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ABSTRACT: We compute d-dimensional scalar six-point conformal blocks in the two pos-
sible topologies allowed by the operator product expansion. Our computation is a simple
application of the embedding space operator product expansion formalism developed re-
cently. Scalar six-point conformal blocks in the comb channel have been determined not
long ago, and we present here the first explicit computation of the scalar six-point con-
formal blocks in the remaining inequivalent topology. For obvious reason, we dub the
other topology the snowflake channel. The scalar conformal blocks, with scalar exter-
nal and exchange operators, are presented as a power series expansion in the conformal
cross-ratios, where the coefficients of the power series are given as a double sum of the
hypergeometric type. In the comb channel, the double sum is expressible as a product of
two 3F5-hypergeometric functions. In the snowflake channel, the double sum is expressible
as a Kampé de Fériet function where both sums are intertwined and cannot be factorized.
We check our results by verifying their consistency under symmetries and by taking several
limits reducing to known results, mostly to scalar five-point conformal blocks in arbitrary
spacetime dimensions.
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1 Introduction

The study of higher-point conformal blocks in conformal field theory (CFT) is a complicated
subject without many explicit results. In a CFT, correlation functions, which are the
natural observables of the theory, are given in terms of the CFT data and the conformal
blocks. The CFT data, which consist of the spectrum of quasi-primary operators as well
as the operator product expansion (OPE) coefficients, completely determine all correlation
functions with up to three points. For higher-point correlation functions, the appearance
of conformal cross-ratios, which are invariant under conformal transformations, leads to
conformal blocks. The conformal blocks are functions of the conformal cross-ratios which
are in principle fully constrained by conformal invariance.



Although conformal blocks are fixed by conformal invariance, they are notoriously dif-
ficult to compute in all generality. Several techniques have been developed over the years
for the computation of four-point conformal blocks, which are the simplest blocks. For
example, various methods use Casimir equations [1-3], the shadow formalism [4-6], the
weight-shifting formalism [7, 8], integrability [9-13], AdS/CFT [14-19], and the OPE [20-
35]. Another important reason why four-point conformal blocks have been studied exten-
sively is the conformal bootstrap [36, 37], a way of constraining the CFT data solely from
consistency of correlation functions under associativity. Indeed, it is known that four-point
conformal blocks are sufficient to implement the full conformal bootstrap.

Conformal blocks with more than four points have not been studied in great detail as
of now. Until very recently, the only results were for scalar M-point blocks in one and two
spacetime dimensions as well as scalar five-point blocks in any spacetime dimensions [38—
42]. Last year, the scalar M-point conformal blocks in the so-called comb channel were
presented in [43, 44]. They showed that the scalar M-point conformal blocks in the comb
channel can be expressed as a power series expansion in the conformal cross-ratios with
the coefficients containing a product of M — 4 3F5-hypergeometric functions. Although
the techniques employed in the two references were different, AdS/CFT versus OPE, the
two results have very similar forms even though the basis of conformal cross-ratios were
distinct.

An interesting feature of higher-point correlation functions is that there exist several
inequivalent topologies. Indeed, starting at six points, the use of OPE among pairs of op-
erators in different sequences of operator pairings leads to different topologies, see figure 3.
The comb channel [39] is only one of the many topologies that are possible for higher-point
correlation functions.

One possible advantage of the OPE formalism used in [44] is that it is not limited
to the comb channel. Indeed, it can be applied to any pair of operators in the M-point
correlation function in any channel of interest. The net effect of the OPE is “adding” an
operator to an (M — 1)-point correlation function in a specific place of choice. This allows
generation of possible multiple topologies with M points from one specific diagram with
M — 1 points. After all, the existence of the many topologies is a consequence of the OPE,
as was directly observed above. More importantly, the choice in the pairs of quasi-primary
operators does not lead to any new computational complications.

With the OPE formalism [27, 30, 31], the OPE differential operator is applied on
the known (M — 1)-point correlation functions to generate M-point correlation functions.
Since the action of the OPE differential operator on arbitrary products of conformal cross-
ratios has been determined [30, 31], it is intuitively straightforward to proceed with the
computation. It can however be technically laborious to express the final results in the
most convenient way possible. Indeed, starting at five points, it is necessary to re-express
the conformal cross-ratios of the original correlation function in terms of the conformal
cross-ratios appropriate for the OPE differential operator, leading to several superfluous
sums. Re-summations must be performed to recover a simple result for the final corre-
lation function. For the computation of the scalar M-point conformal blocks, we found
that, with an appropriate basis of conformal cross-ratios, all re-summations were easy



o F1-hypergeometric function re-summations [44]. For other channels, the necessary com-
putations within the OPE formalism are exactly the same at the technical level, hence it
should be straightforward to compute higher-point correlation functions in all topologies
using the OPE formalism.

In this paper, we begin the investigation of higher-point correlation functions in all
topologies by computing the scalar six-point conformal blocks in the remaining channel,
see the bottom part of figure 3, which for obvious reason, we call the snowflake channel.! We
show that the superfluous sums can be taken care of with simple o F-hypergeometric func-
tion re-summations (as for the comb channel) and some identities for 3F»-hypergeometric
functions (absent in the comb channel).

This paper is organized as follows: section 2 presents a summary of the embedding
space OPE formalism. The OPE is reviewed and the action of the scalar OPE differential
operator is discussed. A general form for the contribution to the correlation functions of
external scalars with scalar exchanges is presented, as well as the associated scalar confor-
mal blocks. Moreover, the recurrence relation taking (M — 1)-point correlation functions to
M-point correlation functions is introduced, and, after re-considering scalar M-point con-
formal blocks in the comb channel, the scalar six-point conformal block in the snowflake
channel is given. Section 3 provides several consistency checks of the snowflake result. First,
interesting symmetry properties of the scalar conformal blocks in the snowflake channel are
proven. Then, the OPE limit and the limit of unit operator are used to ascertain that the
snowflake result passes those tests. Finally, we conclude in section 4 while several appen-
dices present most of the more technical proofs. Appendix A contains derivations of the
scalar five-point conformal blocks of [43] directly from the OPE, showing that the results
of [43] and [44] are equivalent for five points. Appendix B demonstrates how the snowflake
result is obtained. An equivalent result is also presented and the proof of their equivalence
is shown. Appendix C proves the identities that the scalar six-point conformal blocks in
the snowflake channel verify under the symmetry group of the snowflake.

2 Scalar six-point conformal blocks

With the knowledge of the OPE and its explicit action on any function of conformal cross-
ratios, one can in principle compute any correlation function starting from the known
two-point functions or, for that matter, the only non-trivial one-point function. With this
technique, starting at five points and above, it is necessary to re-express the initial corre-
lation function in terms of the conformal cross-ratios appropriate for the OPE differential
operator, and then rewrite the solution in terms of the most convenient conformal cross-
ratios by re-summing as many superfluous sums as possible. This method is quite powerful,
allowing the computation of conformal blocks in any channel. Although straightforward, it
is however not always clear a priori what is the best choice of conformal cross-ratios that
will lead to the simplest final answer. In this section, we quickly review the OPE and then
sketch the derivation and state the result for the scalar six-point conformal blocks in both
channels. Concrete proofs are left for the appendices.

n [42, 43], the snowflake channel is called the OPE channel.



2.1 M-point correlation functions from the OPE

The embedding space OPE introduced in [30, 31] states that the product of two quasi-
primary operators can be expressed as
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where the OPE differential operator and the remaining quantities (half-projectors, tensor
structures, etc.) are introduced and detailed in [31]. Since all the calculations involve
only scalar operators, the OPE can be simplified significantly as the tensor structures and
half-projectors are trivial in that case. Considering an OPE of two scalar operators and
neglecting any operators with spin on the right-hand side leads to
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where A; is the scaling dimension of O; and cijk is the OPE coefficient. The coordinates 7;
are the embedding space coordinates in d + 2 dimensions that are constrained to the light
cone 7; - n; = 0 and are projectively identified n; ~ An; for A > 0.

For scalar operators another simplification occurs in the differential operator that has
a particularly simple form when the Lorentz indices are absent, indicated by 0 in the third
argument
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introduce an operator that is homogeneous of degree 0 with respect to all the coordinates

where 0j4 = 8%,. It is more practical to rescale the scalar differential operator, D7;, and
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with 7;; = n; - n; for brevity. The action of D on the conformal cross-ratios
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has been obtained explicitly?
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The OPE (2.1) was used to determine two-, three-, and four-points in [32-34]. Very
specific rules, somewhat reminiscent of Feynman rules, were also developed in [35] to com-
pute all necessary ingredients to implement the full conformal bootstrap at the level of
four-point correlation functions.

2.2 Scalar M-point correlation functions

In general, it is possible to write the contribution to scalar M-point correlation functions,
i.e. with scalar external and exchanged quasi-primary operators, from a specific channel as
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The scalar M-point conformal block is given by
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where the cross-ratios u, and vy, are defined below in (2.8).

The complete M-point correlation functions are sums of the different I, including
exchanges of operators in non-trivial representations which are not discussed here.

In (2.5) the conformal dimensions of the external scalar quasi-primary operators are A;,
while the conformal dimensions of the exchanged scalar quasi-primary operators are Ay, .
Moreover, the legs Lj; are products of embedding space coordinates necessary to satisfy
covariance under scale transformations while the conformal cross-ratios are denoted by the

%We note that the OPE differential operator used here is a simple rescaling of the one defined in [31].



vector uM of u} and the matrix v™ of v™. The scalar M-point conformal blocks (2.6)
are written as sums over powers of conformal cross-ratios, with extra sums denoted by the
function Fy;.

Finally, in the scalar M-point conformal blocks (2.6) the vectors h and p are generated
by the action of the OPE (2.1) on the pairs of quasi-primary operators relevant to the
channel of interest. This statement translates into
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for some convenient choice of k, I and m with the appropriate channel on the r.h.s. to
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generate the desired channel on the L.h.s. For future convenience, we also define p, =
S opp and hy = 3¢, hy. The above equation is the essence of the OPE approach to
computing correlation functions. Two operators in an M-point function are replaced by one
operator appearing on the right-hand side of the OPE. This reduces the M-point function
to an (M — 1)-point function. Reading the equation in the other direction, the differential
operator present in the OPE generates the expression for the M-point function when it
acts on a previously computed (M — 1)-point function.

In this context, the OPE (2.1) was also put to work in the computation of scalar
M-point correlation functions in the comb channel in [44], to which we now turn.

2.3 Scalar M-point correlation functions in the comb channel

Acting repetitively with the OPE as in (2.7), we found in [44] the following scalar M-point
conformal blocks (2.5) and (2.6) in the comb channel,
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3In general, Fys could be a function of both the vector m = (m,) and the matrix m = (mqp). Thus the
separation between Ciys and Fis is somewhat arbitrary in (2.6). Here, Fg in the snowflake channel is only
a function of the vector m, as is the case for Fis in the comb channel. That statement seems to generalize
to all Fis, thus we conjecture that Fs can always be chosen such that it is a function of the vector m only.
Moreover, we construct Fg|snowflake Such that it has some interesting symmetry properties.
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where kpj_o = i7.

The computations were straightforward yet somewhat tedious. The choice of conformal
cross-ratios was based on the OPE limit, a limit we use again later to check the validity
of the scalar six-point conformal blocks in the snowflake channel discussed in the next
subsection.

2.4 Scalar six-point correlation functions in the snowflake channel

As already mentioned, the OPE (2.1) or (2.2) can be applied on any pair of quasi-primary
operators in the M-point correlation function, allowing the M-point correlation function
to be expressed in terms of the derivative operator acting on the (M — 1)-point function
in the corresponding channel. Hence, with the knowledge of the only five-point correlation
function (that is in the comb channel), appropriately choosing the pair of quasi-primary
operators on which the OPE acts leads to six-point correlation function in all channels.
The desired channel follows from the choice of the OPE pair in the six-point function.

