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1 Introduction

In the AdS/CFT correspondence, the entanglement structure of the boundary CFT encodes
the geometry and topology of the bulk AdS space [1–5], albeit in a complicated and nonlocal
way. We consider the dual of a state in the N = 4 SU(2N) Super Yang-Mills (SYM) theory
in a Coulomb phase where the infrared modes are thermally entangled. We argue that this
system should correspond to an asymptotically AdS5×S5 geometry with a single boundary
and a long-lived interior wormhole. The purpose of this paper is to construct this wormhole
and describe its properties.

The simplest connection between wormholes and entanglement involves two copies of
a CFT entangled in the “thermofield double” (TFD) state, a two-party purification of the
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thermal state on each factor:

|TFD〉 =
∑
i

e−βEi/2|i〉 ⊗ |i∗〉 . (1.1)

where |i∗〉 indicates the CPT conjugate of |i〉. This system is dual to the eternal black hole,
i.e., a wormhole between two asymptotically AdS universes [2]. To construct a wormhole
between distant regions of a single universe, we will study a state in the Coulomb branch of
the N = 4 SYM theory [6, 7], where the SU(2N) gauge symmetry has been partially broken
down to S(U(N) × U(N)). In type IIB supergravity, the low energy effective theory dual
to N = 4 SYM, this configuration corresponds to a multicenter solution sourced by two
stacks of N D3-branes [8, 9]. The procedure for constructing this geometry is illustrated
in figure 1. We will begin with a two-centered BPS [10] harmonic function solution as
originally found in [11], corresponding to two stacks of N extremal D3-branes in (9+1)D
Minkowski space and controlled by a parameter L. These stacks of D3-branes are separated
by a distance Λ, corresponding to the Higgs scale. In the limit that L � Λ, there will be
an AdS5×S5 geometry outside the region containing the two stacks of branes, which splits
into two smaller AdS5×S5 regions as one nears either stack. Taking the limit α′ → 0 with
the ratios of the five-sphere coordinates to α′ held fixed decouples the AdS regions from
the asymptotically flat space, leaving a geometry which is asymptotically AdS [12].

Now we heat up the solution by entangling the degrees of freedom living on each brane
(in each SU(N) sector of the Higgsed SYM) up to the Higgs scale Λ in an approximate
thermofield double state. This has the effect that in the IR of the field theory, i.e. the
deep bulk, the approximate thermofield double state will be dual to the two-sided planar
AdS-Schwarzschild black brane [2] plus corrections due to the multicenter nature of the
exterior solution. No known solution exists for the multicenter black brane geometry at
nonzero temperature, so we solve for these corrections in perturbation theory. Matching
these corrections in different coordinate patches glues together the wormhole solution. We
will find that this gluing must introduce a global monodromy that inverts some spatial
directions between the two throats in order to respect flux conservation. However, the full
ten-dimensional spacetime remains globally orientable. The complete solution is unstable,
as finite temperature breaks the supersymmetry of the BPS solution and turns on an effec-
tive potential for the scalar fields that break the SU(2N) symmetry [13, 14]. Supergravity
wormhole solutions have been previously studied e.g. in [15–17], but only in the case of con-
necting two different asymptotic spaces. In figure 2 we have labeled the different regimes
in which a different coordinate patch or limit will be used to describe the solution. In
region I, the solution is approximately the two-sided non-extremal black brane. Far from
the horizon, in regions II and III, the effects of non-extremality are small and the solution
is close to vacuum AdS5×S5. In this region, the perturbative corrections from the nonzero
temperature and from the two throats can simultaneously be treated as linear corrections
to the vacuum AdS5 × S5 background, and therefore they linearly superpose. The lead-
ing corrections from the left throat are monopole corrections and do not break spherical
symmetry around the right throat, which defines region II. However, we can include multi-
pole effects from the left throat as linearized corrections, and these will be dominant over
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Figure 1. Perturbative construction of an AdS wormhole solution in a single asymptotic space by
taking the decoupling limit of two stacks of D3-branes and correcting for the finite temperature
caused by the thermofield double entanglement structure below the scale Λ. Figure inspired by the
near-horizon limit as depicted in [18, 19].

nonlinearities up to fourth order in the multipole expansion. This captures effects of the
left throat breaking the spherical symmetry around the right throat, which defines region
III. We will also be able to present solutions which are valid in regions I, II and parts of
III simultaneously. These will be linearized perturbations of the finite temperature black
brane geometry. These solutions show that leading multipole effects remain small near
the causal horizons, but we find that they grow in the interior towards the singularity.
Therefore the singularity in this wormhole is not of the AdS-Schwarzschild type. Finally,
region IV is where both throats have non-perturbative effects, but their non-extremality is
negligible and the solution is approximately the multicenter BPS solution, which in region
V approaches that of pure AdS5 × S5 with a larger AdS radius.

Entanglement between disconnected non-interacting boundary theories gives rise to
wormholes where the boundaries are separated by causal horizons [20]. A large body of
recent work has also been directed towards finding mechanisms that can create and send
signals through traversable wormholes in the context of AdS/CFT. In general, support-
ing a traversable wormhole requires that one violate the averaged null energy condition
(ANEC) [20–24], meaning that there exists an infinite null geodesic with tangent kµ and
affine parameter λ such that [25]1 ∫ ∞

−∞
kµkνTµνdλ < 0 . (1.2)

Consequently, in order to build a traversable wormhole, there must be a negative source
of stress-energy in the bulk. Several suggestions for introducing this negative stress-energy

1The authors of [17] argued that this condition could be avoided for supersymmetric traversable worm-
holes connecting two asymptotic AdS universes in the context of pure gauged N = 2 supergravity in four
dimensions.
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Figure 2. Region I: perturbatively corrected black brane glued with inversion to the rest of the
geometry. Region II: linearized perturbations to vacuum AdS. Region III: perturbatively corrected
throat solution. Region IV: the (extremal) two-throat solution. Region V: far from both throats,
vacuum AdS with larger radius.

include inserting explicit double-trace couplings between the boundaries of the worm-
hole [25, 26], incorporating the perturbative gravitational back-reaction of bulk quantum
fields [27, 28], including the Casimir energy of bulk fields running in non-contractible cy-
cles [29, 30], and nucleating and supporting wormholes via cosmic strings [31, 32]. A
particularly productive setting has been the correspondence between the SYK model and
AdS2 Jackiw-Teitelboim gravity [33–36], which, while not an exact duality, has provided
further support that explicit boundary couplings may render the bulk geometry traversable
and provided an experimental setting by which probing wormhole traversability may be
possible in the lab [37, 38].

These constructions use the fact that the eternal AdS-Schwarzschild wormhole is
marginally non-traversable in the sense that the null energy vanishes along the causal hori-
zons, so arbitrarily small negative energy perturbations render the wormhole traversable.
We will find that the leading classical corrections coming from the global structure of our
single-boundary geometry preserve this marginal non-traversability.2 This motivates us to
describe a mechanism by which our single-boundary wormhole may become traversable by
the presence of a natural “double-trace” type operator in the IR of N = 4 SYM generated
by the Wilsonian RG flow [39], although the presence of bulk fermions in the supergrav-
ity spectrum implies that other mechanisms mentioned above may also be a possibility
depending, e.g., on the final sign of cancellations between Casimir energies.

The rest of this paper is organized as follows. In section 2 we explain the pattern of
symmetry breaking in the field theory and describe a particular entangled state in the IR.

2We thank Simon Ross for discussions regarding this point.
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In section 3 we solve for the metric and five-form of the wormhole solution in perturbation
theory in type IIB supergravity and describe its global structure. In section 4 we use
the DBI action to estimate the instability timescale of the wormhole, and show that it
is controlled by the same ratio of scales that governs the thermal effective potential in
the SYM theory. We also show that it is unlikely that the wormhole could be stabilized
by adding rotation. In section 5 we discuss a mechanism for rendering our wormhole
traversable, and in section 6 we explain how to use our results to construct a double
wormhole between two asymptotic universes. We conclude in the Discussion with comments
and remarks for future directions of study.

Conventions. We work in “mostly-plus” signature for Lorentzian metrics. The con-
vention for five-form components is that F = 1

5!Fµαβγδdx
µ ∧ . . . ∧ dxδ = Ft123rdt ∧ . . . ∧

dr + Fθ1...θ5dθ1 ∧ . . . ∧ dθ5 (all other components will be zero throughout this paper).
The notation and combinatorial factors used in symmetrization of indices are for example
A(µBν) = 1

2!(AµBν +AνBµ). The indices of all perturbative geometric quantities are raised
with the background metric. In general this means index raising and lowering does not
commute with perturbative variation. The action of the Hodge star on the components of p-
forms in d spacetime dimensions is (∗F )ν1...νd−p

= 1
p!
√
−gεν1...νd−pσ1...σpg

µ1σ1 . . . gµpσpFµ1...µp

where εµ1...µn is the Levi-Civita symbol and ε01...(d−1) = 1.

2 Description in Super-Yang Mills

The Lagrangian of N = 4 SYM in terms of component fields is [40]

L0 = tr
(
− 1

2g2
YM

FµνF
µν + θ

16π2FµνF̃
µν − iλ̄aσ̄µDµλa −

∑
i

Dµφ
iDµφi

+ gYM
∑
a,b,i

Cabi λa[φi, λb] + gYM
∑
a,b,i

C̄iabλ̄
a[φi, λ̄b] + g2

YM
2
∑
i,j

[φi, φj ]2
)
, (2.1)

where Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] is an SU(2N) gauge field, Dµ· = ∂µ · +i[Aµ, ·] is
the covariant derivative on fields in the adjoint representation, λa are four adjoint Weyl
fermions, φi are six adjoint real scalars, and the Cabi are the Clebsch-Gordon coefficients
that couple two 4 representations of the SU(4)R symmetry to the 6 antisymmetric represen-
tation. The diagonal elements of the vacuum expectation value (vev) of the adjoint scalars
φi in the AdS/CFT correspondence map to the positions of D3-branes in ten-dimensional
flat space, while the off-diagonal elements are excitations of open strings stretching between
the branes [41].

At zero temperature, any diagonal configuration of φi gives rise to a vanishing com-
mutator in the potential for the scalars, so there is a large moduli space of stable vacua.
In the dual gravity theory, this is equivalent to the statement that an arbitrary number
of D3-branes can be superposed at any location in space without any force between them.
We choose a vev that will correspond simply to separating two stacks of N D3-branes in a
single transverse coordinate by distance Λ, by expanding

φ1 → ψ + ϕ1 (2.2)
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with the background ψ given by

ψ = 1
2πα′diag(Λ

√
N,Λ

√
N, . . . , 0, 0, . . .) , (2.3)

where the eigenvalue Λ
√
N is repeated N times and the vevs of all other φi are zero.

We introduce an explicit factor of
√
N to appropriately normalize the gauge-invariant

classical observable trψ2. In detail, we would like the classical value of the observable
trφ2

1, after proper normalization, to have a finite O(1) expectation in the large N limit so
that there is a well-defined classical gravitational dual. Next we observe that tr ϕ2

1 scales
as O(N), since the components of ϕ1 are O(1), so its connected two-point function scales
as 〈trϕ2

1trϕ2
1〉 ∼ O(N2). But we know from large-N index counting that if the expectation

value of a classical observable is taken to be O(1), then the connected component of the two-
point function of its quantum fluctuations should be O(1/N2). Therefore, the observable
trφ2

1 requires an overall normalization proportional to N−2. Consequently, to make the
properly normalized value N−2trψ2 of the classical observable O(1) in the large N limit,
a factor of

√
N should be included in ψ.

