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1 Introduction

In 2003 Witten discovered that flat-space scattering amplitudes of N = 4 super Yang-Mills

can be understood in terms of a string theory in twistor space [1]. In this reformulation

the amplitudes are computed as certain localization integrals involving the moduli space of

Riemann surfaces with n punctures,M0,n [1, 2]. We now understand that this discovery was

not merely a fluke; not only does it generalize to gravitational theories [3–5], but also seems

to have non-supersymmetric and higher-dimensional counterparts. This generalization is

known as the ambitwistor string theory, first introduced by Mason and Skinner [6] in 2013

– 1 –



J
H
E
P
1
1
(
2
0
2
0
)
1
5
8

(see [7–16] for follow-up work). It successfully explained the physical origin of the Cachazo-

He-Yuan (CHY) formulae [17, 18] computing scattering amplitudes in various scalar, gauge,

and gravity theories in terms of localization integrals on M0,n on the support of the so-

called scattering equations [19]. To be a bit more precise, in this formalism scattering

amplitudes are computed via integrals of the form∫
M0,n

IL IR

∏
i

dzi δ̄

(∑
j 6=i

2pi · pj
zi − zj

)∫
Minkd+1

dx
n∏
i=1

eix·pi︸ ︷︷ ︸
(2π)d+1δd+1(

∑n
i=1 pi)

, (1.1)

where IL and IR are functions of external data and the positions zi of punctures on the

worldsheet that differ depending on the specific matter content of the theory. The (anti-

holomorphic) delta functions localize on the solution of scattering equations. The final

term is simply a delta function imposing momentum conservation, which, foreshadowing

the results of this paper, we suggestively wrote as a trivial integral of n plane waves

interacting at a single point x in (d+1)-dimensional Minkowski space.

Recent years have seen a surge of interest in further extending the ambitwistor formu-

lation to curved spaces, in particular to plane wave backgrounds [20–23] (see also [24–27]

for twistor models). It then seems rather prudent to ask: what about one of the simplest

curved backgrounds of physical interest, the anti-de Sitter (AdS) space?

The AdS space-time has several distinctive features that are not shared by the flat

space or any other curved backgrounds. Firstly, it provides a symmetry-preserving infrared

regulator of the flat-space physics. By analyzing theories in AdS and carefully taking the

flat-space limit, one can study the infrared dynamics in flat space without needing to deal

with infrared divergences. This was pointed out initially by Callan and Wilczek [28], and

the idea was developed further in [29], who studied Yang-Mills theory in AdS with the aim

of understanding confinement. Secondly, the AdS/CFT correspondence [30] relates the

amplitudes in AdS to the correlation functions in the dual conformal field theory (CFT),

providing powerful tools to study the latter. For instance, the tree-level amplitudes of

supergravity in AdS compute the correlation functions of strongly-coupled large N super-

conformal field theories, which are otherwise difficult to analyze. Thirdly, the correlation

functions of operators on the boundary of AdS can be studied using the conformal symme-

try SO(2, d) and the techniques of the conformal bootstrap [31, 32]. In particular, starting

from the seminal works [33, 34], four-point functions in various supergravity theories in

AdS were computed at tree- and loop-levels by analytically solving the conformal crossing

equation.1 However, extending such analyses to higher-point functions seems much harder

owing to the complexity of the relevant conformal blocks, although important progress has

been made recently both for the conformal blocks [37–44] and the analysis of the crossing

equation [45]. Given this situation, it would be useful to develop alternative approaches

that work equally well for higher-point functions.

In this work we initiate the study of ambitwistor string theory in AdS space, whose

correlation functions compute the conformal field theory correlators, as well as the general-

1See [35, 36] for the most recent progress in this direction.
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ization of the scattering equations this formulation entails. As a starting point we consider

perhaps the simplest setup corresponding to a bosonic version of string theory with scalar

vertex operators. To this end, we propose an ambitwistor action on the coset space

AdSd+1 =
SO(2, d)

SO(1, d)
. (1.2)

As will be discussed in detail later, the theory is inconsistent at quantum level owing to

various anomalies. Nevertheless we show that it leads to a well-defined CHY-like formula

in the infinite tension limit; namely in the limit in which the worldsheet theory becomes

classical and anomalies become irrelevant.

Making use of the AdS embedding formalism [46] we find that correlators take the

general form ∫
M0,n

IL IR

∏
i

dzi δ̄

(∑
j 6=i

2Di ·Dj

zi − zj

)∫
AdSd+1

dX

n∏
i=1

1

(−2X · Pi)d︸ ︷︷ ︸
C(P1,...,Pn)

, (1.3)

where, once again, IL and IR depend on the specific matter content. Here PAi are the

embedding space coordinates and DAB
i = PAi ∂Pi,B − PBi ∂Pi,A are the scalar conformal

generators (the notation is reviewed in section 3.1). This expression acts on the scalar

contact diagram C of n bulk-to-boundary propagators meeting at the point X, which

replaces the flat-space momentum conservation delta function. In the case of bi-adjoint

scalar, which we mainly focus on, the integrands IL and IR are given by Parke-Taylor

factors known from [1, 17].

The starting point of our analysis is the action of the bosonic ambitwistor string on a

group manifold G. Viewing Minkd+1 as an abelian group, this constitutes a non-abelian

generalization of the standard ambitwistor action. It has a manifest GL × GR symmetry,

corresponding to left- and right-multiplication on the group. In order to pass to the coset,

we gauge a subgroup H ⊂ GR. Consequently, the BRST operator of the ambitwistor string

receives a further term that implements this gauging. Specializing to the coset (1.2), we

construct vertex operators and compute their correlation functions, which leads to the

CHY-like formula (1.3).

The main novelty compared to flat space is the fact that the AdS scattering equations

are operator-valued. This inhibits direct computations, as nothing about the positions

(or even the number) of localization points can be assumed. In order to alleviate this

problem we evaluate correlators by first writing the expression (1.3) as a middle-dimensional

contour integral, followed by a series of contour deformations that, following [47], localize

the correlator on the worldsheet configurations factorizing into trivalent graphs. These

are essentially in one-to-one map with trivalent Witten diagrams. Using this strategy we

indeed demonstrate that the result of AdS bi-adjoint scalar correlation functions agrees

with a Witten diagram computation to arbitrary multiplicity n.

A possible alternative for evaluating (1.3) is to decompose the integrand into joint

eigenfunctions of the scattering equations. This would allow us to replace the delta func-

tions with operators in the arguments with standard delta functions, and compute the

– 3 –
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integral explicitly. In this paper, we take an initial step in this direction: we study the

eigenvalue equations of the scattering equation for the four-point functions and demon-

strate an interesting connection to quantum integrable models: after a change of variables

to the so-called “pillow coordinates” introduced by Zamolodchikov [48] in the analysis of 2d

CFT, the eigenvalue equations coincide with the Schrödinger equation of the BC2 Inozemt-

sev model, which is an elliptic deformation of the BC2 Calogero-Sutherland model. To our

knowledge, this is the first example in which the pillow coordinates show up naturally in

the analysis of higher-dimensional CFTs. We also emphasize that the eigenfunctions of

the AdS scattering equations are interesting objects by themselves since they interpolate

between conformal partial waves in different OPE channels.

Finally, let us comment on the relation to the unpublished work of Roehrig and Skin-

ner [49, 50], by which this work was inspired. They studied ambitwistor string theory on

the group manifold AdS3 × S3 ∼= SL(2,R) × SU(2). The key difference to our work is

that we consider the model on a coset space and in fact that is what allows us to work

in arbitrary space-time dimension d. In addition, since AdS3 × S3 is a well-defined super-

gravity background, their theory is free of anomalies and is consistent at quantum level.

Despite these differences, Roehrig and Skinner arrived at a formula similar to (1.3) with

the appropriate contact diagram C on AdS3 × S3 and attempted to evaluate it in Mellin

space, as opposed to contour deformations employed here.

Outline. The paper is organized as follows. In section 2 we study the bosonic ambitwistor

string action with various targets. After a review of the flat-space case, we provide gen-

eralizations to group manifolds and coset spaces and analyze them on the classical and

quantum levels. In section 3 we focus on the case of AdSd+1 and construct scalar vertex

operators based on a pair of internal current algebras, as well as demonstrate localization

of correlation functions on the AdS scattering equations. In section 4 we compute the

correlators using contour manipulations, thus proving a recursion relation for bi-adjoint

scalar correlation functions in AdS. We then demonstrate their equivalance to the Witten

diagram computation. In section 5 we study eigenfunctions of scattering equations in AdS

and explain a connection to the BC2 Inozemtsev model, which is an elliptic deformation

of the BC2 Calogero-Sutherland model. Finally, in section 6 we give a discussion of the

results and future directions. Appendix A contains a summary of the notation.

Note added. After completion of this work, we became aware that Roehrig and Skinner

were writing up and planning to publish their results [51]. We therefore decided to coordi-

nate a simultaneous release of our papers on arXiv. We thank them for kindly agreeing to

do so.

2 Bosonic ambitwistor string on a coset manifold

In this section, we will start to build up the ambitwistor string on a general coset manifold.

We will restrict ourselves to the bosonic ambitwistor string, since this is the relevant am-

bitwistor string for the bi-adjoint scalar theory and is technically simpler. We start with a

very brief review of the flat space ambitwistor string, then generalize to a group manifold

– 4 –
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and finally to a coset manifold. Note that the first generalization was already discussed

in [50] in the case of the type II ambitwistor string, where the goal was to describe super-

gravity on AdS3. We should mention that it is actually not obvious that our results agree

with the results of [50] in the case of AdS3, since we treat AdS3 × S3 as coset manifold,

whereas it was treated as a group manifold in [50].

2.1 Flat space

We consider the flat-space bosonic ambitwistor string [6], whose action takes the form2

S =
1

2π

∫
pµ∂̄X

µ + S
(1)
current + S

(2)
current , (2.1)

where S
(1,2)
current is the action for two current algebras at level k. We will in the following

concentrate on the first term in the action. The system has two kinds of symmetries:

Reparametrization invariance. Under a holomorphic change of coordinates parame-

trized by a holomorphic vector field v, we have

δXµ = v∂Xµ , (2.2a)

δpµ = ∂(vpµ) . (2.2b)

The action changes as

δS =
1

2π

∫
∂̄vpµ∂X

µ + δS
(1)
current + δS

(2)
current . (2.3)

Thus, the action is invariant and the holomorphic energy momentum tensor is

T = pµ∂X
µ + Tcurrent. (2.4)

Here and in the following Tcurrent will denote the energy-momentum tensor of the internal

current algebras.

Ambitwistor symmetry. The action has an additional symmetry that, when gauged

reduces the target space from Cd to the ambitwistor space A,

δXµ = αpµ , (2.5)

where α is an arbitrary holomorphic vectorfield on the Riemann surface. The action changes

according to

δS =
1

4π

∫
∂̄αpµp

µ , (2.6)

and thus the corresponding holomorphic current is H = pµp
µ.

In the ambitwistor string, both of these symmetries are gauged. For more detail on

this model we refer the reader to the original paper [6].

2We always write small p, since capital P will appear later as the embedding coordinate in AdS.
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2.2 Group manifold

Classical theory. We now promote this to a group manifold, where we have

S =
1

2π~

∫
tr
(
pg−1∂̄g

)
+ S

(1)
current + S

(2)
current , (2.7)

where we replaced ∂̄Xµ by the anti-holomorphic version of the Maurer-Cartan form or

rather its pullback on the worldsheet by the group-valued field g. p becomes a Lie-algebra

valued (1, 0) form in this setting. The trace is an invariant trace on the Lie algebra and

is further discussed below. S
(1,2)
current does not change and we again focus on the first term.

We also introduced a parameter ~, which can be interpreted as a ratio between the string

length and the size of the group:

~ ∼ `string

`Group
. (2.8)

Since the correlation functions depend only on this ratio not on individual lengths, we will

in the following set `Group = 1, but keep ~. In the context of AdS, `Group will become `AdS.

We gave the name ~, since it should be viewed as ~ on the worldsheet and we will call

the ~ → 0 limit the classical limit in what follows. We remark that the prefactor of the

action does not involve `−2
string as in the physical string, but only `−1

string because of the first

order form.

We should note that there is an equivalent action, where we use ∂̄gg−1 instead of

g−1∂̄g. The action has a holomorphic GL(z)×GR(z) symmetry. We can multiply

g 7→ gL(z)ggR(z)−1 , (2.9a)

p 7→ gR(z)pgR(z)−1 . (2.9b)

This hence leads to two current algebras in the quantum theory. Start with gL. We find

that the corresponding conserved current is

JL = gpg−1 , (2.10)

and the equations of motion show indeed that this current is holomorphic. For the right-

multiplication symmetry, the current is

JR = p , (2.11)

as one can check by direct computation.

The two additional symmetries we discussed for the flat space model are also present

and take the form

δg = v∂g , (2.12a)

δp = ∂(vp) . (2.12b)

and

δg = αgp . (2.13)

They lead to the currents T = tr (pg−1∂g) + Tcurrent and H = tr (p2), which we again want

to gauge.

