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1 Introduction

Particles with the same quantum numbers and nearly degenerate in mass provide ways
for low scale baryogenesis. Notably, in the type I seesaw model it is possible to have
leptogenesis in the freeze-out of Majorana neutrinos with O (1 TeV) masses, or in the freeze-
in of much lighter neutrinos, also known as resonant leptogenesis [1] and baryogenesis via
neutrino oscillations (or ARS leptogenesis) [2, 3], respectively. Both have been studied
carefully and with different formalisms (see [4] and [5] for comprehensive reviews and
references). In the last few years there have also been works addressing the case of neutrinos
in the intermediate mass range of several tens to hundreds of GeV, which requires a careful
implementation of the helicity degree of freedom in the transport equations [6–15].

In these models the CP even phase arises from absorptive parts of loop amplitudes
or from oscillating phases due to the coherent propagation of different mass eigenstates.
The interplay of these sources of CP violation has been analyzed in detail under different
formalisms and approximations in [16–19] (see also [20–23]). In [16, 17] a fully flavor-
covariant set of transport equations was derived following a semiclassical approach, while
the analysis of [18] and [19] are based on the Kadanoff-Baym formalism of non-equilibrium
thermal field theory. Although several of the conclusions in these works are compatible,
including that the oscillation and mixing sources can contribute additively to the final
asymmetry, an interference term between mixing and oscillations was found in [19] while
not in [16–18].

Another look at this subject, based on an effective Hamiltonian formalism, was taken
long ago in [24, 25]. Those works elucidated various issues, but a complete implementation
of the method to baryogenesis remained open. Motivated by the simplicity and trans-
parency of this formalism, we followed a quantum field theory approach in [26], that up to
some point and under certain approximations, can be matched to the effective Hamiltonian
formalism. In this approach the renormalized propagator is used in a quantum field theory
model of neutrino oscillations in order to obtain probabilities of lepton number violating
processes involving only stable particles in the initial and final states. Then a source term
for the evolution of the lepton asymmetry is derived from a suitable time integration over
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the history of the system. Given that this source does not involve processes with -unstable-
neutrinos in the initial or final states, no count of neutrino number densities and no sub-
traction of real intermediate states must be performed, so that unitarity is satisfied in a
transparent way.

The source term obtained in [26] at first order in the decay widths over the mass
splitting has contributions that can be identified with CP violation from mixing, oscillations
and interference between both. In equilibrium the terms coming from CP violation in
mixing and oscillations cancel, yielding a null source as required by unitarity and CPT
invariance. Moreover, in the limit of large mass splittings, this source tends to the one
of the standard classical Boltzmann equations appropriate for non-oscillating neutrinos.
Therefore, the findings of [26] do not seem to agree with those of [16–19] regarding the
relative sign of the contributions from mixing and oscillations.

Even more recently, another set of non-equilibrium quantum transport equations for
flavor-mixing fermions was derived in [27] using the Schwinger-Keldysh closed time path
formalism and applied to resonant leptogenesis. Although the scope of the equations in [27]
is much bigger than the one of [26], it is interesting to note that the results of [27] also
do not support some of the findings of [16–19] related to the mixing and oscillation terms
and, like in [26], the lepton asymmetry in [27] converges to the usual Boltzmann result in
the limit of large mass splittings.

All in all, what seems clear is that the subject of CP violation in leptogenesis with
quasi-degenerate neutrinos is not trivial and therefore different looks at the problem can
be instructive. With this motivation, here we extend the approach introduced in [26] to
the more involved highly degenerate case, with mass splittings similar or smaller than the
decay widths. The work is organized as follows: in section 2 we calculate a time dependent
CP asymmetry between lepton number violating processes involving only stable states, by
performing an expansion around the poles of the resummed one-loop propagator and using
this expansion in a quantum field theory model for oscillations. Next, in section 3, the
CP asymmetry is properly integrated over time to get a source term for the generation of
lepton asymmetry, which does not involve any count of neutrino number densities. After
analyzing the main properties of this source, we summarize the main results and comment
on possible directions for future work in section 4.