The factor of α′ = `2s is required by dimensional analysis since the field φ1 has mass
dimension one in four spacetime dimensions. This should be understood as a scale coming
from open string theory, since it provides the energy cutoff such that the massless excita-
tions of the open string endpoints moving on the D-brane world-volumes are described by
N = 4 SYM.3 The effective Lagrangian for fluctuations about this background is, rescaling
the gauge field Aµ → gYMAµ to canonically normalize its kinetic term,

L = L0 + tr
(

2igYM[ψ,Aµ]∂µϕ1 + g2
YM([ψ,Aµ]2 + 2[ψ,Aµ][ϕ1, Aµ])

+ gYM
∑
a,b

Cab1 λa[ψ, λb] + gYM
∑
a,b

C̄1abλ̄
a[ψ, λ̄b]

+ g2
YM

∑
i

([ψ, φi]2 + 2[ψ, φi][ϕ1, φi])
)
, (2.4)

where ψ should be treated as a classical source.
To understand this effective Lagrangian, it is instructive to expand the commutator of

the vev ψ with an arbitrary Hermitian matrix M in the adjoint of SU(2N), which may be
written in block form as M =

(
MA MB

M†B MC

)
where each block is N ×N :

[ψ,M ] = Λ
√
N

2πα′

(
0 MB

−M †B 0

)
= Λ
√
N

2πα′ MAO . (2.5)

We have labeled the final matrix MAO for the “antihermiticized off-diagonal” piece of
M . Note that trM2

AO is strictly negative, which is required to give the correct signs
below. Armed with this knowledge we further rewrite the commutators in the effective

3The N = 4 SYM does not include α′ as a parameter. We introduce α′ in order to set the dimensions
of ψ correctly as a fiducial scale where we expect the SYM description to break down, anticipating the
correspondence with the supergravity description to be discussed later.
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Lagrangian to make the dependence on the coupling Λ clear, defining the ’t Hooft coupling
λ = g2

YMN [42]:

L = L0 + 1
2πα′ tr

(
Λ
√
λAµ,AO∂

µϕ1 + λΛ2

2πα′ A
2
µ,AO + 2 λΛ√

N
Aµ,AO[ϕ1, Aµ]

+ Λ
√
λ
∑
a,b

Cab1 λaλb,AO + Λ
√
λ
∑
a,b

C̄1ab λ̄
aλ̄bAO + λΛ2

2πα′
∑
i

(φiAO)2

+ 2 λΛ√
N

∑
i

φiAO[ϕ1, φi]
)
. (2.6)

The off-diagonal pieces of the gauge field, scalars, and fermions have acquired a mass
Λ
√
λ/(2πα′) = Λ

√
λ/(2πα′).4 The diagonal blocks of the adjoint fields remain massless, so

the background ψ has Higgsed the theory SU(2N) → S(U(N) × U(N)). The extra terms
remaining in (2.6) coupling the gauge field to the scalar ϕ1 are typical of those that appear
in spontaneously broken non-Abelian gauge theories; we expect that there is a gauge choice
which is an analog of the unitary gauge [43] where these terms vanish.

In the symmetry-broken phase that we have chosen, low-lying excitations above the
vacuum are local to only one of the SU(N) factors of the gauge group. This is because,
as we have shown above, the off-diagonal degrees of freedom can be made very heavy by
choosing a large Higgs scale Λ

√
λ/(2πα′). Therefore, at energies below the Higgs scale, the

Hilbert space of the theory approximately factorizes into that of two separate SU(N) gauge
theories, each of which is dual to an AdS throat in the 10D supergravity. Following the
ER=EPR conjecture, a state in SYM that possesses the appropriate entanglement between
the O(N2) light degrees of freedom in each SU(N) factor should be dual to two AdS throats
connected by a wormhole in the bulk [5]. Specifically, we build the approximate thermofield
double state5 coupling the energy eigenstates of the Hamiltonian for the effective IR fields
in each SU(N) sector

|TFDΛ〉 =
Ei<Ec∑
i=1

e−βEi/2|i〉L ⊗ |i∗〉R , (2.7)

where the sum runs over eigenstates of energy less than a cutoff energy scale Ec set by the
Higgs scale Λ

√
λ/(2πα′), and the subscripts L and R refer to each of the two SU(N) factors

in the symmetry-broken theory. When the thermal energy density is much smaller than
the cutoff energy density, we expect this state to be very close to the exact thermofield
double state. In the deep bulk, this state is approximately dual to the planar two-sided AdS-
Schwarzschild black brane which at fixed times describes a spacelike wormhole or “Einstein-
Rosen bridge” between two asymptotically AdS regions. However, in the ultraviolet of the
field theory, the state (2.7) is embedded in a single SU(2N) SYM theory, so in fact the
wormhole begins and ends in the same asymptotic region.

4This tree-level mass defines the Higgs scale at weak coupling. At strong coupling, the dependence on
λ may be different and we comment on this at the end of this section.

5In the UV it is not possible to factorize the Hilbert spaces due to the SU(2N) being gauged, but it is
approximately possible below the Higgs scale.
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Figure 3. The shape of the effective potential at finite temperature (orange) vs. zero temperature
(blue). At zero temperature, the potential is flat and the components of the scalar background vev
ψi are free, while at finite temperature, the only stable configuration has all ψi = 0.7

Let us be a bit more precise about how close (2.7) is to the thermofield double. The
dominant contribution to (2.7) comes at energies where the Boltzman factor offsets the
growth coming from the number of states. At low enough temperatures we can think
of the individual SU(N) theories as being conformal and therefore their canonical energy
density and entropy are fixed by scale invariance and dimensional analysis6

〈E〉β/V = 3cβ−4, Sth/V = 4cβ−3 , (2.8)

where c is a constant proportional to the central charge and V is the spatial volume. The
contribution of a canonical window of states at the cutoff energy Ec/V = 3cβ−4

c is then
estimated to be

eSc−βEc ≈ eV cβ
−4
c (4βc−3β) , (2.9)

i.e. we have an exponential suppression of these contributions if β > 4βc/3. We take the
cutoff temperature to be set by the Higgs scale β−1

c . Λ
√
λ/(2πα′).

Reducing |TFDΛ〉 onto the Hilbert space of either SU(N) factor yields a state which
looks approximately thermal in the infrared (up to corrections of order (2.9)), with a
temperature β ∼ r−1

0 that corresponds to a black brane of horizon radius r0 in the gravity
dual. In finite temperature field theory the supersymmetry of the SYM Lagrangian is
broken and in particular the effective potential for the scalars φi is modified so that the
only stable vacuum configuration is the one where the vevs of all the φi sit at the origin
in moduli space. See figure 3 for a schematic depiction of the effective potential at finite
temperature. Consequently, an initial configuration of the form (2.3) is unstable and the

6These relations are derived from logZ = cV β−3.
7It may be surprising that the effective potential at zero temperature for the scalars is flat since the SYM

theory is dual to the asymptotically AdS geometry that remains after the decoupling limit, and radially
separated branes in asymptotically AdS space are subject to a potential barrier at infinity. However, the
geometry sourced by two stacks of branes is a full ten-dimensional geometry that only approximately fibers
into an AdS5 and an S5 close to each stack and near infinity. From the perspective of the asymptotic
S5, the branes are located at opposite poles and are not radially separated in the AdS space, so the AdS
potential barrier does not apply.

– 8 –



J
H
E
P
1
1
(
2
0
2
0
)
1
6
7

vev will roll down the potential towards the origin. In the bulk dual, this has the well-
known effect that nonextremal D-branes exert a nonzero attractive force on each other.
Parametrically, at weak coupling λ the thermal effective potential is controlled by the
perturbatively small ratio of the thermal and Higgs scales, 2πα′

βΛ
√
λ

= ε. The weak coupling
effective potential cannot be directly compared with the dual semiclassical gravity, since
the latter is only valid when the field theory coupling is strong. Nonetheless, in section 4
we will estimate the timescale of the instability from the gravity dual using the DBI action
of the underlying branes. In terms of bulk quantities in the gravity dual, the perturbative
parameter controlling the thermal effective potential at small ’t Hooft coupling is

ε =
√

2
λ

r0
Λ . (2.10)

At strong coupling in SYM, where the bulk dual admits a semiclassical description in super-
gravity, quantities computed at weak field theory coupling are often rescaled by functions
of λ (see [44] for a concrete example). Therefore, away from weak coupling we expect
that the perturbative parameter that will control the bulk geometry in supergravity (and
therefore parameterize the instability timescale of the wormhole) will take the form

ε = f(λ)
√

2
λ

r0
Λ , (2.11)

for some function f(λ). In the limit of large coupling λ we will see that f(λ) ∼ λ, so that
the perturbative description of the classical geometry is naturally controlled by ε ∼ r0/Λ,
which is independent of the string scale. It would be interesting to see if the function f(λ)
can be determined as an exact function of the coupling λ using integrability techniques.

3 Wormhole geometry in supergravity

In subsequent sections, we will write down the detailed solution to the equations of motion
in each region. Our starting point for the construction, following [45], is the action of type
IIB supergravity in string frame, restricted to the metric, dilaton, and five-form:8

SIIB = 1
2κ2

10

∫
d10x
√
−g

(
e−2φ(R+ 4∂µφ∂µφ)− 1

4 · 5!FµνρστF
µνρστ

)
, (3.1)

where 2κ2
10 = (2π)7α′4g2

s . The asymptotic value of the dilaton has already been scaled
out so that eφ = 1 at infinity. We work in the strongly coupled limit of the field theory,
gsN →∞, such that classical supergravity is valid. The background values of the various
fermions of type IIB are taken to be zero self-consistently.

Taking as an ansatz that the dilaton will be constant everywhere so that we can drop
terms involving its gradient, the classical equations of motion are

e−2φ
(
Rµν −

1
2Rgµν

)
= − 1

8 · 5!gµνFαβγδεF
αβγδε + 1

4 · 4!FµαβγδF
αβγδ
ν (3.2)

∂µ(
√
−gFµνρστ ) = 0 , (3.3)

8The reviews [46, 47] and textbooks [48–50] provide compact and relevant introductions to D-brane
solutions to type IIB supergravity that may be useful for subsequent sections.
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to be supplemented by the self-duality constraint F = ∗F , and with eφ = 1 everywhere.
Due to the self-duality constraint, FαβγδεFαβγδε ∼ F ∧ ∗F = F ∧ F = 0 since the wedge
product is antisymmetric on five-forms. A straightforward computation by taking traces
and using this identity shows that R = 0. Consequently, (3.2) simplifies to

Rµν = 1
4 · 4!FµαβγδF

αβγδ
ν . (3.4)

In subsequent sections we will write down perturbative corrections to solutions to the
background equations of motion. We add these perturbative corrections at first order to
the metric and five-form, gµν → ḡµν + hµν and F → F̄ + δF , where the bar indicates
quantities at background order, i.e. that solve (3.3) and (3.4). The perturbative equations
of motion are

∇λ∇(µh
λ
ν) −

1
2∇µ∂νh−

1
2∇λ∇

λhµν = 1
4 · 4!(δFµαβγδF̄

αβγδ
ν + F̄µαβγδδF

αβγδ
ν ) (3.5)

∂µ

[√
−ḡ
(
h

2 F̄
µνρστ + δFµνρστ

)]
= 0 , (3.6)

where h = ḡµνhµν is the trace of the metric perturbation and ∇µ is the covariant derivative
with respect to ḡ. These equations must be supplemented with the self-duality constraint
at all orders, such that F̄ + δF = ∗(F̄ + δF ), a nontrivial constraint since the Hodge
dual involves the metric perturbations. The derivation of (3.5) and (3.6) can be found in
appendix A. In the following sections, we will exhibit solutions to the background equations
of motion (3.3) and (3.4) and to their first-order variation in (3.5) and (3.6). Although we
have labeled the regions of the geometry I - V in order of the flow from the IR to the UV in
the field theory, we will describe the solutions below in a different order that will be more
convenient for intuition.