– 6 –
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Quantum theory. We next compute the variation of the action with respect to the

left-symmetry. This gives for gL = 1 + ωL

δωLS =
1

~

∫
tr
(
gpg−1∂̄ωL

)
=

1

~

∫
∂̄ tr

(
gpg−1ωL

)
=

1

2πi~

∮
dz ωaLJ

a
L . (2.14)

Here we introduced a component notation. a, b, c, . . . will in the following denote an

adjoint index of the group G. Since we need in the following quite a large number of

different indices and fields, we invite the reader to check appendix A, where our notation

is summarized. Inserting this into a correlator gives

δωL 〈X〉 =
1

2πi~

∮
dz ωaL(z) 〈JaL(z)X〉 (2.15)

On the other hand, we can compute δωL of various quantities directly. We have

δωLg = ωLg , δωLJL = [ωL, JL] , δωLJR = 0 . (2.16)

Thus, we deduce the OPEs

JaL(z)JbL(w) ∼
~fabcJcL(w)

z − w
, JaL(z)g(w) ∼ −~tag(w)

z − w
, (2.17a)

J āR(z)J b̄R(w) ∼
~f āb̄c̄J c̄R(w)

z − w
, J āR(z)g(w) ∼ ~g(w)tā

z − w
, (2.17b)

J āR(z)JbL(w) ∼ 0 , g(z)g(w) ∼ 0 . (2.17c)

Here ta are the generators of the representation in which g transforms. For definiteness, we

take it to be the fundamental representation. We have barred indices of GR. At this point,

~ is not important since we could simply rescale the generators to remove it. However, it

will play an important role later. One can similarly derive the other OPEs. Clearly, not

all fields are independent.

To continue, let us assume that G has a biinvariant trace tr , which is the trace we

already used in writing down the action. We normalize generators in the fundamental

representation such that3

tr (tatb) = δab . (2.18)

For computations, it is also convenient to define

jL(z) = −∂gg−1 , (2.19a)

jR(z) = g−1∂g . (2.19b)

By direct computation, they satisfy the OPE

JaL(z)jbL(w) ∼ ~ δab

(z − w)2
+

~fabc jcL(w)

z − w
, (2.20)

J āR(z)j b̄R(w) ∼ ~ δāb̄

(z − w)2
+

~f āb̄c̄ j c̄R(w)

z − w
. (2.21)

The cross OPEs JaL(z)j b̄R(w) involve new fields, but we shall not need them.

3In some cases of interest, like psu(1, 1|2) or psu(2, 2|4), there is no fundamental representation, but we

can pick any other representation.
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To go on, let us assume that the group is simple. As we showed classically, the energy-

momentum tensor of the system is

T = (JaLj
a
L) + Tcurrent , (2.22)

where Tcurrent is the Sugawara tensor of the current algebras. We could alternatively also

use JR to construct the energy-momentum tensor. It turns out that this energy-momentum

tensor receives a quantum correction. We find that the unique energy-momentum tensor

for which JL and g are primaries of conformal weight 1 and 0, respectively, takes the form

T = (JaLj
a
L)− ~h∨g (jaLj

a
L) + Tcurrent , (2.23)

where h∨g is the dual Coxeter number. The fact that the second term is proportional to

the dual Coxeter number indicates that it is a quantum correction.

The central charge is

cmatter = 2 dim(G) + c
(1)
current + c

(2)
current . (2.24)

Next, we look at the current that corresponding to the other classical symmetry that we

want to gauge,

H(z) = (JaLJ
a
L) . (2.25)

Classically, we would have expected that H(z) has regular OPE with itself. However, this

property is broken at the quantum level and there seems no way to correct H(z) to enforce

this property. However, H(z) at least closes on itself, since up to a prefactor it is the

Sugawara tensor of the current JaL. These fields satisfy the following gauge algebra:

T (z)T (w) ∼ ~2cmatter

2(z − w)4
+

2~T (w)

(z − w)2
+

~∂T (w)

z − w
, (2.26a)

T (z)H(w) ∼ 2~H(w)

(z − w)2
+

~∂H(w)

z − w
, (2.26b)

H(z)H(w) ∼
4~2h∨gH(w)

(z − w)2
+

2~2h∨g ∂H(w)

z − w
. (2.26c)

This is almost the same gauge algebra as in flat space, up to the correction due to the dual

Coxeter number. We can write down a BRST operator implementing these constraints at

the quantum level:

Q =

∮
dz
(
cT + ~−1c̃H + 2h∨g (b̃c̃∂c̃) + (b̃c∂c̃) + (b̃c̃∂c)

)
. (2.27)

This BRST operator squares to

Q2

~2
=

1

12
(cmatter − 52)

∮
dz (∂3cc)− 26

3
h∨g

∮
dz (∂3cc̃)− 26

3
(h∨g )2

∮
dz (∂3c̃c̃). (2.28)

Hence the BRST operator is anomalous unless h∨g = 0 and cmatter = 52. The critical central

charge is the same as in flat space [6]. We should note that since Q2 is proportional to ~2,

the anomaly should be viewed as a quantum correction.

– 8 –
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2.3 Coset manifold

Finally, we generalize further to coset manifolds, which is the case of interest to describe

AdS. We gauge a subgroup H ⊂ GR, so that full GL symmetry is preserved, but GR

symmetry is broken to the commutant with H.

Classical theory. We again start by describing the classical action. We introduce a

gauge field A for the H subgroup and the action becomes

S =
1

2π~

∫
tr (p(g−1∂̄g −A)) + S

(1)
current + S

(2)
current . (2.29)

The gauge field is a (0, 1) form on the worldsheet and hence has no kinetic term. Under

H ⊂ GR transformations, the fields transform as

A 7→ hAh−1 − ∂̄hh−1 , (2.30a)

g 7→ gh−1 , (2.30b)

p 7→ hph−1 , (2.30c)

which can easily checked to keep the action invariant. The other symmetries go through

as before.

Reparametrization act as

δA = v∂A , (2.31a)

δg = v∂g , (2.31b)

δp = ∂(vp) . (2.31c)

The corresponding conserved current is the energy-momentum tensor that still takes the

form T = tr (pg−1∂g). The additional gauging does not change the relevant energy-

momentum tensor. The additional ambitwistor symmetry acts exactly as before and hence

also H = tr (p2) is unchanged.

The various equations of motion read

∂̄g − gA = 0 , (2.32a)

π(p) = 0 , (2.32b)

∂̄(gpg−1) = 0 . (2.32c)

Here, π is the orthogonal projection (orthogonality is defined by the trace) to the subalge-

bra h.

Quantum theory. Finally, we again analyze the quantum theory. The energy-momentum

tensor is the same as for the group

T = (JaLj
a
L)− ~h∨g (jaLj

a
L) + Tcurrent , (2.33a)

H = (JaLJ
a
L) . (2.33b)

– 9 –
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The gauge algebra gets additionally enhanced by JrR. The full gauge algebra reads

T (z)T (w) ∼ ~2cmatter

2(z − w)4
+

2~T (w)

(z − w)2
+

~∂T (w)

z − w
, (2.34a)

T (z)H(w) ∼ 2~H(w)

(z − w)2
+

~∂H(w)

z − w
, (2.34b)

H(z)H(w) ∼
4~2h∨gH(w)

(z − w)2
+

2~2h∨g ∂H(w)

z − w
, (2.34c)

T (z)JrR(w) ∼
~JrR(w)

(z − w)2
+

~∂JrR(w)

z − w
, (2.34d)

H(z)JrR(w) ∼
2~2h∨g J

r
R(w)

(z − w)2
+

2~2h∨g ∂J
r
R(w)

z − w
, (2.34e)

JrR(z)JsR(w) ∼
~f rstJ tR(w)

z − w
. (2.34f)

The constraints are therefore first class. We additionally introduce bc-ghosts br and cr.
4

Since the gauge algebra closes on itself, it is still straightforward to write down a BRST

operator. It takes the form

Q =

∮
dz

(
cT + ~−1c̃H + 2h∨g (b̃c̃∂c̃) + (b̃c∂c̃) + (b̃c̃∂c)

+

(
cr

(
JrR +

1

2
Jrgh

))
+ (c∂crbr) + 2h∨g (c̃∂crbr)

)
, (2.35)

where

Jrgh = −f rst (csbt) . (2.36)

The current part of the BRST operator was introduced in [52].5 This BRST operator

squares to

Q2

~2
=

1

12
(cmatter − 2 dim(H)− 52)

∮
dz (∂3cc)− 2

3
(13 + dim(H))h∨g

∮
dz (∂3cc̃)

− 2

3
(13 + dim(H))(h∨g )2

∮
dz (∂3c̃c̃) + 2h∨h

∮
dz (∂crcr) . (2.37)

Anomalies. We see that the BRST operator is anomalous in most cases of interest.

Some of these anomalies can be easily cancelled while others turn out to be more serious

for our purpose. The first term is the familiar Weyl anomaly and can be canceled e.g. by

choosing an appropriate level of the internal current algebra. On the other hand the other

three terms are more serious since they impose stringent restrictions on the allowed coset

manifolds.

4Ghosts with indices refer to the subgroup gauging and ghosts without indices to the ambitwistor gauging,

so there should be no confusion.
5This construction is not equivalent to the GKO construction of 2d CFT [53], for whose BRST con-

struction an additional H-current needs to be introduced [54].

– 10 –



J
H
E
P
1
1
(
2
0
2
0
)
1
5
8

Ghosts. Let us briefly comment about the ghosts in the theory. All the ghost currents are

anomalous in the quantum theory. In order for correlation functions to be non-vanishing

on a genus g Riemann surface, we will need the

Nc −Nb = Nc̃ −Nb̃ = 3− 3g , Ncr −Nbr = 1− g . (2.38)

Since we will work on the sphere, we will need to insert as usual 3 c-ghosts and c̃-ghosts. We

also should insert every cr-ghost once. Since the cr-ghosts have vanishing conformal weight,

their one-point function is constant and thus we will ignore this subtlety, but secretly all

correlation functions will have an insertion of
∏
r cr.

3 Bosonic ambitwistor string on AdS

We now restrict ourselves to AdS. This means that we take

G = SO(d, 2) , H = SO(d, 1) . (3.1)

In particular, we have h∨g = d and h∨h = d− 1.

3.1 Embedding space formalism

Before delving into details of ambitwistor string on AdS, let us briefly review the so-called

embedding space formalism [46, 55, 56], which allows us to treat the coordinates both in

AdS and its boundary in a manifestly covariant manner.

The key idea is to realize AdSd+1 as the following hypersurface inside R2,d:

X ·X = −1 . (3.2)

Here X is a vector in R2,d, XA ≡ (X−1, X0, . . . , Xd−1, Xd) and the inner product is de-

fined by

X · Y ≡ −X−1Y−1 −X0Y0 +
d∑
j=1

XjYj . (3.3)

They are related to standard Poincare coordinates,

ds2
AdS =

dz2 + dxµdxµ
z2

, (3.4)

by the following relation:

XA =
1

z

(
1 + z2 + xµxµ

2
, xµ,

1− z2 − xµxµ
2

)
. (3.5)

Similarly we can realize the boundary of the AdS space-time where the dual CFT lives

as a projective null cone inside R2,d:

P · P = 0 , PA ∼ λPA , (3.6)
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for λ ∈ R \ {0}. To make contact with the standard flat coordinates of the boundary

dsR1,d−1 = dxµdxµ, we consider the following parameterization

PA =

(
1 + xµxµ

2
, xµ,

1− xµxµ
2

)
. (3.7)

The main advantage of using this formalism is that the conformal group SO(2, d) acts

linearly on the embedding space coordinates XA and PA. Consequently, the generators of

the conformal group are given by the following simple expressions

Da
X ≡ D

[AB]
X = XA∂XB −X

B∂XA , (3.8)

Da ≡ D[AB] = PA∂PB − P
B∂PA . (3.9)

Here and below we express the indices for the generators, such as [AB] (where the bracket

means that the expression is antisymmetric in the two indices), collectively by a. In terms

of the embedding space coordinates, the distance between two boundary points can be

expressed as

Pij ≡ −2Pi · Pj = |xi − xj |2 , (3.10)

while the bulk-to-boundary propagator for an operator with dimension ∆ is given by (up

to a constant of proportionality)

K∆(X,P ) ≡ 1

(−2X · P )∆
. (3.11)

3.2 Vertex operators

Note the following anticommutators between the BRST operator and the modes of the

b-ghosts:

{Q, bn} = ~Ltot
n , (3.12a)

{Q, b̃n} = Hn + ~
(

(c∂b̃+ 2∂cb̃)n − 2h∨g ((br∂cr) + 2(b̃∂c̃) + (∂b̃c̃))n

)
, (3.12b)

{Q, br,n} = ~
(
JrR,n + Jrgh + (c∂br + ∂cbr)n + 2d(c̃∂br + ∂c̃br)n

)
. (3.12c)

where Ltot
n is now the total Virasoro algebra involving all the ghosts. Q-closure also requires

vertex operators (that sit in the vacuum w.r.t. the ghosts) to be annihilated by the right-

hand side for n ≥ 0.

Standard vertex operators take the form

cc̃Vαα̃ = cc̃KαK̃α̃V . (3.13)

Here, α, α̃ are adjoint indices for the two internal current algebras and Kα, K̃α̃ the associ-

ated currents. The above commutation relations imply that V is a primary vertex operator

of conformal weight 0. It satisfies

LnV = 0 , n ≥ 0 , (3.14a)

HnV = 0 , n > 0 , H0V = 2d~2V , (3.14b)

JrR,nV = 0 , n ≥ 0 . (3.14c)
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Inconsistencies and the classical limit. As it stands the model is inconsistent: the

BRST operator does not square to zero and the mass-shell condition of H has an anomalous

dimension which will render the path integral inconsistent. We did not find a way to cure

these inconsistencies, but we will not be interested in the model per se, but only in the tree

level scattering formula it provides. We will not take it too seriously, since we will give an

independent proof of our CHY-like formula for AdS.