To reach the scalar six-point conformal blocks in the snowflake channel, we start from
the four-point correlation functions and use the OPE appropriately. For M = 4, there is
only one channel with the topology of the comb, as shown in figure 1. One possible form
for the contribution to scalar four-point correlation functions (2.5) and for scalar four-point
conformal blocks (2.6) leads to [1, 2, 25, 26]

Big Big Riy iy
7 BigeBipAiy) ( 713 ) 2 ( 712 > 2 ( 73 > 2 ( 734 ) 2
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2ho = Ajy — Ajy — Apy, 2h3 = A, — Ay — Ay,
P2 = Ag,, 2p3 = Ajy +Aiy — ADgyy 2ps = Dy + A, — Ay

It is clear from (2.7) and figure 1 that there is only one channel for five-point conformal
blocks since all external quasi-primary operators in four-point conformal blocks are topo-
logically equivalent. This channel has the topology of the comb and is shown in figure 2.
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Figure 1. Scalar four-point conformal blocks.
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Figure 2. Scalar five-point conformal blocks.

It can be obtained from (2.7) with k = 3, [ = 4 and m = 4, using the four-point correlation
functions in the comb channel (2.12) where we first shifted O;,(7,) — Oi, ,(14—1) with
Oi, (o) = Oi,(n4). The scalar five-point conformal blocks can be expressed as in (2.5)
and (2.6) with the help of
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(2.13)

We note here that the result (2.13) for the scalar five-point conformal blocks is equivalent
to but different than the results (2.8), (2.9), (2.10), and (2.11) obtained in [44].*

For M = 6, there is now two possible topologies that can be obtained from five-point
correlation functions. Indeed, from figure 2, it is clear that the external quasi-primary
operator O;, is different. Transforming the external quasi-primary operators O;,, O;,,
Oi,, or O;, into exchanged quasi-primary operators by appending two new external quasi-
primary operators leads to the scalar six-point correlation function in the comb channel (see

“Tt is also different than the results of [39] and [43].



previous subsection). Doing the same with the quasi-primary operator O;, gives instead
the scalar six-point correlation in the snowflake channel. The difference can be seen in
figure 3. For the scalar six-point correlation functions in the snowflake channel, we start
from the scalar five-point conformal blocks (2.13) and shift the quasi-primary operators
such that O;, (n,) — O;, ,(1ns—1) with the understanding that O;,(n9) = O, (15), and then
use (2.7) with k =4, [ =5 and m = 5, to get
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Figure 3. Scalar six-point conformal blocks in the comb (top) and snowflake (bottom) channels.

As mentioned previously, the function Fg (2.16) in the snowflake channel is also a double
sum of the hypergeometric type, same as in the comb channel. However, the snowflake
double sum does not factorize into two hypergeometric functions, unlike the comb sum,
compare (2.10) with M = 6. It can however be written as a Kampé de Fériet function
}7’211302 as shown in appendix B (another expression in terms of a different Kampé de Fériet
function F12 1111 is also given there). See (B.4) and [45, 46] for its definition.

In the following section, we study the snowflake results (2.14), (2.15), (2.16), and (2.17).
We explicitly check the symmetry properties of Gg and verify that it behaves properly under
the OPE limit and the limit of unit operator. The proof of the snowflake results as well as
an alternative form for the snowflake are shown in appendix B

3 Sanity checks

The scalar six-point conformal blocks obtained in the previous section must satisfy several
properties. This section investigates the identities of G (2.6) in the snowflake channel from
the symmetries of the associated snowflake diagram figure 3. Then, the OPE limit and
the limit of unit operator are taken to verify that the scalar six-point correlation functions
reduce to the appropriate scalar five-point correlation functions.

3.1 Symmetry properties

The scalar M-point conformal blocks must verify several identities where the conformal
cross-ratios and the vectors h and p are transformed. These identities are generated from
the symmetries of the scalar M-point conformal blocks in the associated topology. The
symmetries of the scalar M-point conformal blocks in the comb channel are relatively
trivial. They correspond to (Z3)? x Zs, the semi-direct product of the direct product of
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Figure 4. Symmetries of the scalar M-point conformal blocks in the comb channel. The figure
shows the two generators, with reflections on the left and dendrite permutations on the right.

O,

O, Oi O, Ois
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v \ %
Oi, O;, Oi, O, Oi, O;,

Figure 5. Symmetries of the scalar six-point conformal blocks in the snowflake channel. The figure
shows rotations by 27 /3 (left), reflections (middle), and dendrite permutations (right).

two cyclic groups Zs of order two (for OPE, or dendrite, permutations depicted on the
right of figure 4) and the cyclic group Zs of order two (for reflection shown in the left part
of figure 4). Here we present the identities of the scalar six-point conformal blocks in the
snowflake channel. The proofs are left to appendix C.

The snowflake diagram figure 3 is invariant under the symmetry group generated by
the three transformations shown in figure 5. Since the scalar six-point correlation functions
in the snowflake channel Ig are the same under symmetry transformations generated by
the rotations, reflections and permutations described in figure 5, there are 47 identities
that the scalar six-point conformal blocks Gg should satisfy.

Although we dubbed it the snowflake channel, at first glance the symmetry group
generated by rotations and reflections is only the dihedral group of order six, D3, which is
the symmetry group of the triangle, not the hexagon expected for snowflakes. Including
the OPE permutations, i.e. the permutations of the dendrites (or arms) of the snowflake,
the full symmetry group of the snowflake diagram is however given by (Z2)3 x D3 where
each cyclic group of order two corresponds to dendrite permutations. Since the order of
this symmetry group is |(Z2)? x D3| = 48, the snowflake diagram has a larger symmetry
group than the hexagon, contrary to expectations.

Before proceeding, we verify that the transformations depicted in figure 5 indeed gen-
erate (Z9)3 x D3, the semi-direct product of (Z3)? (for dendrite permutations) and the
dihedral group of order six. By defining the action of the symmetry generators on the
external quasi-primary operators as R for the rotation (left diagram in figure 5), S for the
reflection (center), and P for the permutation (right), it is easy to see that the dihedral
part of symmetry group of the snowflake diagram has for presentation

<7‘,5]7’3 =52 = (7“5)2 =1), (3.1)
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with 7 = R™! and s = S. The presentation (3.1) corresponds to D3, with » and s repre-
senting rotations by 27/3 and reflections with respect to one of the three different axes,
respectively. The (Z3)? = Zg x Zy x 7o part of the symmetry group is generated by p; = P,
p2 = R7'PR, and p3 = RPR™! with p? = 1 for all i. It is trivial to check that the p;’s
commute and that they correspond to dendrite permutations. To exclude the direct na-
ture of the product, it suffices to observe that the generators p; do not commute with the
generators r and s. Having excluded (Z3)3 x Ds, it is easy to verify that the snowflake
diagram has the symmetry group (Z2)? x D3 of order 48.°

For rotations, we choose the generator where O;,(n,) — Oi,.,(Nay2) and Ay, —
Ag,, with O (n7) = O (), Oi(ng) = Oiy(n2) as well as Ay, = Ag,. Under this
transformation, the legs and conformal cross-ratios (2.14) transform as

Lo TT &)™ = Le T w8,
1<a<3 1<a<3
ud — ul, ud — uf, u§ — uf,
vf) = 09y, Uy — v53, Uy — V3,
9y — V83, vy — Uiy, g3 — U3,

which imply the following identity,

(d,h2,h3,ha,h5;p2,p3,p4,05:06) (. 6 6 ,6..6 .6 .6 .6 ,6 .6
G6|snowﬁake (u17 Ug, Ug; V11, U125 V13, V22, V23, U33)

3.2
_ (da—P37h47’157h3;p3—h27p2+h27135»p67p4)( 6,6 ,6..6 .6 .6 .6 .6 6) ( )

— Y 6|snowflake Uz, Uz, Uy; Vig, Va3, U2, V33, V11, V13
Using the decomposition (2.6) with (2.15) and (2.16), it is easy to see that Cg does not
change under this rotation generator, resulting in a non-trivial identity for Fg [see (C.1)].
This identity can be translated into the language of Kampé de Fériet functions as discussed
in the conclusion.

For reflections, we start with the generator acting as

Oiy (m2) < Oiy(na), Oi5(n3) < Ois5(n5), Agy < Ay,

For this reflection generator, the legs and conformal cross-ratios (2.14) transform as

Ap Ak
6\ —& 6 \h3(,.6 Yha/, 6 \hs 6 @
Lg H (ug) 2 — (vi1)" (v19)™ (va3)™ Le H (ug) 2,
1<a<3 1<a<3
6 Ug 6 U? 6 ug
Ul—)T, U2—>7, U3—>T,
V12 V11 V23
1 08
6 6 6 33
V11 — G V19 — G V13 — '()6 ’UG y
12 11 12Y23
6 V0
USQ — 6 226 ) USS - 6 ° U?6>3 — 6 136 )
VU v V7,V
11Y12 23 11Y23

®The homomorphism from D3 ~ S3 to the automorphism group of (Zz2)* = Zs x Zo x Za, Aut[(Z2)®] = Ss,
associated to the semi-direct nature of the product is simply given by S3 permutations of the three Z factors.
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and that observation translates into the identity

(d,h2,h3,ha,hs;p2,p3,p4,p5:06), 6 .6  6..6 .6 6 .6 .6 .6
G6|Snowﬂake (uf, ug, ug; vy, Vi, Vi3, V92, Va3, U3)

h R h
= (U%) 3(”?2) 4(”33) °

6 .6 6 6 6 6
XG(d,hg,h4,h3,hs;pa—h2,pz+h2,ps,p4,ps) uy uy uz 1 1 U33 V22 1 V13
6|snowflake

vy 08y 08y vy ufy T ufpuls wh vy T vls " v vl
(3.3)

Again, from the decomposition (2.6) with (2.15) and (2.16), we remark that Fg in the

form (C.2) does not change under this reflection generator, implying an identity for Cs.

Finally, the generator O, (n2) <> Oi,(n3) for dendrite permutations lead to

Bkq _ Bka
Lg [ (d)=" — @)™ wh)"Le T (ud)2",

1<a<3 1<a<3
6 6
6 Uy 6 U 6 6,6
Uy — 6 ° Ug - 6 Us — U311,
V11 U2
6 6 0?1”12 6 6
Ui = 5 Vig = — 5 > V13 = Va3,
11 U2
1 08,08
6 6 6 6 11V33
Voo = ~5 > Vgg — V13, Uss = — g
Va2 Va2

for the legs and conformal cross-ratios (2.14). Thus, the corresponding identity is

(d,h2,h3,ha,h55p2,p3,p4,05,06) (, 6 6 6..6 6 6 .6 .6 6
G6|snowﬁake (w15 ug, uz; V11, V19, U3, Vag, Va3, U33)

= (v§))h2 e (05,

6 6 6 ,,6 6 ,,6
% G(d7h2,—p2—h3,h47h5;p271937p47p5,p6) Uy Ug uSe5. - 1 ofjupy ¢ 1 8 U11V33
6|snowflake 6 ’vg2v V1L 6 06 0 723 6 0 V13 T 6 :

V11 22 V22

(3.4)
Once again, the decomposition (2.6) with (2.15) and (2.16) shows that Fg (2.16) is invariant
under this generator for dendrite permutations, resulting in a second identity for Cjs.

V11 22

Therefore, the three symmetry transformations of figure 5 generate the symmetry
group (Zs)3 x D3 of order 48 (see appendix C). Each generator has an associated identity
for the scalar six-point conformal blocks (2.6) in the snowflake channel, with (3.2), (3.3),
and (3.4) being the identities for rotations, reflections, and dendrite permutations, re-
spectively. From these three identities, it is straightforward to generate the remaining
45 identities of the snowflake symmetry group by composition. The proofs that our ex-
plicit solution (2.15) and (2.16) satisfies these symmetry transformations can be found in
appendix C.

We now turn to the OPE limit and the limit of unit operator. Since we have already
demonstrated that the scalar six-point conformal blocks in the snowflake channel obey
several identities originating from the symmetry group of the snowflake diagram, it is only
necessary to check the two limits once, all the other cases are equivalent by symmetry.
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3.2 OPE limit

The OPE limit is defined as having two embedding space coordinates coincide. The two
embedding space coordinates must correspond to an OPE in the associated topology. In
this limit, the original M-point correlation function reduces to the proper (M — 1)-point
correlation function with a pre-factor originating from the OPE (2.1), as dictated by (2.7)
for the scalar case.