2 CP asymmetry

We extend the analysis of [26] to the highly degenerate case using the same scalar toy
model, which has also been used in several of the references mentioned in the introduction.
There is one complex and two real scalar fields, denoted by b and ψi (i = 1, 2), respectively.
In a basis where the mass matrix of the real scalars is diagonal, the Lagrangian is given by

L = 1
2∂

µψi ∂µψi −
1
2ψiM

2
i ψi + ∂µb̄ ∂µb−m2 b̄b− hi

2 ψi bb−
h∗i
2 ψi b̄b̄−

λ

2 · 2(b̄b)2 . (2.1)

The b-particles will subsequently be called “leptons”, since they play in this toy model
the analogous role that leptons play in standard leptogenesis, and for simplicity their mass
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m will be neglected. The lepton charge is broken by the cubic Yukawa interaction terms
involving the ψi, to be called “neutrinos” in what follows. The last term is a quartic
interaction which does not change lepton number but might be used as a way to localize
the leptons and satisfy the conditions to have oscillations [28], but we will not make explicit
use of it.

The approach to obtain the source term will be the same as in [26]: first an expansion
around the complex poles of the resummed one-loop propagator is performed according
to [29], then the amplitudes of lepton number violating processes obtained from this ex-
pansion are used in a quantum field theory model for oscillations following [28], and finally
the resulting time dependent probabilities of lepton number violating processes are inte-
grated over time as in [26] to get the source term. In this section we compute the time
dependent CP asymmetry and in the following the source term. Compared to [26], care
must be taken in several expansions given that we will let the mass difference M2 −M1,
which appears in some denominators, be of the order of, or smaller than, the decay widths.

The one-loop renormalized inverse propagator matrix G−1 is given by

iG−1(p2) = p21−M2(p2), (2.2)

with
M2(p2) =

(
M2

1 + Σ11(p2) Σ12(p2)
Σ21(p2) M2

2 + Σ22(p2)

)
, (2.3)

and

Σii(p2) = |hi|2

(4π)2

[
1 + ln p2

M2
i

− p2

M2
i

− iπθ(p2)
]
, (2.4)

Σ12(p2) = Σ21(p2) = Re [h∗1h2]
(4π)2

M2
2 ln p2

M2
1
−M2

1 ln p2

M2
2
− p2 ln M2

2
M2

1

M2
2 −M2

1
− iπθ(p2)

 . (2.5)

These expressions will always be evaluated for p2 > 0 and therefore the step function θ will
be omitted henceforth. We have used the following renormalization conditions:

Re
[
Σii(M2

i )
]

= Re
[
Σ12(M2

i )
]

= dΣii

dp2

∣∣∣
p2=M2

i

= 0, for i = 1, 2 .

In the highly degenerate case it might be important to consider the resummation of multi-
loop diagrams, however this is out of the goal of this paper and instead we will show that
consistent results (finite and complying with unitarity requirements) can be obtained from
the one-loop resummed propagator. Next we will make an expansion of the propagator
around the two poles. Following [29] (see eq. 4.18) we write:

G ' ZT ∆BW Z , (2.6)

with
∆BW = i

(
(p2 −M2

a)−1 0
0 (p2 −M2

b)−1

)
, (2.7)
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M2
a,b the poles of the propagator, and

Z =
( √

Z1
√
Z1Z12√

Z2Z21
√
Z2

)
, (2.8)

where

Z12 = G12(M2
a)

G11(M2
a)

= Σ12(M2
a)

M2
a −M2

2 − Σ22(M2
a)
,

Z21 = G21(M2
b)

G22(M2
b)

= Σ12(M2
b)

M2
b −M2

1 − Σ11(M2
b)
,

Z1 = 1
∂
∂p2

i
G11(p2)

∣∣∣∣∣
p2=M2

a

= 1
1− Σeff ′

11 (M2
a)
,

Z2 = 1
∂
∂p2

i
G22(p2)

∣∣∣∣∣
p2=M2

b

= 1
1− Σeff ′

22 (M2
b)
. (2.9)

Moreover, the quantity Σeff
ii (p2) is defined by the identity

Gii(p2) = i

p2 −M2
i − Σeff

ii (p2)
. (2.10)

The complex poles M2
a,b are given by the roots of the determinant of G−1 and each of

them satisfies
p2 −M2

i − Σeff
ii (p2)

∣∣
p2=M2

a,b
= 0 (2.11)

for both, i = 1, 2, so that any assignment of the labels a and b to the solutions of these
equations is possible (although for numerical purposes one choice might be more convenient
than the other [29]). At O