We should note that these inconsistencies should perhaps not come as a surprise.

Requiring anomaly cancellation gives us the equations of motion of the respective (su-

per)gravity. However, AdSd+1 is not a valid background of the corresponding low-energy

theory and thus no consistent (ambitwistor) string theory can be formulated on it.

In the following we shall take the ambitwistor string as a motivation with the under-

standing that it does not define a consistent theory. To make sense of it, we are forced to

take a classical limit on the worldsheet. We are ignoring anomalous terms in the following

and in particular use the non-anomalous mass-shell condition H0V = 0.

Evaluation of the mass-shell condition. Let us fix a vector R ∈ R2,d with R ·R = −1.

Then we can realize H = SO(1, d) ⊂ GR = SO(2, d) as the stabilizer of R. V is a primary

of vanishing conformal weight and thus it should be a function of the group-valued field g.

In order to be invariant under H, it actually only depends on the combination gR. Let us

also introduce a vector P ∈ R2,d and make the following ansatz for the vertex operator

V (z) ≡ V (P, z) = f(PTgR)(z) (3.15)

for some function f . Since g has regular OPE with itself, there is no normal-ordering issue.

This ansatz satisfies all the constraints (3.14) automatically, except for H0V (P, z) = 0.

Under GL action, V (P, z) transforms as

V (P, z) 7−→ f(PTgLgR)(z) = V (g−1
L P, z) . (3.16)

This implies the OPE

JaL(z)V (P, z) ∼ −D
aV (P,w)

z − w
, (3.17)

where Da ≡ D[AB] are the conformal generators (3.9) acting on P . Up to this point, P is

just a formal variable, but it will eventually be interpreted as the boundary coordinate of

the vertex operator. It follows,

H0V (P, z) ∝ DaDaV (P, z) , (3.18)

since H(z) = (JaLJ
a
L) = (JaRJ

a
R). Denoting X ≡ gR, we hence need to solve

0 = (−PA∂PBP
A∂PB + PA∂PBP

B∂PA)f(P ·X)

= −(P · P )(X ·X)f ′′(P ·X) + (d+ 1)P ·Xf ′(P ·X) + (P ·X)2f ′′(P ·X) .
(3.19)

In order for this to be solvable for any P and X, we need to assume that P ·P = 0, i.e., P

is light-like.6 Then f(x) satisfies the differential equation

x2f ′′(x) + (d+ 1)xf ′(x) = 0 , (3.20)

6Since X ·X = R · R = −1, the only other possibility is f ′′(P ·X) = 0, however its only solution is a

trivial vertex operator equal to the identity.
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and so

f(x) = A+Bx−d . (3.21)

The constant A leads to the identity vertex operator, which we discard. We notice that

the solutions take the form of a bulk-to-boundary propagator of a massless scalar particle

of dimension d.

Thus, in the classical limit we are considering, vertex operators take the form

Vαα̃ = cc̃KαK̃α̃(−2PTgR)−d(z) . (3.22)

The latter factor is exactly the bulk-to-boundary propagator in AdS (and we chose the

normalization factor to agree with it).

We recognize that P has exactly the same properties as the embedding coordinate P

introduced in section 3.1. Since the vertex operator turned out to be homogeneous in P , it

also makes sense to projectivize P . We will hence identify P with the coordinate of the dual

conformal field theory. We should mention that worldsheet vertex operators typically take

the form of bulk-to-boundary propagators; in the case of AdS3 this was observed in [57].

3.3 Correlation functions

Localization and scattering equations. Let us now discuss the most crucial property

of ambitwistor strings. We decompose the Beltrami differential ẽ as follows:

ẽ =

n−2∑
i=2

ẽiµi . (3.23)

Here, µi is a basis for the n − 3 Beltrami differentials on the sphere (the slightly unusual

labeling should become clear in the following). Analogously to the flat space situation, the

path integral for the n-point sphere correlator over the various fields reduces to [6, 58]

∫
T ∗M0,n

n−2∏
i=2

dei dẽi e
∑
i ẽi

∫
Σ µitr (p2)

×

〈
cc̃Vα1α̃1

1 (0)

n−2∏
i=2

Vαiα̃ii (zi) cc̃Vαn−1α̃n−1

n−1 (1) cc̃Vαnα̃nn (∞)

〉
Σ

, (3.24)

where the correlation function in the integrand is understood to be taken in the world-

sheet CFT. Here, the Beltrami differentials e parametrize deformations in M0,n and ẽ the

cotangent space. Due to our choice of gauge of the conformal Killing vectors, the c and c̃

correlators are trivial. Let us make a standard choice for the basis of Beltrami differentials:∫
Σ
µitr (p2) = Res

z=zi
tr (p2) . (3.25)

Thus it remains to evaluate this residue when acting on the correlator. Recalling that

tr (p2) = tr (JLJL), this is precisely computed by the Knizhnik-Zamolodchikov equation in
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the quantum theory [59]. We hence have7

Res
z=zi

tr (p2) = −
n∑
j=1
j 6=i

Di ·Dj

zi − zj
≡ −1

2
Ei (3.26)

as an operator acting on the correlation function.

We can then integrate out ẽi, which leads to the factor

n−2∧
i=2

δ̄(Ei) . (3.27)

This is an operator valued δ-function. We can define

δ̄(Ei) ≡ −
1

2πi
∂̄

1

Ei
, (3.28)

which defines a (0, 1)-form. Thus, the ambitwistor string correlator becomes∫
M0,n

n−2∧
i=2

dzi δ̄(Ei)

〈
Vα1α̃1

1 (0)
n−2∏
i=2

Vαiα̃ii (zi) Vαn−1α̃n−1

n−1 (1)Vαnα̃nn (∞)

〉
. (3.29)

The integrand is an (n−3, n−3)-form as is appropriate for the integration.

Rewriting as contour integral. For later purposes, it is useful to rewrite the result as

a purely holomorphic contour integral. Using the definition of δ̄, we can write∫
M0,n

n−2∧
i=2

dzi δ̄(Ei) 〈· · ·〉 = − 1

2πi

∫
M0,n

∂̄

(
1

E2

n−2∧
i=3

dzi δ̄(Ei) 〈· · ·〉

)
(3.30)

= − 1

2πi

∮
{|E2|=ε}∩M0,n

1

E2

n−2∧
i=3

dzi δ̄(Ei) 〈· · ·〉, (3.31)

which using integration by parts encloses E2 = 0, which is the only place where the

integrand fails to be exact. We abbreviated the holomorphic CFT correlator to 〈· · ·〉.
Let us explain what exactly we mean by E2 = 0, since E2 is operator-valued. The

operator E−1
2 acts on the CFT correlation function 〈· · · 〉 and produces some analytic

function in z2, . . . , zn−2, which has additional poles beyond the poles already present in the

original correlators. The set E2 = 0 denotes these additional poles. Since E2 is operator-

valued, we do not have a good understanding how many poles E2 = 0 comprises in general,

but this knowledge will not be needed in the following. We will repeatedly write such

expressions in the following and they are always meant to be understood in this way.

Continuing recursively in the same manner, we arrive at∫
M0,n

n−2∧
i=2

dzi δ̄(Ei) 〈· · ·〉 = (−1)n−3

∮
Γ

n−2∧
i=2

dzi
2πiEi

〈· · ·〉 , (3.32)

7We note that this would lead to inconsistencies if we are working at finite ~, since the anomalous

mass-shell condition of H(z) means that tr (p2) has a double pole and hence cannot be contracted with a

Beltrami differential.

– 15 –



J
H
E
P
1
1
(
2
0
2
0
)
1
5
8

where Γ = ∩n−2
i=2 {|Ei| = ε}. A more rigorous derivation using Morse theory of this formula

was given in [58]. One can directly copy the argument to our setting. Essentially, we

see that the structure of the moduli space integral is unchanged, except that tr (p2) is

operator-valued.

CFT correlators and the contact diagram. It remains to evaluate the CFT part

of the correlation function. It clearly factorizes into the current part and the coset part.

Removing as usual double contractions [9], the current correlators become a product of

Parke-Taylor factors PT× P̃T, where

PT =
∑

σ∈Sn/Zn

Tr (Tασ(1) · · ·Tασ(n))

zσ(1)σ(2) · · · zσ(n−1)σ(n)zσ(n)σ(1)
, (3.33)

where zij = zi − zj . Here, Tα are the generators of the internal group in the adjoint

representation. Thus, the remaining correlator becomes

〈V (P1, z1)V (P2, z2) · · ·V (Pn, zn)〉 , (3.34)

where V (P, z) = (−2PTgR)−d(z), as discussed above. This correlator can again be evalu-

ated by a path-integral computation. The equations of motion imply that g is holomorphic.

Moreover, since its OPE with g vanishes, it has no singularities close to the insertion points.

By compactness of the Riemann sphere, g hence has to be constant in this correlator. Thus,

the path integral reduces to an ordinary integral over the group SO(d, 2) (with the Haar

measure as measure). By construction, the integral is invariant under right multiplication

of g by the subgroup SO(1, d) and thus the integral reduces further to the coset manifold

AdSd+1. The measure is the induced one, which is the unique (up to a normalization

constant) left-invariant measure in AdSd+1. Writing X = gR as above, the correlation

function hence equals

C(P1, . . . , Pn) = 〈V (P1, z1)V (P2, z2) · · ·V (Pn, zn)〉 =

∫
AdSd+1

dX
n∏
i=1

1

(−2X · Pi)d
. (3.35)

This is nothing else than the scalar contact diagram in AdSd+1 [60]. Note in particular

that this is independent of the worldsheet insertions.

Summary. Let us summarize the result and reinstate SL(2,C) invariance. The am-

bitwistor string correlator of the basic vertex operators that we have analyzed gives

mAdS =
∑

σ, τ∈Sn/Zn

mAdS(σ|τ)Tr (Tασ(1) · · ·Tασ(n))Tr (T α̃τ(1) · · ·T α̃τ(n)) , (3.36)

with

mAdS(σ|τ) =

∫
(z1,n−1zn−1,nz1n)2∏n

i=1 zσ(i)σ(i+1)

∏n
j=1 zτ(j)τ(j+1)

n−2∧
i=2

dzi δ̄(Ei) C , (3.37)

= (−1)n−3

∮
Γ

1∏n
i=1 zσ(i)σ(i+1)

∏n
j=1 zτ(j)τ(j+1)

1

J

n∧
i=1

dzi
2πiEi

C , (3.38)
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where σ(n+1) = σ(1) and τ(n+1) = τ(1). Let us explain all factors in (3.38) in turn. The

integral is defined on the moduli space of genus zero curves with n marked points (punc-

tures) with coordinates zi. By convention we fix the positions of three points, (z1, zn−1, zn),

using the action of SL(2,C). In doing so we obtain a Jacobian factor:

J =
1

(2πi)3E1En−1En

dz1 ∧ dzn−1 ∧ dzn
(z1,n−1zn−1,nz1n)2

, (3.39)

which in particular makes the integrand a top holomorphic form on M0,n. As before,

we have

Ei =
n∑
j=1
j 6=i

2Di ·Dj

zi − zj
(3.40)

and the contour of integration Γ = ∩n−2
i=2 {|Ei| = ε}, whose orientation is induced from

M0,n, imposes the scattering equations. (In particular we will make a repeated use of

the fact that with this assignment of orientation the individual contours anticommute,

Γ1 ∩ Γ2 = −Γ2 ∩ Γ1.) These factors act on C ≡ C(P1, . . . , Pn), which denotes the contact

scalar diagram. Recall that this term is z-independent.

Let us again emphasize that this formula should be taken with a grain of salt, since the

ambitwistor suffers from anomalies. We take it as a motivation and will check in the next

section that it is indeed self-consistent and is equivalent to Witten diagrams on AdSd+1.

Relation to the formula of Roehrig-Skinner. Let us compare this formula with

the formula derived in [50]. Their formula looks visually identical after restricting to

AdS3 × S3, with one important difference. In the case of AdS3, the conformal group

factorizes, SO(2, 2) ∼= SL(2,R)×SL(2,R) (up to global identifications) and correspondingly

we can decompose the conformal generators in Da
+ and Da

−. Explicitly,

DAB
± =

1

2

(
DAB ± 1

2
εABCDDCD

)
, (3.41)

where εABCD is the Levi-Civita symbol. The formula of Roehrig and Skinner is identical

to ours, except that Da
+ appears in the scattering equation instead of Da. The difference in

the formulae comes from a different treatment of AdS3. We treated it as a coset, whereas

it was considered as a group manifold in [50]. We now argue that these are equivalent

formulae. The basic reason is that the contact diagram contains only scalars in the partial

wave decomposition, see e.g. [61]. For this reason, D+,i ·D+,j when acting on the contact

diagram equals D−,i ·D−,j . Thus, we have

Ei =

n∑
j=1
j 6=i

2Di ·Dj

zi − zj
= E+,i =

n∑
j=1
j 6=i

4D+,i ·D+,j

zi − zj
, (3.42)

when acting on the contact diagram.
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A heuristic argument on the flat-space limit. As is clear from comparing (1.1)

and (1.3), the CHY-like representation in AdS can be obtained from the flat-space coun-

terpart by formal replacements, pi ·pj → Di ·Dj and (2π)d+1δd+1(
∑n

i=1 pi)→ C(P1, . . . , Pn).

In what follows, we present a heuristic argument on why such replacements are reasonable

based on the results in [62]. We want to emphasize that this should not be considered as

a proof of any sort; it should be taken rather as a plausibility argument.