For scalar six-point correlation functions in the snowflake channel depicted in figure 3,
the possible OPE limits are 1o — 13, 14 — 15, and ng — 11. However, since g is invariant
under rotations as discussed above, it is only necessary to assess the behavior of I in one
OPE limit. Here, we check that in the limit ny — 13, we have

(Dig g ANy Dig Nig Ay ) N 1 (Dig Diy Dig Dig,Aiy)

(Ak17Ak27Ak3) %(A2+A37Ak1) (AkzaAk3) (35)
23

snowflake comb

For this proof, we start from the alternative form of the scalar six-point correlation
functions in the snowflake channel given in appendix B, which must lead in the OPE
limit (3.5) to the scalar five-point correlation functions in the comb channel of [43] discussed
in appendix A. This choice is of no consequence since we prove that these are equal to the
results of section 2 in appendices B and A, respectively [see (2.14), (2.15), (2.16), and (2.17)
for scalar six-point correlation functions in the snowflake channel and (2.13) for scalar five-
point correlation functions in the comb channel].

In the OPE limit (3.5), we have

Ak
* *6\ — & h5 P
LG H (ua ) 2 = l(Ag—&—Ag—Ak L H
1<a<3 (7723)2 1<a<?2
%6 _, *6 P w6 Ua
u;- — U, Uy~ —> UY Ug™ — pa
LY
vi% 1 (1<a<3),
P
%6 P *6 U2q 1
Uy — U3, Ugg = ~—ps Vi — —&
LY 34

where the conformal dimensions on the r.h.s. are the ones relevant for the five-point corre-
lation functions, i.e.

p3—ha+hs — ps, p3 — Ps+hs, patha — pa, hs = ha, hy — hs,
P3+hoths — patha, DPs+ha — paths, hys = —p2—ha, p3—hg — p3+ho.
Thus, the OPE limit (3.5) corresponds to the identity

(’U34)h5G6 Gy,

with the appropriate changes for the vectors h and p.
Since

(p2 + ha — m2)m, | T —m3,p3 —d/2 1= (p2 + ha — m2)m, 7P

F* — F — 9 - bl
6 0 (—h2)—ms p2 + ho —ma, —hy —m3 (—h2)—ms
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in the OPE limit (3.5), we have
(1)134)}15(;* _ Z (P3) mat-ms+mas+mas (—h2 — M3)motman (— 5 ) mstmos+mas (03 4 h2 4 h5)ms
’ 0 (253 + h2)2m3+m23+m33 (]53 + h2 + 1-— d/2)m3

(P2 + ha — m2)my (—ha)motmas+mas (P3 — ho + ha)motmas [Mas) [ mas
(P3 — h2)2mo-tmast+maz+mas (D3 — ha +1 — d/2)m, kas ) \ k33

" <k23> <h5 —mg — kog — k33> (—1)kashaa-tmiy+mi,

i !
Moy M3y

(uf)™2 (ug))™ (1 —vf3)™2 (1 — vfy) ™ (1 —vf))™ _p
5

mo! ms! Mo9! mo3! mss!

after expanding in the proper conformal cross-ratios ul and (1 — vf) of [43]. Here the
vectors h and p are still the original ones. Thus to complete the proof, we need to evaluate
the extra sums for which we did not explicitly write the indices of summation (to make the
notation less cluttered) with the help of (A.1), and express the vectors h and p in terms
of the five-point ones.

First, we sum over koo and then kog after changing the variable by koz — kog + mb,,
which lead to

whycy =3

(p2+h2_m2)m3 (_h4)m2+m22+m23 (p3_h2+h4)m2+m33 <_m{34)m23+m33—m’24

mo+ms+ma3+m33 (_h2_m3)m2+m22 (_h5)m3+m’24+m’34 (ﬁ3+h2+h5)m3
(D3+h2)2ms +mag+mss (P3+ha+1—d/2)m;

_ — — | ISR
2
(P3—h2)2ms +mastmas+mss (P3—h2+1—d/2)m, mas!(maz—mby,)!
/ !
(uf)™ (uh)™ (1—vg3)™?2 (1—vs)) ™2 (1—vky) ™54 _p
mal  mg! mao! mh,! mh,! P

We then shift ma3 by mas — mag + mb,, and then redefine ms3 = m — mos. With these
changes, we can compute the sums over mog and then m, which give

(p3)m2+m3+m’24(_hQ)mzfmermzz(_h5)m3+m’24+mg4 (]53 + h2 + h5)m3
(_hQ)—m3 (153 + h2)2m3+m’24+m§4(ﬁ3 + h2 +1- d/2)m3
% (p2 + h2)7m2+m3+mé4(_h4)m2+m22+m’24 <p3 — ha + h4)m2
(p2 + hQ)—m2 (p3 - h2)2m2+m22+m’24 (p3 —hy+1— d/z)mg
(uf)™ (ug)™ (1 —vh3)™2 (1 — o)™ (1 —vf))™s

mg! m3! mQQ! m’24! mg4!

(3" G =3

4
P
FP.

X

Finally, changing the vectors h and p by their five-point counterparts and renaming msy —
mi, mg — M1, Mag — Ma3, Mhy — Mag, and ms, — ms4, we have

—ma, _m37]§3 - d/2
p2 + ha —ma, —hs —mg3

—my, —ma,Ps +hy —d/2 1

FP =3R ;1]—>3F2l i1,

P4 —mi, —h3z —ma

as in (A.4) (hence its name), which indeed proves that (vi))"G§ = GL'| as expected.
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3.3 Limit of unit operator

The limit of unit operator is defined by setting one external operator to the identity op-
erator. In this limit, a M-point correlation function directly becomes the corresponding
(M — 1)-point correlation function.

For scalar six-point correlation functions in the snowflake channel, the symmetry prop-
erties of Ig liberate us to verify the limit of unit operator for just one quasi-primary op-
erator. We choose this quasi-primary operator to be O;,(ng) — 1, for which A;, = 0,
Akg = Aip and

I(Az‘2 AVIVAVIRVAN A

G(Akl 7Ak2 7Ak3 )

Ajg,Ay) I(Ai2 Aig, A

5(Ak1 7Ak2)

159 6 110 140 5
—

snowflake

(3.6)
comb
Since hs = pg = 0 and the remaining vector elements of h and p (2.17) translate
directly into their five-point counterparts (2.13) in the limit of unit operator (3.6), the
sums over mg, mis, Moz, and mgg in (2.15) are trivial due to the Pochhammer symbol
(—h5)ms+mis+mas+mas, forcing mg = mis = mao3z = mgs = 0. Therefore, the conformal
cross-ratios u$, v9;, v3;, and v$; disappear in the limit (3.6).
The remaining conformal cross-ratios (2.14) relate to the conformal cross-ratios (2.13)

as in
ud — ul (1<a<?2), 08 — 02y (1<a<b<2),
and thus
6 Ak 5 i
Lg H (ua) 2 — Ls H (ua) z .
1<a<3 1<a<2

These observations imply that Gg¢ — G5 in the limit of unit operator (3.6), which is
straightforward to verify since ms = mi3 = ma3 = ms3 = 0.

4 Discussion and conclusion

The field of research on d-dimensional higher-point correlation functions in CFT is a rel-
atively uncharted territory. Although completely determined by conformal invariance,
higher-point conformal blocks are notoriously difficult to compute in all generality. More-
over, there exists several inequivalent topologies for higher-point correlation functions, each
of them having their associated set of identities originating from their topology. In this
paper, we introduced all scalar six-point conformal blocks by computing the remaining
topology, the scalar six-point conformal blocks in the snowflake channel.

Our results — presented in (2.14), (2.15), (2.16), and (2.17) — are obtained with
the help of the embedding space OPE formalism developed in [30, 31]. They show that
the embedding space OPE formalism is very powerful, leading to explicit results for any
conformal higher-point correlation function of interest, after straightforward (yet somewhat
tedious) re-summations of the hypergeometric type.

From the symmetry group of the snowflake diagram, we showed that scalar six-point
conformal blocks in the snowflake channel have symmetry groups of order 48, larger than
the hexagon symmetry group, contrary to expectations. We then showed that the result
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verifies both the OPE limit (in which two embedding space coordinates coincide) and the
limit of unit operator (where one external operator is set to the identity). Our snowflake
result thus passes several non-trivial consistency checks, lending further credence to the
embedding space OPE formalism.

Contrary to the scalar six-point conformal blocks in the comb channel, for which there
are two extra sums that factorize into the product of two gFb-hypergeometric functions,
the scalar six-point conformal blocks in the snowflake channel have two extra sums that
do not factorize. They can be written as a Kampé de Fériet function, and the snowflake
invariance under rotations implies (C.1), that translates into the identities (for my, mao,
and mg non-negative integers and a1, ag, b1, be, di, and g; arbitrary)

1,1]

ai;ba +mi, 1+ a1 —di, —m3; —mi, —ma

132 | an—ma, b1 + mg, by +mqy; —my, —ms3
2,1,0 g
b17 b27 d17 -

(d1 — a1)m, (b1 — a1)ms 1,32
(d1)my (b1)ms 210
1, 1]

2,11 | A1,0a2; —M2; —MmM3
as —my;di; g1

1+ay —dy —ma, b1+ a1 — by —m3; —

1,1],

ai,1+ay — dy; —ma; —mg3

~ (a2) —my (d1 — a1)m, p2ll 11
= 1
(a2 — a1)—my (d1)my "M |14 ar —di —mo, 14+ a1 —agg1| |
with
ai; —ms, 1+a1—g1,a2; —mqi, —m ai, G; —Mo; —m
F211302 15 2 1—91, a2; 1, 3 1,1] = (91)m3 F12"11’11 1, @2; 2 3 1,1],
14+a1—g1—m3, ag—ma; dy; — (91—a1)ms az—my;dy; g1

which are obtained from repeated use of well-known 3F>-hypergeometric identities.®

It is obvious that the embedding space OPE formalism can be used to investigate
higher-point correlation functions, including their symmetry groups. For example, starting
from the scalar three-point correlation function, which has symmetry group D3, we con-
jecture that doubling the number of all external legs N times with the help of the OPE

gives scalar (3 x 2™)-point correlation functions with the symmetry groups (( (Zg)?’XQIW1 X

(++-x((Z2)3x D3) - )) . From the successive action of the OPE limit or the limit of unit
operator, these maximally-symmetric topologies should lead to all topologies for smaller
scalar higher-point correlation functions (starting from sufficiently large N). In general,
starting from a specific M-point topology with symmetry group H ps|channel; this procedure
of doubling the number of all external legs N times with the help of the OPE should gen-
erate (M x 2™)-point topologies with symmetry groups ((ZQ)MX2N_1 x (o x ((Zo)M

HM\channel) e )) .
It is less clear what happens to diagrams with fewer symmetries. For example, scalar

seven-point correlation functions with the topology resulting from scalar six-point corre-
lation functions in the snowflake channel (called the extended snowflake channel below)

SKampé de Fériet functions have not been studied as extensively as standard hypergeometric functions.
7 Although this is only a conjecture, the order of the symmetry groups should be correct.
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should have symmetry group of order sixteen only, smaller than for the snowflake diagram
but larger than the scalar seven-point correlation functions in the comb channel. In fact,
their symmetry group should be Zs x ((Z2)? x Zs3), the direct product of the symmetry
group for the extra dendrite permutations and the symmetry group of the six-point comb
diagram from which it can also be built. The symmetries are relatively easy to enumerate
for a specific topology, but it is not clear how to write general expressions for the orders
of the symmetry groups. Nevertheless, studying the cosets Sy;/H M|channel; With Sps the
symmetric group of M elements, leads to interesting consequences.

For example, two- and three-point correlation functions have symmetry groups Zs and
D3, respectively, while four- and five-point correlation functions have symmetry groups
(Z2)* % Zs (the topologies are unique for fewer than six points). Since Zs ~ Sp and D3 ~ S3,
the symmetry groups of two- and three-point conformal blocks correspond to the symmetry
groups of the full two- and three-point correlation functions, and their cosets are trivial with
only one element. This observation implies that there is no non-trivial information that
can be derived from bootstrap considerations starting with two- and three-point correlation
functions, as expected. This is not the case for (M > 3)-point correlation functions.
Indeed, for four-point correlation functions, the associated coset is S4/[(Z2)? % Zs] which has
cardinality three. There are thus three elements, corresponding to the well-known s-, ¢-, and
u-channels. For five-point correlation functions, the coset is Ss/[(Z2)? x Zs] with cardinality
fifteen, hence there should be fifteen different ways of expressing five-point correlation
functions. For six-point correlation functions, the number of different expressions should
depend on the channels. For the comb channel, there should be |Sg/[(Z2)? x Zs]| = 90
different expressions while for the snowflake channel there should only be |Sg/[(Z2)?x Dg]| =
15, for a total of 105. In the case of the seven-point conformal bootstrap, the comb channel
and the extended snowflake channel should have coset cardinalities |S7/[(Z2)? x Zs]| = 630
and |S7/ [Za x ((Z2)? x Zs)] | = 315, respectively. Hence, there should be a total of 945
different ways of expressing seven-point correlation functions.