(
h2) (with h representing any of the Yukawa couplings), the

poles are equal to

M2
a = M2

1 − iM1Γ1 +O
(
h4
)

and M2
b = M2

2 − iM2Γ2 +O
(
h4
)
,

where Γi ≡ |hi|2
16πMi

. These approximations are good enough for |hihj | /(4π)2 � ε, with
ε ≡ M2

2 −M2
1 , as assumed in our previous work [26]. However, for ε . |hihj | /(4π)2 it is

necessary to go beyond O
(
h2) in the calculation of the roots of |G−1|, due to the presence

of ε in some denominators. Then we take

M2
a = M2

1 − iM1Γ1
1 + r

2 − iM2Γ2
1− r

2 + ε
1− r

2 ,

M2
b = M2

2 − iM2Γ2
1 + r

2 − iM1Γ1
1− r

2 − ε1− r
2 , (2.12)

with

r ≡

√√√√√1−

 2Re [h∗1h2]
16πε+ i

(
|h1|2 − |h2|2

)
2

, (2.13)
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for which it can be verified that

|G−1(M2
a,b)| = 0 +O

(
h8, h6ε

)
. (2.14)

In addition, the elements of the Z matrix defined in eqs. (2.9) are equal to

Z12 = −θ′ +O
(
h4
)

= −Z21 +O
(
h4
)
,

Z1 = 1 + r

2r +O
(
h4
)

= Z2 +O
(
h4
)
, (2.15)

where

− θ′ ≡ iRe [h∗1h2] /(16π)
ε+ i (M1Γ1 −M2Γ2)

2
1 + r

=
√
r − 1
r + 1 (2.16)

and the O
(
h4) terms are finite in the limit ε→ 0. Note that we are attaching a prime to θ

in order to distinguish it from the analog quantity defined in [26]. In terms of θ′, the poles
in eqs. (2.12) read

M2
a = M2

1 − iM1Γ1 + i
Re [h∗1h2]

16π θ′ ,

M2
b = M2

2 − iM2Γ2 − i
Re [h∗1h2]

16π θ′ , (2.17)

so that the real and imaginary parts are given by

M2
a =

(
M2

1 −
Re [h∗1h2]

16π Im
[
θ′
])
− i

(
M1Γ1 −

Re [h∗1h2]
16π Re

[
θ′
])

,

M2
b =

(
M2

2 + Re [h∗1h2]
16π Im

[
θ′
])
− i

(
M2Γ2 + Re [h∗1h2]

16π Re
[
θ′
])

. (2.18)

It can be checked that the imaginary parts ofM2
a,b are always negative.

From the expansion of the propagator around the complex poles specified in eqs. (2.6)–
(2.8) and (2.15), the invariant matrix elements for the lepton number violating processes
become

−M(b̄b̄→ bb) = −i
∑
j,k

h∗j Gjk h
∗
k

= Z1
(
h∗21 − 2h∗1h∗2 θ′ + h∗22 θ′ 2

)
∆1 + Z1

(
h∗22 + 2h∗1h∗2 θ′ + h∗21 θ′ 2

)
∆2 ,

−M(bb→ b̄b̄) = −i
∑
j,k

hjGjkhk

= Z1
(
h2

1 − 2h1h2 θ
′ + h2

2 θ
′ 2
)

∆1 + Z1
(
h2

2 + 2h1h2 θ
′ + h2

1 θ
′ 2
)

∆2,

with
∆1 (2) ≡

1
p2 −M2

a (b)
.

These amplitudes can be used in a quantum field theory model of oscillations. We will
consider an external wave packet model [30, 31] following the detailed review and analysis
of [28]. In this model the initial and final states of a given process are described by localized
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wave packets. Assuming that the factors related to coherence and localization, which could
destroy oscillations, can be neglected, the following expressions for the probabilities of the
lepton number violating processes are obtained:

|A|2 (L) = N

∣∣∣∣∣(h∗21 − 2h∗1h∗2 θ′ + h∗22 θ′ 2
)
e
−i
(
M̃1−i

Γ̃1
2

)
M̃L
p0

+
(
h∗22 + 2h∗1h∗2 θ′ + h∗21 θ′ 2

)
e
−i
(
M̃2−i

Γ̃2
2

)
M̃L
p0

∣∣∣∣∣
2

,

∣∣∣Ā∣∣∣2 (L) = N

∣∣∣∣∣(h2
1 − 2h1h2 θ

′ + h2
2 θ
′ 2
)
e
−i
(
M̃1−i

Γ̃1
2

)
M̃L
p0

+
(
h2

2 + 2h1h2 θ
′ + h2

1 θ
′ 2
)
e
−i
(
M̃2−i

Γ̃2
2

)
M̃L
p0

∣∣∣∣∣
2

. (2.19)

