3.2), (3.4) and (3.6).

4. If no paths exist that fulfill the constraint, the event is discarded.

5. If valid paths exist, and no further constraints should be applied, and the event should
not be processed further, then include the phase-space point in the toy calculation.

6. If valid paths exist, and the further cut Q(Φn−1)>Qc should be applied (to produce
the · integrals in eqs. (3.2), (3.4) and (3.6)), then retain only the paths that satisfy
the constraint. If no paths exist that fulfill the constraint, the event is discarded.
Otherwise, the dΦR integral is performed and an appropriate phase-space point Φn−1
included in the toy calculation.

The dΦR integrals are obtained with the method described in appendix B.4, but omitting
bias correction factors. To avoid undue dependence on the parton shower splitting kernels,
the requested Φ[p]

n−1 points are chosen amongst {Φ[1]
n−1,Φ

[2]
n−1, . . . } according to the simpler

weights

wFO
n

(
Φn,Φ[p]

n−1

)
= P

[p]
n (z[p])/t[p]∑
q P

[q]
n (z[q])/t[q]

, (B.22)

where the variables z[r] and t[r] are calculated from Φn and knowledge of its production
from Φ[r]

n−1, and ∑q sums over all possible replacements. This differs slightly from the
prescription for producing unitarity subtractions, since the latter mixes underlying states
according to the weight in eq. (B.12). The prescription (B.22) is chosen to be less sensitive
to the details of lower-multiplicity phase-space points, to allow non-trivial validation, and
to increase the similarity to other methods for generating toy calculations such as [92].

The · contribution to eq. (3.2) offers a tangible example for the dΦR integration.
This contribution can be obtained by a) tabulating three-gluon phase space points, b)
constructing the history in figure 6, c) retaining only histories for which the Q-constraints
are fulfilled (see discussion above), d) calculating the weight (B.22) of each valid Φ[q]

2 , e)
picking one Φ[p]

2 probabilistically, f) performing the replacement Φ3 → Φ[p]
2 , and subtracting

the result.
For the matching implementation, it is further useful to retain the clustering scale t[p]

for each Φ[p]
n−1. Otherwise, it is challenging to match the Sudakov reweighting between

reweighted (toy) fixed-order inputs and Tomte-produced complements. The generation of

complement for exclusive (n−m)-parton calculations (where 0 < m ≤ n), if tn−m >Qc holds. Inspecting the
definitions of exclusive cross sections in section 3 reveals that the effect of including these contributions to
the complements is to cancel contributions to the exclusive cross section derived from paths with t(Φn)<Qc.
Thus, the final result is identical to systematically discarding such paths. Only the selection of paths with
tn >Qc will lead to a non-vanishing shower weight, i.e. contribute to the final result. The validity of this
argument has been verified with the toy implementation to sub-percent level, for several tens of observables.
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the latter proceeds simultaneously to the generation of other Φn-dependent factors, of which
some require selecting parton shower paths of ordered emission sequences to Φn. Thus, to
produce matching Sudakov factors for complements and unitarity subtractions, the former
should sum over the same paths. To obtain an exact match of the all-order factors generated
when reweighting (toy) fixed-order inputs and their complements, the reweighting of the
former should consider the value of the clustering scale t[p] when selecting valid shower
paths. For the closure test calculation used in this note, not invoking the constraint can lead
to ≤ 5% differences when approaching phase-space regions with multiple collinear partons.
Retaining an additional clustering scale information is uncomfortable, since it can blurs
the line between the fixed-order and the shower programs. However, the documentation of
this scale in an inclusive fixed-order calculation should be technically feasible, and allowed
within the accuracy of the calculation. Note that auxiliary (veto or shower starting) scale
information is routinely deemed acceptable in POWHEG and MC@NLO matching.

B.6 Assessing the impact of bias correction factors

The sample generation discussed at the end of the previous section also allows non-trivial
studies of the spectrum deformation effects (and the correction via 13

2 factors) discussed
at the end of appendix B.2. The current section will focus on such deformations for
one instructive example. For other lepton (hadron) collider processes, deformations of
similar (larger) size are expected. Figure 7a highlights that, given qq̄ggg states, the method
to assign underlying qq̄gg configurations does indeed lead to a non-negligible bias. The
differences are similar in size to the naive expectation for NLO corrections. The deformation
of the spectra is somewhat unexpected. Using (B.22) results smaller y34 jet separation than
the democratic clustering approach, yet the naive expectation is that the probability-based
clustering removes the least-separated partons first, potentially yielding harder four-parton
states. The bias introduced by eq. (B.12) is not completely obvious either, since it produces
larger y34 separation, while the naive expectation is that the dependence of eq. (B.12) on
(an approximation of) the four-parton matrix element would tilt the spectrum in favor of
less separated partons. The clustering bias is non-trivial.

These undesirable biases can be removed by including appropriate corrective weights,

13
2(PS) = 1/number of possible replacements of a 5-parton state with a 4-parton state∑

q∈H(Φn+3)
wqn+3 (Φn+3) δ

(
Φ[p]
n+2 − Φ[q]

n+2

) (B.23)

13
2(FO) = 1/number of possible replacements of a 5-parton state with a 4-parton state

wFO
n+3

(
Φn+3,Φ[p]

n+2

) , (B.24)

as shown in figure 7b, where different strategies are mapped to a democratic selection
baseline. Any corrective weight, to convert mapping strategies into each other, may be
obtained once the parton-shower history has been constructed. The price to pay for this
flexibility is, as the comparison between figures 7a and 7b indicates, a slower statistical
convergence (given an identical number of events) in the latter due to an additional source
of event weights. This is acceptable, since the weights are necessary to reinstate formal
correctness. In the development of the Pythia+Dire implementation of Tomte, the
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removal of biases can explicitly be verified, due to having full control over the toy fixed-order
calculations. Overall, it would seem prudent to assess the bias (potentially) introduced by
the unitarization strategy also for other unitarized matching and merging approaches.

B.7 Parton-shower factors and trial showers

Parton-shower histories are paramount in defining the boundary conditions under which
parton-shower and matching factors can be calculated. This appendix will be concerned
with the technical implementation of the matching factors appearing in eq. (4.12). For the
sake of brevity, the main text uses a symbolic notation for parton-shower factors. This sym-
bolic notation for products of parton-shower factors f (∞)

n (Φn)f (∞)
n+1(Φn+1) · · · f (∞)

n+m(Φn+m)
is, as required by the balanced parton-shower accuracy criterion, defined by the mixture

f (∞)
n (Φn)f (∞)

n+1(Φn+1) · · · f (∞)
n+m(Φn+m) (B.25)

=
∑

pa∈H(Φn+m)

∣∣∣Mn

(
Φ[pa]
n

)∣∣∣2∏n+m
i=n+1

P
[pa]
i

(
z

[pa]
i

)
q
2 [pa]
i∑

pb∈H(Φn+m)

