
J
H
E
P
1
1
(
2
0
2
1
)
0
2
1

Published for SISSA by Springer

Received: August 20, 2021
Accepted: October 18, 2021

Published: November 4, 2021

Bootstrapping quantum extremal surfaces. Part I.
The area operator

Alexandre Belina and Sean Colin-Ellerinb
aTheory Division, CERN,
1 Esplanade des Particules, Geneva 23, CH-1211, Switzerland

bCenter for Quantum Mathematics and Physics (QMAP),
Department of Physics, University of California,
Davis, CA 95616 U.S.A.

E-mail: a.belin@cern.ch, scolinellerin@ucdavis.edu

Abstract: Quantum extremal surfaces are central to the connection between quantum
information theory and quantum gravity and they have played a prominent role in the
recent progress on the information paradox. We initiate a program to systematically link
these surfaces to the microscopic data of the dual conformal field theory, namely the scaling
dimensions of local operators and their OPE coefficients. We consider CFT states obtained
by acting on the vacuum with single-trace operators, which are dual to one-particle states
of the bulk theory. Focusing on AdS3/CFT2, we compute the CFT entanglement entropy
to second order in the large c expansion where quantum extremality becomes important
and match it to the expectation value of the bulk area operator. We show that to this
order, the Virasoro identity block contributes solely to the area operator.

Keywords: AdS-CFT Correspondence, Conformal Field Theory

ArXiv ePrint: 2107.07516

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP11(2021)021

mailto:a.belin@cern.ch
mailto:scolinellerin@ucdavis.edu
https://arxiv.org/abs/2107.07516
https://doi.org/10.1007/JHEP11(2021)021


J
H
E
P
1
1
(
2
0
2
1
)
0
2
1

Contents

1 Introduction 1
1.1 General program: bootstrapping quantum extremal surfaces 4
1.2 Summary of results 5

2 CFT calculation 6
2.1 Entanglement entropy in CFT2 6
2.2 Holographic CFTs and the 1/c expansion 8
2.3 Small interval limit 9
2.4 1/c corrections 9

3 Bulk effective field theory 12
3.1 First-order backreaction 13
3.2 Second-order backreaction 14

3.2.1 Scalar field 14
3.2.2 Metric 16

3.3 Bulk energy 17

4 Area operator 19
4.1 Metric perturbation 21
4.2 Shape variation 22

5 Discussion 25
5.1 The bulk entanglement entropy, and what is left to be done 25
5.2 Bulk cancellations 26
5.3 Graviton entanglement 26
5.4 Excited states vs multiple intervals 27

A Bulk wavefunction and metric backreaction 28
A.1 Wavefunction 28
A.2 Second-order metric 31

B Details of area calculations 33

1 Introduction

The interplay between quantum information theory and quantum gravity has enabled
tremendous progress in our understanding of holography and the AdS/CFT correspon-
dence. The star player of this program has been the quantum Hubeny-Rangamani-Ryu-
Takayanagi (HRRT) formula, a master formula to compute the entanglement entropy of
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Figure 1. A fixed time slice of an asymptotically AdS3 spacetime with classical extremal surface Σcl
A

(red) given by the spacelike geodesic anchored on the boundary of the CFT interval A (green). The
quantum extremal surface ΣA (blue) is a spacelike curve that extremizes the generalized entropy
and the (quantum) homology surface RA (orange) is the region bounded by ΣA and A.

the boundary CFT semi-classically in the bulk from the generalized entropy of a special
surface [1–6]

SCFT
EE (A) = min ext

ΣA

[Area(ΣA)
4GN

+ Sbulk
EE (ΣA)

]
, (1.1)

where A is a spatial subregion in the CFT and ΣA is a codimension-2 bulk surface that is
homologous to A. The term Sbulk

EE (ΣA) refers to the entanglement entropy associated to the
codimension-1 region RA bounded by ΣA and A, for all quantum fields that propagate on
a given background (see figure 1). The surface ΣA that extremizes the generalized entropy
in (1.1) is called a quantum extremal surface and will be the main subject of this work.

In the context of black hole evaporation, recent developments have established that this
master formula is clever enough to compute a Page curve compatible with unitarity, thus
taking big steps towards solving Hawking’s information paradox [7, 8]. The quantum HRRT
formula can ultimately be derived by the semi-classical gravitational path integral [9–13],
which appears to be much smarter than previously anticipated. The fact that the semi-
classical path integral is capable of reproducing a unitary Page curve suggests that knowing
the full microscopic details of the CFT is not crucial at this level. If this is indeed to be the
case, it is then natural to ask exactly how much (or what part) of the CFT is needed? The
use of the Euclidean path integral has unfortunately obscured this aspect and in this work,
we will initiate a program to systematically bootstrap quantum extremal surfaces from the
microscopic data of the dual conformal field theory, namely a list of operator dimensions
and OPE coefficients.

Precisely answering this question in the context of black hole evaporation or for high-
energy dynamics is a formidable task, and strong evidence seems to suggest that the grav-
itational theory has only access to statistical properties of the dual CFT [14–21]. As a
starting point, we will consider states that are obtained by acting with low-dimension op-
erators on the CFT vacuum, corresponding to perturbative few-quanta excitations of the

– 2 –



J
H
E
P
1
1
(
2
0
2
1
)
0
2
1

quantum fields that propagate in the bulk. For such states, a dictionary between geometric
aspects of the quantum extremal surface and the microscopic data of the CFT can be made
precise, as we will show.

Very little is known about the properties of quantum extremal surfaces and most ex-
plicit computations have been done in AdS2 where the extremal surface is a point (see
however [22] for general properties based on surface theory). On top of that, it is worth-
while to mention that the formula (1.1) suffers from various types of divergences. First,
the entanglement entropy in a quantum field theory is UV-divergent due to the entangle-
ment of degrees of freedom close to the entangling surface. This issue is not particularly
serious, and one can simply choose to work with CFT quantities that are UV finite such
as the relative entropy, the mutual information, or the difference of entanglement entropies
between two states.

On the other hand, the gravitational side of the formula is also bulk-UV divergent.
This issue is more subtle and conceptually more involved. The common lore is that the
divergence of the bulk entanglement entropy, which should be proportional to the area
of the bulk entangling surface, is reabsorbed into Newton’s constant which gets renor-
malized [23, 24] (see also [25] for an explicit check in the context of boundary photons
and gravitons in AdS3). Running the bulk RG therefore shifts contributions between the
area term and the bulk entanglement entropy and it is not a priori clear that one can
meaningfully separate the two contributions and attribute either one to some subset of the
CFT data. In particular, this also explains why the two terms appear together, since it
is really only this combination that the microscopic CFT can ever know about. We will
chose to work with quantities that are UV-finite also in the bulk, such that these subtleties
do not affect us. We will see that we can unambiguously attribute CFT contributions to
either term.

Pertubative states. The simplest state we can think of is the vacuum of the CFT.
Unfortunately, the entanglement entropy of a single region in the vacuum of a CFT is fixed
by symmetry (at least for sufficiently symmetric entangling surfaces), and the only effect
of quantum extremality is to renormalize Newton’s constant. To probe the dynamics of
the theory, one must either consider multiple intervals (see for example [26–31]) or change
the state, as we will do here.

A particularly nice class of states to study are perturbative states, corresponding to
the excitation of a few quanta of the perturbative bulk fields that propagate on the AdS
vacuum. It is expected that such states can be treated purely within the bulk low energy
effective field theory. The simplest among such states correspond to one-particle states
of the bulk fields [32], which in the CFT maps to the insertion of a single-trace primary
operator at the origin

|ψ〉bulk = a†(0,0) |0〉global AdS ⇐⇒ |ψ〉CFT = O(0) |0〉CFT . (1.2)

Such states provide nice testing grounds for the entanglement entropy where the answer
is not fixed by symmetry and depends dynamically on the CFT data. It is important to
emphasize that these are truly quantum states of the bulk theory which are not dual to
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(semi)-classical geometries, unlike coherent states prepared by a Euclidean-path integral
with sources [33–36], or heavy operators dual to black hole microstates [37, 38]. In partic-
ular, order by order in GN , changes in the geometry due to quantum backreaction are of
the same order as the change in the bulk entanglement entropy.

1.1 General program: bootstrapping quantum extremal surfaces

This paper is the first in a series of papers aimed at constructing a dictionary between
CFT OPE data given by the conformal dimensions and OPE coefficients of single- and
double-trace operators, and the contributions to the expectation value of the area operator
and the bulk entanglement entropy appearing in the generalized entropy.

For convenience, we will work in AdS3/CFT2.1 In 2d CFTs, the difference of Rényi
entropies between the excited state and the vacuum is computed by a local correlation
function [40], which can be computed from the CFT data. To obtain the entanglement
entropy, one needs to perform an analytic continuation in the Rényi index n, which can
be achieved term by term in an OPE expansion. This framework thus provides a bridge
between the microscopic CFT data in a large c expansion and quantum extremal surfaces
in the bulk.

At order c0, this was studied in [25, 32]. The CFT computation is given by a correlator
of generalized free fields and in the bulk, one considers the entanglement entropy of free
propagating bulk fields through the classical RT surface. A perfect match between bulk and
boundary was found, providing an explicit check of the FLM formula [3]. It is important
to emphasize that at this order, quantum extremality does not play any role since the bulk
entangling surface does not move. Studying the effects that appear at order c−1 where
quantum extremality kicks in will be the focus of this paper.

The bulk side of the story turns out to be both conceptually and technically involved.
Already at order c0, there are contributions that appear in the area operator that exactly
cancel against other contributions in the bulk entanglement entropy [32]. This is guaranteed
by a first law of entanglement entropy in the bulk, but already suggests that there is more
going on in the bulk than what the boundary theory has access to. Things get even more
complicated at the next order, and we will thus start by focusing strictly on the contribution
of the area operator.2 The bulk entanglement entropy will be discussed in [41].

We provide the entries of this dictionary in table 1. The first two rows were derived
in [32] while the first line of the O(c−1) dictionary is what will be derived in this paper.
The anomalous dimensions γn,` and corrections to mean field theory OPE coefficients of
double-trace operators an,` must involve the bulk entanglement entropy, but the precise
details of this map are yet to be determined [41]. There could also be corrections due to the
exchange of higher spin operators, giving 1/∆gap effects in the CFT. In the bulk, they would

1In higher-dimensions, we expect a generalization of our results using the technology of [39] with a
suitable treatment of graviton entanglement on the bulk side.

2Technically speaking, we do not give the full answer for the area operator as the shift of the surface
due to the bulk entanglement entropy is a piece we leave for [41]. As we will explain, it turns out that
we can separate the two effects consistently since the shift in the location of the surface picks up additive
contributions from the geometry and from the bulk entanglement entropy.
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SCFT
EE (A) ext(Sgen)

O(c0)
Id|h A[Σ(0)

A , g(1)]

[OO]n,` Sbulk
EE (Σ(0)

A )

O(c−1)

Id|δh + T A[Σ(0)
A , g(2)] +A[Σ(1)

A,geo, g
(1)]

γn,` ?

an,` ?

O
(

1
∆gap

)
? ?

Table 1. The dictionary between CFT OPE data and the contributions to the generalized entropy
of the quantum extremal surface. The terms in the ext(Sgen) column correspond to the contribution
left over after the various cancellations between bulk terms.

be responsible for deviations of the low-energy EFT from semi-classical general relativity
minimally coupled to matter. Such effects would appear as corrections in any top-down
model whose bulk dual is given by string theory in AdS. This part of the dictionary would be
particularly interesting to construct as it would give α′ corrections to the quantum HRRT
formula (1.1), and could probe entanglement in string theory beyond higher derivative
corrections to entanglement entropy [42, 43]. We leave it for future work.