3.1 Region IV: two-center harmonic solution

The general two-center solution at nonzero temperature is not known even in perturbation
theory, so we will first write down the background solution to (3.3) and (3.4) without
perturbations in this region. We begin with the solution corresponding to two stacks of N
extremal D3-branes placed at a separation Λ in 10D Minkowski spacetime. The coordinates
t, x1, . . . , x3 extend parallel to the brane worldvolumes; we label the other six directions
transverse to the branes as r1 through r6. Without loss of generality let the two stacks of
branes be displaced in the r1 direction. The solution in asymptotically flat space is BPS
and the metric and five-form are given by [10, 11]

ds2 = H−1/2(−dt2 + d~x2) +H1/2δijdr
idrj (3.7)

F = (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dH−1 , (3.8)

where H is a two-center harmonic function:

H = 1 + L4

r4 + L4

|~r ± ~Λ|4
. (3.9)
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Here ~Λ = (Λ, 0, 0, 0, 0, 0) and r2 =
∑
i(ri)2. The choice of sign fixes the direction of

displacement of the stacks of branes.
The flux through the five-sphere jumps discontinuously when the radius of the five-

sphere around one stack of branes crosses through the other stack. When the radius is
smaller than Λ, the charge of a single stack is, by Stokes’ theorem,

Q = 1
2κ2

∫
S5
∗F = L4

2g2
s(2π)4(α′)4 . (3.10)

The normalization comes from the normalization of the kinetic term for the five-form
in (3.1) [45]. By the BPS condition, the charge is equal to the number of branes N times
the tension of a single extremal brane, τ = (2π)−3(α′)−2g−1

s , so

Q = Nτ =⇒ L4 = 4πgsN(α′)2 .

We now take the decoupling limit α′ → 0 keeping fixed Λ/α′ and ri/α′ [18]. Fixing Λ/α′

amounts to fixing the Higgs scale of (2.3) in the dual theory. To write a non-singular
metric, we rescale L2 → α′L2, ri → α′ri, and Λ→ α′Λ. The harmonic function becomes

H = α′−2
(
L4

r4 + L4

|~r ± ~Λ|4

)
. (3.11)

Lastly, we nondimensionalize coordinates by the rescaling

r0t

L2 = t̃,
r

r0
= r̃,

r0x
i

L2 = x̃i . (3.12)

Here r0 is the wormhole horizon radius, to be introduced in subsequent sections. This
nondimensionalization will be convenient in other regions where it removes the length
scale r0. We introduce the parameter ε = r0

Λ . The full wormhole solution will only be valid
in the limit ε� 1 where the horizons of the two stacks of branes are well-separated. Given
these definitions, the full solution in region IV is

1
α′
ds2 = L2

[( 1
r̃4 + 1

|~̃r ± ~ε−1|4

)−1/2
(−dt̃2 + d~̃x2) +

( 1
r̃4 + 1

|~̃r ± ~ε−1|4

)1/2
δijdr̃

idr̃j
]
(3.13)

1
α′2

F = L4
[
(1 + ∗)dt̃ ∧ dx̃1 ∧ dx̃2 ∧ dx̃3 ∧ d

( 1
r̃4 + 1

|~̃r ± ~ε−1|4

)−1]
, (3.14)

where ~ε−1 = (ε−1, 0, 0, 0, 0, 0).
It is convenient for subsequent sections to expand this solution close to the stack of

branes at the origin, ri � Λ. In this limit the (nondimensionalized) harmonic function
becomes simply

H = 1
r̃4 + ε4 . (3.15)

That is, all dependence on r1 is subleading, so spherical symmetry about the stack of branes
is valid in this limit. Furthermore, this expansion is valid around either stack provided the
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radial coordinate is defined appropriately. Defining the hyperspherical coordinates

r1 = r cos θ1

r2 = r cos θ2 sin θ1

r3 = r cos θ3 sin θ2 sin θ1

r4 = r cos θ4 sin θ3 sin θ2 sin θ1

r5 = r cos θ5 sin θ4 sin θ3 sin θ2 sin θ1

r6 = r sin θ5 sin θ4 sin θ3 sin θ2 sin θ1 ,

(3.16)

and series expanding H±1/2 yields

1
α′
ds2 = L2

[
r̃2
(

1− 1
2(εr̃)4

)
(−dt̃2 + d~̃x2) +

(
1 + 1

2(εr̃)4
)(

dr̃2

r̃2 + dΩ2
5

)]
(3.17)

1
α′2

F = 4L4
[
r̃3
(
1− 2(εr̃)4

)
dt̃ ∧ dx̃1 ∧ dx̃2 ∧ dx̃3 ∧ dr̃

+ sin4 θ1 sin3 θ2 sin2 θ3 sin θ4dθ1 ∧ dθ2 ∧ dθ3 ∧ dθ4 ∧ dθ5

]
. (3.18)

In this form, the linearized corrections to vacuum AdS5 × S5 deep within a single throat
are apparent. These corrections will be useful in subsequent sections.

3.2 Region V: asymptotics

In the region far from both stacks of branes, we take the limit ri � Λ, by which the
harmonic function H simplifies to

H = 2L4

r4 (3.19)

Writing L4
∞ = 2L4, taking the decoupling limit, rescaling, and nondimensionalizing, the

solution in region V is

1
α′
ds2 = L2

∞

[
r̃2(−dt̃2 + d~̃x2) + dr̃2

r̃2 + dΩ2
5

]
(3.20)

1
α′2

F = 4L4
∞

[
r̃3dt̃ ∧ dx̃1 ∧ dx̃2 ∧ dx̃3 ∧ dr̃

+ sin4 θ1 sin3 θ2 sin2 θ3 sin θ4dθ1 ∧ dθ2 ∧ dθ3 ∧ dθ4 ∧ dθ5
]
. (3.21)

This solution is vacuum AdS5 × S5 with AdS length L4
∞ = 2L4. The charge is

Q = L4
∞

2g2
s(2π)4(α′)4 , (3.22)

leading to

L4
∞ = 4πgs(2N)(α′)2 (3.23)

from the flux quantization condition. At infinity, the flux sees both stacks of branes as if
they are at the origin, as expected. This region corresponds to the UV in the field theory
where the SU(2N) symmetry is unbroken.
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3.3 Region I: black brane

In region I, the solution is the geometry of the two-sided black brane with perturbative cor-
rections coming from the second throat in the full geometry. In this region, the solution will
describe the geometry close to one of the two stacks with the origin of coordinates placed at
the location of the stack, that is, in the limit ri � Λ of section 3.1. The solution preserves
the SO(3, 1)× SO(6) isometries induced by the brane locations. Following the conventions
of [47], the metric and five-form of the asymptotically flat solution are [10, 11, 46]

ds2 = H(r)−1/2(−f(r)dt2 + d~x2) +H(r)1/2(dr2/f(r) + r2dΩ2
5) (3.24)

F =

√
1 + r4

0
L4 (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dH−1 , (3.25)

with H(r) = 1 + L4

r4 and f(r) = 1 − r4
0
r4 . As the horizon radius r0 → 0 one approaches the

extremal limit of the brane solution. The five-form can be written explicitly in coordinates
as

F =

√
1 + r4

0
L4

[ 4L4

r5H(r)2dt ∧ dx
1 ∧ dx2 ∧ dx3 ∧ dr

+ 4L4 sin4 θ1 sin3 θ2 sin2 θ3 sin θ4dθ1 ∧ dθ2 ∧ dθ3 ∧ dθ4 ∧ dθ5

]
. (3.26)

Consequently, the charge is

Q = 1
2κ2

∫
S5
∗F = L4

2g2
s(2π)4(α′)4

√
1 + r4

0
L4 . (3.27)

The charge remains equal to the number of branes N times the tension τ of an extremal
brane, so

Q = Nτ =⇒ L4 = −1
2r

4
0 +

√
(4πgsN(α′)2)2 + 1

4r
8
0 . (3.28)

We now take the decoupling limit α′ → 0 keeping fixed ri/α′ and r0/α
′, rescaling

L2 → α′L2, r0 → α′r0 and r → α′r. The resulting solution has the same form as (3.25) with
H = L4/r4, no overall scaling on the five-form, and f(r) unchanged. Nondimensionalizing
following (3.12) it can be written as

1
α′
ds2 = L2

[
−r̃2

(
1− 1

r̃4

)
dt̃2 + r̃2d~̃x2 + dr̃2

r̃2(1− 1
r̃4 )

+ dΩ2
5

]
(3.29)

1
α′2

F = 4L4
[
r̃3dt̃ ∧ dx̃1 ∧ dx̃2 ∧ dx̃3 ∧ dr̃

+ sin4 θ1 sin3 θ2 sin2 θ3 sin θ4dθ1 ∧ dθ2 ∧ dθ3 ∧ dθ4 ∧ dθ5
]
. (3.30)

This is the background solution in region I. Note that the finite temperature factor has
dropped out of the five-form after the decoupling limit. Consequently, the charge in the
decoupling limit is simply

Q = L4

2g2
s(2π)4(α′)4 . (3.31)
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This leads to the extremal quantization condition for the black brane in AdS,

L4 = 4πgsN(α′)2 . (3.32)

In section 3.5 we will describe the perturbative corrections to (3.29), (3.30) coming from
the second throat, though we first describe the general structure of the multipole expansion
that gives rise to these perturbative corrections in section 3.4.

3.4 Regions II-III: linearized regime

Regions II and III are the intermediate regimes far from the horizon and sufficiently deep
within a single throat such that the corrections to vacuum AdS5×S5 both from the throat
and from the wormhole can be linearized. These regions are defined by r̃ ∼ O(ε−1/2),
where the background is empty AdS and corrections to this coming both from the harmonic
function and the blackening factor are O(ε2). Since both of these corrections can be treated
as linearized and the equations of motion are linear in the perturbations, the full solution
can be written simply as the linear superposition of the two,

1
α′
ds2 =H0(r)−1/2

[
1− 1

2
δH(r, θ1)
H0(r)

](
−
[
1− r4

0
r4

]
dt2 + d~x2

)

+H0(r)1/2
[
1 + 1

2
δH(r, θ1)
H0(r)

](
dr2

[
1 + r4

0
r4

]
+ r2dΩ2

5

)
(3.33)

1
α′2

F = (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ d
[
H0(r)−1

(
1− δH(r, θ1)

H0(r)

)]
, (3.34)

where H0(r) = L4

r4 and

δH(r, θ1) = L4

Λ4 + 4L4r cos(θ1)
Λ5 + 2L4r2(3 cos(2θ1) + 2)

Λ6

+ 4L4r3(3 cos(θ1) + 2 cos(3θ1))
Λ7 +O(Λ−8) , (3.35)

and the Hodge star must be applied so that in the result we linearize both in δH and r4
0.