To this end, we first consider a generalization of the CHY-like representation in AdS

to AdSd+1×Sq+1. Then the on-shell condition gets modified to

0 = ∆(∆− d)− Cq , (3.43)

where Cq is a quadratic Casimir of SO(q + 2). In particular by considering a state with

large Cq (which corresponds to a state with high Kaluza-Klein momenta on Sq+1), one can

make the dimension of the CFT operator ∆ to be arbitrarily large. Next we show that

the action of Di ·Dj acting on the contact diagram with large ∆ can be interpreted as a

multiplication of pi ·pj . To see this, we go back to the integral representation of the contact

diagram

C∆(P1, . . . , Pn) =

∫
AdSd+1

dX
n∏
i=1

1

(−2X · Pi)∆
=

∫
dλ

∫
dXe−S[X,λ] , (3.44)

where in the second equality we introduced a Lagrange multiplier λ and the action S[X]

is given by

S[X] = ∆

n∑
i=1

log (−2X · Pi) + λ(X2 +R2) . (3.45)

In the limit ∆� 1, this integral can be approximated by its saddle point

∂S[X,λ]

∂X

∣∣∣∣
X=X∗,λ=λ∗

=
∂S[X,λ]

∂λ

∣∣∣∣
X=X∗,λ=λ∗

= 0 . (3.46)

As shown in [62], this equation can be recast into a form of the momentum conservation

n∑
j=1

p̃j = 0 , (3.47)

where p̃j ’s are given by

p̃i ≡
∆

R

(
Pi

Pi ·X∗/R
+X∗/R

)
. (3.48)

Physically these vectors p̃j can be interpreted as momenta measured at a position of the

interaction vertex in AdS. This interpretation is supported by the fact that they satisfy

the “on-shell conditions” and are tangent to AdS:

p̃2
i = ∆2/R2 , p̃i ·X∗ = 0 . (3.49)

Using these vectors, it is now straightforward to see that the action of Di · Dj can be

interpreted as the AdS version of pi · pj : namely we simply act Di ·Dj to the saddle-point

approximation of (3.44). We then get

(Di ·Dj)e
−S[X∗] ∼ (p̃i · p̃j)e−S[X∗] . (3.50)
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This explains why replacing pi · pj with Di · Dj is a natural manipulation. However as

emphasized above, the argument we presented here is not at all rigorous. In addition, it

would be more preferable if one can demonstrate how the flat-space limit works without

introducing the internal manifold Sq+1. We leave these important questions to future

investigations.

4 Computation of the correlators

In the previous section we found that the ambitwistor formulation gives rise to a CHY for-

mula for the tree-level color-ordered bi-adjoint scalar correlators (3.38). Before evaluating

the formula (3.38), let us recall a few facts about the contractions Di·Dj .

4.1 Properties of conformal generators

Recall from section 3.1 that we use conformal generators in the scalar representation:

Da
i = D

[AB]
i = PAi ∂PBi

− PBi ∂PAi , (4.1)

where A,B = −1, 0, 1, . . . , d are the embedding space indices and i, j = 1, 2, . . . , n label

each external particle. Indices can be contracted according to

Di ·Dj = ηACηBDD
AB
i DCD

j . (4.2)

In particular, Di · Di = 0 for any i. Trivially [Di, Dj ] = 0 for any i 6= j. We will make

use of the following notation for multi-particle contractions (we already used the fact that

Di ·Di = 0 when acting on the contact diagram)

D2
i1i2...im = (Di1+Di2 + · · ·+Dim)2 =

∑
1≤j<k≤m

2Dij ·Dik . (4.3)

The ordering of individual labels {i1, i2, . . . , im} is immaterial. It is straightforward to see

that D2
S and D2

T commute if and only if the two sets of particles S and T are either disjoint

or one is contained within the other,

[D2
S , D

2
T ] = 0 iff S ∩ T = ∅ or S ⊆ T or T ⊆ S . (4.4)

Correlation functions, such as (3.38) above, satisfy the Ward identity:

n∑
i=1

DAB
i 〈· · ·〉 = 0 . (4.5)

In order to see this from the scattering equations formula (3.38), we need to check that the

operator
∑

iD
a
i commutes through the scattering equations (since it already annihilates

the contact term C). It is enough to check that[
n∑
i=1

Da
i , Dj ·Dk

]
= [Da

j+Da
k, Dj ·Dk] =

1

2
[Da

j+Da
k, (Dj+Dk)

2] = 0 . (4.6)
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We should mention one regularity assumption that we are making in the following. We

take it for granted that the differential operators under consideration, such as Di · Dj or

the scattering equations Ei have an eigenbasis when acting on a suitable function space

in the variables P1, . . . , Pn. In the case of Di · Dj , the eigenfunctions are the (higher-

point) conformal blocks, but in the case of Ei they are some object that interpolate in

between the different channels of the conformal block expansion. This is explored further

in section 5, where we analyze these generalized conformal blocks in the simple case of a

four-point function. For two commuting differential operators D1 and D2, we can hence

find a simultaneous eigenbasis. In this joint eigenbasis, it is easy to define f(D1) and g(D2)

for any function (or even a distribution). We hence always assume the general implication

[D1,D2] = 0 =⇒ [f(D1), g(D2)] = 0 . (4.7)

With this, it follows that
∑

iD
a
i commutes with δ̄(Ej), which shows that (3.38) satisfies

the Ward identity.

Finally, let us show that different Ei’s commute. We start with

[Ei, Ej ] =

∑
k 6=i

2Di ·Dk

zi − zk
,
∑
l 6=j

2Dj ·Dl

zj − zl

 (4.8)

for any pair i, j. The only non-vanishing terms on the right-hand side are two corresponding

to the diagonal terms k = l, as well as k = j in the first sum and l = i in the second. This

leaves us with

1

4
[Ei, Ej ] =

∑
k 6=i,j

[
Di ·Dk

zi − zk
,
Dj ·Dk

zj − zk

]
+
∑
l 6=i,j

[
Di ·Dj

zi − zj
,
Dj ·Dl

zj − zl

]
+
∑
k 6=i,j

[
Di ·Dk

zi − zk
,
Dj ·Di

zj − zi

]
.

(4.9)

Next we relate the three commutators by using structure constants fabc and their antisym-

metry properties,

[Di ·Dk, Dj ·Dk] = fabcD
a
iD

b
jD

c
k, (4.10a)

[Di ·Dj , Dj ·Dl] = facbD
a
iD

c
jD

b
l = −[Di ·Dl, Dj ·Dl] , (4.10b)

[Di ·Dk, Dj ·Di] = fcbaD
c
iD

b
jD

a
k = −[Di ·Dk, Dj ·Dk] . (4.10c)

Relabeling l→ k in the second sum yields

1

4
[Ei, Ej ] =

∑
k 6=i,j

(
1

(zi−zk)(zj−zk)
− 1

(zi−zj)(zj−zk)
− 1

(zi−zk)(zj−zi)

)
[Di·Dk, Dj ·Dk] = 0 ,

(4.11)

which vanishes for each term in the sum by a partial fraction identity. This shows that

in (3.38) we do not have to worry about the order of Ei and that different choices of

SL(2,C) fixing are equivalent to each other. We note that the condition [Ei, Ej ] = 0 is

equivalent to imposing integrability for the Knizhnik-Zamolodchikov connection that we

effectively use in the α′ →∞ limit.
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4.2 Computation with residue theorems

Let us consider the problem of evaluating the formula (3.38). We will show that

mAdS(σ|τ) = (−1)w(σ|τ)+1
∑

T∈T (σ)∩T (τ)

∏
e∈T

1

D2
e

C(P1, P2, . . . , Pn) , (4.12)

where T (σ) and T (τ) are sets of trivalent trees planar with respect to the permutation

σ and τ respectively. The sum goes over all such trees T that are simultaneously planar

with respect to both permutations. The product involves exactly n−3 propagators for each

internal (bulk-to-bulk) edge e ∈ T with De equal to the sum of Di’s flowing into that edge.

The overall sign is determined by the relative winding number of the two permutations

w(σ|τ).8 The whole sum acts on the scalar contact diagram C. Notice that for every

tree the inverse propagators D2
e precisely satisfy the non-overlapping criterion (4.4), which

means that the order in which they appear does not matter.

In the special case when σ = τ , the above expression simplifies to a sum over planar

trees (we also have w(σ|σ) = 1). We will focus on this case first, by considering the diagonal

entries mAdS(In|In), where without loss of generality we consider both permutations to be

the identity In = (12 · · ·n). The proof of the more general case with σ 6= τ is essentially

identical and we will return back to it after spelling out all details for the diagonal case.

The strategy in proving (4.12) will be to rewrite the integral localizing on solutions of

scattering equations to that localizing on boundaries ofM0,n corresponding to the Riemann

surface degenerating into trivalent diagrams. While in flat space case there are multiple

ways of arriving at such a result, see, e.g., [47, 63–65], here we cannot use them reliably

for operator-valued scattering equations. In other words, we do not have a reliable way of

solving these constraints explicitly, or even predicting how many solutions they might have.

Therefore, closely following [47], we will show the required results using purely contour

deformation arguments, which do not rely on any knowledge of solutions of scattering

equations.

Before proceeding to the general proof it will be instructive to work out the n = 4, 5

correlation functions first.

4.2.1 Four-point correlator

Fixing (z1, z3, z4) leaves us with z2 as the only leftover variable. We have

mAdS(I4|I4) = −
∮

Γ2

(z13z34z14)2

(z12z23z34z41)2

dz2

2πiE2
C . (4.13)

In order to make the pole structure more manifest we turn E2 into a polynomial Ê2 by

Ê2 = z21z23z24E2 = z23z24D
2
12 + z21z24D

2
23 + z21z23D

2
24 , (4.14)

8It is defined as follows. Consider n points on a circle and label them in a clockwise direction according

to the permutation σ. Then consider a path starting at the label τ(1) going to τ(2) in a clockwise direction,

then to τ(3), etc., until the last step where τ(n) connects back to τ(1). The number of windings performed

by this path defines w(σ|τ). In particular, when σ = τ we have w(σ|σ) = 1. In flat space one can show

that this definition determines the correct sign for each bi-color ordering agreeing with Feynman diagrams.
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which gives

mAdS(I4|I4) =

∮
Γ2

z2
13z24

z12z23

dz2

2πiÊ2

C . (4.15)

Therefore the only poles that survive are located at Ê2 = 0, z2 = z1, and z2 = z3. The

contour above is taken around the first class of poles, Γ2 = {|Ê2| = ε}. Since in general

SL(2,C) fixing there cannot be poles at infinity, we deforming the contour we localize on

residues around z2 = z1 and z2 = z3. These are precisely the places in the moduli space

corresponding to the worlsheet degenerating into s- and t-channel diagrams. In equations,

we find

mAdS(I4|I4) = −

(∮
|z2−z1|=ε

+

∮
|z2−z3|=ε

)
z2

13z24

z12z23

dz2

2πiÊ2

C =

(
1

D2
12

+
1

D2
23

)
C , (4.16)

as expected. Note that we did not have to have any concrete knowledge of the positions,

or even the number, of the solutions to the scattering equations.

The absence of u-channel poles is a consequence of the fact that the integrand did not

have any pole in z2 = z4. More generally, the half-integrands need to have a combined

double pole in a specific degeneration for the correlators to develop the corresponding D2
e

singularity.

4.2.2 Five-point correlator

In the standard gauge fixing we arrive at the following representation,

mAdS(I5|I5) =

∮
Γ2∩Γ3

(z14z45z15)2

(z12z23z34z45z51)2

dz2 ∧ dz3

(2πi)2E2E3
C . (4.17)

As before, we make the pole structure manifest by defining

Ê2 = z21z23z24z25E2, Ê3 = z31z32z34z35E3 , (4.18)

which gives

mAdS(I5|I5) =

∮
Γ2∩Γ3

z2
14z24z25z31z35

z12z34

dz2 ∧ dz3

(2πi)2Ê2Ê3

C . (4.19)

Hence the only poles are those corresponding to z2 = z1, z3 = z4, on top of those coming

from the scattering equations. In these variables the integration contour is simply

Γ2 ∩ Γ3 = {|Ê2| = ε} ∩ {|Ê3| = ε} . (4.20)

Let us also define contours associated to the other singularities, namely

γ21 = {|z2 − z1| = ε}, γ34 = {|z3 − z4| = ε} . (4.21)

We can now use a higher-dimensional residue theorem, the global residue theorem (see [66],

Chapter 5), to relate integrals over these contours to each other. In the present application

it says that the integral of the same top form over

(Γ2 + γ34) ∩ (Γ3 + γ21) = Γ2 ∩ Γ3 + Γ2 ∩ γ21 + γ34 ∩ Γ3 − γ21 ∩ γ34 (4.22)
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vanishes, since the pole divisor of our integrand is contained within Γ2 ∪ Γ3 ∪ γ21 ∪ γ34.

Using this fact we can rewrite the correlator (4.19) as

mAdS(I5|I5) =

(
−
∮

Γ2∩γ21

−
∮
γ34∩Γ3

+

∮
γ21∩γ34

)
z2

14z24z25z31z35

z12z34

dz2 ∧ dz3

(2πi)2Ê2Ê3

C . (4.23)

Let us compute these residue integrals in turn. The final one is straightforward to evaluate

and gives ∮
γ21∩γ34

z2
14z24z25z31z35

z12z34

dz2 ∧ dz3

(2πi)2Ê2Ê3

C =
1

D2
12D

2
34

C , (4.24)

which is the expected answer coming from this worldsheet degeneration.