∣∣∣Mn

(
Φ[pb]
n

)∣∣∣2∏n+m
i=n+1

P
[pb]
i

(
z
[pb]
i

)
q
2 [pb]
i

⊗ f (∞)
n (Φ[pa]

n )f (∞)
n+1(Φ[pa]

n+1) · · · f (∞)
n+m(Φ[pa]

n+m) ,

where the sums extend over all possible parton shower paths. A detailed example for one
contribution in eq. (4.12) is

∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)

⊗
[
1−w(1)

n+1(Φn+1)−w(1)
n+2(Φn+2)−∆(1)

n (t+, tn+1)−∆(1)
n+1(tn+1, tn+2)

]

=
∑

pa∈H(Φn+2)

∣∣∣Mn

(
Φ[pa]
n

)∣∣∣2∏n+2
i=n+1

P
[pa]
i

(
z

[pa]
i

)
q
2 [pa]
i∑

pb∈H(Φn+2)

∣∣∣Mn

(
Φ[pb]
n

)∣∣∣2∏n+2
i=n+1

P
[pb]
i

(
z
[pb]
i

)
q
2 [pb]
i

⊗ ∆n(t+, t(Φ[pa]
n+1))∆n+1(t(Φ[pa]

n+1), t(Φ[pa]
n+2))w(∞)

n+1((Φ[pa]
n+1))w(∞)

n+2((Φ[pa]
n+2))

⊗
[
1−w(1)

n+1(Φ[pa]
n+1)−w(1)

n+2(Φ[pa]
n+2)−∆(1)

n (t+, t(Φ[pa]
n+1))−∆(1)

n+1(t(Φ[pa]
n+1), t(Φ[pa]

n+2))
]
.

This mixture can be constructed with the algorithm given in appendix B.2. From here
on, the discussion will assume that a particular path pa of transitions has been chosen,
and the path index pa will be omitted. The sequence of reconstructed states will be
Φ0 → Φ1 → · · · → Φn, and the evolution scales at which transitions occur are t+, t1, . . . , tn
(where t+ is a parton-shower starting scale). The factors w(∞)

i (Φi) implement the effect of
the running coupling, and are thus straight-forward to calculate,

w
(∞)
i (Φi) = αs(ti)/αs(µ) , (B.26)
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Democratic selection
Selection via PS admixture, eq. (B12)
Selection via fixed-order bias, eq. (B22)
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Democratic selection
Selection via PS admixture,
eq. (B12), corrected with eq. (B23)
Selection via fixed-order bias,
eq. (B22), corrected with eq. (B24)
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Figure 7. Assessment of clustering strategies and bias corrections. (a) Impact of different clustering
strategies on four-parton observables. (b) Four-parton observable results, using 13

2 factors to map
onto a democratic clustering strategy.

where µ = M2
Z is used. For second-order running, the expansion of this term reads

w
(0)
i (Φi) = 1 , w

(1)
i (Φi) = αs(µ)β0

4π ln
(
µ

ti

)
, (B.27)

w
(2)
i (Φi) =

(
w

(1)
i (Φi)

)2
+
(
αs(µ)

4π

)2
β1 ln

(
µ

ti

)
.

The second-order expansion always appears in the combination

− w(2)
i (Φi) +

(
w

(1)
i (Φi)

)2
= −

(
αs(µ)

4π

)2
β1 ln

(
µ

ti

)
. (B.28)

For first-order running, the β1-dependent term can be omitted. All wi-related factors are
simple analytical expressions.

The calculation of parton-shower Sudakov factors using analytic results is typically
tedious, due to complicated z-integration limits in eq. (2.3). Luckily, since the sequence
of states and evolution scales is known, it is possible to use trial showering to generate
Sudakov factors and their expansions. The factors ∆m(t+, t−) may be generated by:

1) Initialize ∆trial = 0, and define the number of trial shower sampling
points N .

2) Initialize the parton-shower on the state Φm, and with a maximal evo-
lution scale t+.

3) Generate a parton-shower sequence. If the first parton-shower emission
occurs at an evolution scale t < t−, shift ∆trial → ∆trial + 1.

4) Discard the sequence, and repeat steps 2)–4) a total of N times. Finally,
set ∆m(t+, t−) = ∆trial/N .
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Trial showering allows access to the details of individual parton-shower emissions that
produce ∆m(t+, t−), and thus also allows to generate terms in the expansion of Sudakov
factors. The most prevalent term required for Tomte matching is

∆(1)
m (t+, t−) = −

t+
∫

t−

dt

t
dzdφ

αs(µ)
2π P (0)(t, z, φ) (B.29)

where P (0)(t, z, φ) is the sum of the first-order expansion of all parton-shower splitting
kernels that may lead to a transition from Φm.16 Note the evaluation of αs at the reference
scale µ. This term can be generated by extracting the average number of emissions from
the trial shower [27]:

1) Initialize ∆(1)
trial = 0, and define the number of trial shower sampling

points N .

2) Initialize the parton-shower on the state Φm, and with a maximal evo-
lution scale t+.

3) Generate a parton-shower emission. If the emission occurs at an evolu-
tion scale tem > t−, shift ∆(1)

trial → ∆(1)
trial + 1

w where 1
w = αs(µ)

αs(tem) . The
ratio of couplings is necessary if the trial shower is performed with dy-
namic αs argument, and guarantees that the desired fixed-αs(µ)-result
is extracted.

4) Discard the emission, reset the maximal evolution scale to tem and re-
peat step 3) until t+ < t−.

5) Repeat steps 2)–4) for a total of N times. Finally, set ∆(1)
m (t+, t−) =

−∆(1)
trial /N .

This method is employed heavily in NLO merging methods, which also feature first-order
shower expansions. The Tomte matching method further requires the generation of the
second-order expansion

∆(2)
m (t+, t−) = −

t+
∫

t−

dt

t
dzdφ

(
αs(µ)

2π

)2
P (1)(t, z, φ) + 1

2

−
t+
∫

t−

dt

t
dzdφ

αs(µ)
2π P (0)(t, z, φ)


2

−

t+
∫

t−

dt

t
dzdφ

(
αs(µ)

2π

)2 β0
2 ln

(
µ

t

)
P (0)(t, z, φ) . (B.30)

16For gluons emissions from a quark line, the leading-order Dire parton shower employs the splitting
kernel Pqq =

(
1 + αs

2πK
)

2 (1−z)/
(
(1− z)2 + t/m2

dipole
)
− (1+z), where K is chosen to recover the second-

order corrections to soft-gluon emission. Consequently, P (0)(t, z, φ) = 2 (1 − z)/
(
(1− z)2 + t/m2

dipole
)
−

(1 + z), and P (1)(t, z, φ) = 2K (1− z)/
(
(1− z)2 + t/m2

dipole
)
.
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This term always appears in combination with two other subtractions,

−∆(2)
n (t+, tn+1) +

[
∆(1)
n (t+, tn+1)

]2
+ w

(1)
n+1(Φn+1)∆(1)

n (t+, tn+1)

=

t+
∫

tn+1

dt

t
dzdφ

(
αs(µ)

2π

)2
P (1)(t, z, φ) + 1

2


t+
∫

tn+1

dt

t
dzdφ

αs(µ)
2π P (t, z, φ)


