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1 Introduction

One expects that scales smaller than the Planck length should not make too much sense. In
fact, for example, the perturbative quantization of gravitational waves in Einstein theory
leads to a quantum metric fluctuations of order one at these scales, suggesting that at sub-
Planckian scales the notion of a classical background manifold makes no sense. For example,
to “test” such scales, we need to collide particles with center-of-mass energy exceeding the
Planck energy, which by the naive estimate should result in a black hole with a radius
larger than the Planck size. Therefore, it is natural to assume that the “points” within the
elementary Planck volume are indistinguishable in any physical gedanken experiment, and
instead of the differentiable manifold to consider the space consisting of elementary cells
with, i.e. Planck volumes.

One might naturally expect that in such a case the more fundamental theory must be
similar to lattice gauge theory [1] or the Regge simplex calculus [2] or dynamical triangula-
tions [3]. Lattice gauge theory is based on the use of the elements of the Lie group (unitary
matrices) corresponding to the local group of gauge transformations. They are defined on
the vertices of the lattice constructed with Cartesian coordinates in Euclidean space. It
is not even clear how to formulate this theory using, for instance, angular coordinates, let
alone the case of curved space. In the Regge calculus, on the other hand, the basic build-
ing blocks are polyhedrons whose sides represent metric variables and vertices represent
curvature. Quite apart from the fact that there is no clear unique way to get in the limit, a
continuous manifold, this construction presupposes the existence of geometry between two
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nearby vertices whose universal distance cannot be specified. Therefore, this idea clearly
contradicts the idea of universal structureless building blocks of the elementary volume.

In this paper we develop the theory of discrete manifold consisting of elementary cells,
each characterized by its own tangent space and displacement operators that allow us to
move from a given cell to the next one that has a common boundary with that cell. As a
guiding principle we use gauge symmetry of the local rotation group (associated with each
cell) and the elements of the spin connection group (see, e.g., [4]) to form the corresponding
curvature and other gauge invariants. In a discrete space consisting of elementary cells,
each cell can be numbered by a series of integers which, in the continuous limit, become
coordinates on the corresponding differentiable manifold. As we shall see, freedom in the
choice of cells and the corresponding shift operators lead to freedom in the choice of coordi-
nates in the continuous limit, respecting the diffeomorphism invariance of the differentiable
manifold. This is somehow reminiscent of the freedom in the choice of conjugate variables
in quantum theory, where the corresponding conjugate operators satisfying the Heisenberg
uncertainty principle are related by canonical transformations. Regardless of the choice
of these variables, the uncertainty principle leads to indistinguishability of states within a
unit cell that were distinct in classical phase space.

Finally, we will show that our formulas for discrete spaces reproduce the standard
formulas of differential geometry when the size of the cells shrinks to zero. For simplicity,
we consider only d-dimensional space of Euclidean signature, where d is arbitrary.

2 Discrete cells manifold

Let us consider a manifold consisting of cells of a given elementary volume, e.g. Planck’s
volume, which we set as equal to one. Assuming that points within each cell are physically
indistinguishable, we must first define what we mean by the dimension of the manifold
consisting of cells. In the continuous case, the d-dimensional manifold is defined as a
topological space for which each point has a neighborhood homeomorphic to the Euclidean
space Rd. In our case, we define the dimension d assuming that each cell has 2d neighboring
cells that share a common boundary with each individual cell. Then we can enumerate the
elementary cells in the d-dimensional space by a set of (positive and negative) d integers

n ≡
(
n1, n2, · · · , nd

)
≡ nα, (2.1)

such that the points in neighboring cells that have a common boundary are numbered such
that only one of them differs by one unit. Next, we define scalar functions f (nα) that
assign only one number to each cell. This is the implementation of the idea of assigning a
finite number of degrees of freedom to each elementary volume. In the case of the scalar
field, this is one degree of freedom, whereas for the massless vector field, for example, we
have two degrees of freedom per cell. Generalizing the definition of vectors to the case of
the discrete manifold, we have in each cell a set of displacement operators Eβ defined as

Eβ(n)f(nα) ≡ f(nα + δαβ ) (2.2)
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where δαβ is a Kronecker symbol. These operators move us forward in α-directions in the
neighboring cells. The d operators Eβ form a basis in a linear d-dimensional space in each
elementary volume. The sum and multiplication by the real numbers a, b in this space are
defined by