By matching the various contributions on the two sides of the quantum HRRT for-
mula (1.1), we will eventually obtain an explicit check of this formula which, to our knowl-
edge, has not been done in the literature thus far (although see [44] for an explicit check
in a doubly holographic setup).

1.2 Summary of results

We now list a summary of results. For a scalar single-trace operator whose bulk dual is
given by a free scalar field minimally coupled to gravity, the difference of CFT entanglement
entropies between the excited state and the vacuum at order c−1 is given by

∆SCFT
EE = 2δh

c

(
2− θ cot

(
θ

2

))
− 16h2

15c

(
sin θ2

)4

+ 24h2 − 2δh
c

[
2 log

(
sin θ2

)(
sin θ2

)8h Γ
(

3
2

)
Γ (4h+ 1)

Γ
(
4h+ 3

2

)
+
(

sin θ2

)8h
Γ
(3

2

) Γ (4h+ 1)
Γ
(
4h+ 3

2

) (ψ(4h+ 1)− ψ
(

4h+ 3
2

))]

+ 96h2

c

(
sin θ2

)8h Γ
(

3
2

)
Γ (4h+ 1)

Γ
(
4h+ 3

2

) ,

(1.3)

where δh corresponds to the anomalous dimension of the single-trace operator and is not
fixed from first principles in the CFT. It can be determined through the bulk and we will
expand on this in the main text (see section 3.3).
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The first line comes solely from the vacuum Verma module, namely the first term comes
from the identity operator while the second term comes from the stress-tensor exchange.
We will show that this can be reproduced in the bulk entirely from the area operator.
This fits in nicely with observations for heavy states [38] where it was shown that the
Virasoro identity block captures the minimal area of black hole microstates or conical
defects. The remaining three lines in (1.3) are related to multi-trace exchanges, and the
bulk entanglement entropy is needed to capture them [41].

Obtaining the value of the extremal area in the bulk requires a careful treatment of
semi-classical gravity coupled to matter fields, up to second order corrections in GN (which
means backreacting twice). We give a precise definition of what is meant by perturbative
states to this order, and take into account all effects relevant for the generalized entropy.
We then compute the expectation value of the bulk area operator, reproducing the first line
of (1.3). In the process, many other terms appear which must cancel against contributions
from the bulk entanglement entropy, as was observed to first order in [32]. This confirms
that there is much more going on in the bulk than what the CFT has access to.

This paper is organized as follows. In section 2, we perform the CFT side of the
computation. In section 3, we discuss how to perform second-order quantum backreaction
on the geometry and describe the metric that will be relevant to compute the extremal
area. In section 4, we perform the extremization of the area and give the contribution of
the area operator. We conclude with some open questions in section 5. Many of the details
of the calculations are provided in appendices A and B.

2 CFT calculation

In this section, we will proceed to compute the CFT entanglement entropy for perturba-
tive excited states in a 1/c expansion. We start by reviewing the basics of entanglement
entropy in two-dimensional conformal field theories. For more details, we refer the reader
to [32, 40, 45–48].

2.1 Entanglement entropy in CFT2

Consider a two-dimensional conformal field theory in a state |ψ〉 with Hilbert space H. Now
imagine dividing the Hilbert space into two spatial subsystems, A and its complement Ā.
To characterise the entanglement between A and Ā, we define the reduced density matrix

ρA ≡ TrĀ |ψ〉 〈ψ| . (2.1)

The entanglement entropy is given by the Von Neumann entropy of the reduced density
matrix

SEE = −TrρA log ρA . (2.2)

There are also other measures of entanglement, such as the Rényi entropies

Sn ≡
1

1− n log TrρnA , (2.3)
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which provide the moments of the eigenvalue distribution of ρA. Since a direct computation
of the entanglement entropy is often difficult in quantum field theory, one can proceed by
means of the replica trick [45, 46]. We compute the Rényi entropies for all n and then
analytically continue in n to obtain the entanglement entropy:3

SEE = lim
n→1

Sn . (2.4)

Now consider the CFT to live on a circle of unit radius parameterized by a coordinate ϕ
and define the subsytem A to be the spatial interval

A : ϕ ∈ [0, θ] . (2.5)

We will be interested in a particular class of states |ψ〉, obtained by acting with a Virasoro
primary operator on the vacuum

|ψ〉 = O(0) |0〉 , (2.6)

for a primary operator O with dimension (h, h̄). The dual state is given by

〈ψ| = lim
z→∞

〈0|O(z)z2hz̄2h̄ . (2.7)

To implement the replica trick in two-dimensional CFTs, one considers the orbifold CFT
C⊗n/Zn, where the Rényi entropies are given by correlation functions of twist opera-
tors [26, 45, 46]:

Sn = 1
1− n log 〈O⊗n|σn(0, 0)σ̄n(0, θ) |O⊗n〉 . (2.8)

Note that the operator O that creates the state is raised to the n-th power, since the replica
trick instructs us to prepare n copies of the state. In quantum field theory, the entanglement
and Rényi entropies are UV-divergent quantities. A nice UV-finite quantity consists of the
difference of entanglement entropies between the excited state and the vacuum. We have

∆Sn ≡ Sex
n − Svac

n = 1
1− n log TrρnA

TrρnA,vac
= 1

1− n log 〈O
⊗n|σn(0, 0)σ̄n(0, θ) |O⊗n〉
〈0|σn(0, 0)σ̄n(0, θ) |0〉 . (2.9)

While it is possible to analyze this correlation function directly in the orbifold theory, we
will proceed in a different way which will be more convenient for our purposes. We can
perform a uniformization map that takes us to the covering space on the plane

z =
(
ew − 1
ew − eiθ

) 1
n

. (2.10)

In doing so, the twist operators disappear and we are left with a local correlation function
in the original CFT C of 2n operators O inserted on the complex plane at the positions

zk = e−i(θ−2πk)/n, z̃k = e2πik/n , k = 0, . . . , n− 1 . (2.11)
3There can be subtleties in the analytic continuation [31, 49–52], but we do not except any effect of this

type in the setup relevant for this paper.
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The difference of Rényi entropies thus becomes

∆Sn = 1
1− n log

[
e−iθ(h−h̄)

( 2
n

sin
[
θ

2

])2n(h+h̄)
〈
n−1∏
k=0

O(z̃k)O(zk)〉
]
. (2.12)

In general CFTs, the computation of this correlation function is difficult and involves all
of the CFT data. For holographic CFTs with a large central charge c, things drastically
simplify as we will now explain.

2.2 Holographic CFTs and the 1/c expansion

We have seen that the Rényi entropies of primary excited states are given by 2n-point local
correlation functions. As mentioned above, these are in general very hard to compute.
However, we are interested in holographic large c CFTs in which case the correlation
function can be expanded order by order in 1/c. To first order, the correlation function will
factorize due to large c factorization [53]: in large c CFTs, there are two classes of operators:
single-trace operators (dual to propagating bulk fields) and multi-trace operators (dual to
multi-particle states in the bulk).

Large c factorization is a property of OPE coefficients. It states that

CO1O2O3 ∼
1√
c
, (2.13)

for O1,2,3 three single-trace operators. On the other hand, OPE coefficients involving
multi-trace operators can be order one. We will consider excited states corresponding to
single-particle states in the bulk and we will therefore take the primary operator O to be
single-trace.
Thanks to large c factorization, the leading order contribution to the 2n-point func-
tion (2.12) is given by all the Wick contractions

〈
n−1∏
k=0

O(z̃k)O(zk)〉 =
∑
g∈S2n

n∏
j=1
〈O(zg(2j−1))O(zg(2j))〉+O

(1
c

)
. (2.14)

The first correction to the entanglement entropy (which is O(1)) reads

∆S(1)
n =

( 1
n

sin
[
θ

2

])2n(h+h̄)
Hf(Mij) , (2.15)

where Hf(M) is the Haffnian of a matrix M defined by

Hf(M) = 1
2nn!

∑
g∈S2n

n∏
j=1

Mg(2j−1),g(2j) , (2.16)

and

Mij =



1
(| sin π(i−j)

n
|)2(h+h̄) , i, j ≤ n

1(
| sin
(
π(i−j)
n
− ϕ

2n

)
|
)2(h+h̄) , i ≤ n, j > n

1(
| sin
(
π(i−j)
n

+ ϕ
2n

)
|
)2(h+h̄) , j ≤ n, i > n

1
(| sin π(i−j)

n
|)2(h+h̄) , i, j > n .

(2.17)
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This is the exact expression for the Rényi entropies in primary single-trace states to order
c0. Unfortunately, it is difficult to perform the analytic continuation n → 1 for general h
and h̄ (there is however an analytic continuation for h + h̄ = 1 [54–57]). To simplify the
analytic continuation, we will consider a small interval limit where one performs an OPE
expansion in the CFT. From now on we consider scalar states and set h = h̄.

2.3 Small interval limit

The small interval (θ � 1) limit corresponds to the OPE limit in the 2n-point correlation
function, where the 2n operators come close pairwise. The leading term corresponds to the
identity contribution for all OPE contractions and reads

∆Sn ≈

 sin
[
θ
2

]
n sin

[
θ

2n

]
4nh

. (2.18)

The analytic continuation for this term can easily be computed and gives

∆SEE ≈ 2h
(

2− θ cot
(
θ

2

))
. (2.19)

The right-hand side of this expression is actually fixed by conformal invariance, and is
exactly equal to the expectation value of the vacuum modular Hamiltonian in the primary
excited state (see for example [47]). Beyond this order, we probe the generalized free fields
as explained in the previous subsection. From the OPE point of view, all the other Wick
contractions come from the contribution of multi-trace operators. The lightest operator
that appears in the O × O OPE is the operator : O2 : with conformal dimension 4h. Its
OPE coefficient is given by [31]

COOO2 =
√

2 . (2.20)

The exchange of O2 by any two pairs of the 2n-point function gives the subleading contri-
bution4

∆SEE|O(c0) = 2h
(

2− θ cot
(
θ

2

))
−
(

sin θ2

)8h Γ
(

3
2

)
Γ (4h+ 1)

Γ
(
4h+ 3

2

) + · · · . (2.21)

This result was reproduced by a bulk calculation in [32]. We now turn to higher order
corrections in the 1/c expansion.

2.4 1/c corrections

We are now ready to discuss the further 1/c corrections. These 1/c corrections can come
from four different sources:

4Strictly speaking, the θ8h term is subleading to the θ cot
(
θ
2

)
term only for h > 1

4 . However, it is
essential for our analysis to organize terms in the small interval limit by their analytic behavior in the
complex θ-plane and keep all terms with different analytic behavior.
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1. The operator O that we consider may not have a protected conformal dimension, and
it can receive 1/c corrections. We will therefore write5

(
hfull, h̄full

)
O

=
(
h+ δh

c
, h+ δh

c

)
. (2.22)

2. The exchange of other single-trace operators. In particular, an operator that always
contributes is the exchange of the stress-tensor. In this work, we will assume no
other operator appears in the OPE of O with O. In particular, this means we are
considering a theory where COOO = 0 (for example because O is protected by a Z2
symmetry).

3. Anomalous dimensions of the multi-trace operators:

∆[OO]n,l = 4h+ 2n+ l + γn,l + 4δh
c

+O(c−2) (2.23)

These anomalous dimensions can come from two sources. They can either come from
truncated solutions to crossing, which can be thought of as bulk quartic couplings [58],
or they can be induced by crossing due to the exchange of single-trace operators [59].
We will assume the bulk scalar sector is free and thus does not have quartic couplings,
so the sole source of anomalous dimensions is coming from the crossing data due to
the exchange of the stress tensor T (and in principle all Virasoro descendants of the
identity, although the stress-tensor is the only contribution at this order).