2

+

t+
∫

tn+1

dt

t
dzdφ

(
αs(µ)

2π

)2 β0
2 ln

(
µ

t

)
P (t, z, φ)

−

t+
∫

tn+1

dt

t
dzdφ

(
αs(µ)

2π

)2 β0
2 ln

(
µ

tn+1

)
P (t, z, φ)

=

t+
∫

tn+1

dt

t
dzdφ

(
αs(µ)

2π

)2
P (1)(t, z, φ) (B.31)

+

t+
∫

tn+1

dt

t
dzdφ

αs(µ)
2π P (t, z, φ)

t
∫

tn+1

dt̄

t̄
dz̄dφ̄

αs(µ)
2π P (t̄, z̄, φ̄)

+

t+
∫

tn+1

dt

t
dzdφ

(
αs(µ)

2π

)2 β0
2 ln

(
tn+1
t

)
P (t, z, φ)
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The first term is most easily generated jointly with (B.29), since this avoids separating
the splitting kernel into two components. The calculation of the term highlighted by ·
is a straight-forward extension of generating the average number of emissions — only the
replacement 1

w →
αs(µ)
αs(tem)

αs(µ)
2π

β0
2 ln (tn+1/tem) is necessary to produce the contribution. The

term in · is the rate of an emission with t̄ ∈ [t, tn+1] given a previous emission at evolution
scale t with t ∈ [t+, tn+1]. This may also be extracted from generating trial emissions:

1) Define the number sampling points N , initialize DEtrial = 0, and ini-
tialize an empty set etrial

2) Initialize the parton-shower on the state Φm, and with a maximal evo-
lution scale t+.

3) Generate a parton-shower emission. If the emission occurs at an evolu-
tion scale tem > tn+1, insert the weight 1

w = αs(µ)
αs(tem) at the end of the

set, etrial → etrial ∩ 1
w .

4) Discard the emission, reset the maximal evolution scale to tem and re-
peat step 3) until t+ < tn+1.

5) Shift

DEtrial =
n(etrial)∑

i=1,i∈etrial

e(i)
trial ⊗

n(etrial)∑
j=i+1

e(j)
trial

6) Repeat steps 2)–5) for a total of N times. Finally, set · = DEtrial /N .

For later convenience, it is useful to collect the complete form of the O(α2
s) subtraction

that is required for all-order weighted tree-level n + 1-parton cross section dσ
(0)
n+1(Φn+1),

which reads

−w(2)
n+1(Φn+1) +

[
w

(1)
n+1(Φn+1)

]2
+ w

(1)
n+1(Φn+1)∆(1)

n (t+, tn+1)−∆(2)
n (t+, tn+1) +

[
∆(1)
n (t+, tn+1)

]2
= −

(
αs(µ)

4π

)2

β1 ln
(

µ

tn+1

)
+

t+
∫

tn+1

dt

t
dzdφ

(
αs(µ)

2π

)2
β0

2 ln
(
tn+1

t

)
P (t, z, φ) (B.32)

+

t+
∫

tn+1

dt

t
dzdφ

αs(µ)
2π P (t, z, φ)

t
∫

tn+1

dt̄

t̄
dz̄dφ̄

αs(µ)
2π P (t̄, z̄, φ̄) +

t+
∫

tn+1

dt

t
dzdφ

(
αs(µ)

2π

)2

P (1)(t, z, φ) .

C Auxiliary discussions on matching

Matching fixed-order results and parton showering always leads to a certain matching
scheme dependence, in particular due to choices in the treatment of terms beyond the
all-order parton-shower accuracy. This appendix offers supplementary arguments for the
choices in the main text, and provides additional details on the accuracy of the Tomte
matching formula.
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Ordering Interpretation Treatment

a1) t+ > t(Φn+1) : Potentially unresolved
emission

Sudakov between t+ and t(Φn+1)

b1) t(Φn+1) > t+ : Hard jet Fixed-order contribution for Φn+1

Table 6. Possible evolution variable orderings for one-parton states. For e+e− → jets, only the
ordering in red applies, while any ordering is possible for generic hadron-collider processes.

C.1 Configurations without ordered parton-shower interpretation

Although the phase-space generation of modern parton showers is based on exact phase-
space factorization formulae, and thus should allow full coverage, there are various re-
strictions that prevent parton showers from reaching all phase space regions. Possible
restrictions are due to the parton-shower starting scale t+, and due to the requirement
that parton-shower emissions are ordered by decreasing values of the evolution variable.
The former restriction is absent for e+e− → jets, since the starting scale is typically chosen
to be ŝ = (pe+ + pe−)2. The ordering constraint is ameliorated if the shower includes the
emission of multi-parton clusters, since the partons within one such cluster need not adhere
to specific ordering constraints. This is e.g. the case for the two-parton emission clusters
of the NLO parton shower presented in [93, 94]. Configurations that cannot be reached by
the parton shower will be called non-shower configurations.

Configurations that cannot be reached by showering require special considerations
when matching to the parton shower. For N3LO+PS matching, configurations with one,
two or three additional partons need to be considered. Possible one-parton states are listed
in table 6. In states with evolution variable above the shower starting scale (t(Φn+1) >
t+), the additional parton cannot become unresolved, so that no Sudakov resummation is
necessary. Thus, the b1 contributions enter as fixed-order corrections. However, a sensible
scale choice for the argument of αs is mandatory. The factorization scale value also needs
to be considered carefully, since it doubles as the starting scale of a subsequent shower. A
detailed scale setting mechanism for generic multi-parton states that is independent of the
shower accuracy and is suitable for matched calculations can be found in [78].

Beyond these consideration — which apply irrespective of the desired accuracy — it
is important to determine how non-shower states contribute the fixed-order prediction. If
e.g. non-shower configurations are included in inclusive fixed-order cross sections, then a
double-counting of the contributions when matching several multiplicities can be avoided
by simply including non-shower configurations in the unitarization procedure. The b1
contributions in table 6 would e.g. by projected onto a Φn phase-space point, and included
as fixed-order subtraction. Alternatively, if non-shower states are not (or should not) be
included in inclusive fixed-order predictions, then the contributions can be included without
explicit unitarization.

