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Abstract: The claim that the microstates of Schwarzschild black holes in perturbative
string theory amount to the modes of long folded strings in the vicinity of its horizon is
supported by more evidence.
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In this short note, we argue that in perturbative string theory, the microstates that account
for the Schwarzschild black hole (BH) entropy are localized at the vicinity of the horizon,
and suggest what they look like.

Concretely, let [1]
I = Igravity + IW (1)

be a Euclidean action in D = 1 + d dimensional spacetime with a spatial metric, gij ,
i, j = 1, . . . , d, a thermal circle with component

g00 ≡ e2φ , (2)

a d-dimensional dilaton, Φd, reduced from the D-dimensional one by

Φd ≡ ΦD −
1
4 log g00 = ΦD −

φ

2 , (3)

and a winding string condensate, W±.
The first term in (1) is the pure gravity-dilaton one,

Igravity = − β

16πGN

∫
ddx
√
gDe

−2ΦD
(
Rd + 4gijd ∂iΦd∂jΦd − gijd ∂iφ∂jφ

)
, (4)
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while the second term is the effective action of the winding string condensate,

IW = β

16πGN

∫
ddx
√
gDe

−2ΦD
(
gijd ∂iW

+∂jW
− +m2

W (g00)W+W−
)
, (5)

where the φ-dependent mass of the thermal scalar is

m2
W (φ) = 1

(2πα′)2

(
−β2

H + β2g00(φ)
)
, (6)

with 1
2πα′ being the string tension, which sets in particular the string length scale, `s ≡

√
α′.

The first term in (6) is the mass squared of a closed string tachyon and the second is the
contribution due to the length of a string winding once around the thermal circle (whose
local radius is √g00 = eφ, (2)).

The action (1)–(6) is cooked such that on a Schwarzschild BH background the Eu-
clidean action of the winding condensate vanishes on its solution, IW = 0, as it must.1

This implies that on the e.o.m. one necessarily has I = βF , where F is the free energy of
the BH and β its inverse temperature; consequently, the entropy,

S ≡ (β∂β − 1)I = SBH , (7)

is the BH entropy, by construction!
An interesting point of [2, 3] is that, on the other hand,

S ≡ (β∂β − 1)I = β

16πGN

∫
ddx
√
gDe

−2ΦD 2β2e2φ

(2πα′)2W
+W− , (8)

which has remarkable consequences, following [4–13], both technical and conceptual. Con-
cretely, for large BHs, the winding condensate profile near the horizon is sufficient to obtain
the entire BH entropy.

Indeed, it can be verified that in the R2 limit near the horizon, a.k.a. the regime where
the D-dimensional metric is approximately ds2 = dρ2 + ρ2dθ2 + rD−2

0 dΩ2
D−2 with ρ being

the invariant distance from the tip of the Euclidean BH cigar, plugging φ = log ρ, (2), and

W+W− = e−
ρ2
α′ (9)

in (8), where (9) is the (square of the) winding string zero-mode profile in the R2 limit [5],
gives

S = AH
4GN

, (10)

1String theory is cooking the effective action automatically this way: in string theory on the SL(2)/U(1)
cigar, we know that W is an exact zero-mode, hence, whatever the effective theory is, it should be con-
structed such that, in particular, it satisfies this property. The idea is thus to write down an effective action
for a thermal scalar which is an exact zero-mode on generic Euclidean black holes. The action (1)–(6)
has this property, so it is a good starting point. Now, in string theory there are of course corrections,
however, for parametrically small string coupling and parametrically small curvature, it is reasonable to
expect that (1)–(6) is a good approximation.
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where AH is the area of the horizon. The Gaussian decay of the condensate, (9), guaranties
the high validity of the approximation when the Schwarzschild radius is sufficiently bigger
then the string length scale, r0 � `s.

The conceptual consequences are far reaching. Long ago, starting in [5–8], the following
question was addressed: “is the tip of the cigar geometry special in the small curvature
limit?” It was argued that the answer is positive,2 eventhough naively one might expect
the physics of regular R2, instead; the result (8) is of course supporting this surprising
claim.3

To identify the microstates at the horizon we make the following assumptions:

1. For our purposes below — estimating the number of explicit microstates at the hori-
zon of a large Schwarzschild BH and see what they look like, it is sufficient to approxi-
mate the near-horizon theory of a D-dimensional Schwarzschild BH with temperature
1/β by an SL(2)k/U(1) exact SCFT,4 with the level k related to β via5

α′k =
( 2r0
D − 3

)2
=
(
β

2π

)2
. (11)

This assumption has strong support in [2], following [14].6

2. The number N of “string bits” which amounts to the condensate7 F ∼ W+W− in
the 2d SL(2)k/U(1) BH is (see [12] for details)

N = kNIFS = 2πe−2Φhor , (12)

where Φhor is the value of the two-dimensional dilaton on the horizon and NIFS stands
for the number of ‘instantly created folded strings’ (IFSs) of [15, 16] at the vicinity
of the BH horizon. This assumption has strong support in [12] and below.8

2For instance, it was shown in [5–8] that “the contribution of the discrete states is present even for
perturbative strings propagating in the background of large Schwarzschild black holes; it was argued that
the discrete states live at a stringy distance from the tip of the cigar both from the conformal field theory
wave-function analysis and other perspectives, thus, the way string theory takes care of its self-consistency
seems to have important consequences for the physics near horizons, even for parametrically large black
holes”.