The evaluation of the first two integrals is a bit more subtle. In order to see this let

us focus on the case Γ2 ∩ γ21. The first part of the contour imposes that

Ê2 = z21 (· · · ) + z23z24z25D
2
12 = 0 . (4.25)

However, on the additional constraint surface γ21, for this to be true the combination

z23 = z2 − z3 needs to vanish as well (note that z24 and z25 cannot vanish near γ21). In

other words, as the z2 puncture approaches z1 at some infinitesimal rate δ, the puncture z3

is also forced to z2 at the same rate, so that all three punctures (z1, z2, z3) coalesce together

as δ → 0. We can parameterize this degeneration explicitly by setting

zi = z1 + δxi for i = 1, 2, 3 (4.26)

with x1 = 0. Expanding in small δ, the two equations (4.18) become

Êi = δz14z15F̂i +O(δ2) with
F̂2 = x23D

2
12 + x21D

2
23 ,

F̂3 = x32D
2
13 + x31D

2
23 .

(4.27)

In the new variables (x2, δ) we have dz2 ∧ dz3 = δx31 dx2 ∧ dδ and the contour becomes

{|F̂2| = ε} ∩ {|δ| = ε}. Therefore the first contribution to (4.23) becomes:

−
∮
|F̂2|=ε

∮
|δ|=ε

(
x2

31

δ x12
+O(δ0)

)
dx2 ∧ dδ

(2πi)2F̂2F̂3

C = −
∮
|F̂2|=ε

x2
31

x12

dx2

2πi F̂2F̂3

C . (4.28)

At this stage we consider the difference

F̂2 − F̂3 = x23(D2
12 +D2

13) + (x21 − x31)D2
23 = x23D

2
45 , (4.29)

where in the last transition we used the Ward identity. Therefore we conclude that on

the support of the constraint F̂2 = 0 we have F̂3 = x23D
2
45. Hence the above integral

simplifies to

−
∮
|F̂2|=ε

x2
31

x12x23

dx2

2πi F̂2

1

D2
45

C =

(∮
|x2−x1|=ε

+

∮
|x2−x3|=ε

)
x2

31

x12x23

dx2

2πi F̂2

1

D2
45

C (4.30)

=

(
1

D2
12

+
1

D2
23

)
1

D2
45

C , (4.31)
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where in the first equality we used a residue theorem to deform the contour to enclose the

poles at x2 = x1 and x2 = x3 (the one at infinity is absent), similarly to the n = 4 case.

Let us remark that while the above multi-step procedure might seem complicated, it is

an unavoidable property of M0,n itself: the manual change of variables we used in (4.26)

implements a blow-up procedure needed for compactifying the moduli space [67].

Evaluation of the remaining contribution from γ34 ∩ Γ3 proceeds entirely analogously.

As a shortcut we can exploit symmetry of the problem under (12345) → (43215) to write

immediately:

−
∮
γ34∩Γ3

z2
14z24z25z31z35

z12z34

dz2 ∧ dz3

(2πi)2Ê2Ê3

C =
1

D2
51

(
1

D2
23

+
1

D2
34

)
C . (4.32)

Summing all contributions in (4.23) we found

mAdS(I5|I5) =

(
1

D2
12D

2
34

+
1

D2
23D

2
45

+
1

D2
34D

2
51

+
1

D2
45D

2
12

+
1

D2
51D

2
23

)
C , (4.33)

which according to the expectation is a sum over all planar cubic diagrams.

4.2.3 Arbitrary-multiplicity correlators

Proof in the general case uses essentially the same steps and is mostly an exercise in

bookkeeping. Following [47] we will achieve this by showing that (3.38) obeys the Berends-

Giele (off-shell) recursion relation:

m̂AdS(In|In) =
1

D2
n−1,n

m̂AdS(12 · · ·n−2, (n−1, n) | 12 · · ·n−2, (n−1, n))

+
1

D2
n1

m̂AdS(2 · · ·n−1, (n1) | 2 · · ·n−1, (n1))

+

n−3∑
k=2

1

D2
12...kD

2
k+1,k+2,...,n−1

m̂AdS(12 · · · k(k+1, · · ·n) | 12 · · · k(k+1, · · ·n))

× m̂AdS(k+1, k+2, · · · , n−1(n1 · · · k) | k+1, k+2, · · · , n−1(n1 · · · k)) .

(4.34)

Here terms in the parenthesis denote a single particle with ‘momentum’ equal to the sum of

all labels within the parenthesis, e.g., the first contribution is a correlator with n−1 external

states, the last of which has the conformal generator Dn−1+Dn. The recursion might be

easier to understand from its diagrammatic representation in figure 1. The reason why

the n-th state appears special in the recursion is ultimately a consequence of our SL(2,C)

fixing. Hats in the notation indicate that the recursion holds for operators in Di,

mAdS(In|In) = m̂AdS(In|In) C (4.35)

stripped from the contact term.9 Boundary condition is provided by m̂AdS(I3|I3) = 1,

which is trivially obtained since M0,3 is a point.

9This does not imply that the results can be upgraded from flat space, since individual Di ·Dj ’s do not

commute in general.
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1 2

n

n−2n−1

= 1
D2

n−1,n

...

1 2

n−2

...
1

D2
n1

2 3

n−1

...+

n−3 n−2

n−3∑
k=2

+

k+1 k+2

n−1

...

n−2

kk−1

1

...

2

1
D2

12...k
D2

k+1,k+2,...,n−1

Figure 1. Diagrammatic depiction of the recursion relation from (4.34). The new external states

(bold) have conformal generators determined by the Ward identities
∑

iDi = 0 for each term on

the right-hand side individually.

The starting point is the correlator

m̂AdS(In|In) = (−1)n−3

∮
∩n−2
i=2 Γi

(z1,n−1zn−1,nz1n)2

(z12z23 · · · zn−1,nzn1)2

n−2∧
i=2

dzi
2πiEi

. (4.36)

As before, in order to see which poles contribute, we substitute

Êi = Ei

n∏
k=1
k 6=i

zik =

n∑
j=1
j 6=i

D2
ij

n∏
k=1
k 6=i,j

zik , (4.37)

which yields

m̂AdS(In|In) =

∮
∩n−2
i=2 Γi

z2
1,n−1

∏n−2
i=2

∏
j 6=i−1,i,i+1 zij

z12 zn−2,n−1

n−2∧
i=2

dzi

2πi Êi
. (4.38)

The contour of integration is defined with Γi = {|Êi| = ε}. We will use the global residue

theorem several times to massage the contour to a form that resembles the required recur-

sion relation (4.34). As before, we will make use of

γ21 = {|z2 − z1| = ε}, γn−2,n−1 = {|zn−2 − zn−1| = ε} . (4.39)

We first write

0 = (Γ2 + γn−2,n−1) ∩ Γ3 ∩ · · · ∩ Γn−3 ∩ (Γn−2 + γ21)

= Γ2 ∩ Γ3 ∩ · · · ∩ Γn−3 ∩ Γn−2 + Γ2 ∩ Γ3 ∩ · · · ∩ Γn−3 ∩ γ21

+ γn−2,n−1 ∩ Γ3 ∩ · · · ∩ Γn−3 ∩ Γn−2 + γn−2,n−1 ∩ Γ3 ∩ · · · ∩ Γn−3 ∩ γ21︸ ︷︷ ︸
Γ̃

, (4.40)

where equality to zero should be understood as the appropriate homology statement. In

the final equality the first term is original contour, while the second and third are the going
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to be responsible for the first two terms in the recursion (4.34), in analogy with what we

have seen for n = 5. The final term Γ̃ needs further manipulation. We use

0 = γn−2,n−1 ∩ (Γ3 + Γn−2) ∩ Γ4 ∩ · · · ∩ (Γn−3 + Γ2) ∩ γ21

= Γ̃ + γ21 ∩ γn−2,n−1 ∩ Γ4 ∩ · · · ∩ Γn−2 + Γ2 ∩ Γ3 ∩ · · · ∩ Γn−4 ∩ γ21 ∩ γn−2,n−1

− Γ2 ∩ γn−2,n−1 ∩ Γ4 ∩ · · · ∩ Γn−4 ∩ γ21 ∩ Γn−2 . (4.41)

Recognizing that the last term looks structurally the same as Γ̃, we can repeat the same

move until we arrive at

Γ̃ = −
n−3∑
k=2

Γ2 ∩ Γ3 ∩ · · · ∩ Γk−1 ∩ γ21 ∩ γn−2,n−1︸ ︷︷ ︸
replacing Γk∩Γk+1

∩Γk+2 ∩ · · · ∩ Γn−2 . (4.42)

We will show that each term in this expansion leads exactly to the corresponding diagrams

in the sum of the recursion (4.34).

Let us begin with the first contribution coming from the integral over Γ2 ∩ Γ3 ∩ · · · ∩
Γn−3∩γ21. In parallel with the n = 5 case, we can easily see that the contour γ21 imposing

z2 = z1 + δx2 also implies that zn−2 has to approach z1 at the same rate. Consider the

following combination∑
i∈{1,2,n−2}

zi,n−2Ei = z1,n−2
D2

12

δ x12
+ z2,n−2

D2
12

δ x21
+O(δ0) = D2

12 +O(δ0) , (4.43)

which thanks to the cancellation among the O(δ−1) terms, stays finite. On the other hand,

imposing E2 = 0 from the Γ2 part of the contour gives∑
i∈{1,2,n−2}

zi,n−2Ei = z1,n−2

(
D2

12

δ x12
+

D2
12

z1,n−2
+ . . .

)
, (4.44)

which implies that also zn−2 needs to behave as zn−2 = z1 + δxn−2. As a matter of fact,

repeating similar arguments one can show that

zi = z1 + δxi for i ∈ {1, 2, n−2} ∪ S , (4.45)

with x1 = 0 and a set of labels S (which excludes {1, 2, n−2} and necessarily the gauge

fixed punctures n−1 and n), is compatible with the above contour. However, only one of

them will lead to a non-zero residue. To see this, let us count the degree of the pole in δ for

all possible S. For this purpose we will consider the representation in (4.36). The volume

form behaves as
n−2∧
i=2

dzi = O(δ|S|+1) dδ (4.46)

since exactly there are exactly |S| factors of dxi∈S and one of dx2 (dxn−2 is traded for dδ).

The product of Ei factors scales as

1∏n−2
i=2 Ei

= O(δ|S|+2) , (4.47)
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because Ei = O(δ−1) if i ∈ {2, n−2} ∪ S and is finite otherwise. The Jacobian factor

only contains constants and hence does not scale. Finally, we are left with the factor of

(z12z23 · · · zn1)−2, which needs to scale at least as O(δ−2|S|−4) for the integrand to have a

pole. The only way this can be achieved is if all labels between {1, 2} and {n−2} are in

the set S, i.e.,

S = {3, 4, . . . , n−3} . (4.48)

All other degenerations do not have support on the residue around δ = 0.

The integral we would like to evaluate is given by

(−1)n−4

∮
Γ2∩Γ3∩···∩Γn−3∩γ21

(z1,n−1zn−1,nz1n)2

(z12z23 · · · zn−1,nzn1)2

n−2∧
i=2

dzi
2πiEi

. (4.49)

Making a change of variables to (x2, x3, . . . , xn−3, δ) gives

n−2∧
i=2

dzi = δn−4xn−2,1 dx2 ∧ dx3 ∧ · · · ∧ dxn−3 ∧ dδ . (4.50)

For i = 2, 3, . . . , n−2 we find that the Ei factors reduce to

Ei =
Fi
δ

+O(δ0) with Fi =
n−2∑
j=1
j 6=i

D2
ij

xi − xj
. (4.51)

In these variables the contour in (4.49) becomes ∩n−3
i=2 {|Fi| = ε} ∩ {|δ| = ε}. Putting

everything together, the integral in (4.49) reads

(−1)n−4

∮
∩n−3
i=2 {|Fi|=ε}∩{|δ|=ε}

xn−2,1

(x12x23 · · ·xn−3,n−2)2

n−3∧
i=2

dxi
2πi Fi

∧
(

1

δ
+O(δ0)

)
dδ

2πiFn−2
.

(4.52)

In order to simplify the F2 term, let us evaluate the combination

n−2∑
i=1

xi1Fi =

n−2∑
i=1

n−2∑
j=1
j 6=i

xij + xj1
xij

D2
ij = 2D2

12...,n−2 −
n−2∑
j=1

xj1Fj , (4.53)

so the term on the left-hand side is equal to D2
12...,n−2 = D2

n−1,n. However, on the support

of the constraints Fi = 0 for i = 2, 3, . . . , n−3 this term becomes

D2
n−1,n = xn−2,1Fn−2 . (4.54)

Plugging this back into (4.52) and performing the trivial δ residue yields

(−1)n−4

D2
n−1,n

∮
∩n−3
i=2 {|Fi|=ε}

x2
n−2,1

(x12x23 · · ·xn−3,n−2)2

n−3∧
i=2

dxi
2πi Fi

. (4.55)
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(The factor of 1/D2
n−1,n can be commuted to the left since the factor Fn−2 commuted with

all the remaining Fi’s.) We notice that this a gauge-fixed version of

1

D2
n−1,n

(
(−1)n−4

∮
∩n−3
i=2 {|Fi|=ε}

(x1,n−2xn−2,∗x∗1)2

(x12x23 · · ·xn−3,n−2 xn−2,∗ x1∗)2

n−3∧
i=2

dxi
2πi Fi

)
, (4.56)

with the fully SL(2,C)-covariant version of Fi,

Fi =

n−2∑
j=1
j 6=i

D2
ij

xi − xj
+

D2
i∗

xi − x∗
, (4.57)

where (4.55) can be obtained by fixing x∗ → ∞. By checking SL(2,C)-invariance of

the resulting formula one finds that the conformal generator associated to the emergent

puncture x∗ is

D∗ = Dn−1 +Dn . (4.58)

We have therefore confirmed that the this contribution gives

1

D2
n−1,n

m̂AdS(12 · · ·n−2, (n−1, n) | 12 · · ·n−2, (n−1, n)) , (4.59)

which is indeed the first contribution to the recursion (4.34). By symmetry under the

exchange of labels (12 . . . n−2, n−1, n) → (n−1, n−2, . . . 21n) one finds that the contour

γn−2,n−1 ∩ Γ3 ∩ · · · ∩ Γn−3 ∩ Γn−2 from (4.40) gives

1

D2
n1

m̂AdS(2 · · ·n−1, (n1) | 2 · · ·n−1, (n1)) , (4.60)

which is the second term in the recursion relation.