These numbers can also be understood from the counting of topologies. Each M-point
topology is represented by an unrooted binary tree with 2M — 2 nodes, where M nodes
represent the external quasi-primary operators (vertices of degree one, which are the leaves
of the tree) and M — 2 nodes correspond to the OPEs (vertices of degree three). It is
transparent that unrooted binary trees with 2M — 2 nodes have a total of 2M — 3 edges,
with M edges connecting the OPE nodes to the leaves and M — 3 edges representing the
exchanged quasi-primary operators. The number of M-point topologies is thus given by
the number of unrooted binary trees with M unlabeled leaves, denoted here by Tp(M).
Unfortunately, there is no simple closed-form formula for Ty(M), but the first few integers
in the sequence are (1,1,1,1,2,2,4,6,11,...), starting at M = 2.8 On the contrary, the
number of different ways of expressing the same full M-point correlation functions is given
by the number of unrooted binary trees with M labeled leaves, denoted here by T'(M),
which is given by T(M) = (2M — 5)!!. Comparing the symmetry groups and the number

8See The On-line Encyclopedia of Integer Sequences at https://oeis.org/A000672 and https://oeis.org/
A129860 for more details.
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of topologies, we thus conclude that we should have the following identity for M-point
correlation functions,

1 T(M) (2M — 5)!

This identity is in agreement with the partial results obtained above with M up to seven
and we verified it for M = 8,9 as well. It can be used to explore the orders of the
symmetry groups of the different topologies. Moreover, the previous discussion implies that
the number of ways of writing the same M-point correlation function is T (M), although
redundancies lead to a number of independent bootstrap equations which is much smaller,
to which we now turn.

It is well known that the conformal bootstrap program can benefit from the knowledge
of higher-point correlation functions. Indeed, it has been argued that bootstrapping higher-
point correlation functions with external quasi-primary operators in the trivial representa-
tion is equivalent to the usual full conformal bootstrap of four-point correlation functions.’
We conjecture that the study of the symmetry groups of the different topologies of M-point
conformal blocks also leads to interesting insights on the conformal bootstrap. Once again,
let us denote the symmetry group of the scalar M-point conformal blocks with some specific
topology as H ps|channel and the symmetry group of the full M-point correlation functions,
including the contributions of the non-trivial representations, as Sy, (the symmetric group
of M elements). As discussed above, the former depends on the topology of the partic-
ular channel under consideration while the latter corresponds to all the possible ways of
re-arranging the M external quasi-primary operators in the full correlation function. We
observe that the analysis of the symmetry groups Hj/|channel gives an intuitive picture of
the M-point conformal bootstrap.

As already mentioned, there are T'(M) = (2M — 5)! ways of writing the same full
M-point correlation function. One can therefore write a total of (2M — 5)!! — 1 a priori
independent equations for the M-point conformal bootstrap, up to redundancies implied
by symmetries of different channels. In fact, it can be shown that most of the equations
are redundant and one can choose specific equations to minimize the overall number of
required conformal bootstrap equations. The smallest number of independent bootstrap
equations Np is equal to the greater of 1 and Ty(M) — 1. Namely, with a unique topology
(M = 4,5) or with two topologies (M = 6,7) it is sufficient to have only one bootstrap
equation, while with more than two topologies, the smallest number of bootstrap equations
is equal to the number of topologies minus one.

This counting statement is easy to prove using the symmetries of different topologies.
Let us start with the well-known case of four points. The only required bootstrap equation
is the equality of the s- and t-channels illustrated in figure 6. The two diagrams identified
by the bootstrap equality have the same symmetries Hy = (Z2)? x Zs since they belong to
the same topology, but these symmetries are embedded differently in the full permutation
group that acts on different operators in the two channels. In the s-channel, the non-trivial

9This statement must be modified accordingly when there are fermions in the theory.
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Oi, Oi, Oi, Oi,
Figure 6. Four-point bootstrap equation that is equality between the s- and t-channels.
3 4 M-5 M-4 M-3 M-2 4 5 M-4 M-31 M
Y N Y Y ML 3 Y o Y ‘
M 2 M-1
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3 Y e
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3 4 M-4 M-3 M 1 M-3 M-2
‘ M-2

Y Y Y

Figure 7. Bootstrap equations for even M (top) and odd M (bottom) that generate the full
permutation group Sj;. For better readability, we denoted the external operators just by their

2
1
2
1 M-1

subscripts, for example 1 instead of O;;.

elements of the three Zs’s in (Z2)2 X Zo are oi2, 034, and 13094, Where o, denotes an
exchange of external operators O;, and O;,. The full H4 symmetry is obtained by multi-
plying these elements. By comparison, the non-trivial elements of the t-channel symmetry
group are 014, 093, and 012034. Equating the s- and t-channels allows one to use the sym-
metries of both diagrams to get all other bootstrap equations related by symmetry. After
all, satisfying the equation means that all equations related by either set of symmetries
of the diagram on the right-hand side or the left-hand side are also satisfied. Picking the
following symmetries o012, 023, and o34 from both channels, one generates the full permu-
tation group Sy since these choices comprise the generators of S;. Once we have the full
permutation group, it is clear that one of these permutations includes the u-channel and
there is no independent equation equating the u-channel to either the s- or t-channels. In
other words, once the bootstrap equations between the s- and the t-channels are satisfied
for all quasi-primary operators, then the bootstrap equations for all three channels are
satisfied, therefore the u-channel is redundant.

Analogous use of symmetries allows us to prove the statement on the minimal number
of independent bootstrap equations for any M. The illustration for even M > 6 and odd
M > 9 is shown in figure 7. In both the even and odd cases we start with a single bootstrap
equation that identifies two channels of different topologies. By the assignment of the
external operators, the diagrams in the bootstrap equation contain o12,0923, - ,0Mm—1,m
(as well as other symmetries that are unimportant for the argument) that generate the
full permutation group Sp;. Thus, any other diagram with different operator assignment
of either of the two channels can be obtained by symmetries and automatically satisfies
the bootstrap equations. This includes equalities between diagrams of the two topologies
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Figure 8. Bootstrap equations for five points (top) and seven points (bottom) that generate the
full permutation groups S5 and Sy, respectively. For better readability, we denoted the external
operators just by their subscripts, for example 1 instead of O,;.

chosen in figure 7 and, by the transitive property, also all equalities between diagrams of
the same topology — either the one on the left or on the right of the equation. Diagrams
in topologies that are not present in figure 7 are independent and each additional topology
must be included in the set of bootstrap equations. However, since the original equation in
figure 7 guarantees equality of all permutations, any operator assignment for the additional
topologies will do. All other assignments will be equivalent by the action of Sj;. Hence
the smallest number of independent bootstrap equations is To(M) — 1.

One needs to consider M = 5, where there is only one topology, and M = 7 with two
topologies, separately. This is because the choice of topologies for odd M in the bottom
drawing in figure 7 requires topologies that are not present for M = 5 or identical for
M = 7. Suitable equations for these cases are illustrated in figure 8. It is straightforward
to check that the symmetries of these diagrams generate the full permutation groups Sj
and S7, accordingly. For M = 5 the Zs’s of the dendrite permutations obviously generate
Ss. For M = 7 the dendrite permutations generate Sg acting on the set {1,2,...,6}.
Additionally, the left-right reflection symmetry of the M = 7 comb diagram is realized
by 0¢7034095. This element can be combined with permutations contained in Sg to yield
og7, therefore generating the full permutation group S7. This completes the argument
that one can satisfy all possible M-point bootstrap equations by suitably choosing only
Np = max{1,Ty(M) — 1} independent equations.

Coming back to our main result, it is unclear for now what type of generalizations
occurs for the extra sums, encoded here in our function Fj;. In the comb channel, we
argued in [44] that the M — 4 extra sums appearing in scalar M-point correlation functions
were necessary for the limit of unit operator to make sense. For M = 6, this argument
cannot be used for the snowflake diagram. Nevertheless, (2.16) shows that in the snowflake
channel, the number of extra sums is the same, although these extra sums do not factorize
as in the comb channel. Are there three extra sums that do not factorize for the non-comb
topology of the scalar seven-point correlation functions or does the number of sums depend
on the topology?

An interesting avenue of research is to initiate the computation of higher-point corre-
lation functions with spins, either for external quasi-primary operators or internal quasi-

- 21 —



primary operators, or both. Since the embedding space OPE formalism developed in [30,
31] treats all irreducible representations of the Lorentz group on the same footing, such
computations should be feasible.

Finally, higher-point correlation functions can also be of use in the AdS/CFT corre-
spondence. Indeed, scalar six-point conformal blocks in the snowflake channel correspond
to some geodesic Witten diagrams (see for example [42]) and their knowledge might eluci-
date some of the kinematics in AdS.
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A Scalar five-point conformal blocks and the OPE

The scalar higher-point correlation functions in the comb channel were obtained very re-
cently in [43, 44]. In this appendix, we show how to obtain the scalar five-point conformal
blocks of [43] from the OPE approach of [44]. The proof is a straightforward application
of the re-summation formula

—n,b (c—b)n
F 1 = A1l
[ b o
for n a non-negative integer. Other useful identities used in the proof are the binomial
identity
(1= 0)™* = S(-1) ( ’ b) o = 3 () () (b> o', (A2)
i>0 t i7>0 L)\
and
-n,b,c (d—"Db)y —-n,b,e —c
F: 1| = ———3F: i1
32[ d,e ’] (d)n 32[bdn+1,e’]’
(A.3)
2 —n,b,c . (d—=b)p(d—c)n
20 d14+b+e—d—n""|  (dnld—b—c)n

The scalar five-point conformal blocks (2.13), which is our starting point to compute the
scalar six-point conformal blocks in the snowflake channel, can be obtained similarly.
A.1 Proof of the equivalence

The comb channel of [43] is depicted in figure 9. To get figure 9, we need to shift the
quasi-primary operators in [43] such that O;, (74) = Oj, ., (Mat1) With Oi5(ns) = Oy, (m)-
Using (2.7) with k = 2, | = 3 and m = 2 on the scalar four-point correlation functions
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Figure 9. Scalar five-point conformal blocks of [43].

of [44], we obtain, after expanding with the binomial identity (A.2),

Agy A

X o
_ Moanas\ 2 (Maamis\ 2 [ Muanes \ PR
Is = Ly | —— Ml saliis 4725
1124735 114735 M2745
_1 52 ni 52
<3 CiKs ni1\ (=1) <"7237745> (77257734> ’
s2 ) nilnir! \meanss 135724

where the legs Ls and the vectors h and p are defined in [44]. For notational simplicity,

we omit the indices of summation ni, n11, and so on the sum. Here C4 and K5 are given
by the analog of (2.12) found in [44] and (2.4), respectively, i.e.

(_h3)n1 (p2 + h2)n1 (ﬁ?) + B3>n1+n11(p3)n1+n11
(D3 + h2)2ny 40y, (P3 + ha + 1 —d/2)p,

(=ha)ry7(=52)7 (Pa + ha)r—i (P4 — 1) (B3 + b3 + 11 + 52)r,

<m0 (Pat ha)eir,(Pat hs +1—d/2), 45 (ra—r2a = 7a)lrs — 123 — 73)!

Cy =

9

K5 =

{ra sT2a,

- D \Tr24 D T34
5\T2+47 (. B\r3—r2o3—"3(, D\ra—ros—r4 (224) (234)
X (T Y. Y. .
( 2) ( 3) ( 4) (7"23)!(7"24)! (T34)!