3To conclude that (8) carries the whole entropy, it is implicitly assumed here that the tip of the cigar is
a special point such that, in particular, (effectively) the Euclidean circle doesn’t shrink. And, as mentioned
above, in string theory on the cigar, this may indeed be the case.

4We consider BHs in the type II superstring.
5From the value of the 2d string coupling at the tip (a.k.a. horizon), gs, and the area of the horizon

D-sphere, SD−2, one can then have also the D-dimensional Newton constant, GN , and consequently, from
β and GN , also the BH mass and entropy, M and S (in the standard way), expressed in terms of the string
length scale, `s, and the parameters, gs, k,D.

6The estimations below are for parametrically large Schwarzschild radii, r0/`s � 1, and in the R2 ×SD−2

approximation near the tip (horizon) it is reasonable to assume that the physics is that of the near-horizon
SL(2)k/U(1) × SD−2 “almost CFT” [2, 14], at large k, (11).

7We are schematic here; see [10, 11] for details.
8The number of IFSs that fill the eternal SL(2)k/U(1) black hole was calculated in [12] indirectly, subject

to some assumptions, in three different ways that gave the exact same answer: since the trigger for the
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Consequence:

S = N , (13)

where S and N are those in (8), (10) and (12), respectively; a.k.a, the microstates which
give rise to the BH entropy correspond to the long strings modes at the (stringy) vicinity
of its horizon.

Comment: we know that the assumptions are correct for large D, β/`s and k; needless to
say that if they are modified in other regimes of the (D,β/`s, k) parameters space9 then
the detailed consequences should be reexamined accordingly.10

To support (12), a.k.a. that the IFS can be thought of as a “fractionated fundamental
string, bound to the BH horizon, with inverse tension 2πα′/k”, we consider a classical
folded string in Rφ × S1

X , where the real scalar φ has a linear dilaton with a slope Q, such
that the string coupling is

gs ≡ eΦ = e−Qφ/α
′
, (14)

and the scalar X is compact with a radius RX , which is related to the dilaton slope and
to the level k in (11), (12) by

RX =
√
α′k = α′/Q . (15)

In what follows, the analysis is strictly valid for large integer k.
The folded string solution [18], obtained by analytic continuation of that in [19], is

X = `sσ1 , φ = Q log (cos(`sσ1/Q) + cosh(`sσ2/Q)) . (16)

At σ2 → ±∞, the radial field φ blows up at weak coupling; in this regime, (16) looks like
a pair of incoming strings, winding in opposite orientations around the X direction; we
identify them with W±. At σ2 = 0 and σ1 = Q(2πn− π)/`s, with n = 1, . . . , k, the radial
φ blows up at strong coupling, instead; in this regime, (16) looks like k little strings. The
two asymptotic behaviors of (16) are connected via string folds at φ = 0.

After turning on an N = 2 Liouville wall, the above describes aspects of the physics
of a folded string in the cigar CFT,11 and upon continuation to real time, it describes
aspects of the physics of an instantly created long (of order

√
k`s ∼ r0, (11)) folded string

in the vicinity (of order `s, (9)) of an SL(2)k/U(1) BH horizon [18]. Finally, following the
assumptions above, (11), (12), this also gives rise to the number of bits carried by each

IFS creation is a time-like dilaton, a natural way to determine their number is to ask how many IFSs are
needed for their backreaction to render the dilaton time-independent behind the horizon. Moreover, the
IFSs violate the ANEC [16], and so it is possible that a sufficient number of them can prevent particles from
falling into the black hole. It turns out that (12) is exactly that number. The third way that gives (12)
in [12] is via entropy considerations, again, subject to assumptions.

9The size of β/`s and k is not independent, (11); assumption 1 is correct also for small k and β/`s.
10For instance, we know [17] that for k < 1, a.k.a. below the BH/string transition, the k dependence of

S(M) is modified (even for parametrically large D); it is possible that the “fractionation of the long IFS to
k little strings”, (12), which is argued at large k, is modified accordingly at k < 1.

11In the bosonic case, one turns on a sine-Liouville wall, instead; see [20] and references therein/thereof
for more aspects of the cigar/sine-Liouville (N = 2 Liouville) correspondence.
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one of the NIFS long strings at the horizon of a large Schwarzschild black hole, altogether
giving rise to its entropy, (13), (10).

To recapitulate, within the assumptions above, we identified the microstates of large
Schwarzschild black holes in perturbative string theory. Needless to say that a lot more
awaits to be understood; we hope to report on that in the future.
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