It remains to study the contributions from contours Γ2∩Γ3∩· · ·∩Γk−1∩γ21∩γn−2,n−1∩
Γk+2 ∩ · · · ∩ Γn−2 for k = 2, 3, . . . , n−3 coming from (4.42). By essentially identical argu-

ments to those employed before one sees that on the support of γ21 multiple punctures can

collide with z1 at some rate δ, and likewise γn−2,n−1 allows another set to coalesce into

zn−1 at a rate ε. Precisely one configuration has support on the corresponding residues

around δ = ε = 0, which can be parametrized by:

zi =

{
z1 + δxi for i = 1, 2, . . . , k ,

zn−1 + εyi for i = k+1, k+2, . . . , n−1 ,
(4.61)

with x1, yn−1 = 0. The volume form becomes simply

n−2∧
i=2

dzi = δk−2εn−k−3 xk1 yk+1,n−1

k−1∧
i=2

dxi ∧ dδ ∧ dε ∧
n−2∧
j=k+2

dyj (4.62)

and once again we extract the leading behavior of the Ei factors:

Ei =



Fi
δ

+O(δ0) with Fi =

k∑
j=1
j 6=i

D2
ij

xi − xj
for i = 1, 2, . . . , k ,

Gi
ε

+O(ε0) with Gi =

n−1∑
j=k+1,j 6=i

D2
ij

yi − yj
for i = k+1, . . . , n−1 .

(4.63)

– 28 –



J
H
E
P
1
1
(
2
0
2
0
)
1
5
8

With these assignments the integral over the aforementioned contour becomes

(−1)n−3

∮
Γ̃k,k+1

xk1

(x12 x23 · · ·xk−1,k)2

k−1∧
i=2

dxi
2πi Fi

∧
(

1

δε
+O(δ0, ε0)

)
dδ ∧ dε

(2πi)2FkGk+1

∧
yk+1,n−1

(yk+1,k+2 yk+2,k+3 · · · yn−2,n−1)2

n−2∧
j=k+1

dyj
2πiGj

, (4.64)

where the contour of integration is given by

Γ̃k,k+1 =

k−1⋂
i=2

{|Fi| = ε} ∩ {|δ| = ε} ∩ {|ε| = ε} ∩
n−2⋂
j=k+2

{|Gj | = ε} . (4.65)

Repeating the derivation used in (4.53) we find on the support of the above contour

D2
12...k =

k∑
i=1

xi1Fa = xk1Fk (4.66)

and

D2
k+1,k+2,...,n−1 =

n−1∑
j=k+1

yi,n−1Gj = yk+1,n−1Gk+1 . (4.67)

With these substitutions into the integral (4.64), performing the trivial residues around

δ = ε = 0 and restoring SL(2,C) invariance one finds that the answer factors into two

integrals

1

D2
12...kD

2
k+1,k+2,...,n−1

(−1)k−2

∮
∩k−1
i=2 {|Fi|=ε}

(x1kxk∗x1∗)
2

(x12x23 · · ·xk−1,k xk∗ x∗1)2

k−1∧
i=2

dxi
2πi Fi

× (−1)n−k−3

∮
∩n−2
j=k+2{|Gj |=ε}

(yk+1,n−1yk+1?yn−1?)
2

(yk+1,k+2yk+2,k+3 · · · yn−2,n−1 yn−1,? y?,k+1)2

n−2∧
j=k+1

dyj
2πiGj

.

(4.68)

Here once again the factors of 1/D2
e can be placed up front since the positions of scattering

equations were immaterial to begin with. By studying transformation properties of Fi
and Gj ’s one finds that conformal generators associated to the punctures x∗ and y? are

respectively

D∗ = D12...k, D? = Dk+1,k+2,...,n−1 . (4.69)

We have thus found that the above product of integrals equals

1

D2
12...kD

2
k+1,k+2,...,n−1

m̂AdS(12 · · · k(k+1, . . . , n) | 12 . . . k(k+1, . . . , n))

× m̂AdS(k+1, k+2, . . . , n−1(n1 . . . k) | k+1, k+2, . . . , n−1(n1 . . . k)) (4.70)

for any k = 2, 3, . . . , n−3, which are indeed the remaining terms in the recursion rela-

tion (4.34). This concludes the proof.
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4.2.4 General permutations

The proof in the general case, σ 6= τ , proceeds by repeating the same steps. Setting σ = In
without loss of generality, the only difference is that the Parke-Taylor factor corresponding

to τ induces only a subset of poles of those present in the τ = In case. Hence only a subset

of trivalent degenerations will contribute non-zero residues. It is a matter of bookkeeping

to describe which graphs do contribute. Since this is no different to the flat-space case, and

we already proved that all planar degenerations are obtained correctly for operator-valued

scattering equations, it necessarily means that m̂AdS(σ|τ) must obey the same recursion

relations as its flat-space counterpart [68]. To state them, let us fix n to the final slot of

both σ = (σ̂, n) and τ = (τ̂ , n), where σ̂ and τ̂ are permutations of the remaining labels

{1, 2, . . . , n−1}. Then we have

m̂AdS(σ̂, n|τ̂ , n) =
∑

σ̂=σ̂1σ̂2

∑
τ̂=τ̂1τ̂2

1

D2
σ̂1
D2
σ̂2

(
ησ̂1,τ̂1 m̂AdS(σ̂1, (σ̂2, n) | τ̂1, (τ̂2, n))

× m̂AdS(σ̂2, (n, σ̂1) | τ̂2, (n, τ̂1))− (σ̂1 ↔ σ̂2)
)
. (4.71)

The two sums go over all ways of deconcatenating σ and τ into smaller words, with each

σ̂i and τ̂i having at least one element. One needs to supply a boundary condition for when

σ̂ and τ̂ have a single element each, say σ̂ = (a) and τ̂ = (b), given by

m̂AdS(an|bn) = δabD
2
a , (4.72)

where for the purposes of the recursion we treat D2
i as a non-zero formal variable, which

always cancels out from the final expression. Inside the sum ησ̂1,τ̂1 equals to 1 when the

two words consist of the same sets of labels (which implies an analogous statement for σ̂2

and τ̂2’s) and 0 otherwise. In particular, it means that D2
σ̂i

= D2
τ̂i

.

It is straightforward to see that when σ = τ , the above recursion boils down to (4.34).

The condition ησ̂1,τ̂1 means that all σ̂i = τ̂i. Moreover, the second term in the brackets

corresponding to antisymmetrization (σ̂1 ↔ σ̂2) never contributes, since σ̂1/2 can never have

the same labels as τ̂2/1. The sum has exactly n−2 terms corresponding to partitioning σ̂ = τ̂

into two subwords with at least one element each. Noting the boundary condition (4.72),

the edge cases when either σ̂ or τ̂ have a single element are the first two terms of (4.34).

The remaining n−4 terms are precisely those from the final sum in (4.34).

As an example of the evaluation of (4.71) with σ 6= τ , let us consider σ = (12345) and

τ = (21435). There is only one way of deconcatenating σ̂ = (1234) and τ̂ = (2143) into

words that contain the same subsets of labels, which is given by

σ̂1 = (12), σ̂2 = (34), τ̂1 = (21), τ̂2 = (43) . (4.73)

With only the first term in the sum having support we find

m̂AdS(12345|21435) =
1

D2
12D

2
34

m̂AdS(12(345)|21(345)) m̂AdS(34(512)|43(512)) . (4.74)

Let us proceed with the first factor on the right-hand side, which has σ̂ = (12) and τ̂ = (21),

and therefore a single compatible deconcatenation:

σ̂1 = (1), σ̂2 = (2), τ̂1 = (2), τ̂2 = (1) . (4.75)
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Only the second term in the sum in (4.71) contributes, giving

m̂AdS(12(345)|21(345)) = − 1

D2
1D

2
2

m̂AdS(1(2345)|1(3452)) m̂AdS(2(3451)|2(1345)) = −1 ,

(4.76)

where we used the boundary condition (4.72). The second contribution in (4.74) also

evaluates to −1 by symmetry. We therefore have

m̂AdS(12345|21435) =
1

D2
12D

2
34

, (4.77)

in agreement with (4.12) since w(12345|21435) = 3.

4.3 Comparison with Witten diagrams

We now show that the formula (4.12) reproduces the results of perturbation theory in

AdS. This follows rather straightforwardly from the following “intertwining” property of

the bulk-to-boundary propagator.

Bulk-to-boundary propagator as intertwiner. Let us first consider a single bulk-to-

boundary propagator 1/(−2X ·P )∆. Since the expression is manifestly invariant under the

SO(2, d) transformations, it satisfies

Da
P

1

(−2X · P )∆
= −Da

X

1

(−2X · P )∆
, (4.78)

where Da
P and Da

X are given by

Da
P = D

[AB]
P = PA

∂

∂PB
− PB ∂

∂PA
, Da

X = D
[AB]
X = XA ∂

∂XB
−XB ∂

∂XA
. (4.79)

Using this, we can rewrite the action of the Casimir DP ·DP into the action of the Laplacian

in AdS, �X ≡ DX ·DX/2:

DP ·DP

(
1

(−2X · P )∆

)
= 2�X

(
1

(−2X · P )∆

)
. (4.80)

A similar relation holds also for a product of the bulk-to-boundary propagators.

Namely, using (
Da
X +

n∑
i=1

Da
Pi

)(
n∏
i=1

1

(−2X · Pi)∆i

)
= 0 , (4.81)

we can derive the relation

D2
12...n

(
n∏
i=1

1

(−2X · Pi)∆i

)
= 2�X

(
n∏
i=1

1

(−2X · Pi)∆i

)
, (4.82)

with D2
12...n ≡ (DP1 + · · ·+DPn)2.
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34

1
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5

Figure 2. Two examples of Witten diagrams corresponding to the expressions (4.84) and (4.85)

respectively.

Proof of equivalence with Witten diagrams. Using the intertwining relation (4.82)

and the integral representation for the contact diagram

C =

∫
AdSd+1

dX
n∏
i=1

1

(−2X · Pi)d
, (4.83)

we can rewrite every factor 1/D2
e appearing in the formula (4.12) into the insertion of

1/�X . For instance, the term (1/D2
12)C in the four-point function can be expressed as

1

D2
12

C =
1

2

∫
AdSd+1

dX
1

(−2X · P3)d(−2X · P4)d
1

�X

[
1

(−2X · P1)d(−2X · P2)d

]
. (4.84)

Since the inverse Laplacian 1/�X is nothing but the propagator of a massless particle in

AdS, the right hand side of (4.84) coincides with the s-channel exchange Witten diagram

shown in figure 2 (left). Similarly, the term (1/D2
12D

2
34)C in the five-point function can be

expressed as

1

D2
12D

2
34

C =
1

4

∫
AdSd+1

dX
1

(−2X · P5)d
1

�X

[
1

(−2X · P3)d(−2X · P4)d

]
× 1

�X

[
1

(−2X · P1)d(−2X · P2)d

]
, (4.85)

and reproduces the Witten diagram given in figure 2 (right).

Based on this argument, one can rewrite the right hand side of (4.12) as a sum over

trivalent tree-level Witten diagrams that are planar with respect to the permutations σ

and τ . As is well-known in flat space [17, 18], this sum coincides precisely with the result of

perturbation theory in the bi-adjoint scalar theory. This gives a formal proof of equivalence

between our formalism and the massless bi-adjoint scalar theory in AdS.

Spectral representation of correlation functions. The expressions obtained by the

argument above, (4.84) and (4.85), are not necessarily useful for practical purposes since

they involve the inverse of the AdS Laplacian 1/�X . Below we explain how to rewrite

them into a form more suited for extracting the conformal data.
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The first step of the rewriting is to insert as many AdS delta functions as the number

of 1/�’s. For instance, (4.85) can be rewritten as

4

D2
12D

2
34

C =

∫
AdSd+1

dX1dX2dX3

(−2X1 · P1)d(−2X1 · P2)d(−2X2 · P3)d(−2X2 · P4)d(−2X3 · P5)d

× 1

�X1�X2

[
δd+1(X1 −X3)δd+1(X2 −X3)

]
. (4.86)

Here, we also integrated twice by parts in order to move the 1/� on the delta functions.