(aEβ + bEγ)f (nα) = af
(
nα + δαβ

)
+ bf

(
nα + δαγ

)
. (2.3)

One can also introduce the inverse shift operators as

E−1
β (n) f (n) ≡ f (n− 1β) , (2.4)

where, to simplify notation, we use (not bold) n for (n1, . . . nd) and 1β shows which of d
arguments in n is shifted by unity. The shift operator in the cell is defined only when
applied to functions and operators in the same cell. Therefore, we must be careful by
applying first the left-most shift operator, such as in the following example,

Eα(n)E−1
β (n)f(n) = E−1

β (n+ 1α)f(n+ 1α) = f(n+ 1α − 1β). (2.5)

If we set α = β, it follows from here that

Eα(n)E−1
α (n) = E−1

α (n)Eα(n) = 1, (2.6)

i.e., the operators defined in (2.2) and (2.4) are indeed inverses of each other. Next, we
define d tangent operators as

eα(n) ≡ 1
2
(
Eα(n)−E−1

α (n)
)
. (2.7)

As we shall see, in the continuous limit they become the tangent vectors to the coordinate
lines.

Assuming the existence of Euclidean scalar product in the linear space of shift opera-
tors, we choose in each cell the d orthonormal operators va, distinguished by Latin indices
a, b, . . . = 1, 2, . . . d, satisfying

va • vb = δab, (2.8)

and being vielbeins in each elementary volume. In a discrete space, the local symmetry
group with respect to which the theory must be invariant is the group of rotations, under
which the vielbein va(n) go to

ṽa(n) = Rba(n)vb(n), (2.9)

where Rba(n) are the elements of the SO(n) rotation group in the vector representation.
The rotations preserve the scalar products (2.8), so that, ṽa • ṽb = δab. The operators
va(n) can be expressed as linear combinations of the tangent operators

va(n) = ēαa (n)eα(n), (2.10)

where ēαa (n) is the soldering form. Conversely, eα(n) can be expressed in terms of the
vielbein vb(n) as

eα(n) = ebα(n)vb(n), (2.11)
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where ebα(n) is inverse to ēαa (n), that is, ebαēαa = δba. Note that we will use ē and e for the
soldering form and its inverse to distinguish them when we need to deal with the individual
components, e.g., ē1

1 from e1
1. Here and later, we adopt Einstein’s summation convention for

Greek and Latin repeated indices only when they come in up and down positions. Finally,
we can define the metric in each cell

gαβ(n) ≡ eα(n) • eβ(n) = eaα(n)ebβ(n)δab, (2.12)

which gives meaning to the notion of volume of the cell.

3 Parallel transport

Next, we establish the rules for the parallel transport of the shift operators and vielbein
in discrete space. Let us consider the shift from the cell n + 1β to the n-cell. Then the
corresponding parallely transported tangent operator is defined as

ep.t.α (n+ 1β → n) = eα(n) + Γγαβ(n)eγ(n). (3.1)

For the vielbein we have to use the elements of the local spin connection group, so that

vp.t.a (n+ 1β → n) = (Ω−1
β (n))bavb(n), (3.2)

where (Ω−1
β (n))ba is inverse of

Ωβ(n) = exp
(
ωcdβ (n)Jcd

)
. (3.3)

In the continuous limit, ωcdβ is the well-known spin connection. Here, Jcd are the generators
of the rotation group, satisfying the following commutation relations

[Jab, Jcd] = 1
2 (δbcJad + δadJbc − δacJbd − δbdJac) , (3.4)

which in equation (3.2) must be taken in the vector representation

(Jcd)ba = 1
2(δbcδda − δacδbd). (3.5)

Accordingly, both the affine and spin connections, Γ and ω, can be fully expressed in
terms of the soldering forms and their differences in the neighboring cells. To obtain the
corresponding equation for them, we first note that it follows from (2.11)

va(n) • eα(n) = eaα(n), (3.6)

where the Latin indices are moved up and down with the Kronecker symbol δab ≡ δab. In
the parallel transport the scalar product does not change and thus on the one hand

vp.t.a (n+ 1β → n) • ep.t.α (n+ 1β → n) = va(n+ 1β) • eα(n+ 1β) = eaα(n+ 1β), (3.7)

while on the other hand, using the definitions in (3.1) and (3.2) we obtain

vp.t.a (n+ 1β → n) • ep.t.α (n+ 1β → n) = (Ω−1
β (n))baebα(n) + (Ω−1

β (n))baΓ
γ
αβ(n)ebγ(n). (3.8)
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From here we conclude that

eaα(n+ 1β) = (Ω−1
β (n))baebα(n) + (Ω−1

β (n))baΓ
γ
αβ(n)ebγ(n). (3.9)

Multiplying both sides by Ω we get the expression for the affine connection

Γγαβ(n)eaγ(n) = (Ωβ(n))baebα(n+ 1β)− eaα(n), (3.10)

which allows us to express the affine connections in terms of spin connection and soldering
form.