States with two additional partons allow for many more evolution scale orderings, see
table 7. Non-shower states with one and two partons need to be considered, as well as
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Ordering Interpretation Treatment

a2) t+ > t(Φn+1) >

t(Φn+2)
: Two ordered poten-

tially unresolved emis-
sions

Sudakov between t+ and t(Φn+1),
and t(Φn+1) and t(Φn+2)

b2) t(Φn+1) > t+ >

t(Φn+2)
: Hard jet and single

potentially unresolved
emission

Fixed-order contribution for
Φn+1, Sudakov between t(Φn+1)
and t(Φn+2)

d2) t(Φn+2) > t+ >

t(Φn+1)
: Two hard jets Fixed-order contribution for Φn+2

e2) t+ > t(Φn+2) >

t(Φn+1)
: Potentially unresolved

double emission
Sudakov for double-
emission between t+ and
teff(t(Φn+1), t(Φn+2))

f2) t(Φn+1) >

t(Φn+2) > t+

: Two hard jets Fixed-order contribution for Φn+2

g2) t(Φn+2) >

t(Φn+1) > t+

: Two hard jets Fixed-order contribution for Φn+2

Table 7. Possible evolution variable orderings for two-parton states. For e+e− → jets, only the
ordering sequences in red apply, while any ordering is possible for generic hadron-collider processes.

the emission of a “soft” two-parton cluster. The former again demand suitable choices of
renormalization and factorization scales. The effective scales introduced in [78] can serve
this purpose. The evolution variable of double-emission contributions in an NLO parton
shower offers a theoretically appealing scale definition for configurations with t(Φn+2) >
t(Φn+1), since it may be applied irrespective of the value of t+. In table 7, it was assumed
that showering off hard Φn+1 corrections would be initiated at t(Φn+1), and that any scale
hierarchies above t+ are not large enough to warrant resummation. The latter assumption
could easily be relaxed.

The inclusion of non-shower configurations with two hard jets (d2, f2, g2) in inclusive
predictions follows similar arguments as outlined for one-parton states above. If the contri-
butions are included, in integrated form, in inclusive cross sections, then the contributions
should be included in the unitarization procedure. For the configurations f2 and g2, a fixed-
order subtraction would have to be generated by projected the configurations onto Φn+1
phase-space points, and then subtracting. Similarly, an all-order subtraction of b2 should
be generated with Φn+1 dependence. Note that as an all-order reweighted contribution, b2
should enter on equal footing to the other two-parton tree-level contributions in eq. (4.12),
i.e. the Sudakov factor t(Φn+1) and t(Φn+2) should be subtracted appropriately. The two-
jet configurations d2 include Φn+2 states are fully resolved, while t+ � t(Φn+1) may pro-
duce unresolved (n+ 1)-parton states. Guidance on their treatment can be obtained from
the double-emission shower of [93, 94], which allows t(Φn+2) > t(Φn+1). There, the impact
of double-emission clusters on inclusive observables cancels between n- and (n+ 2)-parton
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states, since both emissions become unresolved simultaneously. Similarly, configuration d2
may be regarded as emission of a hard two-parton cluster. Consequently, the necessary
fixed-order subtraction for d2 should be generated with Φn dependence. Other treatments
of d2 are conceivable, and might become relevant when NNLO+PS and N3LO+PS matching
mature. If inclusive fixed-order corrections do not contain non-shower states, then non-
shower two-jet contributions can be included without explicit unitarization. Configurations
a2 and e2 are reachable by an NLO parton shower and thus do not require special attention.

States with three additional partons allow for yet more evolution scale orderings (ta-
ble 8). Note that table 8 assumes that showers off hard Φn+1 corrections would com-
mence at t(Φn+1), and showering from hard two-jet configurations was started at t(Φn+2)
or teff(t(Φn+1), t(Φn+2)). Furthermore, any scale hierarchies above t+ are not considered
large enough to warrant resummation.

Multiple ordering combinations reachable by showering (a3, d3, n3, q3, t3, w3) are
possible. Several of these would only be accessible in an NNLO parton shower that includes
the emission of correlated triple-parton clusters. Although this is currently beyond reach,
the extension of [93, 94] suggests that the evolution variable of correlated triple-emission
may be ∝ pa(p1 +p2 +p3)pb(p1 +p2 +p3)/(papb), where pa and pb are the momenta of (high-
energy) radiator and recoiler after the branching, and p1,2,3 are the emission momenta.
Such a definition would constitute an appealing renormalization, factorization, and shower
starting scale for non-shower configurations with three hard jets. Alternatively, the method
of [78] might be used irrespectively of the shower accuracy.

The treatment of non-shower states with one or two partons was discussed above.
Similar configurations appear also at three-parton level (b3, c3, e3, f3, s3), and will be
weighted by all-order Sudakov factors. The latter will depend on the (effective) scales
assigned to the fixed-order configurations. If inclusive fixed-order cross sections include
these non-shower configurations in integrated form, then unitarization through all-order
subtraction is necessary. This proceeds by subtracting the contributions after projection
onto (n + 2)-parton states, with the notable exception of s3. That contribution contains
potentially unresolved (n+ 2)- and (n+ 3)-parton configurations with t(Φn+3) > t(Φn+2).
Again taking guidance from NLO parton showering, the impact of these configurations on
inclusive observables should cancel between (n+ 3)- and (n+ 1)-parton configurations, so
that the necessary all-order subtraction should be generated with Φn+1-dependence.

Finally, configurations containing three hard jets can be treated as fixed-order correc-
tions. If such configurations were included (again in integrated form) in inclusive cross
sections, then fixed-order unitarity subtractions are required to retain the correct inclusive
results. Depending on the ordering, these subtractions enter with Φn+2-dependence (g3,
h3, j3, o3, r3), Φn+1-dependence (k3, v3), or Φn-dependence (i3, l3, m3, p3, u3, x3). The
last treatment is inspired by a hypothetical NNLO shower that would include the emission
of internally disordered triple-parton clusters.

C.2 Differences in matching at NNLO

Comments on eq. (2.6). This note used the NNLO+PS matching formula eq. (2.6) as a
starting point to derive N3LO+PSmatching. This equation differs slightly from the UN2LOPS
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Ordering Interpretation Treatment
a3) t+ > t(Φn+1) > t(Φn+2) > t(Φn+3) : Three ordered

potentially unre-
solved emissions

Sudakov between t+ and t(Φn+1),
t(Φn+1) and t(Φn+2), and t(Φn+2)
and t(Φn+3)

b3) t(Φn+1) > t+ > t(Φn+2) > t(Φn+3) : Hard jet + two or-
dered potentially
unresolved emis-
sions

Fixed-order contribution for
Φn+1, Sudakov between t(Φn+1)
and t(Φn+2) and t(Φn+2) and
t(Φn+3)

c3) t(Φn+2) > t+ > t(Φn+1) > t(Φn+3) : Two hard jets +
potentially unre-
solved emission

Fixed-order contribution
for Φn+2, Sudakov between
teff(t(Φn+1), t(Φn+2)) and
t(Φn+3)

d3) t+ > t(Φn+2) > t(Φn+1) > t(Φn+3) : Potentially un-
resolved double
emission, followed
by potentially un-
resolved emission

Sudakov from t+ to
teff(t(Φn+1), t(Φn+2)), and
teff(t(Φn+1), t(Φn+2)) and
t(Φn+3)

e3) t(Φn+1) > t(Φn+2) > t+ > t(Φn+3) : Two hard jets +
potentially unre-
solved emission

Fixed-order contribution for
Φn+2, Sudakov between t(Φn+2)
and t(Φn+3)

f3) t(Φn+2) > t(Φn+1) > t+ > t(Φn+3) : Two hard jets +
potentially unre-
solved emission