Here, to simplify the notation we have defined A ≡ A(b̄b̄ → bb) and Ā ≡ A(bb → b̄b̄),
L is the distance between the production and decay of the neutrinos that mediate these
processes, and p0 is the average momentum of the neutrinos. We have integrated over solid
angle and the normalization constant N can be determined as in [26] (see [28] for the case
of stable neutrinos). The real quantities M̃1, M̃2, Γ̃1 and Γ̃2 are defined from the real and
imaginary parts ofMa,b via the relations (see eq. (2.18)):

M̃2
1 =

(
M2

1 −
Re [h∗1h2]

16π Im
[
θ′
])
, M̃1Γ̃1 =

(
M1Γ1 −

Re [h∗1h2]
16π Re

[
θ′
])

,

M̃2
2 =

(
M2

2 + Re [h∗1h2]
16π Im

[
θ′
])
, M̃2Γ̃2 =

(
M2Γ2 + Re [h∗1h2]

16π Re
[
θ′
])

, (2.20)

and M̃ ≡ (M̃1 + M̃2)/2.
The expressions (2.19) for the probabilities are valid up to first order in (M2

2 −
M2

1 )/(2p2
0) and can be matched to an effective Hamiltonian approach within the approx-

imations we have made [28]. For the following discussion it will be more convenient to
change from distance L to time t via the relation M̃L

p0
= t

γ , with γ ≡ E0/M̃ the Lorentz
factor and E0 the average energy (i.e. M̃L

p0
is the classical proper time of propagation).

Next we compute the CP asymmetry |A|2 −
∣∣∣Ā∣∣∣2 from eqs. (2.19), noticing that there

are two different types of CP even phases: one independent of L (or t) in θ′, and an
oscillating one in the exponentials e−iM̃jt/γ . Considering all the interferences and the
corresponding source of the CP even relative phases, the CP asymmetry can be written as
a sum of contributions from mixing M (involving only θ′), from oscillations O (involving
only e−iM̃jt/γ), and interference terms I (involving both θ′ and e−iM̃jt/γ):

|A|2 (t)−
∣∣∣Ā∣∣∣2 (t)

N
= M(t) +O(t) + I(t) , (2.21)
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where

M(t) = 8 Im [h1h
∗
2] θ′I

{
e−Γ̃1t/γ

[
|h1|2 + |h2|2

∣∣θ′∣∣2 − 2Re [h∗1h2] θ′R
]

+e−Γ̃2t/γ
[
|h2|2 + |h1|2

∣∣θ′∣∣2 + 2Re [h∗1h2] θ′R
]}
, (2.22)

O(t) = 8 Im [h1h
∗
2] Re [h∗1h2]

(
1−

∣∣θ′∣∣4) Im
[
ei(M̃2−M̃1)t/γ

]
e−Γ̃t/γ , (2.23)

I(t) = 8 Im [h1h
∗
2]
(
1 +

∣∣θ′∣∣2){θ′R Im
[
ei(M̃2−M̃1)t/γ

]
e−Γ̃t/γ

(
|h1|2 − |h2|2

)
−θ′I Re

[
ei(M̃2−M̃1)t/γ

]
e−Γ̃t/γ

(
|h1|2 + |h2|2

)}
. (2.24)

Here we have defined Γ̃ ≡ (Γ̃1 +Γ̃2)/2, while θ′R and θ′I denote the real and imaginary parts
of θ′, respectively.

3 Source term and analysis

The time evolution of the lepton density asymmetry nL ≡ nb−nb̄, with nb (nb̄) the number
density of leptons (antileptons), can be obtained from the sum of two terms,

dnL
dt = S(t)−W (t), (3.1)

where the source S(t) is the part which may be non-null in the absence of a lepton density
asymmetry and W (t) is the so-called washout term. The source can be obtained from a
proper integration of the CP asymmetry in eq. (2.21) over the whole history of the system,
without resorting to some count of neutrino number densities, as explained in [26]. For
our purposes it is enough to consider a static universe and that all the neutrinos mediating
the processes in eqs. (2.19) have the same average momentum p0, so that momentum
integrals are avoided. Moreover, finite density effects will not be included. Therefore the
normalization constant N in eq. (2.21) is the same as in [26], N = 1/(32πE0)2, with E0
the average energy, and the source term reads