4 Torsion and curvature

Assuming that there is no torsion, i.e. Γγαβ = Γγβα, from (3.10) we find that the condition
of no-torsion takes the following form

(Ωβ(n))baebα(n+ 1β)− eaα(n) = (Ωα(n))baebβ(n+ 1α)− eaβ(n), (4.1)

These equations can be solved, to express ωcdβ (n) entirely in terms of the soldering forms
eaβ in cell n and the neighboring cells n + 1. To see how this can be done explicitly, it
is more convenient to use the spinor rather than the vector representation, in which the
generators of the rotation group in (3.4) become

Jab = 1
8(γaγb − γbγa), (4.2)

where the Dirac gamma matrices are assumed to be Hermitian and satisfy the Clifford
algebra

{γa, γb} ≡ γaγb + γbγa = 2δab. (4.3)

By incorporating vielbeins eaα into the Clifford algebra, i.e., by introducing the matrices

eα(n) ≡ eaα (n) γa, (4.4)

we can use the standard methods (see, e.g., [6–8]) to convert the no-torsion condition (4.1)
into the following useful form

(Υβ(n)eα(n)Υ−1
β (n)− eα(n))− (α↔ β) = 0, (4.5)

where
Υα(n) ≡ Ωα(n)Eα(n), (4.6)

and Ωα(n) are given in (3.3), while J are defined in (4.2). From now on and in the future
we will use non-bold notation for the shift operators to avoid cumbersome looking formulas.
Taking into account that

eωeνe
−ω = eν + [ω, eν ] + 1

2! [ω, [ω, eν ]] + · · · 1
m! [ω, · · · [ω, eν ]] + · · · , (4.7)
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using the commutation relations

[Jab, γc] = 1
2 (δbcγa − δacγb) , (4.8)

we can see that the equation (4.5) can be rewritten as

T aαβγa = 0. (4.9)

Since T aαβ is antisymmetric in α and β, the 1
2d

2(d− 1) torsion conditions (4.9) in d dimen-
sional space allow the same number of spin connections ωabα in cell n to be fully expressed
in terms of the soldering forms in the same cell n and the neighboring cells n + 1. For a
given spin connections, the affine connections can be found from (3.10). Thus, we have
shown that both affine and spin connections in a given cell are completely determined by
the soldering forms in neighboring cells. Later, we will find the explicit solutions to the
above equations in two-dimensional space and discuss how to find the solution in closed
form for three- and four- dimensions space.

As we mentioned above, in discrete space the local symmetry group with respect to
which the theory must be invariant is the group of rotations under which the vielbeins
va(n) go to

ṽa(n) = Rba(n)vb(n), (4.10)

where Rba(n) are the elements of the SO(n) rotation group in the vector representation.
Moving to the spinor representations we find that the element of the group of spin connec-
tions (3.3) under rotations transforms as

Ωβ(n)→ Ω̃β(n) = R(n)Ωβ(n)R−1(n+ 1β), (4.11)

By introducing the trial function f(n), we can rerwite this equation as

Ω̃β(n)f(n+ 1β) = R(n)Ωβ(n)R−1(n+ 1β)f(n+ 1β), (4.12)

or alternatively
Ω̃β(n)Eβ(n)f(n) = R(n)Ωβ(n)Eβ(n)R−1(n)f(n), (4.13)

from which we derive the covariant transformation law for the operators Υα(n), introduced
in (4.6),

Υα(n)→ Υ̃α(n) = R(n)Υα(n)R−1(n). (4.14)

The next step is to define the curvature by considering a plaquette, which starts in cell n
and extends to neighboring cells with the operators Υα(n) and Υ β(n) and backwards

Rαβ(n) = 1
2
(
Υα(n)Υ β(n)Υ−1

α (n)Υ−1
β (n)− Υ β(n)Υα(n)Υ−1

β (n)Υ−1
α (n)