Fixed-order contribution
for Φn+2, Sudakov between
teff(t(Φn+1), t(Φn+2)) and
t(Φn+3)

g3) t(Φn+2) > t(Φn+1) > t(Φn+3) > t+ : Three hard jets Fixed-order contribution for
Φn+3

h3) t(Φn+1) > t(Φn+2) > t(Φn+3) > t+ : Three hard jets Fixed-order contribution for
Φn+3

i3) t(Φn+3) > t(Φn+2) > t(Φn+1) > t+ : Three hard jets Fixed-order contribution for
Φn+3

j3) t(Φn+2) > t(Φn+3) > t(Φn+1) > t+ : Three hard jets Fixed-order contribution for
Φn+3

k3) t(Φn+1) > t(Φn+3) > t(Φn+2) > t+ : Three hard jets Fixed-order contribution for
Φn+3

l3) t(Φn+3) > t(Φn+1) > t(Φn+2) > t+ : Three hard jets Fixed-order contribution for
Φn+3

m3) t(Φn+3) > t+ > t(Φn+2) > t(Φn+1) : Three hard jets Fixed-order contribution for
Φn+3

n3) t+ > t(Φn+3) > t(Φn+2) > t(Φn+1) : Potentially unre-
solved triple emis-
sion

Sudakov for triple-
emission between t+ and
teff(t(Φn+1), t(Φn+2), t(Φn+3))

o3) t(Φn+2) > t(Φn+3) > t+ > t(Φn+1) : Three hard jets Fixed-order contribution for
Φn+3

p3) t(Φn+3) > t(Φn+2) > t+ > t(Φn+1) : Three hard jets Fixed-order contribution for
Φn+3

q3) t+ > t(Φn+2) > t(Φn+3) > t(Φn+1) : Potentially unre-
solved triple emis-
sion

Sudakov for triple-
emission between t+ and
teff(t(Φn+1), t(Φn+2), t(Φn+3))
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r3) t(Φn+2) > t+ > t(Φn+3) > t(Φn+1) : Three hard jets Fixed-order contribution for
Φn+3

s3) t(Φn+1) > t+ > t(Φn+3) > t(Φn+2) : Hard jet + poten-
tially unresolved
double emission

Fixed-order contribution for
Φn+1, Sudakov for double-
emission between tn+1 and
teff(t(Φn+2), t(Φn+3))

t3) t+ > t(Φn+1) > t(Φn+3) > t(Φn+2) : Potentially unre-
solved emission,
followed by poten-
tially unresolved
double emission

Sudakov between t+ and
tn+1, and Sudakov for double-
emission between t(Φn+1) and
teff(t(Φn+2), t(Φn+3))

u3) t(Φn+3) > t(Φn+1) > t+ > t(Φn+2) : Three hard jets Fixed-order contribution for
Φn+3

v3) t(Φn+1) > t(Φn+3) > t+ > t(Φn+2) : Three hard jets Fixed-order contribution for
Φn+3

w3) t+ > t(Φn+3) > t(Φn+1) > t(Φn+2) : Potentially unre-
solved triple emis-
sion

Sudakov for triple-
emission between t+ and
teff(t(Φn+1), t(Φn+2), t(Φn+3))

x3) t(Φn+3) > t+ > t(Φn+1) > t(Φn+2) : Three hard jets Fixed-order contribution for
Φn+3

Table 8. Possible evolution variable orderings for three-parton states. For e+e− → jets, only the
ordering sequences in red apply, while any ordering is possible for generic hadron-collider processes.

prescriptions in the literature. The first change is the more abundant inclusion of running-
coupling factors, especially the running-coupling rescaling of virtual and real corrections
if additional partons were already present at tree-level. The reason for this choice is en-
capsulated in eqs. (2.2) and (2.4). These define the relation between the emission pattern
and the no-emission (Sudakov) factor: the latter is determined by the difference of the
integral of the former and unity. Conversely, the integral of the emission pattern is deter-
mined by the difference of the Sudakov factor from unity. Theoretical arguments strongly
favor a dynamic coupling evaluation in the Sudakov exponent [95]. The same is true if the
Sudakov factor is produced from an emission spectrum via explicit unitarization. Hence,
the integrated emission spectrum should employ a dynamic coupling evaluation. This also
applies to (N)NLO fixed-order results. Thus, it is arguably more consistent with eq. (2.2) to
include running-coupling factors in the rescaling of virtual and real corrections — though
the inclusion of running-coupling effects is beyond the formal accuracy of the method.

The second change relative to [34] is that eq. (2.6) demands an exclusive n + 1-
parton NLO cross section, which is complemented by tree-level n+ 2-parton distributions,
whereas [34] employed an MC@NLO-matched n + 1-parton calculation. The main rea-
son for this differences is technical: the fixed-order cross sections in eq. (2.6) are not
dependent on the parton shower, so that it is straight-forward to produce toy fixed-order
calculations for the inputs to eq. (2.6). The sliced approach of eq. (2.6) admits a more
dynamical scale-setting method for n + 2-parton contributions than would be possible in
an MC@NLO calculation, potentially resulting in a more “physical” result especially in the
presence of large hardness hierarchies in n+ 2-parton states. On the other hand, using an
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MC@NLO-matched calculation avoids the slicing of n + 1-parton configurations into two
disjoint “bins”.

Comments on fixed-multiplicity “bins” in the matching formula. The matching formulae
used in this note (eqs. (2.4), (2.6), (4.12)) are combinations of weighted n-parton, n +
1-parton and possibly n + 2-parton and n + 3-parton states. This is indicated by the
“observable dependence” Om (m = n . . . n + 3). The highest parton multiplicity sample
will be distributed over even higher multiplicities by the action of the parton shower.
In all other cases, there is no “smearing” of the description of m-parton states to higher
multiplicitiesm+1. This “binned” approach is common for matching [27, 29, 34]. However,
it has the disadvantage that virtual corrections for m-parton states naively do not migrate
to real-emission observables, at odds with the arguments of [91]. The implementation in
this note accepts this feature. A method to ameliorate the “binned” behavior was discussed
in [35].

C.3 Accuracy of the TOMTE matching formula

The formula eq. (4.12) allows the combination of N3LO calculations with parton showering,
and hence with event generation. It fulfills all the criteria set out in table 3. This appendix
provides a more fine-grained discussion of the choices leading to the Tomte method, and
of its accuracy. Any confirmation of the desired accuracy relies on accurately reproducing
fixed-order results for inclusive cross sections, and producing a combination of fixed-order
and resummed results for exclusive cross sections.

More details on matching the tree-level two-jet contribution. The matching of this con-
tribution relies on its interplay with several other contributions, and thus requires careful
consideration of any terms beyond the formal accuracy that are introduced by parton-
shower factors. Firstly, the term forms the Born contribution to the two-parton NLO cross
section. This suggests that it should contain all-order prefactors matching the prefactors
of the real- and virtual corrections, i.e. dynamic arguments of αs for both partons, and Su-
dakov factors to ensure a suitable description in the presence of scale hierarchies between
the partons. On the other hand, the term should complement the exclusive one-parton
NLO cross section dσ

(1)[Qn+2 < Qc]
n+1 (Φn+1) after integration, and should thus contain all-order

factors identical to the latter (i.e. dynamic arguments for one power of αs, and only one
Sudakov factor). Finally, the unitarization of On+2 terms should result in an appropriate
Sudakov factor to make the On+1 contribution exclusive. Thus, any all-order weighting of
the tree-level two-jet contribution is seriously constrained, leading to eqs. (4.8) and (4.9).
Some more discussion can also be found in the following points.