4. Changes in the OPE coefficients of the multi-trace operators:

C2
OO[OO]n,l = (1 + (−1)l)CnCn+l + an,l

c
+O(c−2) , (2.24)

with Cn = Γ(2h+n)2Γ(4h+n−1)
n!Γ(2h)2Γ(4h+2n−1) . As with the anomalous dimensions, these can come

from two sources and we will assume they are only generated by the crossing data of
the stress-tensor exchange.

We will now discuss the effect of each contribution. We start with the anomalous
dimension of the single-trace operator. This contribution is easily obtained from the result
at order c0 by shifting h→ h+δh/c. Keeping only the contribution of the identity operator
since the double-trace operator will be dealt with shortly, we find

∆S1
EE = 2δh

c

(
2− θ cot

(
θ

2

))
. (2.25)

Next, we consider the exchange of the stress tensor, and proceed in a similar manner to
how we obtained (2.21). The (unnormalized) OPE coefficient is given by

COOT = h , (2.26)
5With a slight abuse of notation, we will use h as the bare (infinite c) scaling dimension and not as

∆full/2.
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So the exchange of T in the 2n-point function gives a contribution

2h2

c

 sin
[
θ
2

]
n sin

[
θ

2n

]
4nh(sin θ

2n

)4 n−1∑
k=1

n− k(
sin πk

n

)4

 . (2.27)

Using the periodicity of the sine function, this can be rewritten as

h2

c

 sin
[
θ
2

]
n sin

[
θ

2n

]
4nh(sin θ

2n

)4
n
n−1∑
k=1

1(
sin πk

n

)4

 . (2.28)

The analytic continuation of this expression was obtained in [60] and reads

n
n−1∑
k=1

1
(sin πk

n )4 = (n− 1)
Γ
(

3
2

)
Γ (3)

Γ
(

7
2

) +O((n− 1)2) = (n− 1) 8
15 +O((n− 1)2) . (2.29)

We can then obtain the contribution of T and T̄ to the entanglement entropy

∆S2
EE = −16h2

15c

(
sin θ2

)4
. (2.30)

Note that this is also the subleading contribution to the identity Virasoro block, which
matches the computation done in [38].

The third piece comes from the shift in the dimension of O2. We can easily find this
contribution to be

∆S3
EE =− γ0,0 + 4δh

c

[
2 log

(
sin θ2

)(
sin θ2

)8h Γ
(

3
2

)
Γ (4h+ 1)

Γ
(
4h+ 3

2

)
+
(

sin θ2

)8h
Γ
(3

2

) Γ (4h+ 1)
Γ
(
4h+ 3

2

) (ψ(4h+ 1)− ψ
(

4h+ 3
2

))] (2.31)

where ψ is the digamma function.
Finally, the contribution due to the change in OPE coefficients reads

∆S4
EE = −a0,0

c

(
sin θ2

)8h Γ
(

3
2

)
Γ (4h+ 1)

Γ
(
4h+ 3

2

) . (2.32)

It remains to give the values of γn,l and an,l. These were computed in [61]. We have

γ0,0 = −24h2 . (2.33)

The value a0,0 can be extracted from (B.1) of [61], we find

C2
OO[OO]0,0 = 2Γb(2Q)

Γb(Q)
Γb(2Q− 4α)Γb(Q− 2α)2

Γb(Q− 4α)Γb(2Q− 2α)2 , (2.34)
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where Γb is the Barnes double Gamma function and

c = 1 + 6Q2

Q = b+ b−1

h = α(Q− α)
(2.35)

Expanding this at large c and fixed h, we find

a0,0 = −96h2 . (2.36)

Putting all the pieces together, we find that at order 1/c, the difference of entanglement
entropies is given by

∆SEE|O(c−1) = 2δh
c

(
2− θ cot

(
θ

2

))
− 16h2

15c

(
sin θ2

)4

+ 24h2 − 4δh
c

[
2 log

(
sin θ2

)(
sin θ2

)8h Γ
(

3
2

)
Γ (4h+ 1)

Γ
(
4h+ 3

2

)
+
(

sin θ2

)8h
Γ
(3

2

) Γ (4h+ 1)
Γ
(
4h+ 3

2

) (ψ(4h+ 1)− ψ
(

4h+ 3
2

))]

+ 96h2

c

(
sin θ2

)8h Γ
(

3
2

)
Γ (4h+ 1)

Γ
(
4h+ 3

2

) .

(2.37)

The aim will now be to reproduce this result from the bulk side, and understand how
the various pieces whose origin is clear in the CFT get reorganized and geometrized in
the bulk theory. In this paper, we will concentrate on reproducing the first line of (2.37),
which we will show is solely encoded in the area operator. The bulk entanglement entropy
responsible for the other terms will be discussed in [41].

Before moving on, two comments are in order. First, this expression is meant in
a double-expansion sense. It is the expansion of the full answer to order 1/c, further
expanded in the small interval limit where only the leading term in θ is kept for each piece.
Second, it is striking to see that the anomalous dimension of the single-trace operator is not
fixed by crossing in any way (at least in the perturbative sense), and depends on details of
the microscopic theory at hand. This is similar to bulk quartic couplings that may or may
not be there, depending on the bulk theory. We will see that this has a direct counterpart
in the bulk, and that the CFT operator can be protected or not.

3 Bulk effective field theory

Our ultimate goal is to compute the expectation value of the area operator in the state
|ψ〉bulk evaluated on the quantum extremal surface up to O(G2

N ). This requires backreact-
ing the corresponding matter on the spacetime twice to obtain O(G2

N ) corrections to the
metric, which will be the subject of this section. We will consider pure Einstein gravity
minimally coupled to a scalar field.
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3.1 First-order backreaction

The first order backreaction of the bulk state |ψ〉bulk on the metric was obtained in [32]
which we review here. We start with pure AdS3 in global coordinates

(ds(0))2 = −(r2 + 1)dt2 + dr2

r2 + 1 + r2dϕ2 . (3.1)

Consider a free massive scalar field φ(0) propagating on this background. The wave equation
for this scalar field is (

(∇(0))2 −m2
)
φ(0) = 0 , (3.2)

where the mass m is related to the conformal dimension h of the CFT operator O dual to
φ via

m2 = 4h(h− 1) . (3.3)

We canonically quantize the field

φ(0)(t, r, ϕ) =
∑
n,m

(
a(0)
n,me

−iΩ(0)
n,mtf (0)

n,m(r, ϕ) +
(
a(0)
n,m

)†
eiΩ

(0)
n,mt

(
f (0)
n,m

)∗
(r, ϕ)

)
, (3.4)

where e−iΩn,mtfn,m satisfy the wave equation (3.2) and the ladder operators obey the
canonical commutation relations

[a(0)
n,m,

(
a

(0)
n′,m′

)†
] = δmm′δnn′ . (3.5)

We are interested in the state with the lowest energy excitation (n = m = 0) of the scalar
field φ, namely

|ψ(0)〉bulk =
(
a

(0)
0,0

)†
|0(0)〉 , (3.6)

which corresponds to a primary operator in the CFT.6 To solve the wave equation (3.2),
we expand the wavefunction f (0)

n,m(r, ϕ) in a Fourier series

f (0)
n,m(r, ϕ) =

∑
m

e2πimϕf (0)
n,m(r) . (3.7)

The solution to the wave equation for n = m = 0 after imposing regularity at the origin,
normalizability at the boundary, and unit norm is given by

f
(0)
0,0 (r) = 1√

2π
1

(1 + r2)h , Ω(0)
0,0 = 2h . (3.8)

To determine the back-reaction of this excitation, we need the expectation value of the
stress-tensor in the state |ψ(0)〉. The stress-tensor is given by

T (0)
µν = :∂µφ(0)∂νφ

(0) − 1
2g

(0)
µν

(
(∇(0)φ(0))2 +m2(φ(0))2

)
: , (3.9)

6We will henceforth refer to |ψ〉bulk simply as |ψ〉.
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whose expectation values are

〈ψ(0)|T (0)
tt |ψ(0)〉 = 2h(2h− 1)

π

1
(1 + r2)2h−1

〈ψ(0)|T (0)
rr |ψ(0)〉 = 2h

π

1
(1 + r2)2h+1

〈ψ(0)|T (0)
ϕϕ |ψ(0)〉 = 2hr2

π

(1− 2h)r2 + 1
(1 + r2)2h+1 .

(3.10)

The first-order backreacted metric is then obtained from Einstein’s equations:(
Rµν −

1
2gµνR− gµν

) ∣∣∣∣
O(GN )

= 8πGN 〈ψ(0)|T (0)
µν |ψ(0)〉 , (3.11)

where we expand the metric in powers of GN

gµν = g(0)
µν +GNg

(1)
µν +G2

Ng
(2)
µν + . . . (3.12)

with g(0)
µν given by (3.1), and we have similar expansions for Rµν and R. The solution of

Einstein’s equations up to O(GN ), after requiring that the metric be asymptotically AdS3
and smooth at the origin, is given by

ds2 = −(r2 + 1− 16GNh)dt2 +
[
1 + 16GNh

r2 + 1

(
1− 1

(r2 + 1)2h−1

)]
dr2

r2 + 1 + r2dϕ2 +O(G2
N ) .

(3.13)
We would like to emphasize that this geometry is smooth everywhere, and can be

viewed as a regularized conical defect geometry, where the Compton wavelength of the
particle smoothens out the conical defect.

3.2 Second-order backreaction

We now want to backreact the matter on the spacetime a second time. This requires
quantizing a free scalar field on the first-order spacetime and backreacting yet again the
excited state on top of this geometry to obtain a second-order backreacted metric.

3.2.1 Scalar field

Consider a free massive scalar field φ propagating on the first-order backreacted space-
time (3.13). The wave equation is (

∇2 −m2)φ = 0 , (3.14)

where the differential operator can be written as

∇2 =
(
∇(0)

)2
+ 16hGND(1) +O(G2

N ) (3.15)

with the differential operators
(
∇(0)

)2
and D(1) provided in (A.3). Once again we consider

the mode expansion of the wavefunction

φ(t, r, ϕ) =
∑
n,m

(
an,me

−iΩn,mtfn,m(r, ϕ) + a†n,me
iΩn,mt(fn,m)∗(r, ϕ)

)
(3.16)
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with components
fn,m(r, ϕ) =

∑
m

e2πimϕfn,m(r) (3.17)

and canonical commutation relations

[an,m, a†n′,m′ ] = δmm′δnn′ . (3.18)

The radial components fn,m(r) and frequencies Ωn,m can be expanded around the pure
AdS3 solution:

fn,m(r) = f (0)
n,m(r) + 16hGNf (1)

n,m(r) +O(G2
N ), Ωn,m = Ω(0)

n,m + 16hGNΩ(1)
n,m +O(G2

N ) .
(3.19)

The wave equation then becomes an inhomogeneous second order differential equation given
by the pure AdS3 wave equation with a source term:
((
∇(0)

)2
−m2

)
e−iΩ

(0)
n,mtf (1)

n,m(r, ϕ) = −
(
D(1) + 2

r2 + 1Ω(0)
n,mΩ(1)

n,m

)
e−iΩ

(0)
n,mtf (0)

n,m(r, ϕ) .
(3.20)

This differential equation turns out to be solvable analytically for the lowest energy wave-
function n = m = 0. We refer the reader to appendix A.1 for the details and here we
simply state the result:

f
(1)
0,0 (y) = (1− y)h

(
C1 + C2

(
ln y + 2hy 3F2

(
1, 1, 2h+ 1; 2, 2; y

))

− h

2
√

2π

[ 1
2h(1− y)2h − (2h− 1)

(4h− 1)y 3F2
(
1, 1, 2− 2h; 2, 2; y

)
+ 2y

−
(

1 +
Ω(1)

0,0
h
− 1

(4h− 1)

)
ln y

])

y ≡ r2

r2 + 1 .