)
(4.15)

= 1
2
(
Ωα(n)Ωβ(n+ 1α)Ω−1

α (n+ 1β)Ω−1
β (n)− (α↔ β)

)
(4.16)

The curvature is antisymmetric Rαβ (n) = −Rβα (n) and it is obviously covariant, i.e. under
rotations Rαβ (n)→ R̃αβ(n) = R(n)Rαβ (n)R−1(n). The above definition agrees with the
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definition adopted for the Yang-Mills curvature, except for the step of antisymmetrization in
αβ which is very important for our considerations. Our definition of curvature corresponds
to the difference that arises when a plaquette is first circumnavigated counterclockwise
and then clockwise. For example, in three dimensions, for each cell there are three possible
plaquettes passing through adjacent cells. For SO (2) , SO (3) , SO (4), one can prove that
Rαβ (n) become the elements of the Lie algebra of the corresponding group and therefore,
can be written as

Rαβ (n) = R cd
αβ (n)Jcd, (4.17)

where Jcd are the generators of the rotation group in spinor representation, defined in (4.2).
By contracting indices with the corresponding soldering forms, we can build the scalar
curvature as

R(n) = R cd
αβ (n)ēαc (n)ēβd (n). (4.18)

For the groups SO (d) , d > 4 we project Rαβ (n) on Jcd by taking the trace to define

R cd
αβ (n) = −23−[ d

2 ]Tr
(
Rαβ (n) Jcd

)
. (4.19)

5 Dirac action

To generalize the Dirac equation for the case of discrete space, we need to define the inner
product for the spinors and determine the hermitian operator which reproduces the well
known Dirac equation in the continuous limit. The inner product can be defined as

(ψ,ψ) ≡
∑
n

ψ† (n)ψ (n) , (5.1)

while the natural candidate for Dirac operator is

D(n) ≡ iυ(n)ēα (n)
(
Υα (n)− Υ−1

α (n)
)
, (5.2)

where ēα (n) ≡ ēαb (n) γb and the function υ(n) must still be determined by requirement
that D is a hermitian operator, i.e. (ψ,Dψ) = (Dψ,ψ). Considering that

D†(n) = i
(
Υα (n)− Υ−1

α (n)
)
υ(n)ēα (n) , (5.3)

and recalling the definition in (4.6), we conclude that D†(n) = D(n) holds if the function
υ(n) satisfies the following equation

υ(n)ēα (n)Ωα(n) = υ(n+ 1α)Ωα(n)ēα (n+ 1α) . (5.4)

One can easily prove that this equation is invariant with respect to the rotation group and
thus υ(n) is invariant. As we will show later, the solution for υ(n) in the continuous limit
becomes det(ebα). Thus, in the discrete case the action for the Dirac spinors is

S =
∑
n

iψ† (n) υ(n)ēα (n)
(
Υα (n)− Υ−1

α (n)
)
ψ (n) . (5.5)

The gauge invariant action for discrete Euclidean gravity is accordingly

S =
∑
n

υ(n)R(n), (5.6)

where υ(n) is the solution of equation (5.4).
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6 Example: two dimensional space

Let us consider the simplest example of the two-dimensional discrete space with the local
SO(2) tangent group and write down explicit formulas for the spin connection and curvature
in terms of the soldering form. In the two-dimensional space, all cells are numbered by two
integers n = (n1, n2). The matrices satisfying the Clifford algebra (4.3) can be taken as

γ1 =
(

1 0
0 −1

)
, γ2 =

(
0 1
1 0

)
. (6.1)

and the single nonvanishing generator J12 = −J21 , defined in (4.2), becomes

J12 = 1
4

(
0 1
−1 0

)
≡ 1

4τ. (6.2)

Taking into account that

ωα = ωabα (n1, n2)Jab = 1
2ω

12
α (n1, n2)τ. (6.3)

we obtain the following expression for the spin connection elements of the algebra (3.3)

Ωα(n1, n2) = cos 1
2ωα(n1, n2) + τ sin 1

2ωα(n1, n2), (6.4)

where ωα(n1, n2) ≡ ω12
α (n1, n2). Using freedom in choice of gauge and partitioning the man-

ifold into cells (which in continuous limit corresponds to freedom in choice of coordinates)
we can set

e1
1 = e2

2 = e
(
n1, n2

)
, e1

2 = e2
1 = 0. (6.5)

at each cell n = (n1, n2). In this case, the torsion-free conditions (4.5) simplify to

e(n1 + 1, n2) sinω1(n1, n2)− e(n1, n2 + 1) cosω2(n1, n2) + e(n1, n2) = 0,
e(n1 + 1, n2) cosω1(n1, n2) + e(n1, n2 + 1) sinω2(n1, n2)− e(n1, n2) = 0. (6.6)