The legs and the conformal cross-ratios defined in [43] are given by

Ay A3 Ay As Ay
= (o) o)™ )™ )™ )
12723 113723 71147124 5725 N12M15
A1 —Asp A3—Ag Ay
_ (7714?725> 2 (7712?734> 2 <77127734?745> 2
12745 13724 114724735 ’
and
P 114723 P n15724 P 112734 P 112735 P 112745
uy = y  Ug = y Uz = y Vg = y  Usg = .
113724 114725 113724 113725 114725
Hence I5 becomes
P(, P\pa+hs(, P\—pa—hsz(, P P2k py Bk
I5 = Li (vg3)72 " (034) 727" (034) P (uy )2 (up )72
n —1)%2 ol " B\
sk ) S () ()
59 n1!n11! Vay Vg
With the help of the following identities [see (2.3)]
T S N S S N T .
vly Vs, vy ui vl ui vl
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we can express K in terms of the conformal cross-ratios of [43], leading to

A N _1)s I3 o4
B F e r () S - ) (- )

n1!n11! Voy V34

% (uf’)m +ra3 (u§>m2 (v£)p3+h3+m2+r34 ('Uéjl) —p3—hz—n1—s2—r23—734 (,U?i)nl —p4a—ma+T23

(_h42m2(_82)m2—7"34 (@l :’_ }_14)m2+03+04
(ﬁ4 + h3)2m2+03+a4 (]34 + h3 + 1- d/z)mg

% (p4 — n1)04+m2—7“23 (ﬁ3 +hs+n1 + 32)03+7’23+7’34
0'3!04!7’23!7"24!7’34!

Thus, by combining the powers of the conformal cross-ratios, G£ (2.6) is given by

+hg+s9+7134
aP _ ni1\ [(os\ [oa) (p3
Z<52 I3 )\l ma3
« —l3—Pp3—h3—n1—89—T23—734 \ [ N1—la—Pa—ma+1r23
M4 m34

% (_h4)_m2 (_82)m2—T34 (ﬁ4j_}_l4)m2+03+04
(p4+h3)2m2+0'3+0'4 (]54+h3+1_d/2)m2

(p4—n1)a4+m2—r23 (]33+h3+n1 +32)03+7’23+T34
03!0’4!7‘23!7"24!7‘34!

X

(71)52+l3+l4+m23+m24+m3404 [ Pom o o .
X ] (w1 )™ 772 (g )™ (1—vg3) ™2 (1—vgq) ™2 (1—v34) ™™,

where all the superfluous sums must be appropriately taken care of to reach the result
of [43].

Since the terms involving I are

Jfoa) (o4
(_l)l <l4> - 14‘ ’

(—1)mst n1—ly—ps—ma+ro3 _ (patma—n1—r23+msa), (Patma—11-723)ms,
ms3q (Patma—n1—r23);,m34!

9

they can be re-summed with the help of the identity (A.1), and we find that G£ becomes
Gl =%" ni1\ (03 (pat+hatsatras (—lz—pz—hz—n1—sa—ma+r3s ()
s2 )\ U3 ma3 mao4 o

% (_h4)_m2 <_82)m2_7’34 (ﬁ4:|_ﬁ4)m2+03+04
(§4+h3)2m2+03+04 (ﬁ4+h3+1_d/2)m2

(p4_n1)m34+m2—7“23 (ﬁ3+h3+n1 +32)03+T23+T34
03!04!7’23!7’24!7’34!

X

(_1)52+l3+m23+m24 Pyni+r Py\m P\m P\m
X ning! Caug )" 772 (ug )™ (1—vg3) ™2 (1—vgq) ™!

T

m3a!
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Similar steps can be performed to re-sum over I3, o3, and finally o4. The result is given by

GP _ Z o <n11> (71)52+m23 (pg + h3g + s9 + 7’34>

59 nilng! m23

(_h42m2+m24+m34 (_52)m2 —T34 (154 + B4)m2
(ﬁ4 + h3)2m2+m24+m34 (154 + h3 +1- d/2)m2
% (p4 - nl)m34+m2—r23 (]53 + iL3 +n1 + 52)m24+7’23+7’34
7/‘23!(7”2 — 723 — 7"34)!7"34!
1 —vd)m2e (1 — ok )ma

m24! m34!

< (P (b yme (1 — ofyymas

To evaluate the sum over r34, we first change the variable as ss — so +mg —1r34. Then,
the sum over r34 can also be simplified using the hypergeometric type re-summation (A.1),
which implies that G5 can be expressed as

P 1)52tm2s (pathatsotma)  (P3+hs+n1+n11)mo—ras
Gy = Z 04 | | |
ma3 52.(71,11—82—T23).(m2—’l“23).
(_h’4)m2-&:m24+m34 (134+B4)m2 (134_n1)m34+m2—7“23 (ﬁ3+ﬁ3+n1 +82+m2)m24+7"23
(P4+h3)2my+mast+mas (Path3+1—d/2)m, 23!
(1—v53)™* (1—viy)™ss
May! maa!l

X (ug)" T (uh )2 (1—gg) ™2

Using the last identity of (A.2) for the sum over mas leads to

aP Z 04 1)s2thatl (pothatmo (s2\  (P3+hs+n14111)ma—rss
ko3 l ) sal(n11—s2—7ra3)!(ma—ra3)!

(_h4)m2+m24+m34 (ﬁ4+ﬁ4)m2 (p4_n1)m34+m2—7"23 (ﬁ3+ﬁ3+n1+52+m2)mz4+7"23
(ﬁ4+h3)2m2+m24+m34 (ﬁ4+h3+1—d/2)m2 723!

P \mo4 P \ms4
P P P kg1 (1—024) (1-v3y)
X (ug) ™ (uy )2 (1—vg3) "2 1 I
u»re m3ayq:
We can now make a redefinition of the variable such that sy — s9 + [ and re-sum over ss
using (A.1) again. Expressing Cy in terms of Pochhammer symbols, the scalar five-point
conformal blocks become

k P P
¢t -y B <p3+h3+m2> (s e 1y (00T (08T

! ko3 mMoq! ms3a!
7(_h4)MQ+m24+m34 (@1:1'}714)7@ (p4_n1)m34+m2*7“23
(ﬁ4+h3)2m2+mg4+m34 (ﬁ4+h3+1_d/2)m2 7“23!

(—h3)n; (P2+h2)n, (153+B3)m2+m24+n1+r23+l (P3)n1+n1 (_m24_r23)n11—r23—l
(P3+h2)2ns +ny, (D3+ho+1-d/2)p, I(ni1—ra3—1)! (mo—ra3)!

Changing variables again as in ny; — ni11 + 723 + [, we can first evaluate the summation
over nj; using (A.1), and then the summation over [ with the help of the second identity
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in (A.3) after changing ko3 — ko3 — [, and finally replace n; = mj — ra3, leading to

GP — Z 1 (UP)m1 (’LLP)m2 (l—vﬁ)m% (1_U§4)m24 (1_1}?1;1)”134
> (my—roz)! ! 2 ma3! may! ma4!

7(_h4)m2+77124+m34 (]54:“]714)7?12 (p4—m1 +T23)m2+m34*7“23
(ﬁ4+h3)2m2+m24+m34 (ﬁ4+h3+1_d/2)m2 T23!

x (_h3+m1 _mQ)mzs (_h3)m1*?"23 (p2+h2)m1+m24 (]33+B3)m1+m2+m24 (pS)m1

(P3+h2)2m, +mas+mas (P3+ha+1—d/2)my —ryg (g —ra3)!

At this point, we are left with only one extra sum (over ra3), as expected. We now use

the following relations,

(_l)ml (p3)m2—m1+m34 (1 - p4)m1
(p4 - ml)’r‘23

(_h3)m1*7"23 _ (_h3)m1 (_133 —ha + d/2 - ml)ms

(P3+ha+1—d/2)m,—rys (D3 +ho+1—d/2)m, (1 + hz —m1)p,

(P4 — M1 + 723) motmas—ras =

I

to re-sum the summation over ro3 into a 3Fs-hypergeometric function, given by

M. —1e . —Da — 9 _
3F2 [ mi, —may, —pP3 h2 + d/ mi . 1] .

pa—mi, 1+ hg —my ’

With the help of the identity (A.3), this can be rewritten as

(1+h3>m2 _mla_m27]§4+h2_d/2.
3F2 71 )
(1+h3—m1)m2 ps — mi, —hs — mo

which translates into the result of [43], i.e.

Velx Z (p2 + h2)m, +moz+may (P3)m, (_h3)m1—m2+m23 (P4)mg—my +maa

> {Ma,map>0} (p4)—m1 (133 + h2)2m1+m23+ﬂw4 (ﬁ?’ +he+1-— d/2)m1

(153 + ﬁ3)m1 +matmag (_h4)mz+m24+m§4 (154 + B4)m2
(_h3)*m2 (]54 + h3)2m2+m24+m34 (}54 + h3 +1-— d/2)m2
(uf)™ (ug)™ (1 = v33)™ (1 —vgy)™2* (1 — viy)™

m1! MQ! m23! 7TI24! m34!

X

—mi, — M2, Pa + ho —d/?,1

X 3Fy
pa — mi, —hz —ms

(A.4)

This computation shows that the results of [43] and [44] are equivalent. Moreover, once a

choice of conformal cross-ratios has been made, the OPE approach does lead to the correct

result, after several re-summations.

The steps highlighted here can be repeated to obtain the scalar five-point conformal

blocks in the comb channel discussed in (2.13). The proof of their equivalence at the level
of (A.4) and (2.13) follows the one for the scalar six-point conformal blocks in the snowflake

channel shown in appendix B.
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B Snowflake and the OPE

In this appendix we expound the proof of the scalar six-point conformal blocks in the
snowflake channel. We also present an alternative form for the scalar six-point conformal
blocks in the snowflake channel, and prove that it is equivalent to the one introduced in
the main text.

B.1 Proof of the snowflake

Starting from the scalar five-point correlation functions (2.13), shifted such that O;,(n,) —
O, (Ma—1) with O;,(no) = O, (n5), the legs and the conformal cross-ratios transform into

Ak

Big Dig Dig Aig Bky
L(A,-Qy...,A%,A;%)_( 713 ) 2 ( 712 ) 2 ( 735 ) 2 ( 734 ) 2 ( 735 ) 2
5lcomb 712723 713723 134745 735745 M3M15

5 _ 5723 113745 W — 1137125 0 — 1714735 5 — 1137)24

u M ) - ) - 9 - .
! 2735 57134 1 112735 12 115734 2 77127734B )
1

Here, we already substituted O;, (1) — Ok, (1) as needed for the recurrence relation (2.7).

uf =

Moreover, the vectors h and p get transformed into (2.17), which also include the new
elements appearing in the recurrence relation (2.7), while the functional forms of Cj and
F5 (2.13) remain the same [they are the same functions but of the new vectors h and
p (2.17), hence G5 is the same function but of the new conformal cross-ratios and vectors].

Using the recurrence relation (2.7) with &k = 4, 1 = 5, and m = 5, it is clear that the
resulting scalar six-point correlation functions are in the snowflake channel. To proceed,
we must act with the OPE differential operator as in (2.4) on the conformal cross-ratios
[see (2.3)]

116745 12756 113756 114756
xg: ) 1_932 9 1_y?6,: ) 1-3]22 ’
N15746 157126 N15736 115746
6 __ T1237467]56 6 __ 1247156 6 _ T125746 6 __ 734756 6 __ 135746
293 = ——— o4 = ) 225 = ) 234 = » 235 = :
112671367145 1267)45 7126745 1367)45 7736774§ 2)
This can be done easily by re-expressing (B.1) in terms of (B.2) as
51—yl 2 5 1—y§ 1
ur = 6,6 Uz = 6,6
L=y 235 1 —y5 234
0?1:1_2/32*35 U%:l_ygigg) U32:1_yngg4-
1—y8 285 1—y8 28, 1—y§ 28,

Defining a new set of conformal cross-ratios for the snowflake as in (2.14), we have

6,,6 6
6 _ UgUg 1 6_ 1 1 6_ 1 1 6 _ Vi2
LTy = —%§ > Y2 = "% Y3 = 5> Y1 = "6
V33 V13 Va3 V33
6,.6 6 6 ,.6 6
S0 — U1V33 o - V22 S0 U11V33 N - 1 26— U33
23~ 76,6 ,6° 24 = 6.6 25 = 76,6 3= 76,6 <357 6.6
UV13Va3 UgV13 UgV13 UgVa3 UgV33
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such that the action of the OPE differential operator on I5 (2.13) gives

G — <n11> (mz) <n22> (—hs5)ms (P3—n1+n2+812)7 (P3+h2+h5)ms tostos 104
6=

s11 ) \ 512/ \ 822 (P34+h2)2ms+oo+os+os (P3+ho+1—d/2)m,

m33 mi2

y ros+s11\ [r2a+s22) (02 (03 [04)\ [ ha—n1—811—822—T25—T2—l2
mii Mmoo lo I3 Iy mis

» <—p2—h3+n2+511 +522—7‘35—T3—l3>

ma3

X(_1)511+512+322+12+13+l4+m11+m12+m22+m13+m23+m33 (SlQ_T45_T4_l4> ( l4 >

« (—hg+n1+8114522) 5g-tras+is (P2HR3—N2—511—522) 53+ ras+75 (—512) 0atras+74
02!0'3!0'4!