In the next step, we use the spectral representation of the delta function [69, 70]

δd+1(X − Y ) =

∫ ∞
−∞

dν Ων(X,Y ) , (4.87)

where Ων(X,Y ) is a harmonic function in AdS, which satisfies10

�XΩν(X,Y ) = −
(
ν2 +

d2

4

)
Ων(X,Y ) . (4.88)

We then get

4

D2
12D

2
34

C =

∫
AdSd+1

dX1dX2dX3

(−2X1 · P1)d(−2X1 · P2)d(−2X2 · P3)d(−2X2 · P4)d(−2X3 · P5)d

× 1

�X1�X2

∫
dν1dν2 Ων1(X1, X3)Ων2(X2, X3) , (4.89)

which can be further rewritten using (4.88) as

4

D2
12D

2
34

C =

∫
AdSd+1

dX1dX2dX3

(−2X1 · P1)d(−2X1 · P2)d(−2X2 · P3)d(−2X2 · P4)d(−2X3 · P5)d

×
∫

dν1dν2
Ων1(X1, X3)

ν2
1 + d2

4

Ων2(X2, X3)

ν2
2 + d2

4

. (4.90)

Note that the expression that appear on the second line,

G(X,Y ) ≡
∫

dν
Ων(X,Y )

ν2 + d2

4

, (4.91)

coincides with the spectral representation of the bulk-to-bulk propagator of massless parti-

cle known in the literature [70]. This also confirms the previous assertion that (1/D2
12D

2
34)C

reproduces the corresponding Witten diagram.

The last step of the rewriting is to use the split representation for the bulk-to-bulk

propagator of massless particle G(X,Y ) [70]

G(X,Y ) =

∫
dν

π

ν2

ν2 + d2

4

∫ dP̃ N d
2

+iνN d
2
−iν

(−2X · P̃ )
d
2

+iν(−2Y · P̃ )
d
2
−iν

, (4.92)

10See [71] for its explicit expression.
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where P is a boundary point and the normalization constant N∆ is given by

N∆ =
Γ(∆)

2πd/2Γ(∆− d
2 + 1)

. (4.93)

Applying this to (4.90), we obtain the following expression

4

D2
12D

2
34

C =

∫
dν1

π

dν2

π
dP̃1dP̃2(· · · ) (4.94)

×
∫

AdSd+1

dX1dX2dX3

(−2X1 · P1)d(−2X1 · P2)d(−2X2 · P3)d(−2X2 · P4)d(−2X3 · P5)d

× 1

(−2X1 · P̃1)
d
2

+iν1(−2X3 · P̃1)
d
2
−iν1(−2X2 · P̃2)

d
2

+iν2(−2X3 · P̃2)
d
2
−iν2

.

It is then straightforward to perform the integrals of bulk points Xj using the formula [72]∫
AdSd+1

dX

(−2X · P1)∆1(−2X · P2)∆2(−2X · P3)∆3
=

B∆1,∆2,∆3

(P12)∆12|3(P23)∆23|1(P31)∆31|2
, (4.95)

with ∆ij|k ≡ (∆i + ∆j −∆k)/2, Pij ≡ −2Pi · Pj and

B∆1,∆2,∆3 ≡
π
d
2

2
Γ

(
∆1 + ∆2 + ∆3 − d

2

)
Γ
(

∆1+∆2−∆3
2

)
Γ
(

∆1−∆2+∆3
2

)
Γ
(−∆1+∆2+∆3

2

)
Γ (∆1) Γ (∆2) Γ (∆3)

.

(4.96)

We are then left with the conformal integrals of the boundary points P̃i and the integrals

of the spectral parameters νj . From such expressions, one can extract the conformal data

(such as the conformal dimensions and the structure constants) using various techniques

developed in the literature, see for instance [73, 74]. It would be interesting to work them

out explicitly for lower-point examples, but we leave it for a future investigation.

5 Eigenfunctions of the AdS scattering equations

5.1 Scattering equation as interpolating Casimir

Let us recall the integral for the color-ordered four-point function

mAdS(I4|I4) =

∮
Γ2

z2
13z24

z12z23

dz2

2πiÊ2

C , (5.1)

with

Ê2 = z23z24D
2
12 + z21z24D

2
23 + z21z23D

2
24 . (5.2)

In section 4, we evaluated this integral by the residues at the poles z2 = z1 and z2 = z3. A

possible alternative would be to evaluate the integral directly at Ê2 = 0. For this purpose,

one needs to decompose the integrand into eigenfunctions of Ê2 and replace Ê2 with its

eigenvalues e2(ν),

Ê2ϕν = −z13z24e2(ν)ϕν . (5.3)
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Here ϕν and e2(ν) are an eigenfunction and an eigenvalue, and ν is a quantum number

which distinguishes different eigenfunctions. We also introduced a prefactor −z13z24 on the

right hand side for later convenience. After this replacement, (5.1) reduces to an integral

which only involves c-numbers, and we can try to evaluate it using the standard residue

theorem. Of course, we need to work out various details — such as a complete basis of

eigenfunctions and a decomposition of the contact diagram into eigenfunctions — in order

to substantiate this idea. In what follows, we take an initial step toward such a direction:

we analyze the eigenvalue equation (5.3) for the four-point functions in AdSd+1, and rewrite

it into the BC2 Inozemtsev model [75, 76].

Before analyzing (5.3), let us emphasize an important property of the scattering equa-

tion Ê that it interpolates conformal Casimirs in different channels. This is evident in the

expression (5.2): at z2 = z1, Ê2 becomes proportional to the conformal Casimir in the

s-channel D2
12, while it is proportional to the Casimirs in the t- and u-channels at z2 = z3

and z2 = z4. For other values of z2, it gives a differential operator which interpolates be-

tween the Casimirs in those three channels. For this reason, we call the solutions to (5.3)

generalized conformal partial waves. This interpolation property is true also for higher-

point functions, as can be verified straightforwardly from the definition of the scattering

equation (3.26).

5.2 Eigenfunctions and relation to Inozemtsev model

We now analyze the eigenvalue equation (5.3) in AdSd+1. Below we allow the four operators

to have arbitrary conformal dimensions ∆j (j = 1, . . . , 4). This is a slight generalization

of the setup in the main text, in which all the operators had dimension ∆j = d.

Let us first recall the derivation of standard conformal Casimir equations. The first

step is to factor out simple kinematical dependences from the eigenfunction so that the

rest depends only on the conformal cross ratios x and x̄,

P12P34

P13P24
= xx̄ ,

P14P23

P13P24
= (1− x)(1− x̄) , (5.4)

with Pij ≡ −2Pi ·Pj . For the s-channel conformal Casimir equation, a convenient choice is

s-channel:
1

P
(∆1+∆2)/2
12 P

(∆3+∆4)/2
34

(
P24

P14

)δ12
(
P14

P13

)δ34

gs(x, x̄) , (5.5)

with δij ≡ (∆i −∆j)/2, while analogues for the t- and the u-channels read

t-channel:
1

P
(∆2+∆3)/2
23 P

(∆1+∆4)/2
14

(
P24

P34

)δ32
(
P34

P13

)δ14

gt(x, x̄) , (5.6)

u-channel:
1

P
(∆2+∆4)/2
24 P

(∆1+∆3)/2
13

(
P12

P14

)δ42
(
P14

P34

)δ31

gu(x, x̄) . (5.7)

These representations allow us to translate the actions of the conformal Casimirs into

differential operators acting on gs,t,u(x, x̄). For instance, the s-channel Casimir −D2
12/4

can be translated to the following differential operator acting on gs(x, x̄) [77]:

Ds = Dx + Dx̄ + (d− 2)
xx̄

x− x̄
((1− x)∂x − (1− x̄)∂x̄) , (5.8)
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with

Dx ≡ x2(1− x)∂2
x − (δ21 + δ34 + 1)x2∂x − δ21δ34x . (5.9)

The expressions for the actions of −D2
23/4 on gt and −D2

24/4 on gu can be obtained by

performing the following replacements of the indices and the cross ratios to (5.8):

t-channel: 1↔ 3 , x→ 1− x , x̄→ 1− x̄ , (5.10)

u-channel: 1↔ 4 , x→ −1

x
, x̄→ −1

x̄
. (5.11)

These differential equations are often called Casimir differential equations.

Alternatively, we can act the t- and u-channel Casimirs −D2
23/4 and −D2

24/4 on the s-

channel expression (5.5) and express them as differential operators acting on gs. The actions

can be read off straightforwardly from the Casimir differential equations for the t- and u-

channels, using the fact that the ratios between the kinematical prefactors in (5.5)–(5.7)

are functions of the cross ratios. Using such expressions, we can rewrite the eigenvalue

equation for the scattering equation (5.3) into a differential equation. After fixing the

worldsheet SL(2,C) redundancy by setting

z1 = 0, z2 = z, z3 = 1, z4 =∞ , (5.12)

the result reads

DÊ2
fν(x, x̄) = (e2(ν) + δe2) fν(x, x̄) , (5.13)

where fν(x, x̄) and δe2 are given by

ϕν =
1

P
(∆1+∆2)/2
12 P

(∆3+∆4)/2
34

(
P24

P14

)δ12
(
P14

P13

)δ34

(xx̄)
∆1+∆2

2 fν(x, x̄) , (5.14)

δe2 =
2(2z − 1)

3

4∑
j=1

∆j(∆j − d) . (5.15)

The differential operator DÊ2
is defined by

DÊ2
=− (yx)2

[
∂2
x +

(
2a

x− x̄
+ b(x)

)
∂x

]
− (yx̄)2

[
∂2
x̄ +

(
2a

x̄− x
+ b(x̄)

)
∂x̄

]
− 2∆2(∆1 + ∆2 + ∆3 −∆4)(x+ x̄) + d

(5.16)

with

yt ≡
√
t(t− 1)(t− z) , a ≡ d− 2

2
, b(x) ≡

η1 + 1
2

x
+
η2 + 1

2

x− 1
+
η3 + 1

2

x− z
,

d ≡ 2
[
(η1 + η2)2e3 + (η2 + η3)2e1 + (η3 + η1)2e2

]
− 2(d− 2)

3∑
j=1

ejηj , (5.17)

η1 ≡
1 + ∆1 + ∆2 −∆3 −∆4

2
, η2 ≡

1−∆1 + ∆2 + ∆3 −∆4

2
, η3 ≡

1− 2d+
∑4

j=1 ∆j

2
,

e1 ≡ −
1 + z

3
, e2 ≡

2− z
3

, e3 ≡
2z − 1

3
, (e1 + e2 + e3 = 0) .
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Now, the crucial observation is that the differential operator (5.16) takes exactly the

same form as the Hamiltonian Ĥ given in section 4 of [76] if we shift of the coordinates

x→ x+ 1+z
3 and x̄→ x̄+ 1+z

3 . In that paper, Ĥ was obtained by performing a similarity

transformation to the Hamiltonian of the BC2 Inozemtsev model [76], which is an elliptic

deformation of the BC2 Calogero-Sutherland model. Undoing the similarity transformation

amounts to a further redefinition of the eigenfunction fν(x, x̄)

fν(x, x̄) = Φ(x, x̄)−1 ψν , (5.18)

with

Φ(x, x̄) ≡ (x− x̄)a
3∏
j=1

(xx̄)η1/2 ((x− 1)(x̄− 1))η2/2 ((x− z)(x̄− z))η3/2 . (5.19)

After this redefinition, the eigenvalue equation becomes the Schrödinger equation for the

BC2 Inozemtsev model,

H ψν(u1, u2) = (e2(ν) + δe2)ψν(u1, u2) , (5.20)

with
H ≡− ∂2

u1
− ∂2

u2
+ 2a(a− 1) [℘(u1 − u2) + ℘(u1 + u2)]

+

3∑
j=1

ηj(ηj − 1) [℘(u1 + ωj) + ℘(u2 + ωj)] ,
(5.21)

Here ℘(u)’s are the Weierstrass ℘-functions associated with the elliptic curve11

y2 = x(x− 1)(x− z) , (5.23)

and ωj ’s are the half periods satisfying
∑

j ωj = 0. The new coordinates u1 and u2 are

related to the old ones by

x = ℘(u1) +
1 + z

3
, x̄ = ℘(u2) +

1 + z

3
, (5.24)

which can also be expressed alternatively as

du1 =
dx

4yx
, du2 =

dx̄

4yx̄
. (5.25)

Let us make several remarks on the results we got. Firstly the BC2 Inozemtsev

model (5.21) gives a one-parameter family of differential equations parameterized by the

worldsheet cross ratio z. In particular, in the limits z → 0, 1,∞, the elliptic curve (5.23) de-

generates and the BC2 Inozemtsev model reduces to the BC2 Calogero-Sutherland model.

11Thus, the two invariants g2 and g3 take the form

g2 =
4

3
(1− z + z2) , g3 =

4

27

(
2− 3z − 3z2 + 2z3) . (5.22)
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This is consistent with the observations made in [78, 79], which pointed out the equiva-

lence between standard conformal Casimir differential equations and the BC2 Calogero-

Sutherland model. Our result extends their results by unifying Calogero-Sutherland models

associated with different OPE channels into a single model. Secondly the BC2 Inozemtsev

model is known to be integrable [75, 76]. It would be an interesting future problem to

construct a complete basis of eigenfunctions by making use of integrability. Thirdly the

parameter a, which governs the interaction strength between u1,2 in (5.21), vanishes in

AdS3. In that case, (5.21) can be rewritten as two decoupled Heun equations [80], and the

analysis becomes much simpler. Lastly the coordinate transformations (5.24) and (5.25)

coincide with the “pillow” coordinates for the Virasoro conformal block in 2d CFT, which

were introduced first by Zamolodchikov [48] and recently revisited in [81] to analyze an-

alytic properties of the four-point functions. To the best of our knowledge, our result is

the first example in which the pillow coordinates naturally appear in higher dimensions.

It would be interesting to further explore the implications of the pillow coordinates in

higher-dimensional CFTs.

6 Discussion

In this paper we constructed a bosonic ambitwistor string theory on a coset manifold.