Solving these equations gives the following explicit expressions for ωα(n1, n2) in terms of
soldering forms in three adjacent cells

ω1(n1, n2) = π

4 − arcsin
(
e2(n1 + 1, n2)− e2(n1, n2 + 1) + 2e2(n1, n2)

2
√

2e(n1 + 1, n2)e(n1, n2)

)
,

ω2(n1, n2) = π

4 − arccos
(
e2(n1, n2 + 1)− e2(n1 + 1, n2) + 2e2(n1, n2)

2
√

2e(n1, n2 + 1)e(n1, n2)

)
, (6.7)

Substituting (6.2)–(6.4) into (4.16) and (4.17) we find that the only nonvanishing indepen-
dent component of the curvature is

R 12
12 (n) = 2 sin

[1
2
(
ω2(n1 + 1, n2)− ω1(n1, n2 + 1) + ω1(n1, n2)− ω2(n1, n2)

)]
, (6.8)

where ω1 and ω2 are given in (6.7). The scalar curvature in this case is equal to

R(n) = R cd
αβ (n)ēαc (n)ēβd (n) = 2R 12

12 (n)e−2(n). (6.9)

Similar expressions for spin connection and curvature can be obtained in three- and four-
dimensional spaces, since SO(3) and SO(4) are locally isomorphic to SU(2) and SU(2) ×
SU(2) groups, respectively.
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7 Continuous limit

So far, we have considered a discrete space with cells of elementary volume set to one, and
numbered the cells by ordered integers. To obtain the continuous limit, we need to shrink
the cells to the points. If we introduce the variables

xα = εnα. (7.1)

instead of integers, the volume of each cell vanishes when we take the limit ε → 0, and
we expect to get the continuous limit. However, one has to be careful. The situation is
similar to a straight line of length L with 0 < x < L divided by a series of points with
small spacing, and where the obtained cells are numbered by integers 0 < n < L/ε. It is
obvious that the point with a given x0 moves to another cell n as ε decreases. Therefore,
we must hold xα0 characterizing the corresponding point of the manifold in the continuous
limit when ε → 0. This means that in this limit n → ∞ for every single point. For ε 6= 1
the shift operator (back to bold notation) is defined as

Eα(x)f(x) = f(x+ εα), (7.2)

where x ≡ (x1, . . . , xd) and εα ≡ ε1α indicates which of d coordinates has been changed,
such as E2(x)f(x) = f(x1, x2 + ε2, . . . , x

2). We leave the index for ε in the lower posi-
tion to avoid the confusion that can arise from using Einstein’s summation convention.
Accordingly, the tangent operators (2.7) are acting as

eα (x) = 1

2εα

(
Eα(x)−E−1

α (x)
)
f(x) = f(x+ εα)− f(x− εα)

2εα
. (7.3)

It follows that in the limit ε→ 0,
eα = ∂

∂xα
, (7.4)

i.e., in the continuous limit the tangent operators become the vectors tangent to the cor-
responding coordinate lines. The formulas for parallel transport (3.1)–(3.3) in the case of
ε 6= 1 are modified as,

ep.t.α (x+ εβ → x) = eα(x) + Γγαβ(x)eγ(x)εβ (7.5)

and
vp.t.a (x+ εβ → x) = (Ω−1

β (x))bavb(x), (7.6)

where Ω−1
β (x) is inverse to

Ωβ(x) = exp
(
εβω

cd
β (x)Jcd

)
. (7.7)

We would like to emphasize again that no summation over β is assumed in (7.5) and (7.7)
because these indices have the same lower position, Taking the limit ε→ 0, we obtain from
these formulas the well-know expression for the covariant derivatives

∇βeα = Γγαβeγ , ∇βva = ω b
βa vb. (7.8)
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Next we find the solution of the equation (5.4) for υ(x) in the limit ε→ 0. Expanding this
equation in powers of small ε and using the commutation relation (4.8) we find(

∂αυ

υ
ēαb + ∂αē

α
b + ωcαbē

α
c

)
γbεα +O

(
ε2
)