(u§) 1728 (u§) 24745 (u§) ™3 [T < <z (1—08; ) Mot

X | | | | | In4! | | |
1923:1724:7925:134:735:745:101:111:1112:19292°

CsF5,

(B.3)
with the proper legs (2.14) and mg = 7’5 +7. Here again, we omit the indices of summation
on the sum for notational simplicity. Equation (B.3) corresponds to the scalar six-point
conformal blocks in the snowflake channel, and we now aim to re-sum as many superfluous
sums as possible to get to our final results (2.15) and (2.16).

The sum over [y is straightforward since the terms containing lo are
(71)l2 02 _ (_0-2)12’
Iy lo!

<h3n1 —511 8227’257“2l2>

mi3

and

= (—1yms (—hg+ni1+s11+522+725472)mys (—h3+n1+811+S22+7r25+T2+m13)1, |
mi3!(—h3+ni+s11+s22+re5+72)1,

Thus, the sum over [y can be performed using (A.1). Similarly, we can evaluate the sums
over I3, ly, 02, 03, and oy, in that order,'? using (A.1). This results in

Gﬁzz ni1 n12 122 (_h5)m3+m13+m23+m33(p3_n1+n2+312)F5(]53+h2+h5)m3+m12
511 ) \ s12 /] \ 822 (D34+h2)2ms+miz-+mistmas+mss (D3R +1—d/2)m,

X(_1)511+S12+822+m11+m22 T25+511 T247+522
mi1 ma2

) (_512)m12+M33+T45+F4

X (—hat+ni+511+522)mugras 72 (P2Hh3—n2—511—822)mos +rys 7
roslraglroslraglrsstrysng ngi Ingalngs!

()™ 72 (ug) ™27 (uf) ™ [T1 < qcps(1—vgp) ™"

miz!mazlmazlmss!

X C5F5.

1075 evaluate the sums over Iy and o4, we must first change the variables such that l4 — l4 + mi2 and
04 — 04 + M1z, respectively.
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Since rs5 = mg — o5 — T34 — r45 — T'o3 — T'24, changing variables by s19 — s19 + my2 +
m33 + 145 + 724 + 734 leads to

G = Z ni1 n22 (_h5)m3+m13+m23+m33 (ﬁ3+h2+h5)m3+m12
S11 822 (133+h2)2m3+m12+m13+m23+m33(§3+h2+1_d/2)m3

X(_1)811+812+822+m11+m22 r25+S11 7241822
mii mao2

(p3—n1+no+sia+mio+mas+ras+1r24+H734) ms—ros—ros—raa

| |

X
(7’L12—812 _m12_m33_7n45_7"24_7n34) : (m3—7“25 —T34—T45 _T23_T24) :

% (—hz+ni+s11 +522)m13+7’25+7’23+7’24 (p2+hz—no—s11 _322)m3+M23*T24*T25*7"45

512!7“23!7“24!1"25!r34!7"45!n1!n11!n22!
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miz!miglmeog!mss!

X

CsFs5,

and we can now sum over 134, giving [after using (A.2)]

Ge = Z <n11> (n22> (_h5)m3+m13+m23+m33 (ﬁ3+h2+h5)m3+m12
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(P3—114+N24+112 ) my —ros —ras —ras—ras (P3—11+N2+M3+S12+M12+M33—T23 =725 ) rgs +r4s
(n12—812—M12—Mm33—ra5—724)! (M3 —T25—T45—T23—724)!

« (_h3 +n1 +811+522)m13+T25+T23+T24 (p2+h3_n2_511 _522)m3+m2377‘2477“2577‘45

512!7’23!1"24!7‘25!T‘45!’ﬂ1!’ﬂ11 !Tl22!

(uf)1 72 (uf) 2745 (u§) ™ T g (1—05,) e
X C5F5.
m12!m13!m23!m33!

We then change the variables by ro4 — 794 + koo, and re5 — ro5 + k11 and finally define
ro4 = r —ra95. With these changes, we can compute the sums over rao5, r, s12, and nj9, with

Gg = Z ni 22 (_hS)m3+m13+m23+m33 (ﬁS + ho + h5)m3+m12
511 522 (133 + h2)2m3+m12+mw+m23+m33 (]33 +he+1- d/2)m3

X (_1)811+522+m11+m22 511 522
mi1 — ki1 ) \'mag — koo

P2 + ho + 11 — ng + mag + mag + 2ra3 + k11 + k22)mg—ras—ras ki1 —kao

" (
(m3 —ras — 193 — k11 — kao)!

o (—h3 +n1 + 511 + 522)misras+hi1+kee (P2 + P3 — N2 — 511 — 522)mos a3
k11!k:gz!r23!r45!n1!n11!n22!

(_h2)n1+n2+n11+n22 (_h3)n1+n11+n22 (p2 + h2)n1 (p2 + h3)n1

X
(p2)2n1+n11+n22 (pQ +1- d/2)n1
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(p3 - nl)m2+m3+m12+m33*7“23 (p3 — hay + h4)?ﬂ2+n11+k11 (_h4)m2+m12+m33+n22+kz2
(p3 - h2)2m2+m12+m33+n11+n22+1€11+k22 (p3 —hy+1-— d/2)n2

y (u§)matr2s (uf)m2tras (u)™s Ty cpeg(1 — v5)™at

miz!mizlmaslmas!

F57
where we made C explicit.

After Changing the variables by S99 — S99 + Moy — ]4322 and S11 — S11 +m11 — ]{?11, and
also defining s99 = s — s11, we can evaluate the summation over si1, leading to

o = Z (—1)kutkez(—py g —nootmyg+mao—ki1—ka2)s(— 5 )mg-+mag+mas+mss (D3 +h2+Hh5)mgtmis
(p3+h2)2m3+m12+m13+m23+m33 (ﬁ3+h2+1_d/2)m3

o (p2tha+n1—nat+miz+maes+2re3+ki1+k22) mg—ros—ras—kiy —kao
(mg—ra5—ra3—ki11—ka2)!

(—h3+n1+s+mi1+maa—ki1—k22)mis+ras+kii+hao
sl(n11—ma1+k11)!(nee—mag+keo ) (m11—k11)! (mag—kaa) k11 kaa!raglrasing!

X

X (p2+53*n2*5*m11*m22+k11+k22)m23+r23

(_hQ)n1+n2+n11+n22 (_hS)n1+n11+n22 (p2+h2)n1 (p2+h3)n1

X
(P2)2n1 41114120 (P2+1=d/2) 5,

(P3=71)my+ms+miz+mas—ras (P3—P2Hha)mytnys +h1y (—P4) motmiatmss+naathan
<p3 _h2>2m2+m12 +mgz3+ni1+noa+ki1+ka2 (p3 —ho+1 _d/2)n2

(uf) 723 (u§) 21745 (u§)™3 T] ) < e (1—05 ) ™t P

miz!mizlmazlmss!

X

X

Using the following identity,

(p2 + Bg —ng — 8 —mi1 —ma2 + k11 + k22)mos4ras

mo3 + 723 7
_ Z ( 23j )(p2 + hg —ng —my1 —mag + k11 + k22)j(_3)m23+7“23—j7
J

and changing the index of summation s by s — s 4+ mes + ro3 — j, the sum over s can be
performed, leading to

Go— ™ (1

X(p2+h2+n1_n2+m13+m23+27a23+k11+k22)m377‘2371”457k‘117k22 mao3+723
(ma—r45—rog—ki1—ka2)! J

Fi1thaztmestras—j (_h5)m3 +m13+ma3+ms3 (ﬁ3+h2+h5)m3 +mi2

(]33+h2)2m3+m12+m13+m23+m33 (ﬁ3+h2+1_d/2)m3

(—h3)my +miy £magtmas+mas fras—j (P2Fhs—na—mii—maog+ki1+ka);
(n11—ma1+ki1)! (noa—mao+kao) ! (mi1—k11) ! (mag—ka2 ) k11 kool ra3!rasng !

" (—n11—n22—k11—koa+m11+M22)mos+ras— (—F2)ny +no 4011 +n20 (D202 0y (D203 )0y
(p2)2n1+n11+n22 (p2+1_d/2)n1

% (p3_n1)m2+m3+M12+m33—7“23 (p3_h2+h4)m2+m1+k11 (_h4)m2+m12+m33+n22+k22
(p3_h2)2m2+m12+m33+n11+n22+k11+k22 (p3_h2+1_d/2)n2
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X (_m13_T23_k11 _k22)n11+n22+k11+k22*m11*m22*m23*7“23+j

(u?)nl+r23(ug)n2+r45 (ug)mg H1§a§b§3(1_1}2b)m“b

x | | | |
1M12:11113:111923:171133 -

F5.

With ngg = n — ny1, it is now possible to sum over ni1, n, j, k11, and koo, giving

Ge = Z (_h5)m3+m13+m23+m33 (153 + ho + h5)m3+m12
(]53 + h2)QM3+M12+M13+m23+m33 (]53 +hy +1-— d/2)m3

y (p2 + ha +m1 —t1 — M2 + t2)mytmis+mos+ti—ts  (—A8)mi+mu+man+mus
(m3—t2 —tl)! tlltg!(ml —tl)!(TTlg —tz)!

" (=h2 +m1 4+ m2 — M3)my1+mes (—h2)my—t1+ma—ts (D2 + P2)my—t, (P2 + h3)my +mos
(p2)2m1+m11+m22+m13+m23 (p2 +1- d/2)m1 —t1
(p3 —mi + tl)m2+m3+mw+m33—t1 (p3 —ho + h4)M2+m11 (_h4)m2+m12+m22+m33

(p3 - h2)2m2+m11+m12+m22+m33 (p3 —hy+1-— d/Q)m2—t2
(uf)™ (u§)™ (u§)™ T1)<acpes(l — v5,)™ab

x 117219117090 17701 2 117002 117022 ] F,
mM11:1M12:M22:1113:7123:1133"

after redefining
rog = t1, r45 = to2, ny =my — ty, ng = meo — to.

We are thus left with three extra sums, two sums over ¢; and %9, respectively, and one sum
from Fy, which is given by

FL= B [—nl, —ng, —p2+d/2—n1 ) 1] — P [—m1+t1, —mo+ta, —p2+d/2—m1—|—t1 1

1—pa—ho—nq,p3—ny 1—=pa—ho—mi+ti, p3—m1+t;

Using (A.3) twice such that

—m1+t1,—m2+t2,—p2+d/2—m1+t1'1

3F2 )
[ 1 —p2—hy —mi+t1,p3 —mi + 4

~ (p2+h2—ma2+t2)m 1 7
= 3
(p2 + h2)m1—t1

(p2 + ho —ma +t2)my—t, (—p3 + ho + d/2 — ma + t2)my—t,

(pQ + h2)m1—t1 (pQ + h2 —ma + tQ)mz—tz

p3a_m2+t27ﬁ3_d/2 1
p3s—he —d/2+1,pg—mi+t; |’

—m1+t1,—m2+t2,]33—d/2 1
p2+hy —mao +ta,p3 —my +t1

><3F2[

and re-summing over to using (A.1) gives (2.15) and (2.16) (with ¢; — 2 and the index
of summation from the gF»-hypergeometric function chosen to be t1). This completes the
proof of the scalar six-point conformal blocks in the snowflake channel.