(3.21)

The requirement of regularity at the origin fixes C2 and normalizability of the wavefunction
gives

Ω(1)
0,0 = −2h(2h− 1)

(4h− 1) , (3.22)

and the requirement that the wavefunction have unit norm fixes C1. These lead to the final
form for the wavefunction

f
(1)
0,0 (y) =

f
(0)
0,0 (y)

2

(
1 + h

(4h− 1)
(
ψ(2h)− ψ(4h)

)
− 1

2(1− y)2h − 2hy

+ h
(2h− 1)
(4h− 1)y 3F2

(
1, 1, 2− 2h; 2, 2; y

))
.

(3.23)
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3.2.2 Metric
We would now like to backreact this scalar field on top of the geometry (3.13). The bulk
state dual to |ψ〉CFT is7

|ψ〉 = a†0,0 |0〉 . (3.24)

We are ultimately interested in computing the area which is only sensitive to g(2)
rr . This

comes from the tt Einstein’s equation so we focus here only on solving this equation (the
details of solving the other equations can be found in section A.2). The expectation value
of the tt component of the stress-tensor in this state to O(GN ) is

〈ψ|Ttt |ψ〉 |O(GN ) = 16hGN
[
4h
(
Ω(1)

0,0 − h+ 1
) (
f

(0)
0,0

)2
+ 8h

(
h+ (h− 1)(r2 + 1)

)
f

(0)
0,0 f

(1)
0,0

−
(

2(r2 + 1)− 1
(r2 + 1)2h−2

)(
∂rf

(0)
0,0

)2
+ 2(r2 + 1)2∂rf

(0)
0,0∂rf

(1)
0,0

]
.

(3.25)

The tt Einstein’s equation at O(G2
N ) is given by(

Rtt −
1
2gttR− gtt

) ∣∣∣∣
O(G2

N )
= 8πGN 〈ψ|Ttt |ψ〉 |O(GN ) . (3.26)

This can be solved analytically for g(2)
rr , which is explained in detail in appendix A.2, and

one finds

g(2)
rr = −64h2 (r2 − 3)

(r2 + 1)3

(
1− 1

(r2 + 1)2h−1

)2
− 2

(r2 + 1)2G
(2)
2 (r) , (3.27)

where

G
(2)
2 (r) = 32h2

(4h− 1)

[
2

(r2 + 1)2h

(
(4h− 1)(3− 4h)r2 + 4h+ 2h(r2 + 1) (ψ(2h)− ψ(4h))

)
− (4h− 1)r2 + 8h− 3

(r2 + 1)4h−1 + 4h(2h− 1) r4

(r2 + 1)2h+1 3F2

(
1, 1, 2− 2h; 2, 2; r2

r2 + 1

)

+ 8h2
∞∑
k=1

(1− 2h)k
kk! By(k + 1, 2h)

]
+ C3 ,

(3.28)

where By(a, b) is the incomplete Beta function. The constant of integration C3 is fixed by
the requirement that there is no conical singularity at r = 0:

C3 = − 32h2

(4h− 1) (4h (ψ(2h)− ψ(4h)) + 3) . (3.29)

7It is worth mentioning that at order G2
N (or c−1 in the CFT), the bulk scalar sector is no longer free

due to the interactions with gravity. In particular, the energy of the two-particle state is not twice that of
the one-particle state and the Fock nature of the Hilbert space disappears. Moreover, the CFT operators
dual to one-particle states can mix with multi-trace operators [62, 63]. However, one can check that for
one-particle states, these features do not affect the area operator (the technology of [64] is useful to that
end). They could however affect the bulk entanglement entropy.
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This completes the second-order backreaction of the scalar field on the spacetime that will
be needed to determine the area of the quantum extremal surface coming from second
order changes in the metric. Again, this geometry should be viewed as a smoothened-out
conical defect, where the smoothing is due to the quantum nature of the particle we are
inserting. The metric shares certain similarities with a conical defect, in particular near
the boundary. We will see this directly in the value of the area.

3.3 Bulk energy

Before moving to the evaluation of the area operator, we first need to discuss the energy
of the one-particle state. As we will see, this will encode the anomalous dimension of the
single-trace operator, which was not fixed from CFT first principles in section 2 (although
it would of course be fixed in any given top-down model, and is allowed to be non-zero if
the operator is not protected).

At order c0, there are two ways to think about the bulk dual of the CFT state |ψ〉CFT.
Either we think of it as a state of the perturbative matter |ψ(0)〉bulk on a frozen AdS3
background, or we can view it as dual to the geometry (3.13) coming from backreacting
|ψ(0)〉bulk on top of pure AdS3. In fact, one really needs to view the state in both ways
simultaneously to compute the generalized entropy, since the matter state affects the entan-
glement entropy while the backreaction affects the area. However, when trying to extract
the total energy of the state, we can think of it in either way. We can compute the ADM
mass using the geometry (3.13), or we can compute the bulk matter energy. We find

MADM −MAdS = 〈ψ(0)|Hmatter |ψ(0)〉 = 2h = ∆CFT
O , (3.30)

namely both procedures agree with the scaling dimension of the CFT operator, as expected.
The agreement of the two procedures is guaranteed by Einstein’s equations for linearized
perturbation on top of AdS, but this breaks down at second order (O(c−1)) as we will now
see. Of course, the AdS/CFT dictionary instructs us to take the ADM mass to be dual to
the CFT energy, but we will compute both quantities nevertheless.

The Hamiltonian of the bulk scalar field φ is related in the standard way to the tt
component of the bulk stress-tensor:

H = −
∫
d2x
√
−g gttT tt . (3.31)

From (3.10) and (3.25), one finds the expectation value of the Hamiltonian to O(GN ) to be

〈ψ|H |ψ〉 = Ω0,0 = 2h− 48h2 (2h− 1)
(4h− 1)

1
c
, (3.32)

where we have used the AdS/CFT relation c = 3
2GN . This is the expected relation between

the energy and frequency of a free scalar field. We see that the leading order term is equal to
the bare conformal dimension of O, but there is a non-trivial correction at subleading order.

The ADM mass of any asymptotically AdS spacetime can be computed from the
quasilocal stress-tensor on the timelike boundary which is defined by the variation of the
gravitational action with respect to the boundary metric with suitable counter-terms added
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to remove the standard divergences near the boundary of AdS [65]. This quasilocal stress-
tensor is interpreted as the expectation value of the CFT stress-tensor in the CFT state
dual to the spacetime geometry. Explicitly, it is given in AdS3 by

〈ψ|TCFT
µν |ψ〉 = 1

8πGN

(
Kγµν −Kµν − γµν

)
, (3.33)

where Kµν is the extrinsic curvature of the codimension-1 timelike surface defined by fixed
r, which is eventually taken to infinity, and γµν is the boundary metric. The extrinsic
curvature after taking the limit r →∞ is

Ktt = −r2 − 1
2 + 8hGN − 256h2G2

N

( (2h− 1)
4(4h− 1) + h

(4h− 1) (ψ(4h)− ψ(2h+ 1))
)

Kϕϕ = r2 + 1
2 − 8hGN + 64h2G2

N

(2h− 1)
(4h− 1)

K = 2 ,

(3.34)

leading to the quasilocal stress tensor

〈ψ|TCFT
tt |ψ〉 = − c

24π + h

π
− 12h2

π

(2h− 1)
(4h− 1)

1
c
. (3.35)

The ADM mass or, equivalently, the energy of the state |ψ〉CFT is

M =
∫
dϕ 〈ψ|TCFT

tt |ψ〉 = − c

12 + 2h− 24h2 (2h− 1)
(4h− 1)

1
c
. (3.36)

The leading term is the Casimir energy of the cylinder and the first subleading term is the
bare conformal dimension of O. We have no choice but to interpret the O(c−1) term as
giving rise to an anomalous dimension for the single-trace operator O:

δh = −12h2 (2h− 1)
(4h− 1) . (3.37)

Observe that the O(c−1) terms in the expectation value of the scalar field Hamiltonian and
the ADM mass differ by a factor of 2, which hints at a more general relation between the
two. It would be interesting to understand this fact better, but we leave it for future work.

Anomalous dimension, mass renormalization and the bootstrap. Using the bulk
effective field theory and Einstein’s equations, we have obtained the anomalous dimension
of the single-trace operator in the CFT. To the best of our knowledge, this is the first
computation of this type and offers a method similar to that of [64] but for single-trace
operators.

It is worthwhile to comment on the meaning of this anomalous dimension. In partic-
ular, it is important to emphasize again that we only have a bulk computation of δh, and
that it is not fixed by first principles in the CFT. The large N bootstrap is very much
a bottom-up set up, in that we assume a certain set of starting conditions which can be
viewed as input data (large N factorization, large gap, etc) and derive constraints from the
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combination of these assumptions, along with crossing symmetry, unitarity and causality.
In this setup, the scaling dimension of the single-trace operator is input data. Therefore,
not only can we not verify the value of δh as found from the bulk, but in fact it seems
we are even allowed to force δh = 0 in the CFT. How can that be compatible with the
computation done in the bulk?

There is one more piece of the bulk EFT data that we have not discussed so far: the
bulk mass. Nothing prevents us from expanding the mass itself in powers of GN

m = m(bare) +GNm
(1) + · · · (3.38)

In this section, we have phrased everything in terms of h using (3.3), so this would induce
a shift

h→ h+ δhmass shift . (3.39)

Using this, we could easily achieve a state whose energy is 2h up to order c−2, simply by
setting

δhmass shift = −δh . (3.40)

Therefore, the procedure should be seen as follows: first fix the scaling dimension of the
CFT operator to the relevant order in the 1/c expansion (again, this is input data). Take
into account the effect of backreaction, and tune δhmass shift to match the CFT answer.
This will always yield results that are compatible between the bulk and boundary, but the
dictionary between bulk mass and CFT scaling dimension (3.3) gets modified.

For the rest of the paper, since we have no a priori bias to work with protected
operators, we will simply take the bulk expression δh to be defining for us the CFT scaling
dimension, i.e., we take δhmass shift = 0. As a final comment, note that if the operator is
BPS, the backreaction may not induce any correction to the energy, and the contribution
of the bulk gauge field should cancel against the geometric backreaction, much like it does
for double-trace operators in [64]. It would be nice to check this explicitly.

4 Area operator

We now have all the pieces we need to compute the expectation value of the area operator
to second-order (ignoring the contribution of the bulk entanglement entropy, as we will
explain). Let us start by expanding the extremization of the generalized entropy appearing
on the righthand side of (1.1) order-by-order in GN . The metric and scalar field have
already been expanded around pure AdS3 in (3.12) and (3.19), respectively, and one can
similarly expand the location of the quantum extremal surface around the classical extremal
surface Σ(0)

A :
ΣA = Σ(0)

A +GNΣ(1)
A +G2

NΣ(2)
A + . . . (4.1)

We now want to compute the difference of generalized entropies between the excited state
and the vacuum. At zeroth order, one simply finds that the areas of the vacuum and the
excited state cancel

1
4GN

〈0| Â[Σ(0)
A , g(0)] |0〉 − 1

4GN
〈ψ(0)| Â[Σ(0)

A , g(0)] |ψ(0)〉 = 0 . (4.2)
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This is the piece that would be O(G−1
N ) and is (CFT) UV-divergent in the vacuum. We

see that it exactly cancels, in agreement with the CFT, which is both UV-finite and starts
at order c0.