S(T ) = 2
∫ T

0

neq(t)
(32πE0)2

[
M(T − t) +O(T − t) + I(T − t)

]
dt . (3.2)

The time dependent functions M,O and I are given by eqs. (2.22)–(2.24) and neq(t) is the
equilibrium density of a scalar particle of mass M̃ . Although in realistic calculations neq(t)
would be a function of the time dependent temperature, in the examples given below for
a static universe we will artificially vary neq(t) and equilibrium will simply correspond to
constancy over time.

Unitarity and CPT invariance imply that, for a given initial state,
∑
j |A(i→ j)|2 =∑

j

∣∣∣A(̄i→ j̄)
∣∣∣2 (with the bar denoting CP conjugate states). For our scalar toy model,

considering stable asymptotic states with well defined momentum, this implies, to lowest
non-trivial order in the couplings (so that only processes with two final particles need to
be considered), that

|A(bb→ bb)|2 +
∣∣∣A(bb→ b̄b̄)

∣∣∣2 =
∣∣∣A(b̄b̄→ b̄b̄)

∣∣∣2 +
∣∣∣A(b̄b̄→ bb)

∣∣∣2 ,

– 7 –
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0∞

[M
(t
),
O
(t
),
I(
t)
]
/η
4
dt

10-2 0.1 1
10-3

10-2

0.1

1

10

100

1000

η

0∞

[M
(t
),
O
(t
),
I(
t)
]
/η
2
dt

10-2 0.1 1

10-4

10-2

1

100

η


0∞

[M
(t
),
O
(t
),
I(
t)
]
/η
2
dt

Figure 1. Behavior of CP odd quantities for small Yukawa couplings and mass
splittings, namely

∣∣∫∞
0 M(t) dt

∣∣ /(M4
1 η

a) (solid blue lines),
∣∣∫∞

0 O(t) dt
∣∣ /(M4

1 η
a) (dot-

ted green lines),
∣∣∫∞

0 I(t) dt
∣∣ /(M4

1 η
a) (dashed red lines), and the CP asymmetry∣∣∣∫∞0 [|A|2 (t)−

∣∣Ā∣∣2 (t)]/N dt
∣∣∣ /(M4

1 η
a) =

∣∣∫∞
0 M(t) +O(t) + I(t) dt

∣∣ /(M4
1 η

a) (thick solid black
lines), as a function of η, which parametrizes h1,2 and ε. Note that we have normalized these
quantities to M4

1 to make them dimensionless and to a certain power of η so that the mixing and
oscillation contributions be constant in the limit η → 0 (a = 4 in the left plot, and a = 2 in the
middle and right plots). For all plots we have chosen h1/M1 = h and h2/M1 = (h/2)eiπ/4, while
h = η and ε/M2

1 = 1
10

1
16π in the left plot, h = 1 and ε/M2

1 = 10 1
16πη

2 in the middle plot, and h = η

and ε/M2
1 = 1

2
1

16πη
2 in the right plot.

and therefore

∆
∣∣∣A(b̄b̄→ bb)

∣∣∣2 ≡ ∣∣∣A(b̄b̄→ bb)
∣∣∣2 − ∣∣∣A(bb→ b̄b̄)

∣∣∣2 = 0. (3.3)

As already verified in [26], this unitarity requirement is satisfied using the exact one-loop
resummed propagator G given by eqs. (2.2)–(2.5).1 From this fact it is possible to determine
the order at which the unitarity condition will be satisfied for a given approximation to G.
Note also that in eqs. (2.19) the states, in particular the final ones, have been taken as wave
packets localized in space. Therefore the sum over all possible final states in the unitarity
requirement involves an integral over L, or equivalently over t. Indeed we have verified
numerically that

∫∞
0 |A|

2 (t) dt equals
∫∞

0

∣∣∣Ā∣∣∣2 (t) dt up to terms which are higher order in
the Yukawa couplings and ε than the individual contributions from mixing, oscillations and
interference to the time integral of the CP asymmetry. Specifically, letting h1,2 and ε go
to zero with some powers of a small parameter η, i.e. h1,2 ∝ h ∝ ηah and ε ∝ ηaε , in the

1There are also one-loop vertex contributions at the same order in the Yukawa couplings, but they cancel
independently in eq. (3.3), see e.g. [32].
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limit η → 0 the integrals approach zero as∫ ∞
0

M(t), O(t) dt ∝ h4 1
ε2 + h4 ε ,∫ ∞

0
I(t) dt ∝

(
h4 1
ε2 + h4

)2
ε ,∫ ∞

0

[
|A|2 (t)−

∣∣∣Ā∣∣∣2 (t)
]

dt ∝
(
h4 1
ε2 + h4

)2
ε2 .