This solves the linearized equations of motions simply because it is the sum of two linear
perturbations of AdS5×S5, one defined by expanding (3.7) in δH with H = H0 + δH, and
the other by expanding (3.29) in r4

0/r
4. Note that the leading nonlinearity from the two

centered harmonic function comes at (δH)2 ∼ Λ−8 and therefore we can keep the multipole
expansion (3.35) up to O(Λ−7) in the linearized regime.9

We define region II as the patch where spherical symmetry around the throat is ap-
proximately unbroken and hence we can stop in the multipole expansion of δH(r, θ1) at
monopole order. This means keeping only the L4/Λ4 term in (3.35). In this case the

9After nondimensionalizing, the multipole expansion is controlled by powers of ε, so the leading nonlin-
earity is at O(ε8).
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solution explicitly reads in nondimensionalized coordinates
1
α′
ds2 = L2

[
−r̃2

(
1− (εr̃)4

2 − 1
r̃4

)
dt̃2 + r̃2

(
1− (εr̃)4

2

)
d~̃x2

+ 1
r̃2

(
1 + (εr̃)4

2 + 1
r̃4

)
dr̃2 +

(
1 + (εr̃)4

2

)
dΩ2

5

]
(3.36)

1
α′2

F = 4L4
[
r̃3
(
1− 2(εr̃)4

)
dt̃ ∧ dx̃1 ∧ dx̃2 ∧ dx̃3 ∧ dr̃

+ sin4 θ1 sin3 θ2 sin2 θ3 sin θ4dθ1 ∧ dθ2 ∧ dθ3 ∧ dθ4 ∧ dθ5
]
. (3.37)

In this regime, the equations of motion can be solved by hand; see appendix B. The
procedure involves several undetermined constants and an undetermined function as a
consequence of a residual diffeomorphism freedom.

3.5 Joint solution in regions I-II: monopole contribution

Now, we solve (3.5) and (3.6) for the perturbations to the metric and the five-form in the
backgrounds of (3.29) and (3.30), i.e. the non-extremal black brane. In this subsection we
deal with the case when spherical symmetry is intact, that is, we solve for the monopole
contribution of the far throat down the near throat. We begin with an ansatz for the
perturbations consistent with the SO(3, 1)× SO(6) symmetry

1
α′
ds2 = L2

[
− r̃2

(
1− 1

r̃4

)
(1 + δgt̃t̃)dt̃2 + r̃2(1 + δgĩ̃i)d~̃x

2

+ dr̃2

r̃2(1− 1
r̃4 )

(1 + δgr̃r̃) + (1 + δgΩΩ)dΩ2
5

]
(3.38)

1
α′2

F = 4L4
[
r̃3(1 + a(r̃))dt̃ ∧ dx̃1 ∧ dx̃2 ∧ dx̃3 ∧ dr̃

+ (1 + b(r̃)) sin4 θ1 sin3 θ2 sin2 θ3 sin θ4dθ1 ∧ dθ2 ∧ dθ3 ∧ dθ4 ∧ dθ5
]
,

(3.39)
where the metric perturbations are all functions only of the radial coordinate r. In terms
of the perturbations, the Maxwell equations and self-duality constraint reduce simply to

2a− 2b− 3δgĩ̃i − δgt̃t̃ − δgr̃r̃ + 5δgΩΩ = 0 (3.40)
2a′ − 3δg′

ĩ̃i
− δg′t̃t̃ − δg

′
r̃r̃ + 5δg′ΩΩ = 0 . (3.41)

The geometric equations of motion are:(
1− 5r̃4

)
δg′ΩΩ − r̃

(
r̃4 − 1

)
δg′′ΩΩ − 16r̃3(b− 2δgΩΩ) = 0

− 16r̃3a+ 24r̃3δgĩ̃i + 8r̃3δgt̃t̃ + 3(r̃4 + 1)δg′
ĩ̃i

+ 6r̃4δg′t̃t̃

− (r̃4 + 1)δg′r̃r̃ + 5(r̃4 + 1)δg′ΩΩ + (r̃5 − r̃)δg′′t̃t̃ = 0
− 16r̃3a+ 24r̃3δgĩ̃i + 8r̃3δgt̃t̃ − 4(2r̃4 − 1)δg′

ĩ̃i
− (r̃4 − 1)δg′t̃t̃

+ (r̃4 − 1)δg′r̃r̃ − 5(r̃4 − 1)δg′ΩΩ − (r̃5 − r̃)δg′′
ĩ̃i

= 0
− 16r̃3a+ 24r̃3δgĩ̃i + 8r̃3δgt̃t̃ + 3(3r̃4 − 1)δg′

ĩ̃i
+ 3(r̃4 + 1)δg′t̃t̃ − 2(2r̃4 − 1)δg′r̃r̃

+ 5(r̃4 + 1)δg′ΩΩ + 3(r̃5 − r̃)δg′′
ĩ̃i

+ (r̃5 − r̃)δg′′t̃t̃ + 5(r̃5 − r̃)δg′′ΩΩ = 0 .

(3.42)
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Note that we are in the region r̃ > 1 outside the horizon at all times. We solve the equations
of motion by the ansatz that the perturbations will be equal to the near-horizon corrections
of the two-throat solution given in (3.17) and (3.18). This ansatz turns out to be correct
provided that we include an additional contribution to the five-form perturbations a(r̃)
and b(r̃). The full perturbative solution in region I is

1
α′
ds2 = L2

[
−r̃2

(
1− 1

r̃4

)(
1− 1

2(εr̃)4
)
dt̃2 + r̃2

(
1− 1

2(εr̃)4
)
d~̃x2

+ dr̃2

r̃2(1− 1
r̃4 )

(
1 + 1

2(εr̃)4
)

+
(

1 + 1
2(εr̃)4

)
dΩ2

5

]
(3.43)

1
α′2

F = 4L4
[
r̃3
(

1− 2(εr̃)4 + ε4

2

)
dt̃ ∧ dx̃1 ∧ dx̃2 ∧ dx̃3 ∧ dr̃

+
(

1 + ε4

2

)
sin4 θ1 sin3 θ2 sin2 θ3 sin θ4dθ1 ∧ dθ2 ∧ dθ3 ∧ dθ4 ∧ dθ5

]
.

(3.44)

In this regime, we are close to the horizon, so r̃ ∼ O(1) and the perturbative corrections
are O(ε4). When r̃ gets large, this solution matches onto (3.36) in the linearized regime,
region II.

The physical interpretation of the leading monopole contribution from the presence of
the other throat is to create a small region of flat space around the black brane. This can
be seen by noting that (3.43) can be obtained by linearizing in 1/Λ4 the non-perturbative
solution (in dimensionful coordinates):

1
α′
ds2 =

(
L4

r4 + L4

Λ4

)−1/2(
−
[
1− r4

0
r4

]
dt2 + d~x2

)

+
(
L4

r4 + L4

Λ4

)1/2(
dr2

[
1− r4

0
r4

]−1

+ r2dΩ2
5

)
(3.45)

1
α′2

F =

√
1 + r4

0
Λ4 (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ d

(
L4

r4 + L4

Λ4

)−1

, (3.46)

which is obtained by truncating the multipole expansion at monopole order but keeping
the nonlinear dependence on the harmonic functions, as well as the blackening factor. It
is easy to see that this solution is just a single non-extremal black brane in asymptotically
flat space, in rescaled coordinates t′ = Λ

L t, ~x
′ = Λ

L~x, r
′ = L

Λr. This rescaling puts the
solution (3.45) in the form (3.25) but with a rescaled horizon radius r′0 = L

Λr0.

3.6 Joint solution in regions I-II-III: dipole contribution

It is interesting to ask if we can capture the leading effect of spherical symmetry breaking on
the wormhole. The above solutions contain the monopole contribution from the presence of
the other throat. At next order, there is a dipole contribution from the harmonic function

H = L4
( 1
r4 + 1

Λ4 + 4r cos θ1
Λ5 + · · ·

)
, (3.47)
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We look for a solution including dipole effects in all three regions I-III, that is, we keep the
blackening factor exact. We take a general ansatz where the harmonic functions Hg in the
metric and HF in the five-form are allowed to be different,

1
α′
ds2 = Hg(r, θ1)−1/2(−f(r)dt2 + d~x2) +Hg(r, θ1)1/2(dr2/f(r) + r2dΩ2

5) (3.48)
1
α′2

F = B(1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dH−1
F , (3.49)

with f(r) = 1− r4
0/r

4 and B = 1 + r4
0

2Λ4 . Similarly, we take a general ansatz for Hg and HF

whereby both must be asymptotically equal to (3.47) as r →∞,

Hg = L4
( 1
r4 + 1

Λ4 + 4hg(r) cos θ1
Λ5 + · · ·

)
(3.50)

HF = L4
( 1
r4 + 1

Λ4 + 4hF (r) cos θ1
Λ5 + · · ·

)
, (3.51)

that is, hg ∼ hF ∼ r as r →∞. Requiring the rθ1 component of the curvature equation of
motion (3.4) to vanish at order 1/Λ5 gives

hF (r) = 2r4 − r4
0

2r4 hg(r) . (3.52)

Imposing this, it turns out all the remaining components of (3.4), as well as the only
non-vanishing component of Maxwell’s equation, (dF )rθ1...θ5 = 0 are proportional to
the equation

− 5r3hg + (r4 − r4
0)(5h′g + rh′′g) = 0 . (3.53)

This is a second order equation with two initial conditions. One is fixed by hg(r →∞)→ r.
The other is fixed by requiring the solution to stay real in the interior of the wormhole,
r < r0. It turns out that the latter condition translates into hg(r0) = 0, so that the location
of the horizon is not affected by the perturbation. The solution is then

hg(r) = r0Q

(
r4

0
r4

)
, (3.54)

Q(x) =
2F1

(
−5

4 ,−
1
4 ;−1

2 ;x
)

+ 8x3/2Γ( 5
4)Γ( 9

4)
3Γ(− 1

4)Γ( 3
4) 2F1

(
1
4 ,

5
4 ; 5

2 ;x
)

x1/4 , (3.55)

and is analytic at r = r0 (x = 1) due to the cancellation of the branch cuts starting at
x = 1 that are separately present in the two hypergeometric functions.

It would be interesting to further analyze this solution. It seems like it is not possible to
have a perturbation that decays towards the singularity r → 0. Instead, the perturbation
decays towards the horizon, i.e. it is decaying in tortoise coordinates. So the presence of
the other throat appears to have a significant effect on the interior, where the perturbation
becomes large again as we approach the singularity, since Q(x → ∞) ∼ 2

√
2πx

Γ(− 1
4)Γ( 3

4) . The

singularity inside this wormhole is therefore not of the AdS-Schwarzschild type. The S5

does not factorize, so the geometry is really a full ten-dimensional wormhole.
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(a) (b)

Figure 4. Spacetime wormholes with orientable (a) and non-orientable (b) Cauchy slices. In the
orientable wormhole, conservation of circuital flux demands that the flux reverses direction at the
second throat relative to the first throat, while in the non-orientable wormhole the flux at both
throats points the same direction.