Three-additional-parton observables are LO+PS accurate. Only the last term in eq. (4.12),

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3) ⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)∆n+2(tn+2, tn+3) (C.1)

⊗ wn+1(Φn+1)wn+2(Φn+2)wn+3(Φn+3) ⊗ F (∞)
n+3(Φn+3, tn+3, t−) ,
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contributes to On+3 observables. The unitarity of the parton shower guarantees that for
inclusive observables, this reduces to

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)∆n+2(tn+2, tn+3)

⊗ wn+1(Φn+1)wn+2(Φn+2)wn+3(Φn+3)
→ dσ

(0)[Qn+3 > Qc]
n+3 (Φn+3) × (1 +O(αs)) . (C.2)

For exclusive n+3-parton observables (i.e. when vetoing n+4-parton states with separation
larger than Qc), the action of the parton shower eq. (2.1) attaches an additional Sudakov
factor ∆n+3(tn+3, tc),

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)∆n+2(tn+2, tn+3)

⊗ wn+1(Φn+1)wn+2(Φn+2)wn+3(Φn+3) ⊗ F (∞)
n+3(Φn+3, tn+3, t−)

→ dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3) (C.3)
⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)∆n+2(tn+2, tn+3)∆n+3(tn+3, tc)
⊗ wn+1(Φn+1)wn+2(Φn+2)wn+3(Φn+3) , (C.4)

and thus reproduces the correct parton-shower resummation of the jet veto. Hence, three-
parton states are described at LO+PS accuracy.

Two-additional-parton observables are NLO+PS accurate. The description of two-parton
states in Tomte is very similar to the UN2LOPS scheme. For inclusive n+2-parton observ-
ables, the terms in · in eq. (4.12) cancel by construction, resulting in a On+2 contribution

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2)

⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)

⊗
[
1− w(1)

n+1(Φn+1)− w(1)
n+2(Φn+2)−∆(1)

n (t+, tn+1)−∆(1)
n+1(tn+1, tn+2)

]
+ dσ

(1)[Qn+2 > Qc ∧Qn+3 < Qc]
n+2 (Φn+2)

⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)

+

t+
∮

t−

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)

⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)1n+3
n+2 . (C.5)

After expanding all shower factors, this gives

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2) ·

(
1 +O(α2

s)
)

+ dσ
(1)[Qn+2 > Qc ∧Qn+3 < Qc]
n+2 (Φn+2) · (1 +O(αs))

+
∫

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3) · (1 +O(αs))

= dσ
(0+1)[Qn+2 > Qc]
n+2 (Φn+2) , (C.6)
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such that the NLO cross section is recovered. Note that the factor 1n+3
n+2 ensures that the

(n+ 3)-parton contribution combines with the (n+ 2)-parton contributions in the correct
manner, to produce an unbiased

∫

-integration. In order to assess how eq. (C.5) influences
the all-order description (for one parton becoming unresolved, or both partons becoming
unresolved in a strongly ordered manner), it is useful to reorder the terms into a “parton-
shower prediction” and a “remnant term” [34],

Eq. (C.5) =
[
dσ

(0)[Qn+2 > Qc]
n+2 (Φn+2) + dσ

(1)[REM]
n+2 (Φn+2)

]
(C.7)

⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)

where

dσ
(1)[REM]
n+2 (Φn+2) = dσ

(1)[Qn+2 > Qc]
n+2 (Φn+2) (C.8)

+ dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2)

(
−w(1)

n+1(Φn+1)− w(1)
n+2(Φn+2)−∆(1)

n (t+, tn+1)−∆(1)
n+1(tn+1, tn+2)

)
.

The first term in eq. (C.7) is the desired parton-shower result. The remnant term in (C.7)
consists of an all-order factor multiplying an O(α3

s) correction (eq. (C.8)). This correc-
tion contains all non-universal NLO corrections, since all universal parts (as defined by the
shower approximation) are removed from the complete NLO corrections. Thus, the “rem-
nant” does not impair the shower accuracy. Instead, it can be considered favorable, since
it allows to view the cross section (C.7) as separated into a “hard” coefficient (in brackets),
dressed with identical all-order factors encapsulating the evolution of the state.

For exclusive (n+2)-parton observables, the terms in · in eq. (4.12) do no longer cancel
since (n+ 3)-parton states with separation larger than Qc are vetoed. The (n+ 3)-parton
contribution can be written as

t+
∮

t−

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)

n+1(Φn+1)w(∞)
n+2(Φn+2)

[ (
1n+3
n+2 − 1

)
+ (1−∆n+2(tn+2, tn+3)wn+1(Φn+1)wn+2(Φn+2))

]
(C.9)

≈

t+
∮

t−

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)

n+1(Φn+1)w(∞)
n+2(Φn+2)

[
1− ∆n+2(tn+2, tn+3)wn+1(Φn+1)wn+2(Φn+2)

]
. (C.10)

The expansion · term removes hard (n + 3)-parton events at lowest order. At all orders,
it combines (by virtue of eq. (2.1)) with the other contributions to form a Sudakov factor
reproducing the parton-shower resummation of the jet veto. As argued in appendix B.4 the(
1n+3
n+2 − 1

)
term does not impair the accuracy according to the balanced parton shower

accuracy criterion, and has thus been dropped in eq. (C.10). In conclusion, two-parton
states are described at NLO+PS accuracy.
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One-additional-parton observables are NNLO+PS accurate. The description of n + 1-
parton observables On+1 contains some of the most interesting features of the Tomte
method. In inclusive n + 1-parton observables, the construction (4.12) enforces a can-
cellation of the terms in · , · , · , as well as in · . After these simplifications, the On+1
prediction is(

dσ
(2)[Qn+2 < Qc ∧Qn+3 < Qc]
n+1 (Φn+1) + dσ

(1)[Qn+2 < Qc]
n+1 (Φn+1)

(
1−w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

)

+ dσ
(0)
n+1(Φn+1)

[
1−w(1)

n+1(Φn+1)−w(2)
n+1(Φn+1)−∆(1)

n (t+, tn+1)−∆(2)
n (t+, tn+1)

+
[
∆(1)
n (t+, tn+1)

]2
+
[
w

(1)
n+1(Φn+1)

]2
+w

(1)
n+1(Φn+1)∆(1)

n (t+, tn+1)

] )
∆n(t+, tn+1)w(∞)

n+1(Φn+1)

+


t+
∮

t−

dσ
(1)[Qn+2 > Qc ∧Qn+3 < Qc]
n+2 (Φn+2)1n+2

n+1 +

t+�
t−

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)1n+3

n+1 (C.11)

+

t+
∮

t−

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2)