At first subleading order, the generalized entropy reads

ext
ΣA

(
〈ψ| Â[ΣA, g] |ψ〉

4GN
+ Sbulk

EE [ΣA, g, φ]
) ∣∣∣∣∣
O(G0

N )

= 1
4 〈ψ

(0)| Â[Σ(0)
A , g(1)] |ψ(0)〉+ Sbulk

EE [Σ(0)
A , g(0), φ(0)] ,

(4.3)

where no extremization is required at this order, that is, 〈ψ(0)| Â[Σ(1)
A , g(0)] |ψ(0)〉 = 0 due

to the classical extremality of Σ(0)
A . This was computed in [32] and found to agree exactly

with the CFT answer. At first order in GN , one finds

ext
ΣA

(
〈ψ| Â[ΣA, g] |ψ〉

4GN
+ Sbulk

EE [ΣA, g, φ]
)∣∣∣∣∣
O(G1

N )

=
[

1
4 〈ψ| Â[Σ(0)

A , g(2)] |ψ〉+ Sbulk
EE [Σ(0)

A , g(1), φ(0)] + Sbulk
EE [Σ(0)

A , g(0), φ(1)]

+ ext
Σ(1)
A

(1
4 〈ψ

(0)| Â[Σ(1)
A , g(0)] |ψ(0)〉+ 1

4 〈ψ
(0)| Â[Σ(1)

A , g(1)] |ψ(0)〉

+ Sbulk
EE [Σ(1)

A , g(0), φ(0)]
)]
GN .

(4.4)

Some comments are in order about this expansion:

• First, we have not written down the term 〈ψ(0)| Â[Σ(2)
A , g(0)] |ψ(0)〉 since it vanishes

by extremality of Σ(0)
A .

• The term 〈ψ| Â[Σ(0)
A , g(2)] |ψ〉 should be understood as capturing all O(G2

N ) contri-
butions to the area of the classical extremal surface Σ(0)

A coming from changes in the
metric so it includes contributions to the area from (g(1))2 and from g(2).

• The term Sbulk
EE [Σ(0)

A , g(0), φ(1)] corresponds to all corrections to the bulk entanglement
entropy from changes in the scalar field theory due to interactions with gravity, i.e.,
binding energies of two-particle states, corrections to coupling constants, etc.

• The term 〈ψ(0)| Â[Σ(1)
A , g(0)] |ψ(0)〉 should be understood as capturing the quadratric

dependence on Σ(1)
A .

In this section, we will compute all the contributions to the area appearing in (4.4),
except for the contribution from the shift in the surface due to the bulk entanglement
entropy appearing inside the extremization. Somewhat surprisingly, these geometric and
entanglement contributions to the shape variation of the surface ΣA can be separated and
computed independently, as we shall see in section 4.2. This allows us to compute only the
former in this paper.
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4.1 Metric perturbation

We want to find the changes in the area of the quantum extremal surface due to perturba-
tions of the metric. Define the induced metric on the surface ΣA by h, given the metric g
in the full spacetime. The expectation value of the area on surfaces ΣA homologous to A is

〈ψ| Â[ΣA, g] |ψ〉 =
∫

ΣA

√
h . (4.5)

The induced metric is
hrr = grr +

(
∂ϕ

∂r

)2
gϕϕ . (4.6)

Extremizing the area functional with respect to the zeroth order induced metric h(0) gives
the classical extremal surface described by

ϕ′(r) = rmin

r
√

(r2 + 1)(r2 − r2
min)

. (4.7)

where rmin is the deepest point reached in the bulk by the surface, which is related to θ by

rmin = cot
(
θ

2

)
. (4.8)

The change in the area to second order in GN due to the change in the metric can now be
computed from (3.13) and (3.27) and one finds

〈ψ| Â[Σ(0)
A , g(2)] |ψ〉 =G2

N

∫ ∞
rmin

dr

√
1− r2

min
r2

(r2 + 1) 3
2

[
64h2

r2 + 1

(
1− 1

(r2 + 1)2h−1

)2
(

2 + r2
min
r2 − r

2
)

− 2G(2)
2 (r)

]
. (4.9)

This integral is difficult to evaluate exactly due to the complicated nature of G
(2)
2

(see (3.28)), but it can be evaluated in the small interval (large rmin) limit. The details are
provided in appendix B and here we simply state the result:

1
4 〈ψ| Â[Σ(0)

A , g(2)] |ψ〉

= 8h2G2
N

[
1

(4h− 1)θ
2
(
−(2h− 1)

3 + 2(143h− 34)
315

(
θ

2

)2
+O(θ4)

)

+ 2
Γ(3

2)Γ(2h)
Γ(2h+ 3

2)

(
(4h2 − 3h+ 1)− 2h2

(4h− 1) (ψ(2h)− ψ(4h))
)(

θ

2

)4h (
1 +O(θ2)

)

+
Γ(3

2)Γ(4h− 1)
4 Γ(4h+ 5

2)

(
θ

2

)8h−2(
−(8h+ 1)(7h+ 3) +

(
96h3 + 196h2 − h− 13

)(θ
2

)2

+O(θ4)
)]

. (4.10)
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4.2 Shape variation

We next want to compute the change in the area due to the GN correction Σ(1)
A to the

location of the extremal surface. This turns out to be simpler to compute in Rindler
coordinates for reasons that will be explained momentarily.

We can define AdS-Rindler coordinates that cover the classical entanglement wedge
W(0)[A] defined by the bulk domain of dependence of R(0)

A , the homology surface stretching
between A and Σ(0)

A . The AdS-Rindler coordinates are τ, x ∈ R, ρ ∈ [0,∞) with coordinate
transformation to global coordinates given by

t = arctan
( sinh ρ sinh τ

sinh ρ cosh τ sinh η + cosh ρ cosh x cosh η

)
r =

√
cosh2 ρ sinh2 x+

(
cosh ρ cosh x sinh η + sinh ρ cosh τ cosh η

)2
ϕ = arctan

( cosh ρ sinh x
cosh ρ cosh x sinh η + sinh ρ cosh τ cosh η

)
,

(4.11)

where the boost parameter η is related to the interval size by

η = cosh−1
(

csc
(
θ

2

))
. (4.12)

The AdS-Rindler metric is

(ds(0)
Rindler)

2 = − sinh2 ρ dτ2 + dρ2 + cosh2 ρ dx2 . (4.13)

One particularly nice feature of these coordinates is that the classical extremal surface Σ(0)
A

lies at ρ = 0. Therefore, the quantum extremal surface at first order in GN away from Σ(0)
A

is described by
ρ(x) = GNρ

(1)(x) . (4.14)
Let us now examine the quantum extremal surface equation in these coordinates. The

Lagrangian for the area is

LA =
√
h =

√
gxx + 2ρ′(x)gxρ + gρρ(ρ′(x))2 . (4.15)

We can expand LA to second order in GN , ignoring any (g(1))2 and g(2) terms since these
contributions were computed in section 4.1, and we find

L(2)
A ⊃

1
2
(
(ρ(1)′(x))2 + (ρ(1)(x))2 − V1(x)ρ(1)(x)− V2(x)ρ(1)′(x)

)
, (4.16)

where we have defined the ‘potentials’

V1(x) = 32h sech x tanh2 x tanh η
(cosh x cosh η)4h(sinh2 x+ cosh2 x sinh2 η)2

×
[

cosh2 x cosh2 η
(
(cosh x cosh η)4h − cosh2 x cosh2 η

)

+
(
(cosh x cosh η)4h − 2h cosh2 x cosh2 η

) (
sinh2 x+ cosh2 x sinh2 η

) ]

V2(x) = 32h sech x tanh x tanh η (cosh2 x cosh2 η − (cosh x cosh η)4h)
(cosh x cosh η)4h(sinh2 x+ cosh2 x sinh2 η)

.

(4.17)
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Notice that we did not include any contribution from the second order variation of the
surface ρ(2)(x) because classical extremality of Σ(0)

A implies that any such contribution is
higher order in GN .

The change in the bulk entanglement entropy due to the shape variation of the surface
was derived via the path integral in [66]. They found that it is given by the following
integral over Euclidean AdS3:

Sbulk
EE [Σ(1), g(0)] = lim

ε→0

1
2

∫
EAdS3\Rε

d3x

√
g

(0)
E δgE,µν 〈ψ(0)| (TE)µνKψ |ψ(0)〉c , (4.18)

where δgE,µν is a diffeomorphism that maps Σ(0)
A to ΣA and Kψ = − log ρψ is the modular

Hamiltonian associated to the reduced density matrix for the state |ψ(0)〉 in W(0)[A]. The
subscript c on the two-point function denotes the connected correlator. Futhermore, we
have cut out a tubular neighborhoodRε of Σ(0)

A with radius ε because the integrand diverges
there. After integrating by parts and using conservation of the stress-tensor, this reduces to

Sbulk
EE [Σ(1), g(0)] = GN lim

ε→0
2πε

∫
Σ(0)
A

dx

√
h

(0)
E ρ(1)(x) 〈ψ(0)| (TE)ρρ(x, ρ = ε)Kψ |ψ(0)〉c .

(4.19)
The Lagrangian for the bulk entanglement entropy at order GN thus takes the form

LEE ≡ GN
VEE(x)

4 ρ(1)(x) . (4.20)

The total Lagrangian is
L = 1

4GN
LA + LEE (4.21)

whose Euler-Lagrange equation at first order in GN is

ρ(1)′′(x) = ρ(1)(x) + Vgeo(x) + VEE(x) , (4.22)

where
Vgeo(x) ≡ 1

2
(
V ′2(x)− V1(x)

)
. (4.23)

This is a simple inhomogeneous second-order differential equation with solution

ρ(1)(x) = A+e
x +A−e−x

+ 1
2

(
ex
∫
dx e−x (Vgeo(x) + VEE(x))− e−x

∫
dx ex (Vgeo(x) + VEE(x))

)
.

(4.24)

The constants A± are fixed by the boundary conditions ρ(1)(±∞) = 0. This demonstrates
explicitly why we can separate the shift in the extremal surface into a geometry piece and
a bulk entanglement piece. One should view the change in the geometry and the change
in the bulk entanglement entropy as two forces that pull on the quantum extremal surface,
each in their independent way. In particular, we can write

ρ(1)(x) = ρ(1)
geo(x) + ρ

(1)
EE(x) (4.25)
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with

ρ
(1)
geo/EE(x) = Ageo/EE

+ ex +Ageo/EE
− e−x + 1

2

(
ex
∫
dx e−xVgeo/EE(x)− e−x

∫
dx exVgeo/EE(x)

)
.

(4.26)
We can now ignore ρ(1)

EE(x) for the purposes of this paper and leave the calculation of this
quantity to [41]. To compute ρ(1)

geo(x), we perform the small interval expansion and find

ρ(1)
geo(x) = θ2h

3 (cosh(2x) + 3) sech 3x
(
1 +O(θ2)

)
+
(
θ

2

)4h (
1 +O(θ2)

) [
−8h

Γ(2h+ 1)Γ
(

3
2

)
Γ
(
2h+ 3

2

) ex

− 4h sinh x sech 4h+2x

(
1

(2h+1) + e−2x

(h+1)
(
1− 2F1

(
1,−2h−2, 2h+1;−e2x

)))]
.