= 0, (7.9)

where ∂α ≡ ∂/∂xα. At the leading order, the expression in parenthesis should vanish for
each b. Multiplying it by ebβ and summing over b, we get the following equation for υ in
the limit ε→ 0,

∂βυ

υ
+ ebβ∂αē

α
b + ωcαbē

α
c e
b
β = 0 (7.10)

To find the general solution of this equation, we note that at the leading linear order in ε,
the no-torsion equation (4.1) becomes

∂βe
a
α − ωaβbebα = ∂αe

a
β − ωaαbebβ . (7.11)

Multiplying this equation by ēαa and summing over α and a one obtains

∂β det(eaα)
det(eaα) + eaβ∂αē

α
a + ωaαbē

α
ae
b
β = 0, (7.12)

and by comparing with (7.10) we conclude that

υ = det(eaα) (7.13)

in the continuous limit.
The expression for the curvature (4.16) in the limit ε→ 0 becomes

Rαβ(x) = lim
ε→0

1
2εαεβ

(
Ωα(x)Ωβ(x+ εα)Ω−1

α (x+ εβ)Ω−1
β (x)− (α↔ β)

)
. (7.14)

Substituting here (7.7), computing the limit and projecting Rαβ on Jcd (see, (6.4)), we
obtain the following result for the components of the spin connection curvature

R cd
αβ (x) = ∂αω

cd
β − ∂βωcdα + ωclαω

d
βl − ωclβ ω d

αl , (7.15)

in full agreement with the known standard result.
Returning to the example of straight line, we now consider a function f(x). After

discretizing the straight line, we assign to the function f(x) a value that it takes in the cell
n, i.e. f(n). It is obvious that

lim
ε→0

∑
n

εf(n) =
∫
f(x)dx. (7.16)

Therefore, for example, the action for gravity (5.6) in the continuous limit becomes

S =
∫

det(ebα)R(x)dx1 . . . dxd. (7.17)

Thus, we have proved that our theory of discrete manifolds reproduces all results for the
continuous manifold in the corresponding limit.
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8 Conclusions

In summary, we have considered a space consisting of elementary cells of a certain (e.g.
Planck) volume and assumed that these cells have no internal differentiable structure.
Each of these cells is fully characterized only by a finite number of operators and spin
connections. In such a discrete space, we defined the parallel transport and found out how
spin connections, torsion and curvature can be expressed in terms of the soldering forms
in the neighboring cells. The developed theory of discrete space is explicitly invariant with
respect to the local rotation group. In our theory, the problem of failure of the Liebnitz
rule, which is usually an obstacle to the development of the theory of discretized manifolds
(see, e.g., [9, 10]) is avoided since we use the spin connection group as a basis. Here we
are guided by the principle that the tangent group for spinors is the rotation group SO (d)
which in the continuous limit is connected to the base manifold through the soldering forms.
The freedom in the choice of elementary cells is reminiscent of diffeomorphism invariance,
which naturally reappears in the continuous limit. We have shown that when the cells
shrink to the points, we exactly reproduce all the formulas for a differentiable manifold.

Unlike field theory, we need only to assign a finite number of degrees of freedom to
each cell for each field. This could lead to the appearance of a natural ultraviolet cut-off
in the field theory, a problem that requires further investigation. The developed mathe-
matical structure is well suited to describe the quanta of geometry in the noncommutative
approach [11] and quantized black holes [12–14].

Following canonical quantum gravity, it is natural to assume that only the three-
dimensional space-like hyperspaces have a structure of discrete cells, the quanta of geom-
etry. This is supported by the formulation of the Cauchy problem in general relativity
and serves as an explicit manifestation of the idea of a finite number of degrees of freedom
per Planck volume. In this case, in the expanding universe, the number of elementary
quanta and hence the number of degrees of freedom, increases with time. This leads to
a rather natural picture of emergent space, where the quanta of geometry either emerge
or disappear with time. For example, one could start with a single elementary quantum
and generate an arbitrarily large number of quanta as a result of inflationary expansion.
In future publications, we will show how the formalism developed in this work provides a
simple and adequate way to describe this picture. Having constructed the discrete analog
of the Einstein action for discrete spaces, there are a large number of applications of our
formalism to gravity. In particular, for the dimensions d = 2, 3, 4, the components of the
curvature tensor can be calculated in closed form at any point.
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