To express Fg in terms of Kampé de Fériet functions [45, 46], which are defined as

a: C;
e |t -
;ay g m,n>0

a)min(C)m(f)n z™Y"
n min!’

(B.4)

N
§/-\
3
+
3
s
3
S
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where

(@)min = (a1)mn - (ap)m+nv (B)man = (b1)man - (bq)m+n>
(©)m = (c1)m - (c)ms (@) = (d1)m - (ds)m,
(f)n = (fl)n(fu)na (g)n = (gl)n"'(gv)na

we first rewrite (2.16) as

(=p3thatd/2—m2)m, (=m2)s, (P3)r, (P3—d/2)1, (—hatma)y,
(p3)—m1 (_h2+m1)—m3 >0 (_h2+m1_m3)t1 (p3_m1)t1 (p3_h2+1_d/2)t1t1!

I =

—mi, —ms, _p2+d/2_m1 .

X3k ;
52 1+ho—my—t1, p3—mi+ty

)

by re-summing over ty. Using (A.3) on the gF»-hypergeometric function, expanding the
resulting 3F>-hypergeometric function, and combining Pochhammer symbols, we get to

—ps+ho +dJ2 — 5y — d/2; —ma, —ha, pa; —mi, —
Fﬁz( p3+ ho+d/ m2)m2F21’3702[ D3 — d/2; —ma, —hg, p3; —my, —ms3 ‘1’1]’

(p3)—mi (—h2)—ms 0N —hy —mg,ps —maisps —he +1—d/2; —

as stated in (2.16).

Finally, by using (A.3) again on the 3Fy-hypergeometric function from the summation
over to, it is possible to re-express Fg in terms of a more symmetric Kampé de Fériet
function as

1
(p3)7m1(_p3 + h2 + d/2)*m2(_1§3 - h2 + d/2)*m3

o p2L1 p3 —d/2,p3; —ma; —m3
1,1,1 p3 —mi;p3 — ho + 1 —d/2;ﬁ3+h2+1 —d/2

I =

1,1].

This form is more symmetric since it clearly shows that Fg is made out of two intertwined
3F5-hypergeometric functions, which is reminiscent of the comb channel result.
B.2 An alternative form

Instead of starting from the scalar five-point correlation functions (2.13), it is also possible
to repeat the steps above starting from (A.4). With the legs and the conformal cross-ratios

b= () i)™ Goe) ™ G ™ )™ Gan)
0 112723 113723 1114745 115745 1167126 m2mMe
6 _ T123M157)34 «6 _ 112734745 x6 _ 1167247135
u =, u2 =, U3 =,
11137247135 111471357)24 112671157)34 (B.5)
x6 _ 112734 «6 _ 7134725 «6 _ T1127]36
V11 = ) V12 = ) V13 = )
113724 124735 17137126
x6 __ 115734 x6 _ 1112746 x6 _ 11127156
Vg2 = ) Vgg = ) U3z = )
1114735 114726 15726
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the resulting scalar six-point conformal blocks in the snowflake channel are

OF = (p3_h2+h4)m2+ﬂ112+m33 (_h3)m1+m12 (p3)*M1+m2+m3+m23+m33 (p2+h3)M1+m11+m13
6 =
(_h2)m1+m2*m3+m12 (p2)2m1+m11+m12+m13 (p2+1_d/2)m1

(p3 —hy +h4)m2 +mi2+m33 (pZ +h2)?ﬂ1 —ma+m3+mi3 (_h4)m2 +mao+ma3
(p3_h2)2m2+m12+77122+m23+m33 (pg—h2+1 _d/2)nw

(ﬁ3+h2 +h5)m3 (_hQ)ml +mga—mg+miz+ma2 (_h5)m3+m13+m23+m33
(ﬁ3+h2)2m3+m13+m23+m33 (]53+h2+1 _d/Q)WL3

(B.6)
with F given by (2.16).
We note here that although the alternative forms for Fj; are the same (Fg = Fg), the
alternative forms for Cjs (B.6) and (2.15) are not the same function (C§ # Cs). However,
the two results must be equivalent as shown below.

First, it is easy to see that the conformal cross-ratios (B.5) and (2.14) are related
such that

6 6 6,.6
w6 — Uy w6 — Ug w6 — U3Uag
1 — 1)6 ) 2 vﬁ 1)6 ) 3 = U6 )
22 12V22 13
6 6
% 1 «6 _ Uil «6 _ U3
V11 = ~§ V12 = 6 V13 = ~6 »
6 6
Vg2 V92 V13
1 v8 1
35 = = v = vi§ = &
= 6 = 6 .6 =6 -
V12 PE! V13

Hence, since the scalar six-point correlation functions g must be the same, we get the
identity

Ge = (U?Q)M (0?3)h5 (UgQ)hQGg = G, (B.7)

for the scalar six-point conformal blocks in the snowflake channel (2.6). To prove (B.7),
we re-express Gog in terms of the conformal cross-ratios for G, expand in the conformal
cross-ratios of the latter, and evaluate the superfluous sums.

Using the fact that Fg = Fps, we first obtain

* Z (7h2)m1+m2—m3+m12+m22(7h5>m3+m13+m23+m33 (ﬁ3+h2+h5)m3
vo (§3+h2)2m3+m13+m23+m33 (ﬁ3+h2+1_d/2)m3
% (P2+h3)my +myy +mas (P2HP2)my —ma+ma+mas (P3)ma—my +ms+mas+mss
(p2)2m1+m11+m12+m13 (p2+1—d/2)m1

(_h2)m1 +ma—mg+mi1+mia (p3 _h2+h4)m2 +mi2+ms3

X
(p3 _h2)2m2 +miz2+maz+moz+mas (p3 —ha+1 _d/z)mQ

(_h4)m2+m22+m23 (_h3)m1+m12

(u6)ma
| e G e (A L ) L

X
(_hQ)m1+m2*m3+m12 1<a<3 Ma!
m m ma
Lo U™ (o™ ()™ 1\ (L B ayms
8 8 0 v 09,08 ot
y 5, <y 23 12 12Y13 13 Fg
9,
mip! mia! ms! mao! mas! mas!
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in terms of the conformal cross-ratios (2.14). Expanding in terms of u$ and 1 — 05, G
becomes

- Z (_hZ)m1+m27m3+m12+m22 (_h5)m3+m13+m23+m33 (ﬁ?) + h2 + h5)m3
v (133 + h2)2m3+m13+m23+m33 (]33 + h2 + 1— d/2)m3
% (P2 + h3)my +may +mas (P2 + h2)my —motmatmas (P3)ma—my +ms+mas+mas
(p2)2m1+m11+m12+m13 (p2 +1-— d/2)m1

(_hZ)m1+m2*m3+m11+m12 (p3 —ha + h4)M2+m12+m33
(p3 - h2)2m2+m12+m22+M23+M33 (p3 —hy+1-— d/2)m2

. (_h4)m2+m22+m23<_h3>m1+m12 H Map k12 ha —mg — koo — ko3
kab

/ !/
(_hQ)m1+m2—m3+m12 1<a<b<3 my Mg

y (hs —m3 — k13 — ka3 — k33> (hz +m3 —my —mo — k11 — k12> <k13> <k23>
mis My mis | \mis

6\ma _ 26 ym/,
X(_1)21§a§b§3(kab+m;b) H M H wlz‘ﬁ'
mg! mab!
1<a<3 1<a<b<3

We only need to evaluate the extra sums now to recover Cg (2.15) and thus prove (B.7).
We start by observing that the terms containing k;; are given by

(= 1y (M1 _ (Emaey,
k11 k!

and

(hz +m3 —my —ma — ki1 — k‘12>

!/
Moo

a (=ha +mq +ma — mg + kiz + M)k, (—ha + m1 +ma — m3 + ki2)my,

— (1"

(—hg +m1 + ma — m3 + k12)k,, Mbs!

Thus the summation over kj; can be done with the help of (A.1). The same can be said
for the summations over all of the kup, except for koz.!' After these steps, G’ becomes

* Z (_hQ)m1+m2*m3+m12+m22(_h5)m3+m13+m23+m33 (]53 + h2 + h5)m3
v6 (D3 + h2)2ms+mistmastmss (D3 + ha +1 —d/2)m,
(p2 + h3>m1+m11+m13 (p2 + h2)m1 —ma+m3g+mi3 (p3>m2—m1+m3+M23+m33
(p2>2m1+m11+m12+m13 (pZ +1- d/2)m1

(_hQ)m1+m2—m3+m’11+m’22 (p3 - h2 + h4)m2+m12+m33

(p3 - h2)2m2+m12+m22+m23+m33 (p3 - h2 +1- d/2)m2

% (=ha)motmontmos (—R3)my+mys <m23> <k23>

/
(_hQ)m1+m2 —mg+mi2 ka3 M33

H1To evaluate the sums over ki and k13, we must first change the variables by kij2 — k12 + mj; and
k13 — kis + mbs, respectively.
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/
ma2! (=M )iy +mip—m, (—hs + m3 + mas + mag + k23)m! 4 m, —mas—mas

X
! ! ! ! !
M oI s e lmi,!

mas!(—ml9)mg, (—ha + ma + maa + k23)m’12—m22 (_m/13)m13+m33—m’23
(maz — mip)!(mag — mig)!

X

6\mq
X(_l)k23+mg3 H (ua)m

v
1<a<3 Ma* 1<q<p<s

H (1 — U?Lb)mab FG

Map

We can now proceed with the summation over m1;, getting to
* Z (*hZ)m1+m2*m3+m12+m22(*h5)m3+m13+m23+m33 (]53 + ha + h5)m3
vo (ﬁS + h2)2m3+m13+m23+m33 (]33 +hy+1— d/2)m3

(p2 + h3)m1+m13 (pQ + h2)m1—m2+m3+m13 (p3)m2—m1+m3+m23+m33
(p2)2m1+m’11+m’22+m13 (pQ +1-— d/2)m1

(_h2)m1+m27m3+m’11+m’22 (p3 - h2 + h4)m2+m12+m33

(p3 - h2)QTn2+m12+m22+m23+m33 (p3 —ha+1-— d/2)m2

(_h4)m2+m22+m23 (_h3)m1+m’11+m’22 <m23> ( ko3 >

/
ka3 Mmgg

X
(*hQ)m1 +ma—m3z+miz

/
martmag! (=mag )y, —mt, (—hs +m3 + mas + mas + k23)im, 1ml, —mas—mas

miy Imiolmigmaylmis!

M3l (=g mas (—ha + M2 + 22 + k23)mt ) —mas (—113)mys +mss—md,
(mag —myy)!(mag — mig)!

(1- ”Sb)m;b

mab!

X

(ug)™

X (—1)k23+m’33 H ' H

1<a<3 Ma: 1<a<b<3

Fs.

To evaluate the summation over kog, we first change the variable by kag — ka3 + mjs.
Then, using the following identity

(—h4 + mo + Mmoo + m/33 + k23)m/12_m22

miy — maa
=> ( N J >(—h4 M2 4 Mo + M3, gy —j (—Mas + iz + ka3)j,
J

we can re-sum over kog, leading to

*6 _ Z (_hQ)m1+m2—m3+m12+m22 (ﬁ?, + ha + h5)’n’I,3

! (53 + h2)2m3+m13+m23+m33 (]33 +he+1- d/2)m3

(p2 + h3)m1+m13 (p2 + h2)m1—m2+m3+m13 <p3)m2—m1+m3+m23+m33
(p2)2m1+m’11+m’22+m13 (p2 +1- d/2)m1

(_h2)m1+m27m3+m/11+m/22 (p?) — hg + h4)m2+m12+m33

(p3 - h2)2m2+m12+m22+m23+m33 (p?) —ha+1-— d/2)m2

(_h4)m2+m'12+m23*j(_h3)ml+m/11+m/22
(=hs + m3 + miz + maz + m33)—;(—h2)mi+me—ms+m1s
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/
mi1 !m12!(_m22)m12—m’11 (_hS)m3+m’l3+m’23+m’33

/ / / / / /
iy g mgmiy tmigstms)!

malmas! (=g )may +5 (=113 — Mg + Mz + M33)mog—my, i (—113)m1s +mas—mi,
g (maz — myy)l(mag — mig — j)!(mas — mig)!