(4.27)

Performing the integral in x of (4.16), we obtain the change in the area of the quantum
extremal surface due to the shape variation

1
4 〈ψ| Â[Σ(1)

A,geo, g] |ψ〉 |O(G2
N )

= −164
315h

2θ4 +
128h2 Γ(2h+ 1)Γ

(
3
2

)
3Γ
(
2h+ 7

2

) (8h2 + 19h+ 9)
(
θ

2

)4h+2 (
1 +O(θ2)

)

− 32h2

2
Γ
(

3
2

)2
Γ(2h+ 1)2

Γ
(
2h+ 3

2

)2 +
Γ
(

3
2

)
Γ(4h+ 1)

Γ
(
4h+ 5

2

)
(θ2

)8h (
1 +O(θ2)

)
.

(4.28)

The details of the calculation of this integral can be found in appendix B.
Finally, all our results for the area to second order can be combined to obtain

1
4GN

(
〈ψ| Â[Σ(1)

A,geo, g] |ψ〉+ 〈ψ| Â[Σ(0)
A , g] |ψ〉

)∣∣∣
O(G2

N )

= GN

(
−2h2

3 θ2
[4(2h− 1)

(4h− 1) +
(

1 + (2h− 1)
(4h− 1)

) 1
15θ

2 +O(θ4)
]

+ 16h2 Γ
(3

2
)
Γ(2h)

Γ
(
2h+ 3

2
) ((4h2 − 3h+ 1)− 2h2

(4h− 1) (ψ(2h)− ψ(4h))
)(

θ

2

)4h (
1 +O(θ2)

)

+ 2h2 Γ
(3

2
)
Γ(4h− 1)

Γ
(
4h+ 5

2
) (

θ

2

)8h−2(
−(8h+ 1)(7h+ 3)

+
(

96h3 − 60h2 + 63h− 13− 32
Γ
(3

2
)
Γ(2h+ 1)2Γ

(
4h+ 5

2
)

Γ
(
2h+ 3

2
)2Γ(4h− 1)

)(
θ

2

)2
+O(θ4)

)
.

(4.29)
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Focusing only on the θ2 and θ4 terms, we can rewrite the answer using c = 3
2GN and

δh = −12h2 (2h−1)
(4h−1) to obtain

1
4GN

(
〈ψ(0)| Â[Σ(1)

A,geo, g] |ψ(0)〉+ 〈ψ| Â[Σ(0)
A , g] |ψ〉

)∣∣
O(G2

N ),O(θ2)+O(θ4)

= 2δh
c

(
θ2

6 + θ4

360

)
− 16h2

15c

(
θ

2

)4
.

(4.30)

We see that the θ2 and θ4 terms above exactly agree with the CFT answer found in (2.37)
once expanded, thus confirming the first row of the O(c−1) part of the dictionary in table 1.

5 Discussion

In this paper, we have computed the entanglement entropy in a holographic CFT2 for one
interval in a state obtained by acting with a primary single-trace operator on the vacuum.
We performed the computation in a double expansion in 1/c and in the interval size, and
obtained results to order c−1. In the bulk, the state maps to a perturbative one-particle
state of the bulk matter, working at an order that goes beyond the FLM formula and
where quantum extremality becomes important. We computed the expectation value of the
extremal area operator, considering all effects but the displacement of the surface induced
by the bulk entanglement. We found that all CFT terms involving the Virasoro identity
block were fully accounted for by this area operator, while the contributions of double-trace
operators must be encoded in the bulk entanglement entropy. We now conclude with open
questions and future directions.

5.1 The bulk entanglement entropy, and what is left to be done

In this paper, we have computed the expectation value of the area operator, taking into
account all effects but the variation of the surface due to the “pull” by the entanglement
entropy. We left the evaluation of the bulk entanglement entropy to [41]. We now comment
on the remaining pieces that need to be evaluated. There are three contributions that need
to be computed as detailed below

1. First, we need to evaluate Sbulk
EE [Σ(0)

A , g(1), φ(0)]. This term is not conceptually diffi-
cult, it computes the change in the entanglement entropy due to the change in the
background geometry. It is given by a bulk two-point function between the stress-
tensor and the modular Hamiltonian [66]. Since the bulk theory is free, and the
modular Hamiltonian of the Rindler-wedge is local, this can be computed explicitly.

2. The second term consists of the shape variation involving ρ
(1)
EE, which appears in

the extremization of the quantum extremal surface. As with metric variations, the
change in the entanglement entropy is computed by a two-point function between
the stress-tensor and the modular Hamiltonian [66], as reviewed in (4.18) and (4.19).
Like the previous term, this can be computed explicitly and is not conceptually
difficult. However, both in this term and in the previous one, there could be bulk
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UV-divergences to worry about, which would be a new feature compared to [32] where
everything was bulk UV-finite.

3. Finally, there is the term Sbulk
EE [Σ(0)

A , g(0), φ(1)] which encodes the fact that the scalar
field sector is no longer free due to its interactions with gravity. This term will
involve breaking the Fock structure of the Hilbert space, and can be tackled using
the technology of [64] that “integrates out” gravitons. Note also that this term would
be the most relevant term if we had considered a λφ4 interaction in the bulk.

5.2 Bulk cancellations

We have seen that the (classical) area operator gives us entirely the exchanges of the
identity operator and the stress-tensor in the CFT. However, it also gives us many other
terms, some that scale like θ4h and some that scale like θ8h. We know for a fact that
the θ4h terms must cancel against other contributions in the bulk entanglement entropy,
since such a term is absent from the CFT answer. This could be understood better by
computing the relative entropies à la JLMS [5] to this order, and would involve modular
extremal surfaces [6]. These cancellations would presumably be a more involved version of
the bulk first law of entanglement found in [32].

The θ8h term on the other hand is harder to decode. At this stage, it could give a
contribution to the final answer that does not cancel against anything else in the bulk
entanglement entropy, since a θ8h term also appears in the CFT answer. It would then cor-
respond to part of the modification to the OPE coefficients of double-trace operators (2.32).
The coefficients do not appear to match, so it cannot make up for this alone, and would in
any case need to be accompanied by some other contribution from the bulk entanglement
entropy. It is also possible that it completely cancels against the bulk entanglement en-
tropy, meaning that the area operator accounts for the Virasoro block alone, up to things
that cancel against the bulk entanglement entropy. It would be interesting to understand
this better, and it will be explored in [41].

Taking a step back, it is interesting to think about these terms from the CFT point
of view. Since they do not appear in any CFT quantity, it is interesting to ask what their
meaning is. These terms come from separating the bulk entanglement entropy and the area
operator. Since only the combination is gauge-invariant and bulk UV-finite, is it possible
that these terms are not true gauge-invariant quantities? Everything we have computed is
clearly gauge-invariantly defined in the bulk, so they would have to be not gauge-invariant
in some generalized sense. Or if we take the perspective that these terms are meaningful
on their own, how do we extract them from the CFT? We hope to return to these questions
in the future.

5.3 Graviton entanglement

It is also worth discussing the entanglement of (boundary) gravitons. In everything we have
discussed, we have not considered the possibility that the scalar state polarizes the entan-
glement structure of boundary gravitons. Since the scalar and graviton sectors interact at
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order 1/c, one may think that inserting the scalar operator is not very different from insert-
ing a stress-tensor, and the insertion of a stress-tensor would certainly polarize the graviton
entanglement (just as inserting a U(1) current polarizes the photon entanglement [25]).

While we cannot prove this without also computing the bulk entanglement entropy for
the scalar and matching to the CFT answer, we do not believe this to be the case. Since
the graviton sector is topological in AdS3, inserting a non-trivial scalar state does not affect
this topological sector, and the local modification of the geometry obviously doesn’t change
the topology of the entangling surface. So we believe that at this order, it is not necessary
to consider the graviton entanglement since the contribution will be the same as that of the
vacuum and cancel in the difference of entanglement entropies. It is of course possible that
our intuition is wrong, or that this statement fails at higher order in the 1/c expansion.
But with the information we currently have, it is natural to conjecture that

Virasoro Id block ⊂ Aext
4GN

, to all orders in 1/c , (5.1)

namely that the Virasoro identity block is fully captured by the area operator (up to terms
that cancel against the bulk entanglement entropy) and that the entanglement of gravitons
does not play any role to any order in the 1/c expansion.

There are two cases where we do expect the boundary gravitons and their entanglement
structure to play an important role: the first is to consider a state where we insert a Virasoro
descendant of the primary operator. This will certainly polarize the entanglement structure
of boundary gravitons, much like inserting a stress-tensor does. The second is to go to
higher dimensions, where the gravitational sector is no longer topological. There, we do
expect the entanglement of gravitons to play an important role. We hope to return to this
in the future.

5.4 Excited states vs multiple intervals

Finally, we comment on a bootstrap-type approach for multiple intervals and its difference
with excited states. Trying to understand the conditions under which one obtains a HRRT
formula for multiple intervals in the vacuum was a task undertaken in [26, 27, 31]. This
type of approach more naturally connects to the modular bootstrap program, since it
involves constraining torus or higher genus partition functions. Demanding that the leading
O(c) term matches with the bulk HRRT formula leads to conditions on the spectrum à
la HKS [67], or generalizations for OPE coefficients [31]. A first downside is that these
conditions typically do not force the CFT to be holographic, and a small ∆gap is allowed.

Computing the quantum corrections is typically hard, which in the bulk are given by 1-
loop determinants on the handle-body geometries relevant for the Rényi entropies [28, 29].
We are not aware of any computation that probes O(c−1) effects where quantum extremal-
ity becomes important, but our expectations are that again these corrections are given by
heat-kernels of the (now interacting) bulk perturbative fields. The important point is that
we do not expect the background geometry to change at all, and we believe the handlebody
geometries (which are locally AdS) will still accurately describe the state. In Lorentzian
signature, these geometries have horizons, surfaces that become the HRRT surfaces as
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n → 1 and we do not expect these surfaces to move, in principle to any order in the 1/c
expansion. Therefore, it seems that the structure of the quantum corrections will be less
rich than in our setup where we explicitly saw the surface move. It would be interesting to
understand this better.
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A Bulk wavefunction and metric backreaction

In this appendix, we provide the details of the calculation of the second-order backreaction
of the scalar field on the metric discussed in section 3.

A.1 Wavefunction

We start by solving the scalar wave equation (3.14) on the first-order backreacted space-
time (3.13). It is easiest to do this in α coordinates with r = tanα. Furthermore, we can
simplify our formulae by working with a redefined perturbative parameter

ε ≡ 16hGN . (A.1)

The Laplace-Beltrami operator on the first-order backreacted spacetime is

∇2 = 1√
−g

∂µ
(√
−g gµν∂ν

)
=
(
∇(0))2 + εD(1) +O(ε2) , (A.2)

where(
∇(0))2 =− cos2 α∂2

t + cotα∂α + cos2 α∂2
α + cot2 α∂2

ϕ +O(ε2)

D(1) ≡− cos4 α∂2
t +

(
− cos2 α cotα cos(2α) + cos4h+1 α cscα (h cos(2α)− h+ 1)

)
∂α

+ cos4 α
(
cos4h−2 α− 1

)
∂2
α .

(A.3)

Expanding the wavefunction f0,0(α) around the pure AdS3 wavefunction as in (3.19), the
wave equation at first order in ε becomes((

∇(0)
)2
−m2

)
e−2ihtf

(1)
0,0 (α) = −

(
D(1) + 4h cos2 αΩ(1)

0,0

)
e−2ihtf

(0)
0,0 (α) . (A.4)
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We make one more change of coordinates

f
(1)
0,0 (α) = cos2h α g(1)(y), y = sin2 α , (A.5)

so that (A.4) becomes (
∂2
y + (1− (1 + 2h)y)

y(1− y) ∂y

)
g(1)(y) = Q(y) , (A.6)

where

Q(y) ≡ − 1√
2π

1
y(1− y)

(
h2(1− y) + hΩ(1)

0,0 − h(1− y)2h−1(1− 2hy) + h (1− (1 + h)y)
)
.