3.7 Global structure and flux conservation

Here we discuss how regions I-II-III (the wormhole) should be glued to regions IV-V (the
two throats in a single spacetime) so that the five form flux is conserved.10 The gluing
procedure leads to some interesting global properties of the wormhole. We will show that
the spacetime has a moduli space coming from the freedom to add a certain amount of
twisting during gluing.

In the geometry that we have described, both AdS throats have a positive net five-form
flux towards infinity, so that there are 2N units of flux near infinity and N near each throat.
This presents a puzzle: if there are no sources in the wormhole, flux conservation demands
that the flux should thread through the wormhole and close in the outside, giving zero net
flux far away from the throats rather than 2N . Our setup is analogous to the circuital law
for a magnetic field in two dimensions, where the closed line integral must be conserved if
there are no sources for the curl. This is illustrated for a 2D wormhole in figure 4(a), where
again, the wormhole without sources has zero line integral for the magnetic field on a loop
enclosing both throats. However, one may support a non-vanishing line integral on such
a loop purely by modification of the geometry, without adding sources. This is achieved
by cutting open the wormhole, and gluing it back to the ambient space while twisting to
invert the angular coordinate. This results in a sourceless “Klein-bottle” wormhole, which
is a non-orientable surface that supports a nonzero circuital flux at infinity. This is shown
on figure 4(b).

The way that flux conservation works in our supergravity wormhole is very similar,
although there are some technical differences because the flux comes from a five-form and
lives in ten dimensions. In particular, the Cauchy slices of the wormhole will remain
orientable. We illustrate on a spacetime diagram in figure 5 the two throats and the

10We thank Juan Maldacena for raising this point.
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Figure 5. Spacetime diagram of gluing the wormhole to the throat regions. In the middle we have
the Penrose diagram of the eternal black brane, and the sides represent the throat regions. We
show the orientation of the coordinate differentials dr, dt, and dθ1. The dθ1 differential points out
from the plane of the figure in the left throat and in the wormhole, but it points inwards in the
right throat. The three differentials must always form the same right handed system.

wormhole before we glue them together, and the orientation of the coordinate differentials.
The left and right throats share a time coordinate tg and three spatial coordinates xig which
are globally defined with the same orientation in the ambient space outside the throats.
However, the natural radial and angular coordinates rL and θiL at the left throat do not
coincide with the corresponding coordinates rR, θiR at the right throat. This is because the
geometry only fibers into AdS5 × S5 near each throat, so the two five-spheres are centered
at different points.

For the following discussion, by the electric part of the five-form we refer to the term
proportional to dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr and by the magnetic part we refer to the term
proportional to dVolS5 . Now, both electric and magnetic parts of the five-form are oriented
in the same direction in the ambient spacetime, so deep in each throat, both have the same
expression in local coordinates: dtg ∧ dx1

g ∧ dx2
g ∧ dx3

g ∧ dr(L/R) for the electric part and
dVolS5(L/R) for the magnetic part. At the left side of the wormhole, we choose the exterior
Schwarzschild coordinates in the left wedge of the Penrose diagram to match the direction
of local coordinates of the left throat: dt = dtg, dxi = dxig, dr = drL, dθi = dθiL.11 In
the right wedge, the radial coordinate points outwards towards the right throat, and the
Schwarzschild time coordinate runs downward, in the opposite direction as the left wedge.
However, we would like to glue the throats to the wormhole so that time points up on
both sides. This is what we expect from the field theory, since after Higgsing the SYM
Hamiltonian looks like HL + HR in the IR, which generates upwards time evolution on
both sides. Therefore, in the right wedge, we must take −dt = dtg and dr = drR.

The gluing of the rest of the coordinate directions at the right interface is determined
by requiring the five form to be continuous. Consider starting with the five-form in the

11The equalities that describe the “gluing” between the left/right throats and left/right exterior wedges
should be understood to be specifying the transition functions on the wormhole manifold in the coordinate
patches where they are defined.
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left throat and continuing into the left exterior wedge and across the wormhole to the right
exterior wedge, where we must glue the geometry back to the right throat. On figure 5 we
show the orientation of the coordinate differentials that are changing during this process.
The rest of the coordinate differentials, dxi, i = 1, 2, 3 and dθi, i = 2, . . . , 5 are oriented
the same way throughout the figure. In the Schwarzschild coordinates, the five-form has
the same solution in both the left and right wedges. But note that in the right exterior
wedge of the wormhole, both dr and dt are flipped in Schwarzschild coordinates relative to
the left exterior wedge. Since both of these are flipped, the electric part of the five-form,
F5 ∼ dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr actually keeps its orientation throughout the wormhole
region. The same applies for the magnetic part, since the S5 approximately factorizes in
the wormhole.

On the other hand, in the right throat, the basis differentials drR and dθ1
R are flipped

relative to the left throat. However, the solution for the five-form looks the same in terms
of these coordinate differentials in both throats. So the orientation of both the electric part
dtR∧dx1∧dx2∧dx3∧drR and the magnetic part dθ1

R∧dθ2∧dθ3∧dθ4∧dθ5 of the five form
appear reversed compared to the right wedge of the wormhole for the purpose of gluing
them.12 So a direct gluing would lead to a discontinuous five-form. However, we can follow
the idea from figure 4(b) and perform the gluing by twisting the xi coordinates (parallel
to the brane) and the θ1 coordinate by an inversion at the gluing surface.

In terms of transition functions between the right wedge and the right throat, this
works as follows. First we align the basis of coordinate differentials on the two sides by
introducing new coordinates t′ = −t and (θ1)′ = −θ1 in the right Schwarzschild wedge.
In this properly aligned basis, there is an explicit sign difference in both the electric and
magnetic components of the five form compared to the right throat. Then in order to make
the five form components continuous, we glue with the transition functions tR ≡ tg = t′,
xiR ≡ xig = −xi and θ1

R = −(θ1)′. This way, in the electric part we make up for the sign by
inverting xi in the gluing function, while in the magnetic part we invert the θ1 direction.
This makes the complete five form continuous. Note that since the total determinant of
this twist is positive, the Cauchy slice remains orientable, as opposed to the 2d example of
figure 4(b).13

Note that this twisted gluing results in a smooth geometry, because the O(3) symmetry
of the xi subspace is unbroken by the configuration of two throats, so nothing will depend
on these coordinates even in the fully nonlinear time-dependent solution that we have
not written down. Similarly, there is an unbroken O(5) subgroup of the O(6) acting
on the ri coordinates, where the O(5) fixes r1, the direction in which the throats are
separated. The θ1 twisting is an inversion of the r2, . . . , r6 coordinates, which is an element
R ∈ O(5) ⊂ O(6) of this unbroken symmetry with detR = −1.

Now we briefly discuss the moduli space of solutions. Note that the only restrictions

12What we mean here is that tracking the global five-form from the left throat to the right throat on the
outside results in five-forms that point in opposite directions in the left and right throats if we draw them
as in figure 5.

13The total spacetime is also orientable since there exists a globally defined “upwards” time, which in the
wormhole region is just Kruskal time.
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on the spatial twisting at the right gluing surface are that (i) it is from the subgroup which
remains a symmetry of the solution, (ii) it reverses the orientation of both dx1 ∧ dx2 ∧ dx3

and dVolS5 . This gives a freedom in picking the group element with which we twist the
gluing, resulting in a moduli space. In addition to the spatial twisting, as pointed out
in [51], one may introduce a constant time shift in the identification of Schwarzschild time
with the global time in the throat, which gives an extra real parameter (the difference
between constant time shifts between left and right). Therefore, the total moduli space of
single boundary wormholes is

R× ISO(3)× SO(5). (3.56)

Here, ISO(3) denotes the group of (orientation-preserving) rotations and translations of
the xi coordinates.

Finally, let us comment on the field theory interpretation of the gluing twisted by
inversions. The inversion of Schwarzschild time and the parallel coordinates xi correspond
to time reversal and parity (TP) in the right IR N = 4 SYM factor. The inversion on
the S5 corresponds to inverting the R charges in the field theory, so it is natural to think
about it as the action of charge conjugation C. Therefore, from the field theory point of
view, the right IR field theory factor is “glued back” to the UV field theory by an action
of CPT. This is natural for the following reason. As discussed before, the state in the IR
looks like the thermofield double state. The TFD state is defined from the square root of
the thermal density matrix ρ1/2, which is an element of H ⊗ H∗, where H∗ denotes the
dual Hilbert space, where bra vectors live. In order to define the thermofield double, which
lives on a doubled Hilbert space H⊗H, one needs to turn the bra vectors into ket vectors
with an anti-unitary symmetry. There is one such anti-unitary transformation that is a
symmetry in any quantum field theory, which is CPT.

4 Instability of the solution

4.1 Instability timescale

The wormhole solution we have described is not an extremal (BPS) solution of type IIB: its
mass is larger than its charge. Consequently, it suffers from an instability: the attractive
gravitational (NS-NS) force is larger than the repulsive five-form (R-R) force between
the underlying branes, so that at late times the wormhole disappears as the two stacks
of N branes collide and form a single stack of 2N branes at nonzero temperature. We
can compute the time scale of this instability by examining the tree-level effective action
governing the dynamics of one stack of branes in the background of the other stack. The
full action is the Dirac-Born-Infeld (DBI) action describing the geometric dynamics of the
branes and their coupling to open strings, plus the coupling of the branes to the five-
form [52]:

S = −T
∫
dp+1ξ

√
−detGab + µ

∫
dp+1ξ C4 . (4.1)

Here the ξi are coordinates on the world-volume of a brane, T is the tension of the stack
of branes, µ is the charge density coupling to the five-form, Gab is the pullback of the
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background metric gµν to the brane, and C4 is the pullback of the potential for the five-
form. Evaluating the DBI action using the classical metric and five-form gives the effective
action at tree level where we have taken the backgrounds for the antisymmetric two-form
and the gauge field on the brane to be zero.

In order to study the dynamics of one stack of branes as a probe, the backreaction of
the probe on the background geometry should be negligible. However, this is not the case
in the full two-center geometry, as each stack of branes sources its own independent AdS
throat. Moreover, each of the stacks have a field that is the size of the AdS radius, and since
they are separated in the asymptotic S5 directions which have comparable size, we cannot
treat the two stacks as point-like objects interacting via weak fields. Nevertheless, we may
obtain a lower bound on the timescale of the instability by considering the motion of an
extremal probe brane located halfway between the two stacks of branes, where we heat up
one stack slightly and leave the other extremal. We may think about the extremal probe
as being separated from the extremal stack. Such a brane experiences a higher acceleration
than a brane located deep in the AdS throat of the extremal stack, where it is further from
the thermal stack. We will show that the temperature and separation of the branes can be
chosen so as to make this lower bound on the instability timescale arbitrarily high, i.e. the
wormhole is long-lived.

The extremal probe brane starts at a point in the geometry which can be approximated
by the flat-space region of (3.45), (3.46), far from both the horizon of the thermal branes
and the AdS throat of the extremal branes. To compute the pullback of the metric and
four-potential, we use spacetime Lorentz transformations and world-volume reparameteri-
zations to work in “static gauge” in which the world-volume coordinates are parallel to the
spacetime coordinates.