[
1−w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

]
1
n+2
n+1

 ∆n(t+, tn+1)w(∞)
n+1(Φn+1)

≈ dσ
(2)[Qn+2 < Qc ∧Qn+3 < Qc]
n+1 (Φn+1) · (1 +O(αs)) + dσ

(1)[Qn+2 < Qc]
n+1 (Φn+1) ·

(
1 +O(α2

s)
)

+ dσ
(0)
n+1(Φn+1) ·

(
1 +O(α3

s)
)

+
∫

dσ
(1)[INC]
n+2 (Φn+2) · (1 +O(αs)) +

∫

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2) ·

(
1 +O(α2

s)
)

= dσ
(0+1+2)[INC]
n+1 (Φn+1) · (1 +O(αs)). (C.12)

where the 1n+2
n+1 and 1n+3

n+1 correction factors enforce an unbiased
∫

-integrations. The inclu-
sive NNLO cross section is thus reproduced correctly. The influence of the matching on the
all-order prediction — if the parton becomes unresolved — is best discussed by rewriting
eq. (C.12) in terms of a parton-shower prediction and remnant term,

eq. (C.12) =
(
dσ

(0)
n+1(Φn+1) + dσ

(1)[REM]
n+1 (Φn+1) + dσ

(2)[REM]
n+1 (Φn+1)

)
∆n(t+, tn+1)w(∞)

n+1(Φn+1) ,

(C.13)
where

dσ
(1)[REM]
n+1 (Φn+1) = dσ

(1)[Qn+2 < Qc]
n+1 (Φn+1) +

∫

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2)

+ dσ
(0)
n+1(Φn+1)

(
−w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

)
, (C.14)
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and with the second-order remnant term defined in eq. (C.15). This again permits in-
terpreting the matched result as a hard production coefficient (in brackets in eq. (C.13)),
dressed with the effect of soft- and collinear radiation. In the remnant term (C.14), all
universal corrections are again subtracted, such that only non-universal corrections remain.
An identical term appears in the UN2LOPS prescription. Thus, this term does not threaten
the parton-shower accuracy of the matched result.

The second-order remnant is given by

dσ
(2)[REM]
n+1 (Φn+1) (C.15)

= dσ
(2)[Qn+2 < Qc ∧Qn+3 < Qc]
n+1 (Φn+1) +

∫

dσ
(1)[Qn+2 > Qc]
n+2 (Φn+2) +

∫∫

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)

+
∫

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2)

(
−w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

)
+ dσ

(1)[Qn+2 < Qc]
n+1 (Φn+1)

(
−w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

)
+ dσ

(0)
n+1(Φn+1)

(
− w(2)

n+1(Φn+1)−∆(2)
n (t+, tn+1) +

[
∆(1)
n (t+, tn+1)

]2
+
[
w

(1)
n+1(Φn+1)

]2

+ w
(1)
n+1(Φn+1)∆(1)

n (t+, tn+1)
)
.

These contributions are all interconnected, such that the impact of the second-order rem-
nant on the all-order result is more subtle than for the first-order remnant. However, using
eqs. (B.29) and (B.33) as well as the identifications

dσ
(2)[INC]
n+1 (Φn+2)

= dσ
(2)[Qn+2 < Qc ∧Qn+3 < Qc]
n+1 (Φn+1) +

∫

dσ
(1)[Qn+2 > Qc]
n+2 (Φn+2) +

∫∫

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)

dσ
(1)[INC]
n+1 (Φn+2)

= dσ
(1)[Qn+2 < Qc]
n+1 (Φn+1) +

∫

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2)

the second-order remnant may suggestively be written as

dσ
(2)[REM]
n+1 (Φn+1) = dσ

(2)[INC]
n+1 (Φn+2) (C.16)

− αs(µ)
2π

β0

2 ln
(

µ

tn+1

)dσ(1)[INC]
n+1 (Φn+2) + dσ

(0)
n+1(Φn+1)

t+
∫

tn+1

dt

t
dzdφ

αs(µ)
2π P (t, z, φ)



+
t+
∫

tn+1

dt

t
dzdφ

αs(µ)
2π P (0)(t, z, φ)

[
dσ

(1)[INC]
n+1 (Φn+2) + dσ

(0)
n+1(Φn+1)αs(µ)

2π

(
β0

2 ln
(
µ

t

)
+ P (1)

P (0)

)]

+ dσ
(0)
n+1(Φn+1)

t+
∫

tn+1

dt

t
dzdφ

αs(µ)
2π P (0)(t, z, φ)

t
∫

tn+1

dt̄

t̄
dz̄dφ̄

αs(µ)
2π P (0)(t̄, z̄, φ̄)

− dσ
(0)
n+1(Φn+1)

(
αs(µ)

2π

)2
β1

4 ln
(

µ

tn+1

)
.

The NNLO cross section dσ
(2)[INC]
n+1 (Φn+2) contains all the other terms, which consequently act

to remove universal higher orders from the NNLO result. More specifically, in the bracket
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in the first line, only universal β0-dependent terms remain. These, together with the
prefactor, act to remove β0-dependent terms from the NNLO result. Similarly, the bracket
in the second line does not contain universal NLO corrections to soft gluon couplings,17 so
that only Sudakov-like effects remain. Multiplied with the prefactor, this factor acts to
remove further universal terms. The remaining terms again remove universal contributions
to the NNLO cross section. Thus, in total, dσ(2)[REM]

n+1 (Φn+1) contains — from the viewpoint
of the parton shower — only non-universal terms, meaning that including dσ

(2)[REM]
n+1 (Φn+1)

as prefactor to all-order terms does not impair the desired parton-shower accuracy.
Finally, for exclusive n+ 1-parton observables (i.e. sensitive to exactly one additional

parton), several all-order terms in eq. (4.12) do no longer cancel since n+ 2-parton states
with separation larger than Qc are vetoed. These uncanceled terms mirror, by design,
the inclusive n + 2-parton prediction exactly. The latter provide an NLO+PS accurate
description when one of the two additional partons becomes much softer (or more collinear)
than the other. Thus, the uncanceled all-order terms in exclusive n+ 1-parton observables
provide a parton-shower accurate resummation of the jet veto.

In conclusion, n + 1-parton observables are described with NNLO+PS accuracy. In-
cidentally, this also means that omitting the n-parton contribution to Tomte yields an
improved NNLO+PS matching for n+ 1 parton processes.

Zero-additional-parton observables are N3LO+PS accurate. In the prediction of inclusive
n-parton observables On, the cancellation between higher-multiplicity predictions and all-
order subtractions take maximal effect. After replacing all observables in eq. (4.12) with
On (since inclusive n-parton observables are by definition insensitive to additional partons),
the matching formula reduces to

F (∞)[Tomte]
n (Φn, t+, t−) (C.17)

= On

{
dσ(0+1+2+3)[EXC]

n (Φn) + dσ
(0+1+2)[Qn+2 < Qc ∧Qn+3 < Qc]
n+1 (Φn+1) + dσ

(0)[Qn+2 > Qc]
n+2 (Φn+2)

+ dσ
(1)[Qn+2 > Qc ∧Qn+3 < Qc]
n+2 (Φn+2) + dσ

(0)[Qn+3 > Qc]
n+3 (Φn+3)

}
= On dσ(0+1+2+3)[INC]

n (Φn) .