Although anomalies have prevented us from computing amplitudes exactly in the quan-

tum regime of the worldsheet theory, we have applied it to the computation of tree-level

amplitudes of bi-adjoint scalar theories in AdS in arbitrary space-time dimension in the

classical limit on the worldsheet. The results are given by integrals over the moduli space

of punctured Riemann spheres, which localize on an operator-valued version of scattering

equations. We then developed a method to evaluate such integrals by making use of a

series of contour deformations, and showed that the result agrees with direct perturbation

theory in AdS.

Our construction can be viewed as a natural extension of the CHY formalism to the

AdS space-time, and potentially provides a useful framework to study scattering amplitudes

in AdS, which are dual to correlation functions in strongly-coupled CFTs. Our results

constitute a proof-of-principle for this formalism, which needs to be developed in further

various directions in order to turn it into a powerful computational tool. We therefore end

this paper with a list of future directions.

Extension to other theories. A natural next step would be to generalize our con-

struction to other theories, in particular to gauge theories and gravity, with and without

supersymmetry. Higher-point amplitudes in those theories are much harder to compute

from standard perturbation theory in AdS because of a proliferation of Witten diagrams.

By contrast, the ambitwistor string treats amplitudes with all multiplicity on a completely

equal footing, and would allow us to write down a closed formula for them. Works in that

direction are in progress and we will report their outcome soon.

Direct evaluation of the AdS scattering equations. In this paper, we evaluated

the integrals overM0,n using contour deformations and relating them to Witten diagrams.
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Although this provided a proof of the equivalence with standard perturbation theory, com-

putationally it is not a real gain. It would be desirable to develop an alternative approach.

One possibility is to decompose the integrand into eigenfunctions of the scattering equa-

tions and replace the operator-valued equations with c-numbers. This would allow us to

evaluate the integrals on the Riemann spheres on the solutions to the scattering equations,

in the same way as it can be done for the CHY formalism in flat space, see, e.g., [19, 82].

We took an initial step in this direction in section 5 by analyzing the eigenvalue equations

for the scattering equations for four-point functions, but more works are needed to com-

plete the analysis. It is also worth mentioning that the eigenfunctions of the scattering

equations are by themselves interesting objects, since they interpolate between conformal

partial waves in different OPE channels.

Other backgrounds. Our construction of the ambitwistor string can be applied to

more general coset manifolds (although also in that case anomalies will not cancel). It

would be interesting to analyze other physically interesting setups, including the de Sitter

space [83–86] and the holographic duals of non-relativistic CFTs [87]. Since the wave-

function in the Bunch-Davies vacuum of the de Sitter space is related more or less straight-

forwardly to the correlation functions in AdS [85, 86], our formalism would work also in

that case. On the other hand, late-time correlation functions in de Sitter are harder to ana-

lyze since one has to perform the path integral along the Schwinger-Keldysh contour, which

would amount to preparing two copies of the de Sitter spaces and gluing them together at

late time.

Flat space limit. Our formula for the correlation functions resembles in many respects

the CHY formula for the flat-space S-matrix. At a formal level, one can arrive at our

formula by replacing each factor in the integrand of the CHY formula with its AdS coun-

terpart; for instance pi · pj 7→ Di ·Dj . This however does not immediately guarantee that

the flat-space limit of our formula reproduces the CHY formula. This is because taking

the flat-space limit of the correlation functions in AdS involves integrals of the boundary

points, or alternatively the integrals in the Mellin space, as was discussed in [70, 88]. We

provided a plausibility argument at the end of section 3 by including an internal manifold

Sq+1 and using the results in [62], but it would be desirable to show it directly in AdS

(without internal manifolds) and make the whole argument more rigorous. This might

shed light on the soft theorem in flat space; see recent discussions in [89].

Loops. In flat space, the CHY formalism and the ambitwistor string were extended also

to loop amplitudes [7, 10–16]. Unfortunately, one cannot follow the same path in the

present case since the theory is anomalous at the quantum level. We therefore need to

come up with an alternative approach. One possibility is to make use of recent progress in

the application of unitarity methods to the correlation functions in AdS [90, 91]. It would

be interesting to see if one can apply such methods to our CHY-like representation.

Double-copy and the relation to sectorized string. One of the advantages of the

CHY formalism in flat space is that it manifests various double-copy relations between
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amplitudes in gauge and gravity theories [18, 92], which are completely obscured from the

Feynman-diagram point of view. One may hope that a similar structure might extend to

AdS space (see related work [93, 94] for 3-point correlators in momentum space). However,

our construction reveals an interesting obstruction to the naive version of double copy

in AdS. In the notation of (1.3), the expectation is that gauge and gravity theory AdS

amplitudes will be computed with some operators IL and IR, which in general might

not commute. One would have to account for this fact in a modified version of double-

copy. Making this statement more precise will require a computation of the appropriate

integrands coming from spin-1 and 2 vertex operators, which will be given in a future

publication. Finally, it might be interesting to construct a version of our AdS model

in the context of sectorized/chiral string [95–100], together with its intersection theory

interpretation [65], which introduces a non-trivial α′ dependence to double-copy.
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A Summary of the notation

Throughout the paper we need many different kinds of symbols. In order to improve

readability, the most used notation is summarized here.

Indices.

• a, b, c, . . . : adjoint indices of the group GL, where G is the denominator group of

the coset. We mostly take G = SO(d, 2)× SO(d+ 2).

• ā, b̄, c̄, . . . : adjoint indices of GR.

• r, s, t, . . . : adjoint indices of the gauged subgroup H ⊂ GR.

• i, j, k, . . . : particle labels.

• A, B, C, . . . : embedding space index. The embedding space formalism is reviewed

in section 3.1.

• α, β, γ, . . . : adjoint indices of the first gauge group of the bi-adjoint scalar.

• α̃, β̃, γ̃, . . . : adjoint indices of the second gauge group of the bi-adjoint scalar.

– 40 –



J
H
E
P
1
1
(
2
0
2
0
)
1
5
8

Worldsheet fields.

• g: the group-valued field of the ambitwistor string.

• p: the analogue of P in the standard flat-space ambitwistor string. It takes valued

in the cotangent bundles T ∗G.

• T : the worldsheet energy-momentum tensor.

• H: the second spin-2 field on the worldsheet that gauges the light-cone rescaling. It

is the analogue of P 2 in the flat-space ambitwistor string.

• Kα and Kα̃: the generators of the two internal current algebras on the worldsheet.

• b, c: worldsheet ghosts that gauge T .

• b̃, c̃: worldsheet ghosts that gauge H.

• br, cr: worldsheet ghosts that gauge JrR and reduce the model to the coset.

• Q: the worldsheet BRST operator.

• R: vector in Rd,2, whose stabilizer inside SO(d, 2) is the subgroup we are gauging. It

satisfies R ·R = −1.

Embedding space.

• P : boundary embedding space coordinate. Satisfies P 2 = 0 and P ∼ λP for λ ∈
R \ {0}. Thus expressions are always homogeneous in P .

• X: bulk embedding space/AdSd+1 coordinate. Satisfies X ·X = −1. In the world-

sheet theory, this is a field that is defined as X = gR.

• Da = DAB: the conformal generators in the embedding space.

• �X : AdSd+1 Laplacian.

CHY formula.

• Ei: scattering equations, see eq. (3.26).

• C = C(P1, . . . , Pn): the contact diagram in AdSd+1 (D-function) [60].

• mAdS: bi-adjoint scalar AdSd+1 amplitude.

• mAdS(σ|τ): doubly color-ordered bi-adjoint scalar AdSd+1 amplitude.

• m̂AdS(σ|τ): doubly color-ordered bi-adjoint scalar AdSd+1 amplitude with contact

diagram stripped off.
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[45] V. Gonçalves, R. Pereira and X. Zhou, 20′ Five-Point Function from AdS5 × S5

Supergravity, JHEP 10 (2019) 247 [arXiv:1906.05305] [INSPIRE].

[46] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators,

JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].

[47] L. Dolan and P. Goddard, Proof of the Formula of Cachazo, He and Yuan for Yang-Mills

Tree Amplitudes in Arbitrary Dimension, JHEP 05 (2014) 010 [arXiv:1311.5200]

[INSPIRE].

[48] A.B. Zamolodchikov, Conformal symmetry in two-dimensional space: recursion

representation of conformal block, Theor. Math. Phys. 73 (1987) 1088.

[49] D. Skinner, Ambitwistor Strings on AdS, talk at the Galileo Galilei Institute workshop

“String Theory from a Worldsheet Perspective”, Firenze Italy (2019).

[50] K.A.F. Roehrig, Études in Ambitwistor Strings — Exploring new models, higher loops and

curved backgrounds, Ph.D. Thesis, Cambridge University, Cambridge U.K. (2019).

[51] K. Roehrig and D. Skinner, Ambitwistor Strings and the Scattering Equations on

AdS3 × S3, arXiv:2007.07234 [INSPIRE].

[52] Z. Hlousek and K. Yamagishi, An Approach to BRST Formulation of Kac-Moody Algebra,

Phys. Lett. B 173 (1986) 65 [INSPIRE].

[53] P. Goddard, A. Kent and D.I. Olive, Virasoro Algebras and Coset Space Models, Phys. Lett.

B 152 (1985) 88 [INSPIRE].

[54] D. Karabali and H.J. Schnitzer, BRST Quantization of the Gauged WZW Action and Coset

Conformal Field Theories, Nucl. Phys. B 329 (1990) 649 [INSPIRE].

[55] P.A.M. Dirac, Wave equations in conformal space, Annals Math. 37 (1936) 429 [INSPIRE].

[56] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Blocks, JHEP

11 (2011) 154 [arXiv:1109.6321] [INSPIRE].

[57] J. de Boer, H. Ooguri, H. Robins and J. Tannenhauser, String theory on AdS3, JHEP 12

(1998) 026 [hep-th/9812046] [INSPIRE].

[58] K. Ohmori, Worldsheet Geometries of Ambitwistor String, JHEP 06 (2015) 075

[arXiv:1504.02675] [INSPIRE].

[59] V.G. Knizhnik and A.B. Zamolodchikov, Current Algebra and Wess-Zumino Model in

Two-Dimensions, Nucl. Phys. B 247 (1984) 83 [INSPIRE].

[60] D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the

CFTd/AdSd+1 correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].

– 44 –

https://doi.org/10.1007/JHEP05(2020)120
https://arxiv.org/abs/1911.09190
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.09190
https://doi.org/10.1007/JHEP07(2020)213
https://arxiv.org/abs/1911.11046
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.11046
https://arxiv.org/abs/2004.02824
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.02824
https://arxiv.org/abs/2006.13964
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.13964
https://arxiv.org/abs/2006.14736
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.14736
https://doi.org/10.1007/JHEP10(2019)247
https://arxiv.org/abs/1906.05305
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.05305
https://doi.org/10.1007/JHEP11(2011)071
https://arxiv.org/abs/1107.3554
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1107.3554
https://doi.org/10.1007/JHEP05(2014)010
https://arxiv.org/abs/1311.5200
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.5200
https://doi.org/10.1007/BF01022967
https://doi.org/10.17863/CAM.39264
https://arxiv.org/abs/2007.07234
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.07234
https://doi.org/10.1016/0370-2693(86)91231-1
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB173%2C65%22
https://doi.org/10.1016/0370-2693(85)91145-1
https://doi.org/10.1016/0370-2693(85)91145-1
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2C152B%2C88%22
https://doi.org/10.1016/0550-3213(90)90075-O
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB329%2C649%22
https://doi.org/10.2307/1968455
https://inspirehep.net/search?p=find+J%20%22Annals%20Math.%2C37%2C429%22
https://doi.org/10.1007/JHEP11(2011)154
https://doi.org/10.1007/JHEP11(2011)154
https://arxiv.org/abs/1109.6321
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1109.6321
https://doi.org/10.1088/1126-6708/1998/12/026
https://doi.org/10.1088/1126-6708/1998/12/026
https://arxiv.org/abs/hep-th/9812046
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9812046
https://doi.org/10.1007/JHEP06(2015)075
https://arxiv.org/abs/1504.02675
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.02675
https://doi.org/10.1016/0550-3213(84)90374-2
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB247%2C83%22
https://doi.org/10.1016/S0550-3213(99)00053-X
https://arxiv.org/abs/hep-th/9804058
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9804058


J
H
E
P
1
1
(
2
0
2
0
)
1
5
8

[61] E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten Diagrams Revisited: The AdS

Geometry of Conformal Blocks, JHEP 01 (2016) 146 [arXiv:1508.00501] [INSPIRE].

[62] S. Komatsu, M.F. Paulos, B.C. Van Rees and X. Zhao, Landau diagrams in AdS and

S-matrices from conformal correlators, JHEP 11 (2020) 046 [arXiv:2007.13745] [INSPIRE].

[63] F. Cachazo and H. Gomez, Computation of Contour Integrals on M0,n, JHEP 04 (2016)

108 [arXiv:1505.03571] [INSPIRE].

[64] N. Arkani-Hamed, Y. Bai, S. He and G. Yan, Scattering Forms and the Positive Geometry

of Kinematics, Color and the Worldsheet, JHEP 05 (2018) 096 [arXiv:1711.09102]

[INSPIRE].

[65] S. Mizera, Aspects of Scattering Amplitudes and Moduli Space Localization, Ph.D. Thesis,

Perimeter Institute for Theoretical Physics, Waterloo Canada (2019) [arXiv:1906.02099]

[INSPIRE].

[66] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, New York

U.S.A. (2014).

[67] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Publ.
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