ξ0 = t, ξi = xi , (4.2)

where i = 1, 2, 3. The pullback of the potential to a brane sitting at distance r from the
thermal stack is then

C4 =

√
1 + r4

0
Λ4

(
L4

r4 + L4

Λ4

)−1

dt ∧ dx1 ∧ dx2 ∧ dx3 . (4.3)

In spherical coordinates, the probe brane moves only in the radial direction, so the pullback
of the metric is given by

G00 = g00 + ṙ2grr, Gii = gii , (4.4)

and all other components are zero. Consequently, the effective action experienced by the
probe brane is, defining M = TV and Q = µV as the effective mass and charge of the
probe brane where V =

∫
d3ξi is the (regularized) brane world-volume,

S = Λ2

L4

∫
dt

r4

r4 + Λ4

(
−MΛ2

√
1− r4

0
r4 − ṙ

2L
4(r4 + Λ4)

Λ4(r4 − r4
0)

+Q
√
r4

0 + Λ4
)
. (4.5)
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This expression should be expanded at large radius compared to the horizon r0, but keeping
r/Λ fixed since r ∼ O(Λ) at the scale of the dynamics. Therefore, we introduce the
dimensionless radial coordinate r̂ = r/Λ that we imagine to be order one, and dimensionless
time t̂ = r0t

L2 as before. Since we take the probe to be extremal, we set Q = M , and all
dimensionful quantities then scale out in front of the action,

S = MΛ4

r0L2

∫
dt̂

r̂4

r̂4 + 1

(√
1 + ε4 −

√
1− ε4

r̂4 − ε
2
(
dr̂

dt̂

)2 r̂4 + 1
r̂4 − ε4

)
, (4.6)

where ε = r0/Λ as before. We may now expand in ε and take dr̂/dt̂ � 1, the Newtonian
slow-moving approximation for the probe,14 to find at lowest order

S = MΛ2r0
L2

∫
dt̂

(
1
2

(
dr̂

dt̂

)2
+ ε2

2 + ε6

8

( 1
r̂4 − 1

)
+ . . .

)
. (4.7)

This is motion in a flat space attractive Coulomb potential which scales as O(r̂−4) as
expected for a charged object of codimension six in ten spacetime dimensions, in agreement
with what would have been found from the tree-level closed string exchange. The resulting
dynamics are simply

d2r̂

dt̂2
= −1

2
ε6

r̂5 , (4.8)

and so the acceleration can be made small by making ε = r0/Λ small. In terms of the
original time coordinate, the instability timescale is t ∼ L2Λ3

r4
0
∼ βε−3, where β = πL2

r0
is

the inverse temperature of the black brane. That is, taking the thermal branes to be very
cold or the stacks of branes to be widely separated, the wormhole solution can be made
arbitrarily long-lived.

4.2 Stabilizing with rotation

One may wonder whether our wormhole can be stabilized by making the throats spin
around each other in the transverse ri directions. We will not attempt to perturbatively
construct such a spinning solution in the present work. On the other hand, we can repeat
the DBI analysis above for the case where the extremal probe brane rotates around the
non-extremal black branes. We parameterize the brane trajectory in a circular orbit around
the equator θ1 = . . . = θ4 = π/2 by r(t), θ5(t). In this case, the G00 component of the
pullback of the metric is

G00 = g00 + ṙ2grr + θ̇2
5gθ5θ5 . (4.9)

Using the same coordinates as the previous section, the DBI action for the extremal probe
constrained to the equator is

S = MΛ4

r0L4

∫
dt̂

r̂4

r̂4 + 1

√1+ε4 −

√√√√1− ε4

r̂4 − ε
2(r̂4+1)

[
1

r̂4 − ε4
(
dr̂

dt̂

)2
+ 1
r̂2

(
dθ5

dt̂

)2] .

(4.10)
14The speed dr̂/dt̂ is O(ε3) in this expansion, coming from balancing the orders of the leading potential

and kinetic terms and/or from the equation of motion.
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Expanding in ε and taking the slow-moving approximation yields

S = MΛ2r0
L2

∫
dt̂

(
1
2

(
dr̂

dt̂

)2
+ 1

2 r̂
2
(
dθ5

dt̂

)2
+ ε2

2 + ε6

8

( 1
r̂4 − 1

)
+ . . .

)
, (4.11)

the same result as previously with the Newtonian rotational kinetic energy added. The
radial equation of motion, assuming the existence of a solution with a constant rotational
velocity dθ5

dt̂
= ω̂, is

d2r̂

dt̂2
= r̂ω2 − ε6

2r̂5 , (4.12)

and therefore we can obtain circular orbits of radius r̂c when the rotation speed is

ω̂ = ε3√
2r̂3
c

. (4.13)

Therefore, the angular speed needed to obtain circular orbits is ω ∼ ε3/β, the inverse of
the instability time scale. In dimensionful coordinates, this speed is

ω = r4
0√

2L2r3
c

. (4.14)

We can check if the circular orbit radius r̂c = ε
(
√

2ω̂)1/3 leads to stable or unstable or-
bits. For this, we examine the effective potential written in terms of conserved angular
momentum ` = r̂2

ε3
dθ5
dt̂

,

V (r) = ε6
(

1
4 −

1
4r̂4 + `2

r̂2

)
. (4.15)

We see that the circular orbit corresponds to a maximum, i.e. it is unstable. The reason
this happens is that the centrifugal piece in the effective potential dies off slower than the
attractive force, which is the opposite of the situation in normal 4D Kepler motion. Based
on this analysis, it is unlikely that the wormhole solution can be stabilized by rotation,
unless nonlinear effects conspire to stabilize a circular orbit.

We can also try to solve (4.10) for circular orbit frequencies directly without series
expanding by taking the circular orbit as an ansatz. In that case the equation of motion
reduces to the algebraic equation

r̂10ω2ε8 + 4r̂6ω2ε8 + 3r̂2ω2ε8

+ r̂4
(

4

√
−(ε4 + 1) (r̂6ω2ε8 − r̂4 + r2ω2ε8 + ε4)

r̂4 − 2ε4 − 4
)

+ 2ε4 = 0 . (4.16)

We find an additional solution in this case with angular speed at leading order in ε

given by

ω̂ = 2
√

2r̂c
(r̂4
c + 3)ε , (4.17)
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or ω = Λ4

L2
2
√

2rc
(r4

c +Λ4) in dimensionful coordinates. This solution did not appear previously
from perturbing the action around small ε simply because it is inversely proportional to
ε and therefore not perturbatively slow-moving.15 This value of ω̂ supports two different
possible radii,

r̂c = 3ω̂ε
2
√

2
and r̂c =

√
2

(ω̂ε)1/3 , (4.18)

or in dimensionful coordinates,

rc = 3L2ω

2
√

2
and rc =

√
2
(

Λ4

ωL2

)1/3

. (4.19)

We can study the stability of these circular orbits by linearizing around the solution. One
finds that the (dimensionless) frequency-squared of the radial oscillation, to leading order
in ε is

Ω2 = 4
(
5r̂8
c + 12r̂4

c − 9
)
r̂2
c

∣∣r̂4
c − 1

∣∣+ 4
(
r̂12
c − 5r̂8

c − 33r̂4
c + 5

)
r̂2
c

ε2 (r̂4
c + 1)3 (r̂4

c + 3)2 , (4.20)

that is, the orbit is stable when r̂c & 1.281 and unstable when r̂c . 1.281. In the extremal
limit, these circular orbits rotate with a finite angular velocity, as ω does not depend on r0.
These orbits are not directly relevant for stabilizing our wormhole, which is a perturbation
to a non-rotating solution. This is because for self-consistency we would want the rotation
in the circular orbits to be perturbatively small in ε = r0/Λ, while we saw that the rotation
persists even in the extremal limit. One may therefore wonder if there exists a rotating
version of the extremal two-center solution that is perturbatively stable. An exact solution
is likely not possible due to gravitational and five form radiation, but we really just want a
long-lived rotating binary black hole. This would provide a starting point for a wormhole
solution stabilized by rotation.

5 Traversing the wormhole

The two throats in our wormhole are separated by causal horizons, so it is not possible to
traverse through it. Near the horizons, the wormhole looks like a perturbation of the planar
AdS-Schwarzschild black brane, which is a marginally non-traversable solution in the sense
that it can be made traversable by a small negative energy perturbation [25]. Here we wish
to analyse if the perturbation of the geometry near the horizon spoils this property. In
two-sided null Kruskal coordinates U, V (which exist for both the eternal black brane and
for our wormhole geometry) the requirement to violate the ANEC is written

∫
dU TUU < 0

along V = 0. In the absence of any stress-energy, TUU = 0, null rays along V = 0 pass
through the bifurcation surface and asymptote to infinity in either direction. Consequently,
any negative perturbation will pull back the horizons and create traversability.

15One might worry that ω exceeds light-speed, even if it does not diverge. One can check that the
maximum value of ω is 33/4Λ√

2L2 which is certainly small as L � Λ, and that this occurs at the reasonable
radius rc = Λ/31/4.
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We will now evaluate the ANEC for the monopole- and dipole-corrected Einstein-Rosen
bridges of section 3.5 and section 3.6. The monopole corrections (3.43) do not affect the
marginal traversability since TUU vanishes along the horizon. This follows because as noted
at the end of section 3.5, this correction can be obtained by linearizing (3.45), which is
the asymptotically flat black brane in rescaled coordinates. The dipole contribution (3.48)
is more complicated to analyze because the t − r plane is no longer decoupled from the
θ1 angle, so the near-horizon geometry is effectively three-dimensional. Regardless, the
location of the horizon stays at r = r0 since the location of the zero of the blackening
factor is not affected. Moreover, the null geodesics comprising the horizon remain on the
t − r plane at fixed θ1. This can be seen by examining the θ1 component of the geodesic
equation,

d

dλ
(r2θ̇1) = −r

2 sin (θ1)hg(r)
(
ṙ2L4r4 + ṫ2

(
r4 − r4

0
) 2)

L2Λ5 (r4 − r4
0
) , (5.1)

where dot indicates derivative with respect to affine parameter λ. We have hg(r) =
20π3/2(r−r0)

Γ(− 1
4)2 + · · · around r = r0, so in order to have θ̈1 = 0 at the horizon, we need

that ṙ vanishes at r = r0. Examining the condition gmnẋaẋb = 0 around r = r0 one finds
that ṙ ∝

√
r − r0θ̇1. Therefore, ṙ = θ̇1 = 0 and ṫ = const is a null geodesic at r = r0

for any fixed θ1 (and the rest of the seven coordinates fixed as well). Therefore, t also
affinely parameterizes the null worldlines, so the ANEC quantity can be written

∫
dt Ttt.

We identify the stress-energy tensor from the right-hand side of (3.4) as

Tµν = 1
4 · 4!FµαβγδF

αβγδ
ν . (5.2)

Applying this to the solution (3.48) we find that Ttt = 0 at r = r0 up to O(1/Λ6) corrections.
Therefore, at the order O(Λ−5) of the dipole corrections, spherical symmetry breaking does
not affect the marginal non-traversability of the single-boundary wormhole.