(A.7)
This is a second-order linear inhomogeneous differential equation. To solve this, let us first
look at the homogeneous differential equation:(

∂2
y + (1− (1 + 2h)y)

y(1− y) ∂y

)
P (y) = 0 . (A.8)

This is just the pure AdS wave equation for n = m = 0 with the two solutions:

P1(y) = 1, P2(y) = ln y + 2hy 3F2 (1, 1, 2h+ 1; 2, 2; y) . (A.9)

The Wronskian is given by

W (y) = P1(y)P ′2(y)− P2(y)P ′1(y) = 1
y(1− y)2h . (A.10)

The inhomogeneous differential equation (A.6) thus has the following solution:

g(1)(y) = C1P1(y) + C2P2(y) + gP (y) , (A.11)

where
gP (y) = P2(y)

∫
dy

P1(y)
W (y)Q(y)− P1(y)

∫
dy

P2(y)
W (y)Q(y) , . (A.12)

After integration by parts, we find

gP (y) =− h

2
√

2π

∫
dy

1
y(1− y)2h

[
1

(4h− 1)(1− y)4h−1 (1− (4h− 1)y)

+ (1− y)2h
(

2y − 1−
Ω(1)

0,0
h

)]

=− h

2
√

2π

[
1

2h(1− y)2h − (2h− 1)
(4h− 1)y 3F2 (1, 1, 2− 2h; 2, 2; y)

+ 2y −
(

1 +
Ω(1)

0,0
h
− 1

(4h− 1)

)
ln y

]
.

(A.13)
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Putting all of the pieces together, the first-order radial wavefunction is

f
(1)
0,0 (y) = (1− y)h

(
C1 + C2 (ln y + 2hy 3F2 (1, 1, 2h+ 1; 2, 2; y))

− h

2
√

2π

[
1

2h(1− y)2h − (2h− 1)
(4h− 1)y 3F2 (1, 1, 2− 2h; 2, 2; y)

+ 2y −
(

1 +
Ω(1)

0,0
h
− 1

(4h− 1)

)
ln y

])
.

(A.14)

It remains to determine the constants C1, C2, and Ω(1)
0,0. First, we require that the

wavefunction be regular at the origin (y = 0) which fixes

C2 = − h

2
√

2π

1 +
Ω(1)

0,0
h
− 1

(4h− 1)

 . (A.15)

Next, we require normalizability of the wavefunction with respect to the Klein-Gordon
inner product so the wavefunction must not diverge at the boundary (y = 1). All terms in
f

(1)
0,0 are finite at the boundary except 3F2

(
1, 1, 2h+ 1; 2, 2; y

)
, and hence we must have

C2 = 0 =⇒ Ω(1)
0,0 = −2h(2h− 1)

(4h− 1) . (A.16)

Finally, we choose to normalize our wavefunction to have unit norm with respect to the
Klein-Gordon inner product defined by

〈φ1, φ2〉 = i

∫
σ
d2x
√
ggtt (φ∗1∂tφ2 − φ∗2∂tφ1) , (A.17)

where σ is a spacelike slice. The wavefunction f
(0)
0,0 is normalized with unit norm so f (1)

0,0
must have vanishing norm at O(ε), leading to

0 =
[
2
(
Ω(0)

0,0 + εΩ(1)
0,0

) ∫
dy dϕ

√
−g̃ g̃ttf̃0,0(y, ϕ)2

] ∣∣∣∣
O(ε)

= 1
2

∫ 1

0

dy

(1−y)

Ω(1)
0,0 + Ω(0)

0,0(1−y)−
Ω(0)

0,0
2 (1−y)h

f (0)
0,0 (y) + 2Ω(0)

0,0f
(1)
0,0 (y)

 f (0)
0,0 (y)

= − 8h− 3
8π(4h− 1) + C1√

2π
+ h

4π(4h− 1) (ψ(4h)− ψ(2h+ 1))

=⇒ C1 = 1
2
√

2π

(
1 + h

(4h− 1) (ψ(2h)− ψ(4h))
)
,

(A.18)

where the integral of the hypergeometric 3F2 can be performed using 7.512.11 in [68].
Therefore, we obtain the first-order radial wavefunction appearing in (3.23).
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A.2 Second-order metric

We next explain how to solve Einstein’s equations to obtain the second-order backreacted
metric. We make the following metric ansatz for our asymptotically AdS3 spacetime in
global coordinates:

ds2 = −F1(r)dt2 + dr2

F2(r) + r2dϕ2 , (A.19)

where
F1,2(r) = r2 +G1,2(r)2 . (A.20)

We expand the functions G1,2(r) around pure AdS as

G1,2(r) = 1 +GNG
(1)
1,2(r) +G2

NG
(2)
1,2(r) , (A.21)

The Ricci tensor and Ricci scalar are found to be

Rtt = 1
4F
′
1F
′
2 + 1

2F2F
′′
1 −

1
4
F2(F ′1)2

F1
+ 1

2
F2F

′
1

r

Rrr = 1
4

(F ′1)2

F 2
1
− 1

2
F ′′1
F1
− 1

2
F ′2
F2r
− 1

4
F ′2F

′
1

F2F1

Rϕϕ = −1
2rF

′
2 −

1
2
rF ′1F2
F1

R = 1
2

(F ′1)2F2
F 2

1
− 1

2
F ′2F

′
1

F1
− F2F

′
1

rF1
− F2F

′′
1

F1
− F ′2

r
.

(A.22)

We can now write Einstein’s equations in terms of G1,2(r). The tt Einstein equation at
second order (3.26) becomes

−
(
r2 + 1
r

)
(G(2)

2 )′ − 128(2h− 1)h2

(r2 + 1)2h−1

(
1 + 2

(r2 + 1) −
1

(r2 + 1)2h−1

)

= 16hGN
[
4h
(
Ω(1)

0,0 − h+ 1
) (
f

(0)
0,0

)2
+ 8h

(
h+ (h− 1)(r2 + 1)

)
f

(0)
0,0 f

(1)
0,0

−
(

2(r2 + 1)− 1
(r2 + 1)2h−2

)(
∂rf

(0)
0,0

)2
+ 2(r2 + 1)2∂rf

(0)
0,0∂rf

(1)
0,0

]
.

(A.23)

This can be integrated to obtain G(2)
2 leading to (3.28), where the integral of the hyperge-

ometric 3F2 can be computed as follows:∫
dr

r3

(r2 + 1)2h+2 3F2

(
1, 1, 2− 2h; 2, 2; r2

r2 + 1

)

= 1
2

∫
dy y(1− y)2h−1

3F2 (1, 1, 2− 2h; 2, 2; y)

= − 1
2(2h− 1)

∫
dy (1− y)2h−1

∞∑
k=1

(1− 2h)k
k

yk

k!

= − 1
2(2h− 1)

∞∑
k=1

(1− 2h)k
kk! By(k + 1, 2h) .

(A.24)
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From the way we have written the metric in (A.19), it is clear that the condition that the
metric be smooth at the origin, i.e., that there be no conical singularity at r = 0, is the
condition G(2)

2 (r = 0) = 0 which produces (3.29).
One can next obtain the correction G

(2)
1 to gtt by solving the rr Einstein’s equation

at second-order. The term G
(2)
1 is not needed to compute the area, but it is needed to

compute the ADM mass in section 3.3. The rr Einstein’s equation is(
Rrr −

1
2grrR− grr

) ∣∣∣∣
O(G2

N )
= 8πGN 〈ψ|Trr |ψ〉 |O(GN ) , (A.25)

which gives

1
r

(
G

(2)
1

r2 + 1

)′
+ 2 G

(2)
2

(r2 + 1)2 − 64h2 (r2 − 3)
(r2 + 1)2h+2

(
2− 1

(r2 + 1)2h−1

)

= 128πh
[
2∂rf (0)

0,0∂rf
(1)
0,0 +

(Ω(0)
0,0f

(0)
0,0 )2

(r2 + 1)3 + 2
Ω(0)

0,0f
(0)
0,0

(r2 + 1)2

(
Ω(1)

0,0f
(0)
0,0 + Ω(0)

0,0f
(1)
0,0

)
(A.26)

− 8h(h−1)
(r2 + 1) f

(0)
0,0 f

(1)
0,0 + 1

(r2+1)2

(
1− 1

(r2+1)2h−1

)( 1
(r2+1)

(
Ω(0)

0,0

)2
−4h(h−1)

)
(f (0)

0,0 )2
]
.

This can be integrated to obtain G(2)
1 and one finds

G
(2)
1 (r) = 1

(r2 + 1)4h

[
− 8h

(4h+ 3)
1

(r2 + 1)2 + h

(2h+ 1)
1

(r2 + 1)

− 8h2(r4 − (2h+ 3)r2 + 2h− 5) + (r2 + 1)(2hr2 + h+ 2)
(4h+ 1)(4h− 1)

]

+ 64h2

(r2 + 1)2h

[
4h2

(h+ 1)
1

(r2 + 1) + h(2h− 1)
(2h+ 1)(4h− 1) (ψ(2h)− ψ(4h))

− 2(16h3 − 12h2 + 5h− 1)
(2h+ 1)(4h− 1) −

(
1− 2h+ h

(4h− 1) (ψ(2h)− ψ(4h))
)
r2
]

− 128h3 (2h− 1)
(4h− 1)

[
r4

(r2 + 1)2h+1 3F2

(
1, 1, 2− 2h; 2, 2; r2

r2 + 1

)

+ (r2 + 1) 1
(2h− 1)

∞∑
k=1

(1− 2h)k
kk!

(
By(k + 1, 2h+ 1)

+ (1− h+ 2hy)By(k + 1, 2h) + (2h+ 1)By(k + 2, 2h)
)]

+ C3 + C4 .

(A.27)

where the integration constant C4 is fixed by the requirement that the metric be asymp-
totically AdS, leading to

C4 = 64h2

(2h+ 1)2(4h− 1)
(
h(1− 2h) + (2h+ 1)(2h2 + 7h+ 2) (ψ(2h+ 1)− ψ(4h))

)
.

(A.28)
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Thus, we have obtained the full second-order backreacted metric. Note that the ϕϕ Ein-
stein’s equation does not add any additional constraints to the second-order metric.

B Details of area calculations

In this appendix, we provide some of the details of the area calculations in section 4. For
the correction to the area from the change in the metric, we need to compute (4.9), which
we restate here for the reader’s convenience:

〈ψ| Â[Σ(0)
A , g] |ψ〉

∣∣
O(G2

N )

= G2
N

∫ ∞
rmin

dr

√
1− r2

min
r2

(r2 + 1) 3
2

[
64h2

r2 + 1

(
1− 1

(r2 + 1)2h−1

)2
(

2 + r2
min
r2 − r

2
)
− 2G(2)

2 (r)
]
.

