Erratum: Exact summation of leading logs around $T \bar{T}$ deformation of $O(N+1)$-symmetric 2D QFTs

Jonas Linzen, ${ }^{a}$ Maxim V. Polyakov, ${ }^{1}$ Kirill M. Semenov-Tian-Shansky ${ }^{b, c}$ and Nika S. Sokolova ${ }^{d}$
${ }^{a}$ Ruhr University Bochum, Faculty of Physics and Astronomy, Institute of Theoretical Physics II, D-44780 Bochum, Germany
${ }^{b}$ National Research Centre "Kurchatov Institute": Petersburg Nuclear Physics Institute, RU-188300 Gatchina, Russia
${ }^{c}$ Higher School of Economics, National Research University, RU-194100 St. Petersburg, Russia
${ }^{d}$ Department of Mathematics, King's College London, Strand, London WC2R 2LS, U.K.
E-mail: Jonas.Linzen@rub.de, cyrstsh@thd.pnpi.spb.ru, nika.sokolova.16@gmail.com

Erratum to: JHEP05(2021)266

ArXiv ePrint: 2104.01038

[^0]In our paper by carelessness we employed the incorrect definition for the constant $1 / G$ describing a deviation from the $T \bar{T}$-perturbed theory. The equation (1.5) must read:

$$
\begin{equation*}
\frac{1}{G}=2 g_{1}+g_{2} \tag{1.1}
\end{equation*}
$$

The same misprint occurs in the text in the paragraph below eq. (1.6).
The definition of $1 / G$ affects the exertions for the tree-level coefficients $\omega_{1,0}^{0, T}$ listed in eq. (2.8). The first 3 lines of (2.8) must read:

$$
\begin{align*}
& \omega_{1,0}^{0, T}=\omega_{1,0}^{0, R}=-4 \lambda G+(N+3) \\
& \omega_{1,0}^{1, T}=-\omega_{1,0}^{0, R}=-4 \lambda G+1 \\
& \omega_{1,0}^{2, T}=\omega_{1,0}^{2, R}=-4 \lambda G+3 \tag{1.2}
\end{align*}
$$

The tree-level contribution into the isospin-0 transmission amplitude in the leading logarithmic (LL) approximation in (2.16) is altered. The corresponding equation must look as

$$
\mathcal{M}^{0, T}(s)=\frac{s}{F^{2}}(N-1)+s^{2}\left(-4 \lambda+\frac{1}{G}(N+3)\right)+\frac{s^{2}}{G} \Omega\left(\frac{s}{4 \pi G} \ln \left(\frac{\mu^{2}}{s}\right), \frac{G^{2}}{s F^{2}}\right)
$$

The tree-level contribution into the LL resummed amplitude for the pure $T \bar{T}$ deformation has to be modified in eq. (4.2) and (4.6). The equation must (4.2) must read as

$$
\begin{equation*}
\mathcal{M}(s)=\frac{s(N-1)}{F^{2}}-4 s^{2} \lambda+\frac{s(N-1)}{F^{2}} \Omega^{T \bar{T}}\left(\frac{1}{4 \pi F^{2}} \ln \left(\frac{\mu^{2}}{s}\right)\right) \tag{1.3}
\end{equation*}
$$

respectively the eq. (4.6) takes the form

$$
\mathcal{M}(s)=-4 s^{2} \lambda+\frac{s}{F^{2}}(N-1)\left(\frac{1}{1-\frac{(N-2)}{4 \pi F^{2}} \ln \left(\frac{\mu^{2}}{s}\right)}\right)=-4 s^{2} \lambda+\frac{s}{F^{2}(s)}(N-1)
$$

A similar modification is also to be performed in eq. (4.18). It must read as

$$
\begin{align*}
\mathcal{M}(s)= & -4 s^{2} \lambda+\frac{s}{F^{2}}(N-1)\left(\frac{1}{1-\frac{(N-2)}{4 \pi F^{2}} \ln \left(\frac{\mu^{2}}{s}\right)}\right) \tag{1.4}\\
& +\frac{s^{2}}{G}\left[(N+3)+\frac{(N-1)(N+2)}{N}\left(\frac{1}{\left[1-\frac{(N-2)}{4 \pi F^{2}} \ln \left(\frac{\mu^{2}}{s}\right)\right]^{\frac{2 N}{N+2}}}-1\right)\right]+O\left(\frac{1}{G^{2}}\right) .
\end{align*}
$$

Finally, the expressions for the transmission and reflection leading log amplitudes for all isospin channels (B.1) must read as:

$$
\begin{align*}
\mathcal{M}^{I=0, T}(s)= & \frac{s}{F^{2}}(N-1)-4 s^{2} \lambda+\frac{s^{2}}{G}(N+3)+\frac{s^{2}}{G} \Omega\left(\frac{s}{4 \pi G} \ln \left(\frac{\mu^{2}}{s}\right), \frac{G}{s F^{2}}\right) ; \\
\mathcal{M}^{I=1, T}(s)= & \frac{s}{F^{2}}-4 s^{2} \lambda+\frac{s^{2}}{G}-\frac{s^{2}}{(N-1) G} \Omega\left(-\frac{s}{4 \pi G} \ln \left(\frac{\mu^{2}}{s}\right),-\frac{G}{s F^{2}}\right) ; \tag{1.5}\\
\mathcal{M}^{I=2, T}(s)= & -\frac{s}{F^{2}}-4 s^{2} \lambda+\frac{3 s^{2}}{G} \\
& -\frac{2 s^{2}}{(N+2)(N-1) G}\left[\Omega\left(\frac{s}{4 \pi G} \ln \left(\frac{\mu^{2}}{s}\right), \frac{G}{s F^{2}}\right)-\frac{N}{2} \Omega\left(-\frac{s}{4 \pi G} \ln \left(\frac{\mu^{2}}{s}\right),-\frac{G}{s F^{2}}\right)\right] ; \\
\mathcal{M}^{I, R}(s)= & (-1)^{I} \mathcal{M}^{I, T}(s) .
\end{align*}
$$

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

[^0]: ${ }^{1}$ Deceased.