As in [25, 34], one mechanism to generate negative contributions to the ANEC that
allow traversability is to introduce a nonlocal coupling between the two throats of the
wormhole by adding a double-trace type interaction in the field theory. In fact, the field
theory symmetry breaking SU(2N) → S(U(N) × U(N)) that we have described already
generates couplings between the two SU(N) effective subfactors in the IR from the Wilso-
nian RG flow [39, 53]. At leading order, these include single-trace interactions of the form
gIVI , where VI is proportional to

VI ∝ tr
(
FµνF

νρFρσF
σµ − 1

4(FµνFµν)2
)
, (5.3)

and I = 1, 2 are the two U(N) factors. The couplings gI are dynamically determined by
abelian singleton degrees of freedom in the other CFT factors (i.e., the Goldstone modes
associated to the moduli of branes in the other stack(s)). Of more interest to us with respect
to traversability are the double-trace interactions that are generated. These directly couple
the IR factors in the CFT:

VIJ ∝ trI (FµνFµν) trJ (FµνFµν) . (5.4)
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When the full UV CFT is genuinely a product of n individual subfactors CFT =
∏n
i=1 CFTi,

the dual bulk geometry generally consists of n different asymptotic universes. In this case,
the single-trace terms trIF 2 that comprise the operator (5.4) are dual to the bulk dilaton
in component I [54, 55]. In our setting, the components tr1F

2 and tr2F 2 are dual to the
bulk dilaton in the vicinity of the first and second throats, as these deep bulk regions
correspond to the IR of the CFT where the approximate factorization into two SU(N)
gauge theories holds. Therefore, the double-trace interactions V12 are structurally of the
form h12φ1φ2 required to generate negative contributions to the ANEC as shown in [25].
This indicates that the natural operators that arise from the Wilsonian RG flow in the
IR of the symmetry-broken theory are of the correct form to generate traversability, albeit
possibly weak traversability. However, in the Gao-Jafferis-Wall protocol, only one sign
results in a traversable wormhole, while the opposite sign lengthens the wormhole. It would
therefore be interesting to determine the sign of the coefficient of (5.4) as generated by the
Wilsonian RG, at least in perturbation theory. In fact, in our setting, there are various
other double-trace operators that can be generated by the supersymmetry transformations
of (5.4). A full analysis should understand the net effect of all such RG-generated double-
trace operators on the sign of the null stress-energy.

In [25], the double-trace interactions are taken to be relevant deformations of the
Hamiltonian so that they are renormalizable and there is no backreaction at the AdS
boundary. The term V12 generated by the RG flow is an irrelevant deformation; nonetheless,
this is not a concern as we know that the theory is UV-complete, since above the Higgs
scale it flows to the SU(2N) N = 4 SYM theory. Furthermore, [25] take the deformation to
be a quench, turned on after some time t0. Since our solution is perturbatively unstable, we
also expect the coupling strength to be time-dependent, although we have not analyzed this
in detail. Lastly, [25] takes the boundaries to be connected with the same time orientation
by taking the deformation to be structurally h(t)φ1(t, ~x)φ2(−t, ~x). This is because the
asymptotic time on one boundary of the eternal black hole runs in the opposite direction
on the other boundary. In our setting, the wormhole resides in a single universe and we
have taken time to run upwards on both sides, so there is a unique asymptotic time t and
we need not flip the time orientation between the two throats.

In addition to the terms that are naturally generated by RG-flow, we can try, like [25],
to add by hand some deformation that generates traversability in the IR wormhole. This
should be a relevant operator in order for it not to destroy the UV SU(2N) N = 4 SYM
theory. The lightest single trace operators in a single factor of SU(N) N = 4 SYM are the
∆ = 2 scalars in the 20 of the SO(6) R-symmetry. They are of the form Oij = Trφ(iφj).
The possible deformations OijLOklR therefore furnish 20×20. These are marginal to leading
order in 1/N due to large N factorization. In order to work out the effects of deforming by
these operators (with either sign of the coefficient) we would need to understand their RG
flow and the 1/N corrections to their dimension. The corresponding single-sided double-
trace operators (i.e. an operator in one of the low energy SU(N) factors) OijLOklL are well
understood in the strong coupling regime [56], and they all have either vanishing or negative
anomalous dimensions. The negative anomalous dimensions are intuitively understood as
binding energies coming from the attractive nature of the bulk interaction between two
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Figure 6. A double wormhole between two asymptotically AdS universes. This geometry, which
can be constructed from the solutions in the text, is dual to a pair of Higgsed Yang-Mills theories,
with IR factors entangled pairwise between them.

particles. The same intuitive reasoning applies to the two-sided operator (i.e. an operator
connecting the two low energy SU(N) factors) OijLOklR , which suggests that these operators
should be marginally relevant at strong coupling, and one should be able to use them to
make our single boundary wormhole traversable.

6 A double wormhole between universes

The solutions we discussed in section 3 capture certain effects of two non-extremal throats
living in a single asymptotically AdS spacetime, and in section 3.7 we explained how to join
these throats so that we end up with a wormhole in a single universe. There are also other
ways to join the solutions of section 3 to get interesting new wormhole configurations. For
example, one could duplicate the spacetime with two throats and join them in a way shown
in figure 6. In this case, the global time runs in opposite way in the two asymptotic regions
and no twisting is required to enforce flux conservation (see figure 6). This spacetime is
patch-wise described by the same solutions that we have discussed in section 3, but the
patches are glued together differently.

In the dual field theory we now start with two copies of N = 4 SU(2N) SYM, and we
Higgs each copy. Let us label the two theories A and B, while the low energy factors are
called L and R. Then, the low energy Hilbert space is

HA,L ⊗HA,R ⊗HB,L ⊗HB,R, (6.1)

and we expect a wormhole configuration like figure 6 to be approximately dual in the IR
to a tensor product of two thermofield double states

|TFD〉A,L;B,L ⊗ |TFD〉A,R;B,R. (6.2)
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We can embed this state in the UV Hilbert space HA⊗HB as explained in section 2, that
is, we must take the temperatures of the thermofield doubles to be much smaller than the
Higgs scale.

7 Discussion

In this paper, we constructed an asymptotically AdS5 × S5 single boundary wormhole
solution by matching a two-center extremal black brane solution to a two-sided AdS black
brane in perturbation theory. Preserving continuity of the five-form in the solution required
a global monodromy in some of the coordinates, although the total geometry remains
orientable. The small parameter in the problem is the horizon radius compared to the
separation of the throats, r0/Λ. We argued that the solution is dual to an approximate
thermofield double state in a single copy of N = 4 SYM, where the gauge group is Higgsed
into two copies of SU(N), which are entangled. In the field theory the small parameter is
the ratio of the thermal scale to the Higgs scale.

Thermal effective potential and R charge. Our wormhole is non-extremal, and
consequently has to be unstable. This instability is dual in N = 4 SYM to the scalar vevs
developing an effective potential at finite temperature, as illustrated in figure 3. We have
argued that the wormhole can be made parametrically long lived by making r0/Λ small.

Another possibility is to stabilize the wormhole by making the throats rotate around
each other. In section 4.2 we found that an extremal probe brane can be put on a stable
circular orbit around a non-extremal black brane. This is surprising since planetary orbits
are unstable in more than four dimensions, and is possible here due to the five-form inter-
action. The stable orbit we find has finite angular velocity in the extremal limit, so it is not
possible to add this effect perturbatively to our solution. Nevertheless, this finding suggests
that in the dual theory one can create a local minimum in the effective potential of the
scalar vevs away from the origin by adding R charge. This should lead to long-lived states
with finite temperature symmetry breaking. The states are only long-lived, since from the
supergravity picture, we expect them to decay due to gravitational and five form radiation.
This is consistent with the expectation that all symmetries must be restored at sufficiently
high temperatures: see [57] for a recent discussion in the case of global symmetries. It
would be interesting to understand this effect better.

Global monodromy and moduli space. As emphasized in [51], gluing the two sides of
a wormhole to a single asymptotic region breaks the two-sided boost-like Killing symmetry
of the eternal black brane geometry and correspondingly, there is a one-parameter family
of wormholes labeled by the “monodromy” of Schwarzschild time as one goes between the
two throats on the outside. In addition to this, we have found that there is a freedom of
introducing a global monodromy consisting of rotating and translating the parallel spatial
directions to the brane, and also rotating by the unbroken SO(5) subgroup of the SO(6)
symmetry of the S5. Therefore, there is a moduli space R × ISO(3) × SO(5) of locally
equivalent but globally different solutions. It would be interesting to understand the in-
terpretation of this in the dual N = 4 SU(2N) SYM theory. It is tempting to speculate
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that it is related to some ambiguity in embedding the IR state (2.7) into the UV theory,
which possibly includes an ambiguity in the implementation of the energy cutoff in the
state (2.7).

Making the wormhole traversable. We have showed that corrections coming from the
two throats being in the same spacetime in the first few orders in perturbation theory do
not spoil the marginal traversability of the wormhole, in the sense that the ANEC quantity∫
dUTUU remains zero along the causal horizons. It would thus be interesting to see if the

wormhole can be made traversable using the ideas in [25]. This requires a double trace
coupling between the two SU(N) factors in the Higgsed N = 4 SYM theory.

We have pointed out that such couplings are naturally generated in RG due to the
fact that in the UV the two SU(N) factors are part of the total SU(2N). It would require
a careful analysis to account for the net effect of all these double trace interactions and to
see if the resulting sign makes the wormhole traversable. This is beyond the scope of the
present paper but is certainly an interesting problem.

One may also try to make the wormhole traversable by adding a double trace coupling
by hand. This would have to be a relevant double trace operator, otherwise the theory
will no longer flow to a single SU(2N) N = 4 SYM in the UV (or to a wormhole in a
single spacetime). We have argued that such relevant double traces can be formed from
the ∆ = 2 scalar operators of the theory, though it would also be useful to check that the
two-sided operators OijLOklR have negative anomalous dimensions.

In [29] negative contributions to the ANEC were generated by negative Casimir-like
vacuum energies coming from the lowest Landau levels of the bulk fermion running in a
cycle threading their wormhole solution. In our solution, there are various fermions in the
spectrum of type IIB supergravity which have vacuum fluctuations, though we have set
their classical backgrounds to vanish. These fermions, and the bulk bosonic fields, should
similarly provide Casimir-like vacuum energies in our setup. The sign of the total Casimir
energy is important, as before; so it is important to check which contributions ultimately
win out. There is potentially the possibility that the underlying supersymmetry enforces a
vanishing total Casimir energy. In any case, the vacuum energies provide another potential
mechanism for traversability in competition or collusion with the other effects that we
have discussed.