Thus, the inclusive N3LO cross section is recovered without any higher-order corrections.
For exclusive n-parton observables, the all-order subtraction to balance the n + 1-parton
prediction observables remains uncanceled, and thus produces a resummation of the jet
veto. The inclusive n+ 1-parton spectrum recovers the parton-shower resummation when
the additional parton becomes soft or collinear. By virtue of the mechanism in eq. (2.2),
this means that the all-order subtractions correctly reproduce the jet veto resummation
for exclusive n-parton observables. To summarize, n-parton observables are described with
N3LO+PS accuracy.

17Provided that P (1)/P (0) reproduces the two-loop cusp-anomalous dimension at the inclusive level, as
is the case in most modern showers.
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D Matching inclusive N3LO calculations to parton showers

The Tomte matching method developed in the main text relies on exclusive fixed-order
calculations. The rationale behind this assumption is that exclusive fixed-order calculations
might be easier to calculate or approximate. The UN2LOPS method [34, 35] for example
employed well-known results from analytic resummation to construct exclusive cross sec-
tions. It is however also straight-forward to rearrange the Tomte method to rely on (a
mix of exclusive and) inclusive cross sections. This opens many avenues to re-use known
results to construct a matched calculation. Using an inclusive N3LO calculation may be the
most relevant re-arrangement. In this case, the Tomte formula reads

F (∞)[iTomte]
n (Φn, t+, t−) := On


dσ(0+1+2+3)[INC]

n (Φn)

−

t+
∮

t−

dσ
(2)[Qn+2 < Qc ∧Qn+3 < Qc]
n+1 (Φn+1) ∆n(t+, tn+1)w(∞)

n+1(Φn+1)

−

t+
∮

t−

dσ
(0)
n+1(Φn+1)

⊗

∆n(t+, tn+1)w(∞)
n+1(Φn+1)

·
(

1− w(1)
n+1(Φn+1)− w(2)

n+1(Φn+1)−∆(1)
n (t+, tn+1)−∆(2)

n (t+, tn+1)

+
[
∆(1)
n (t+, tn+1)

]2
+
[
w

(1)
n+1(Φn+1)

]2
+ w

(1)
n+1(Φn+1)∆(1)

n (t+, tn+1)
)

−

t+
∮

t−

dσ
(1)[Qn+2 < Qc]
n+1 (Φn+1)

⊗ ∆n(t+, tn+1)w(∞)
n+1(Φn+1)

(
1− w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

)

−

t+�
t−

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2)

⊗ ∆n(t+, tn+1)w(∞)
n+1(Φn+1)

(
1− w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

)
1
n+2
n+1
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−

t+�
t−

dσ
(1)[Qn+2 > Qc ∧Qn+3 < Qc]
n+2 (Φn+2)

⊗ ∆n(t+, tn+1)w(∞)
n+1(Φn+1)1n+2

n+1

−

t+�
t−

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)

⊗ ∆n(t+, tn+1)w(∞)
n+1(Φn+1)1n+3

n+1



+ On+1


dσ

(2)[Qn+2 < Qc ∧Qn+3 < Qc]
n+1 (Φn+1)

⊗ ∆n(t+, tn+1)w(∞)
n+1(Φn+1)

+ dσ
(0)
n+1(Φn+1)

⊗

∆n(t+, tn+1)w(∞)
n+1(Φn+1)

·
(

1− w(1)
n+1(Φn+1)− w(2)

n+1(Φn+1)−∆(1)
n (t+, tn+1)−∆(2)

n (t+, tn+1)

+
[
∆(1)
n (t+, tn+1)

]2
+
[
w

(1)
n+1(Φn+1)

]2
+ w

(1)
n+1(Φn+1)∆(1)

n (t+, tn+1)
)

+ dσ
(1)[Qn+2 < Qc]
n+1 (Φn+1)

⊗
[
1− w(1)

n+1(Φn+1)−∆(1)
n (t+, tn+1)

]
∆n(t+, tn+1)w(∞)

n+1(Φn+1)

+

t+
∮

t−

dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2)

⊗ ∆n(t+, tn+1)w(∞)
n+1(Φn+1)
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⊗
[ (

1− w(1)
n+1(Φn+1)−∆(1)

n (t+, tn+1)
)
1
n+2
n+1

− ∆n+1(tn+1, tn+2)w(∞)
n+2(Φn+2)

⊗
(

1− w(1)
n+1(Φn+1)− w(1)

n+2(Φn+2)−∆(1)
n (t+, tn+1)−∆(1)

n+1(tn+1, tn+2)
) ]

+

t+
∮

t−

dσ
(1)[Qn+2 > Qc ∧Qn+3 < Qc]
n+2 (Φn+2)

⊗
[

∆n(t+, tn+1)w(∞)
n+1(Φn+1)1n+2

n+1

− ∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)

]

+

t+�
t−

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)

⊗
[

∆n(t+, tn+1)w(∞)
n+1(Φn+1)1n+3

n+1

− ∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)1n+3
n+2

]


+ On+2

 dσ
(0)[Qn+2 > Qc]
n+2 (Φn+2)

⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)

⊗
[
1− w(1)

n+1(Φn+1)− w(1)
n+2(Φn+2)−∆(1)

n (t+, tn+1)−∆(1)
n+1(tn+1, tn+2)

]
+ dσ

(1)[Qn+2 > Qc ∧Qn+3 < Qc]
n+2 (Φn+2)

⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)
n+1(Φn+1)w(∞)

n+2(Φn+2)
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+

t+
∮

t−

dσ
(0)[Qn+3 > Qc]
n+3 (Φn+3)

[
∆n(t+, tn+1)∆n+1(tn+1, tn+2)w(∞)

n+1(Φn+1)w(∞)
n+2(Φn+2)1n+3

n+2

− ∆n(t+, tn+1)∆n+1(tn+1, tn+2)∆n+2(tn+2, tn+3)wn+1(Φn+1)wn+2(Φn+2)wn+3(Φn+3)

]
+ dσ

(0)[Qn+3 > Qc]
n+3 (Φn+3)

⊗ ∆n(t+, tn+1)∆n+1(tn+1, tn+2)∆n+2(tn+2, tn+3)wn+1(Φn+1)wn+2(Φn+2)wn+3(Φn+3)

⊗ F (∞)
n+3(Φn+3, tn+3, t−) . (D.1)

This is trivially obtained from eq. (4.12) by setting 1n+1
n = 1n+2

n = 1n+3
n = 0. Other

combinations of inclusive with exclusive calculations may be obtained in a similar manner.
This simple change does, however, not guarantee that exclusive fixed-order cross sections
are recovered exactly, since the unitarity subtractions might introduce biases. This was the
reason why the use of exclusive cross-sections was prioritized in the main text. It would
be valuable to assess and address the bias when using inclusive calculations in the future.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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