This is illustrated in figure 1 for three cases: h1,2 going to zero with ε kept constant,
which was the case studied in [26] (ah = 1, aε = 0, left plot), ε going to zero with
h1,2 fixed (ah = 0, aε = 2, middle plot), and the three parameters going simultane-
ously to zero, with ε ∝ Γ1 (ah = 1, aε = 2, right plot). In all cases it is apparent that
|
∫∞

0 M(t) +O(t) + I(t) dt| is higher order in the small parameters and much lower than
|
∫∞

0 M(t) dt|+ |
∫∞

0 O(t) dt|+ |
∫∞

0 I(t) dt|, which makes our approach consistent regarding
unitarity. Note that in equilibrium, i.e. when neq(t) remains constant for a time period
larger than the other time scales (the oscillation period and lifetimes of neutrinos), the uni-
tarity condition ensures that S(t) becomes null. Another related consequence is that the
final lepton asymmetry obtained by integrating the source term and neglecting washouts
is also null, within the validity of our approximations, if neq(t) is zero outside a certain
window of time. This will be apparent in the figures shown below by the negligible value of
the net final lepton asymmetry compared to -at least some of- the individual contributions
from mixing, oscillations and interference.

To discuss some of the main features of the source term given by eq. (3.2), we plot in
figures 2 and 3 the evolution of the different contributions to the source (left plots) and
lepton asymmetry (right plots), for different choices of the couplings and masses. In all
cases we have taken neq(t) = e−M1 t/(10000 γ), so that the time scale of the evolution of neq is
much larger than the lifetimes of the neutrinos. The lepton asymmetry has been obtained
by integrating the source term over time, without considering any washouts. Therefore,
as noted above, unitarity requires that the final asymmetry be null. Indeed, this behavior
can clearly be seen in the plots, which show that the final value of the lepton asymmetry
(solid black lines) is negligible compared to -at least some of- the individual contributions
from mixing, oscillations and interference (colored lines). In the top plots of figure 2 we
have chosen neutrinos with lifetimes differing by one order of magnitude. The contribution
from the interference term becomes small at late times compared to the contributions
from mixing and oscillations, but its role to ensure that the final asymmetry be null is
nevertheless important. At small times (compared to the lifetimes and oscillation period),
the interference term almost cancels the mixing one, so that the net lepton asymmetry
equals the contribution from oscillations. However, we show with an example in the bottom
plots of figure 2 that this might not always be the case. Namely it may happen that at small
times the mixing and interference terms partially cancel, but the oscillation contribution
remains subdominant, so that the net lepton asymmetry is determined from the former
terms and not from oscillations. This behavior at small times can be understood from a
Taylor expansion of eqs. (2.22)–(2.24). In this second example the oscillation term remains
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Figure 2. Absolute value of the contributions to the source term (left plots) and lepton asymmetry
(right plots), as a function of time normalized to γ/M1. The solid blue lines represent the mixing
contribution (according to eq. (2.22)), the dotted green lines the oscillation contribution (eq. (2.23)),
the dashed red lines the interference contribution (eq. (2.24)), and the thick solid black lines give the
absolute value of the sum of all contributions, i.e. the total source term (eq. (3.2)) for the left plots
and the net lepton asymmetry for the right ones. In the top plots we have chosen Γ1/M1 = 1/100,
Γ2/M1 = 1/1000 and ∆M = Γ1, while the corresponding quantities with tilde differ by no more
than 10% in this case. For the bottom plots, Γ1/M1 = 1/100, Γ2/M1 = 1/130 and ∆M = 0.2 Γ1, so
that Γ̃1/M1 ' 0.015, Γ̃2/M1 ' 0.003 and ∆M̃ ' 0.03 Γ̃1. In all cases we have taken h1 = |h1| and
h2 = |h2| eiφ, with φ = π/4. The lepton asymmetry has been obtained integrating only the source
term (washouts are not considered). The scale on the vertical axis is not relevant and we have taken,
for the purpose of illustration, neq(t) = e−M1 t/(10000 γ) (after a change of variables in the integration
over time, the factor M1/γ becomes part of the normalization chosen for the lepton asymmetry).

subdominant also at late times, but again unitarity is satisfied due to a cancellation arising
from the three contributions.