(B.1)

The first integral can performed analytically and one finds

I1 =−
∫ ∞
rmin

dr

√
1− r2

min
r2

(r2 + 1) 5
2

(
64h2

(
1− 1

(r2 + 1)2h−1

)2
)(

r2 − 2− r2
min
r2

)

=− 8
3h

2
[
8 sin2

(
θ

2

)
+ 4

(
sin2

(
θ

2

)
+ 6θ cot

(
θ

2

)
− 3 cos2

(
θ

2

)
− 9

)
+ sin θ csc4

(
θ

2

)
(14 sin θ − 9θ − 6θ cos θ + sin θ cos θ)

]

− 32h2
Γ
(

3
2

)
Γ(2h)

Γ
(
2h+ 7

2

) [−(2h+ 5
2

)
(4h cos θ + 3) sin4h

(
θ

2

)

+ 4h(2h+ 1) tan4h+4
(
θ

2

)(
cot2

(
θ

2

)
+ 2

)
2F1

(
2h+ 2, 2h+ 5

2 , 2h+ 7
2;− tan2

(
θ

2

))

+ 16h(h+ 1)(2h+ 1)
(7h+ 4) tan4h+4

(
θ

2

)
2F1

(
2h+ 5

2 , 2h+ 3, 2h+ 9
2;− tan2

(
θ

2

))]

− 8h2
Γ
(

3
2

)
Γ(4h)

Γ
(
4h+ 5

2

) [16h (cos θ − 2) sin8h
(
θ

2

)

+

(8h+ 3) cot2
(
θ
2

)
((8h+ 1) cot2

(
θ
2

)
+ 6) + 15

4h− 1

 sin8h+2
(
θ

2

)
64h(4h+ 1)

(8h+ 5) tan8h+4
(
θ

2

)
csc2

(
θ

2

)
2F1

(
4h+ 2, 4h+ 5

2 , 4h+ 7
2;− tan2

(
θ

2

))

+ 128h(4h+ 1)(2h+ 1)
(8h+ 5)(8h+ 7) tan8h+4

(
θ

2

)
2F1

(
4h+ 5

2 , 4h+ 3, 4h+ 7
2;− tan2

(
θ

2

))]
.

(B.2)
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This rather complicated result simplifies significantly in the small interval limit to give

I1 = h2θ2
(
−16

3 + 572
315θ

2 +O(θ4)
)

+ 32h2
Γ
(

3
2

)
Γ(2h)

Γ
(
2h+ 5

2

) (4h+ 3)
(
θ

2

)4h (
1 +O(θ2)

)

+ 8h2
Γ
(

3
2

)
Γ(4h− 1)

Γ
(
4h+ 5

2

) (
θ

2

)8h−2

×
(
−(8h+ 1)(8h+ 3) + (4h− 1)48h+ (8h+ 3)(8h+ 13)

3

(
θ

2

)2
+O(θ4)

)
.

(B.3)
We were only able to integrate the second term in the small interval or, equivalently, large
rmin limit to obtain

I2 = −2
∫ ∞
rmin

dr

√
1− r2

min
r2

(r2 + 1) 3
2
G

(2)
2 (r)

= − 64h2

(4h− 1)

∫ ∞
rmin

dr

√
1− r2

min
r2

(r2 + 1) 3
2

{
(4h− 1)

32h2 C3 +
[
−(4h− 1)r2 + 8h− 3

(r2 + 1)4h−1

+ 2
(r2 + 1)2h

(
(4h− 1)(3− 4h)r2 + 4h+ 2h(r2 + 1) (ψ(2h)− ψ(4h))

) ]

+ 4h(2h− 1)
[

r4

(r2 + 1)2h+1 3F2

(
1, 1, 2− 2h; 2, 2; r2

r2 + 1

)

+ 2h
(2h− 1)

∞∑
k=1

(1− 2h)k
kk! By(k + 1, 2h)

]}

= 16h2

(4h− 1)

[
θ2

3

(
1 + 1

60θ
2 +O(θ4)

)

+
Γ
(3

2
)
Γ(2h+1)

Γ
(
2h+ 5

2
) ((4h+ 3) ((4h−3)(4h−1)− 2h (ψ(2h)− ψ(4h))))

(
θ

2

)4h(
1+O(θ2)

)

+ 2−5
Γ
(

3
2

)
Γ(4h+ 1)

Γ
(
4h+ 5

2

) (
θ

2

)8h−2(
4(8h+ 1) + (32h2 − 52h+ 17)

3 θ2 +O(θ4)
)]

,

(B.4)
where one expands the hypergeometric 3F2 function and the incomplete Beta function
By(a, b) at large r in order to integrate them. The sum of (B.3) and (B.4) produces (4.10).

Let us next explain how to calculate the corrections to the area coming from the shift in
the surface Σ(1)

A,geo. This requires computing the integral of the area Langrangian expanded
at second order in GN (4.16) evaluated on the solution we found for the shift in the surface
ρ

(1)
geo in (4.27). This gives

〈ψ(0)| Â[Σ(1)
A,geo, g] |ψ(0)〉 |O(G2

N )

= 1
2

∫ ∞
−∞

dx
(
(ρ(1)

geo
′(x))2 + (ρ(1)

geo(x))2 − V1(x)ρ(1)
geo(x)− V2(x)ρ(1)

geo
′(x)

)
.

(B.5)
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All of these integrals are straightforward to compute, except for those involving the hyper-
geometric function 2F1. The θ2 and θ4 terms do not require any such integrals. For the
θ4h type terms, one can compute the integral involving the hypergeometric function using
the following series of manipulations:∫ ∞

0
z2h+k(1 + z)−4h−7

2F1 (1,−2h− 2, 2h+ 1;−z)

=
∫ ∞

0
z2h+k(1 + z)−4h−8

2F1

(
1, 4h+ 3, 2h+ 1; z

1 + z

)
=
∫ 1

0
duu2h+k(1− u)2h+6−k

2F1 (1, 4h+ 3, 2h+ 1;u)

= Γ(2h+ k + 1)Γ(2h+ 7− k)
Γ(4h+ 8) 3F2 (1, 4h+ 3, 2h+ k + 1; 2h+ 1, 4h+ 8; 1)

= Γ(2h+ k + 1)Γ(2h+ 7− k)
Γ(4h+ 8)

1
(−2h− k)k

×
k∑
`=0

(−1)`(−2h− k)k−`Γ(`+ 1)(4h+ 3)`
(4h+ 8)`

(
k

`

)
2F1 (`+1, 4h+3 + `, 4h+8 + `; 1)

= Γ(2h+ 1)Γ(2h+ k + 1)Γ(2h+ 7− k)Γ(k + 1)
24 Γ(4h+ 7)Γ(4h+ 3)

k∑
`=0

Γ(4h+ 3 + `)Γ(4− `)
Γ(k − `+ 1)Γ(2h+ 1 + `) ,

(B.6)

where z ≡ e2x, u ≡ z
1+z , and k = 0, . . . , 3. In the first line, we used the Pfaff transformation

and in the third line, we used 7.512.5 in [68].
The calculation of the θ8h term appearing in (B.5) turns out to be formidable due

to complicated integrals hypergeometric functions, as well as hypergeometric functions
squared. We split the calculation into two integrals:

〈ψ(0)| Â[Σ(1)
A,geo, g] |ψ(0)〉 |O(G2

N ),O(θ8h) = 1
2

∫ ∞
−∞

dx

(
(ρ(1)

geo
′(x)|θ4h)2 + (ρ(1)

geo(x)|θ4h)2

− V1(x)|θ4hρ(1)
geo(x)|θ4h − V2(x)|θ4hρ(1)

geo
′(x)|θ4h

)
≡ I1 + I2 , (B.7)

where

I1 = 1
2

∫ ∞
−∞

dx
(
(ρ(1)

geo
′(x)|θ4h)2 + (ρ(1)

geo(x)|θ4h)2
)

I2 = −1
2

∫ ∞
−∞

dx
(
V1(x)|θ4hρ(1)

geo(x)|θ4h + V2(x)|θ4hρ(1)
geo
′(x)|θ4h

)
.

(B.8)

The integral of I2 can be evaluated by following similar manipulations as in the first four
lines of (B.6) and then using Lemma 2.2 in [69] to convert the resulting hypergeometric
3F2 functions into ratios of Gamma functions. Once the dust settles, one finds

I2 = −
(
θ

2

)8h (
1 +O(θ2)

)
64h2

2
Γ
(

3
2

)2
Γ(2h+ 1)2

Γ
(
2h+ 3

2

)2 +
Γ
(

3
2

)
Γ(4h+ 1)

Γ
(
4h+ 5

2

)
 . (B.9)
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To compute I1, we start by rewriting it as

I1 = 1
2

∫ ∞
−∞

dx
(
(ρ(1)

geo
′(x)|θ4h)2 + (ρ(1)

geo(x)|θ4h)2
)

=
∫ 0

−∞
dx
(
(ρ(1)′(x)|θ4h) + (ρ(1)(x)|θ4h)

)2
−
(
ρ(1)(0)|θ4h

)2
,

(B.10)

where we have used the fact that ρ(x) is an even function of x to restrict the bounds of
integration to −∞ < x < 0 and we used the boundary condition ρ(1)(−∞) = 0 to set one
of the boundary terms to zero. This rewriting is very useful because the sum inside the
square simplifies significantly to give

∫ 0

−∞
dx
(
(ρ(1)′(x)|θ4h) + (ρ(1)(x)|θ4h)

)2

=
(
θ

2

)8h
64h2

∫ 0

−∞
dx

[
2

Γ(2h+ 1)Γ
(

3
2

)
Γ
(
2h+ 3

2

) ex (B.11)

− sech 4h+1x

1 + e2x

(
−(h+ 2)

(h+ 1) + 2h
(2h+ 1)e

2x + 1
(h+ 1)2F1

(
1,−2h− 2, 2h+ 1,−e2x

))]2

.

The terms not involving hypergeometric functions are straightforward to compute. We will
now demonstrate how to compute the integral of the hypergeometric function squared as
the other terms involving hypergeometric functions can be computed similarly.

The strategy is to rewrite the hypergeometric function in terms of the incomplete
Beta function and then manipulate the resulting expression using integration by parts and
incomplete Beta function identities until one obtains the known integral∫

dv va−1(1− v)b−1Bv(a, b) = 1
2Bv(a, b)

2 . (B.12)

One finds
∫ 0

−∞
dx

sech 8h+2x

(1 + e2x)2 2F1
(
1,−2h− 2, 2h+ 1,−e2x

)2

= 28h+1
∫ ∞

0
dw e−(4h+1)w

2F1
(
2h, 4h+ 3, 2h+ 1,−e−w

)2
= e−4πih28h+3h2

∫ 0

−1
dv Bv(2h,−4h− 2)2

= e−4πih28h+3h2
[

(3h+ 2)
2(h+ 1)B−1(2h,−4h− 2)2 − (h+ 1)

2h B−1(2h+ 1,−4h− 2)2

+B−1(2h,−4h− 2)B−1(2h+ 1,−4h− 2) + 1
2hB−1(4h+ 1,−8h− 4)

− 1
2(h+ 1)B−1(4h,−8h− 4)

]
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= 1
2

(
(h+1)

Γ
(3

2
)2Γ(2h+1)2

Γ
(
2h+ 3

2
)2 + 2(h+1)2(2h+1)

Γ
(3

2
)
Γ(2h+1)

Γ
(
2h+ 3

2
) + (4h3 + 13h2 + 10h+ 2)

2(4h+ 1)(2h+ 1)2

− (4h+ 3)h
Γ(3

2)Γ(4h+ 1)
Γ(4h+ 5

2)

)
, (B.13)

where w = −2x, v = −e−w, and in the second line we used the Euler transformation.
The B−1 functions are converted into Gamma functions on the last line by writing B−1
in terms of hypergeometric functions and using known expressions for these with final
argument evaluated at −1. Performing the integration of the other terms in (B.11) in a
similar manner leads to the final result

I1 =
(
θ

2

)8h (
1 +O(θ2)

)
32h2

2
Γ
(

3
2

)2
Γ(2h+ 1)2

Γ
(
2h+ 3

2

)2 +
Γ
(

3
2

)
Γ(4h+ 1)

Γ
(
4h+ 5

2

)
 . (B.14)

Therefore, the θ8h contribution to the shape deformation of the area is given by
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