Probing the monodromy through the wormhole. As we discussed, continuity of
the five-form requires a twisted gluing of the interior AdS-Schwarzschild geometry to the
two-center ambient spacetime, although the complete spacetime remains orientable. An
interesting way of probing the resulting monodromy is to send a giant graviton through the
wormhole. Giant gravitons are spherical D3-branes localized on the S5 in the geometry,
and are supported by their angular momentum and by interactions with the five-form
flux [58, 59]. These brane states are created by determinant and subdeterminant operators
in the field theory [60–62]. To use these branes to probe the wormhole in the field theory,
we would want to construct such operators in the light infrared factors after Higgsing.
On the gravitational side, we could explicitly test what happens to the corresponding
giant gravitons as they are moved through the wormhole, expecting them to emerge with
inverted θ1.
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A Perturbative equations of motion

In this appendix, we derive the perturbative equations of motion (3.5) and (3.6). In general,
bars will indicate background-order quantities. We begin by variation of the full geometric
equation of motion (3.2). Since we impose self-duality at all orders,

0 = (F + δF ) ∧ ∗(F + δF ) ∼ FαβγδεFαβγδε , (A.1)

where the last expression is to all orders. Consequently, the variation of (3.2) is

δRµν −
1
2δRḡµν = 1

4 · 4!(δFµαβγδF̄
αβγδ
ν + F̄µαβγδδF

αβγδ
ν ) . (A.2)

R̄ = 0 at background order, but it is not obvious that δR = 0 perturbatively, so we have
retained this term for now. Now we can constrain δR by tracing both sides, noting that
ḡµνδRµν = δR− R̄µνδgµν ,

−4δR− R̄µνδgµν = 1
4 · 4! ḡ

µν(δFµαβγδF̄ αβγδ
ν + F̄µαβγδδF

αβγδ
ν ) . (A.3)

Substituting R̄µν with its background equation of motion and rearranging for δR one finds:

δR = 1
16 · 4!δ

(
gµνFµαβγδF

αβγδ
ν

)
= 0 . (A.4)

That is, δR vanishes to all orders as a consequence of the self-duality constraint. The
perturbative equation of motion for the metric is therefore simply

δRµν = 1
4 · 4!(δFµαβγδF̄

αβγδ
ν + F̄µαβγδδF

αβγδ
ν ) . (A.5)

We now make use of the formula for δRµν in terms of the metric perturbation δgµν =
hµν , to first order in the perturbation, to arrive at (3.5):

δRµν = ∇λ∇(µh
λ
ν) −

1
2∇µ∂νh−

1
2∇λ∇

λhµν , (A.6)
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where the covariant derivative is taken with respect to ḡ. We review the derivation of this
formula below. The Ricci tensor is

Rbd = Rabad = ∂aΓabd − ∂dΓaba + ΓsbdΓasa − ΓsbaΓasd . (A.7)

Relabeling indices and varying each term independently gives a formula in terms of the
variation δΓ

δRab = ∂cδΓcab − ∂bδΓcac + δ(ΓsabΓcsc)− δ(ΓsacΓcsb)
= ∂cδΓcab − ∂bδΓcac + δΓsabΓcsc + ΓsabδΓcsc − δΓsacΓcsb − ΓsacδΓcsb
= ∇c(δΓcab)−∇b(δΓcac) .

(A.8)

To compute the variation of the Christoffel symbols, expand the covariant derivative of the
metric perturbations

∇ahbc = ∇a(δgbc) = ∂a(δgbc)− Γsabδgsc − Γsacδgbs
= δ(∂agbc)− δ(Γsabgsc) + δΓsabgsc − δ(Γsacgbs) + δΓsacgbs
= δ(∂agbc − Γsabgsc − Γsacgbs) + δΓsabgsc + δΓsacgbs
= δ(∇agbc) + δΓsabgsc + δΓsacgbs
= δΓsabgsc + δΓsacgbs ,

(A.9)

using metric compatibility. Now cyclically permuting and adding a convenient sign gives

∇ahbc +∇bhca −∇chab = δΓsabgsc + δΓsacgbs + δΓsbcgsa + δΓsbagcs − δΓscagsb − δΓscbgas
= 2δΓsabgsc . (A.10)

Rearranging and permuting the indices gives

δΓabc = 1
2(∇bhac +∇chab −∇ahbc) . (A.11)

Expanding the variation δRab with this formula, one finds

δRab = ∇c(δΓcab)−∇b(δΓcac)

= 1
2∇c(∇ah

c
b +∇bhca −∇chab)−

1
2∇b(∇ah+∇chca −∇chac)

= ∇c∇(ah
c
b) −

1
2∇

2hab −
1
2∇a∂bh ,

(A.12)

which was the claimed formula for the variation of the Ricci tensor.
Now we must consider the variation of Maxwell’s equations:

δ
(
∂µ(
√
−gFµνρστ )

)
= ∂µ(δ

√
−gF̄µνρστ +

√
−ḡδFµνρστ ) . (A.13)

Recall the variation of
√
−g, from Sylvester’s formula:

δ
√
−g = −1

2
√
−ḡḡµνδgµν =

√
−ḡ h2 . (A.14)
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Therefore, we find (3.6):

∂µ

(√
−ḡ
(
h

2 F̄
µνρστ + δFµνρστ

))
= 0 . (A.15)

Lastly, the perturbation to the five-form must leave it to be self-dual. However, one
must be careful because the Hodge dual involves factors of the metric that also contribute
perturbatively. Let us assume the metric is diagonal and that the only nonzero independent
components of the five-form are Ft123r and Fθ1...θ5 . In terms of the components of the metric
and five-form the constraint can be written explicitly as

Ft123r + δFt123r =
√
−ggθ1θ1 . . . gθ5θ5(Fθ1...θ5 + δFθ1...θ5) (A.16)

Fθ1...θ5 + δFθ1...θ5 = −
√
−ggttg11g22g33grr(Ft123r + δFt123r) . (A.17)

Now removing the background-order equations and expanding perturbatively, we find

δFt123r =
√
−ḡḡθ1θ1 . . . ḡθ5θ5δFθ1...θ5

−
√
−ḡ(hθ1θ1 . . . ḡθ5θ5 + . . .+ ḡθ1θ1 . . . hθ5θ5)F̄θ1...θ5 + h

2 F̄t123r (A.18)

δFθ1...θ5 = −
√
−ḡḡttḡ11ḡ22ḡ33ḡrrδFt123r

+
√
−ḡ(httḡ11ḡ22ḡ33ḡrr + . . .+ ḡttḡ11ḡ22ḡ33hrr)Ft123r + h

2 F̄θ1...θ5 . (A.19)

To proceed further, one requires more details about the background metric and five-form
of interest.

B Solving the linearized equations

In this appendix, we demonstrate the procedure to solve the perturbative equations of
motion (3.5) and (3.6) by hand in the linearized regime, region II. In this regime the
ansatz for the metric and five-form perturbations takes the form

1
α′
ds2 = L2

[
−r̃2 (1 + δgt̃t̃) dt̃2

+ r̃2 (1 + δgĩ̃i) d~̃x
2 + 1

r̃2 (1 + δgr̃r̃) dr̃2 + (1 + δgΩΩ)dΩ2
5

]
(B.1)

1
α′2

F = 4L4
[
r̃3 (1 + a(r̃)) dt̃ ∧ dx̃1 ∧ dx̃2 ∧ dx̃3 ∧ dr̃

+ (1 + b(r̃)) sin4 θ1 sin3 θ2 sin2 θ3 sin θ4dθ1 ∧ dθ2 ∧ dθ3 ∧ dθ4 ∧ dθ5

]
, (B.2)

where all metric perturbations are functions only of r̃. To begin, we evaluate the self-duality
constraint equations (A.18) and (A.19) on the background metric of vacuum AdS5 × S5.
They reduce to only one independent equation,

2a− 3δgĩ̃i − δgt̃t̃ + 5δgΩΩ − δgr̃r̃ = 2b , (B.3)
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identical to (3.40). Plugging into Maxwell’s equations we also find only one independent
equation

2a′ − 3δg′
ĩ̃i
− δg′t̃t̃ + 5δg′ΩΩ − δg′r̃r̃ = 0 , (B.4)

which is identical to (3.41). Combining Maxwell’s equations and self-duality gives b′ = 0,
meaning that the five-form charge is conserved. The independent geometric equations of
motion are

− 8(b− 2δgΩΩ)− 1
2 r̃
(
r̃g′′ΩΩ + 5g′ΩΩ

)
= 0 (B.5)

− 16a+ r̃2δg′′t̃t̃ + 3r̃δg′
ĩ̃i

+ 6r̃δg′t̃t̃ + 5r̃δg′ΩΩ − r̃δg′r̃r̃ + 24δgĩ̃i + 8δgt̃t̃ = 0 (B.6)

− 16a+ r̃2δg′′
ĩ̃i

+ 8r̃δg′
ĩ̃i

+ r̃δg′t̃t̃ + 5r̃δg′ΩΩ − r̃δg′r̃r̃ + 24δgĩ̃i + 8δgt̃t̃ = 0 (B.7)

− 16a+ 3r̃2δg′′
ĩ̃i

+ r̃2δg′′t̃t̃ + 5r̃2δg′′ΩΩ + 9r̃δg′
ĩ̃i

+ 3r̃δg′t̃t̃

+ 5r̃δg′ΩΩ − 4r̃δg′r̃r̃ + 24δgĩ̃i + 8δgt̃t̃ = 0 . (B.8)

Notice that the equation of motion (B.5) for δgΩΩ is independent of the others and may
be solved directly, yielding:

δgΩΩ = b

2 + a1r̃
4 + a2/r̃

8 , (B.9)

for constants a1, a2. Now examine the three remaining geometric equations of motion. By
taking the linear combination of (B.6) + 3(B.7)–(B.8), we find an equation determining
δgr̃r̃ in terms of the others:

4δgr̃r̃ = 2b+ 3r̃δg′
ĩ̃i

+ r̃δg
′

t̃t̃ + 20(a1r̃
4 − 3a2/r̃

8) . (B.10)

Plugging this back into all three equations we find that all three are solved as long as:

5(δg′
ĩ̃i
− δg′t̃t̃) + r(δg′′

ĩ̃i
− δg′′t̃t̃) = 0 . (B.11)

This is a differential equation in f(r̃) = δgĩ̃i− δgt̃t̃ which is solved by f(r̃) = c2− c1
4r̃4 where

c1, c2 are constants. Therefore we can relate δgĩ̃i to δgt̃t̃ via

δgĩ̃i = c2 −
c1
4r̃4 + δgt̃t̃ . (B.12)

Plugging (B.12) into (B.10) reduces it to

δgr̃r̃ = b

2 + r̃δg
′

t̃t̃ + 3
4
c1
r̃4 − 15a2

r̃8 + 5a1r̃
4 . (B.13)

We have consequently fixed the general perturbative solution in the linearized regime in
terms of one arbitrary function δgt̃t̃ and five constants a1, a2, c1, c2, b:

1
α′
ds2 =L2

[
−r̃2 (1 + δgt̃t̃) dt̃2 + r̃2

(
1 + c2 −

c1
4r̃4 + δgt̃t̃

)
d~̃x2 (B.14)

+ 1
r̃2

(
1 + b

2 + r̃δg′t̃t̃ + 3
4
c1
r̃4 − 15a2

r̃8 + 5a1r̃
4
)
dr̃2 +

(
1 + b

2 + a1r̃
4 + a2

r̃8

)
dΩ2

5

]
1
α′2

F = 4L4
[
r̃3
(

1 + 3
2c2 − 10a2

r̃8 + 2δgt̃t̃ + r̃

2δg
′
t̃t̃

)
dt̃ ∧ dx̃1 ∧ dx̃2 ∧ dx̃3 ∧ dr̃

+ (1 + b) sin4 θ1 sin3 θ2 sin2 θ3 sin θ4dθ1 ∧ dθ2 ∧ dθ3 ∧ dθ4 ∧ dθ5

]
. (B.15)
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To fix δgt̃t̃ and the five constants, we compare the solution to the linearized expansion of
the solution (3.45)–(3.46). A consistent solution is found by taking a1 = ε4/2, a2 = c2 = 0,
c1 = −4, b = 0, and

δgt̃t̃ = − 1
r̃4 −

1
2(εr̃)4 , (B.16)

leading to the solution (3.36)–(3.37).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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