The time dependent CP asymmetry we have obtained in the previous section remains
finite in the double degenerate limit of equal masses and couplings (see in particular
eqs. (2.15)–(2.16)). In order to illustrate the double degenerate limit, we have chosen
for figure 3 Γ1/M1 = Γ2/M1 = 1/100 and ∆M = 1 (0.01) Γ1 in the top (bottom) plots. It
can be seen that the lepton asymmetry remains finite and decreases in the more degener-
ate case. Also note that in the bottom plots the oscillation period is much larger than the
lifetimes of the neutrinos, therefore the contribution from oscillations becomes negligible.
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Figure 3. Same as figure 2 but with another selection of couplings and masses: Γ1/M1 = Γ2/M1 =
1/100 and ∆M = 1 (0.01) Γ1 in the top (bottom) plots. Here we have also taken h1 = |h1| and
h2 = |h2| eiφ, with φ = π/4. Therefore in the top plots Γ̃1/M1 ' Γ̃2/M1 ' 1/100 and ∆M̃ ' 0.7 Γ̃1,
while in the bottom plots Γ̃1/M1 ' 0.003, Γ̃2/M1 ' 0.017 and ∆M̃ ' 2× 10−6 Γ̃1.

4 Conclusions and outlook

We have studied the sources of CP violation in a scalar toy model for baryogenesis with
highly degenerate neutrinos, i.e. with mass splittings similar or smaller than the decay
widths, extending in this way the analysis started in [26] for milder degeneracies. The
approach follows these steps: (1) perform an expansion around the poles of the resummed
propagator (see eq. (2.6)), (2) use this expansion in a quantum field theory model for
neutrino oscillations to calculate a time dependent CP asymmetry between the probabilities
of lepton number violating processes (eq. (2.21)), and (3) this CP asymmetry, which only
involves processes with stable initial and final states, must be properly integrated over time
to obtain a source term for the evolution of the lepton asymmetry (eq. (3.2)).

The source term has contributions that can be identified with CP violation from mix-
ing, oscillations and interference between both. The interference term is typically very
relevant and crucial to ensure unitarity is satisfied (this is apparent in figure 1 and also
manifests in figure 2 by the negligible value of the final lepton asymmetry compared to the
individual contributions from mixing, oscillations and interference). Moreover, the expres-
sions we obtain are finite in the double degenerate limit of equal masses and couplings,
as can be seen in the equations derived in section 2 and illustrated in figure 3. At early
times the interference contribution tends to cancel the mixing part, but the net lepton
asymmetry might or might not be dominated by the oscillation term, as can be seen from
eqs. (2.22)–(2.24) and the examples in figures 2 and 3.
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In general we find, as in [26], that the mixing and oscillation terms contribute with
opposite signs to the source, which does not support some of the results of [16–19]. We
have noted in the introduction that the results of [27], based on the Schwinger–Keldysh
closed time path formalism, also do not support some of the findings of [16–19] related to
the mixing and oscillation terms and, like in [26], the lepton asymmetry in [27] converges
to the usual Boltzmann result in the limit of large mass splittings. The authors of [27]
suggest that the discrepancy might come from the helicity dependence, noting that the
works [16–19] are based in a scalar toy model or a semiclassical approach. However the
method described here and in [26] has been implemented in the same scalar toy model
of [18, 19], suggesting that the reason for the discrepancy may lie somewhere else.

The treatment of CP violation in leptogenesis models with quasi-degenerate neutrinos
seems not to be trivial and has actually been discussed over some decades now. Therefore
different approaches can be helpful to understand this problem. The one developed here
is particularly transparent regarding the key requirements from unitarity and CPT invari-
ance. We have performed this study and [26] in a simple scalar toy model, within a static
universe, and for a trivial momentum distribution of the particles. Some of the next steps
could be to extend the approach to an expanding universe and spin 1/2 neutrino fields with
realistic momentum distributions, as well as to other type of scattering processes, in order
to make a closer connection to ARS and resonant leptogenesis, including the intermediate
mass regime.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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