/
» H (Ug)ma H (1-— Ugb)m“b Fe.
1<a<y M 1<a<b<3 Map!

At this point, we sum over maos and mqo after we change the variable such that mis —
mi2 + mf;. This gives

=Y (D3 + ha + P )img
! (153 + h2)2m3+m13+m23+m33 (153 +hy+1— d/2)m3
(p2 + h3)m1+m13 (p2 + h2>m1—m2+m3+m13 (p?))mgfm1+m3+m’12+m23+m337j
(p2)2m1+m’11+m’22+m13 (pQ +1- d/2)m1

(_hQ)m1+m2—m3+m’ll+m’22 (p3 — ha + h4)m2+m’11+m33
X

(p3 - h2)2m2+m’11+m’12+m’22+m23+m33—j (p3 —hy+1- d/2)m2

(7h5)m3+m’13+m’23+mg3(*h4)m2+m’12+m/22+m23—j(*h3)m1+m’11+m’22
ms33!(—hs + m3 + mi3 + maz + m33)_;

X

(_m/12)j(_m/13 - ml23 +mi3 + m33)m23*m§,37j(_m/13)m13+m33*m'23

jH(ma3 — mjyz — j)!(m13 — mhy)!

(ug)™ (1= vgy) "
o U B i | e
1<a<3 @ 1<a<b<3 ab*

Changing the variable by mag — ma3+mjs+ 7 and then redefining mos = m —mss, we
can finally perform the re-summations over mgs, j, m, and mj3 (where we first make the
substitution mi3 — mi3 + mb3). Redefining m/, by mgp, we are thus left with Gig = G,
completing the proof.

C Symmetry properties

This appendix presents the proofs of the symmetry properties of the scalar six-point con-
formal blocks in the snowflake channel, which are generated by rotations, reflections and
dendrite permutations as in (3.2), (3.3), and (3.4), respectively. Collectively, these sym-
metries generate the (Zs)? x D3 group discussed in section 3.1.

C.1 Rotations of the triangle

To prove invariance under the rotation generator R (3.2), it is only necessary to check
that (2.16) verifies

F(d,h2 ,h3,ha,hs;p2,p3,p4,P5,P6)

_ F(d7—P3,h4,h57h3;p3—h2,p2+h2,P5,p67P4)
6|snowflake -

6|snowflake (m27 m3,my ) .

(C.1)

(m1, mg, m3)

To simplify the notation, we denote (C.1) as Fg = FgR.
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First, we rewrite (2.16) as

(=p3 + ha +d/2 — ma)m, (—m1)e, (—ma), (—m3)e,
(P3)—my (—h2 +m1 +m2) g 1120 (p3 —ha —d/2+4 1)

Fe =

x (p3)t1 (133 - d/2)t1(_p2 + d/2 - ml)tz(l + hy —mq +m3 — m2)m2—t1
(14 ho —m1 — M2)mo—t, 41, (P3 — M1 )ty 4211 2! ’
and then use the identity

(1 + hg —mq +mg — m2)m2—t1 _ (1 + hg —my1 +mg — mQ)m2,tl
(]_ +hy —mq — TTLQ)mQ,tlthQ (1 + hy —m1 —mg + tg)mgft(l +hg —mq — mg)t2
-3 (=m3 +t2)t,(=ma2 + 1)y

250 (Lt ho = my = ma + bo)iy (1 + hg — my — ma)p,ts!”

to express Fg as

(=p3 + ha +d/2 — m2)m, (=1 )1y (=m2)ty 415 (=13 )ty 415
(P3)—m (=ha +my+ma)omy , S0 (ps—ha—d/2+ 1)y

(p3)t, (P3 — d/2)1, (—=p2 + d/2 — ma )y,
(14 ha —m1 — m2)ty415(P3 — M1 )ty 41,11 2!E3!
We now modify the sum over ¢; with the help of (A.3),

s =

3F2 —mg + t37ﬁ3 - d/27p3 _ (pQ + h? —mg + t3)m2—t3
p3—ho—d/2+1,ps —my + 1t (—=p3 + ha +d/2 —ma +13)m,—ts
— ta, D3 —d/2, — t
w 3F) ma +t3,P3 /2, m1+2;1 7
p2 + ha —ma +t3,p3 — my +t2
to get
Py = (=m) ey (=m2) b5 (=113) 1415
1o o0 (P3)—mi (P2 + h2)—my (=ha + My 4+ ma) s lo!ts)!
(=p2 +d/2 —m1),(—p3 + ha +d/2 —ma),
(p3 — M)ty (P2 + ha — m2)t, (1 + ha — m1 — M2)ty+ts
— to, D3 —d/2, — t
« 3F) m1 +t2,p3 /2, mz-l-s;1 ,
p3 —mi +ta,p2 + ha —mao + 13
or
S (=ma)trts (—M2) 1145 (M3 )ty 44

11 ot >0 (P3)—my (P2 + h2)—my (—h2 + M1 + ma)_p,t1ltalts!

(P3 — d/2)1, (=p2 + d/2 — m1)1,(—p3 + ho + d/2 — ma)y,
(P3 = M)ty 412 (P2 + ho = M)ty a5 (14 ho = my — M)ty ey
This is the simplest form to check the invariance of Fg under the reflection generator (3.3).

(C.2)

We can use (A.3) again to obtain

Fs = Z (=ma) ey (=m2) 15 (—=m3) 1415
t2,t3>0 (=p2+d/2) —m, (P2+h2) —ms (—ho+mi+ma) _m,talts!
- (C.3)
(7p3+h2+d/2*m2)t3 _m1+t27]33—d/27p2+h2 1

342 )
(p2+ho—mg2)e, (14+ho—m1—m2) 1,41, po+1—d/2, po+ho—ma+ts
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It is now possible to expand the 3F5-hypergeometric function as a summation over ¢; and
evaluate the sum over to with the help of (A.1), leading to

Fy = Z (=m1)e, (—m2)ts(=1m3) 1y
1 e0 (P2 +d/2) i (P2 + h2) ma (=ha + M + M) gt 3!

" (14 ho —my —ma +m3)my—t, (P3 — d/2)t, (P2 + ha)t, (—p3 + ha +d/2 — ma)y,
(2 + 1 —d/2)e, (P2 + ho — M2ty 145 (1 + ha — M1 — M2) iy —ty 41, '

Expressing the sum over t3 as a 3Fy-hypergeometric function, we get

Fa= Y (he +ma —mg +t1)mg  (=ma)e (3 = d/2)1, (2 + ha)y,
t1>0 (_p2 + d/2)—m1 (pQ + h2)—m2 (p2 +1-— d/2)t1 (p2 + h2 - m?)htl!
1+ hy —mo—t1,pa+he —mg+1t1’

><3F2[ —ma, —mg, —p3 + ha +d/2 — ms ,1]‘

Using (A.3) once more leads to

Z (_h2 —m3+ tl)m;a (_ml)tl (]53 - d/2)t1 (p2 + h2)t1

Fr =
¢ t1>0 (_p2 + d/2)—m1 (pQ + h2)—m2 (p2 +1- d/2)t1 (p2 + h2 - m?)htl!

X3F2 [ _m27_m3ap3_d/2+tl 1‘|

—hg—m3+t1,p2—|—h2—m2+t1’

-y (—ho — m3 +t1)my (—=ma1)e, (P3 — d/2)s, (P2 + h2)y,
t1>0 (*pZ + d/Q)*Tm (p2 + h2)*m2 (p2 +1- d/2)t1 (p2 + ha — mZ)htl!

X 3Fy

—ma, —m3,p3 — d/2 +t 1
p2+ha—mo+ty,—has—mg+t1 |’

where in the last equality we simply changed the order of the two bottom parameters of
the 3 Fy-hypergeometric function. With this change, we can finally re-use (A.3) to get

Fy = Z (p2t+ho—mao+ms+t1)m, (—ha—m3+t1)ms  (—m1)e, (P3—d/2)¢, (p2+ha)t,
0 (=p2td/2) —m, (P2+h2) —m, (p2+1=d/2), (P2+h2—m2)my 41, 11!

oFy | T2 TS, —p3—ha+d/2—m3

)

l—pa—hg—mz—t1, —hg—ma+t;’
which is nothing else than Fs = Fgr, completing the proof of (C.1) and (3.2).

C.2 Reflections of the triangle

Invariance under the reflection generator S implies the identity (3.3), which we rewrite
as Gg = Ggg to simplify the notation. Before proceeding, we observe that, under the
reflection generator, Fy — Fg from the definition (C.2). Expressing Ggg in terms of the
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original conformal cross-ratios and expanding, we get

3 (p3 — h2 + ha)imy tmos (P2 + A3)imt 1may (D3 + B2 + 5 )it may

Ges = = =
(p3 + h2)2mg+m12+m13+m23+m33 (p3 +hy+1- d/2)m

(p2 + h2)m’1+mg—m’2+m12+m33 (p3)m’2—m’1 +mi+mi3+mas (_hQ)m’1 +mby—mb+mi1+mas
(p3 - h2)2m’2+m11+m22+m13+m23 (p3 —hy+1-— d/2)m

(_h4)mg+m11+m22+m13<_h3)m’1 +m12+m22+m33(_h5)m'3+m13+m23+m33
(p2)2m’1+m11+m12+m22+m33 (p2 +1- d/2)m’

1
o [man) (a2 (mas) (mez)) (mas) (mas hs —m) — k12 — koo — k33
ki1 )\ k12 ) \ k13 ) \ k22 ) \ kog ) \ k33 miy
" <h4 —mb — ki1 — kig — k22> <k33> <k22> <h5 —mf — ki3 — kag — k33> <k13>
mig mys ) \may My mis

X(_l)ZlgangS(k“b+m;b)F6 H (ua H ﬂ

A |
1<a<3 Ma' q<q<p<g  Mab:

X

where we must re-sum all the extra sums.

We start by evaluating the summations over ki1, k12, and ko3 using (A.1), getting to

o Z (p3 — h2 + h4>m'2+m23 (pz + h3)m’1+m11(ﬁ3 + h2 + h5)mg+m12
GS p— — —
(pS + h2)2mg+m12+m13+m23+m33 (p3 +hy+1- d/2)mé

(p2 + hQ)m’l +mb—mbi+mia+mas (p3)m’2—m’l +mf+miz+mas (_hQ)m’l—i-m’Q—m’g—I—mn—i-mgg
(p3 - h2)2m’2+m11+m22+m13+m23 (p3 —hy+1— d/Q)m’2

(*h4)m’2+m11+m22+m13(*h3)m’1+m12+m22+m33(*h5)mg+m13+m23+m33
(p2)2m’1+m11+m12+m22+m33 (p2 +1- d/2)m’

o (s (maz)) (mss (=M1 )mis (—hs +my + mag + ka2 + k33)my, —mis
ki3 ) \ koo ) \ k33

(_m/12)m11 (_h4 + ml2 +mq1 + ki3 + k22)m’127m11 <k33> (k‘gg) <k13>

X

!
mi!

X

! ! ! !
miy! my3 ) \Ma2 ) \MM33

(—m3)mas (—hs + mi + mas + k13 + ks3) s, —mas

X
!
Miys!

(— 1)k13 +kaa+kaz+m]g+mh,+mis

6\m/, 1 — 8.0
S i S
1<a<3 Ma' j<q<p<cg Mab:

We then change the variables by k13 — k13+mbs, koo — kao+mbs, and ksz — ksz+m/s,
and use the identity

(—hatmy+moy+mig+mir+kiz+k22)ms —my,

m/ —m11
= ( 123‘1 (—hatmiytmog+mir+miz+koa)mt —myy —j, (—maz+maz+kiz)j

-39 —



to re-sum over ki3, leading to

Gos =Y

(p2+h2)m’1 +mf—mb+mia+ma3 (p3)m’27m’1 +mf+miz+mas (_hQ)m’l +mb—mi+mi1+maa
(p3_h2)2m’2+m11+mz2+m13+m23 (pg _h2+1_d/2)m’2

(p3_h2+h4)m'2+m23 (p2+h3)m’l+m11 (ﬁ3+h2+h5)m’3+m12
(ﬁ3+h2)2mg+m12+m13+m23+m33 (]33+h2+1—d/2)m/3

(_h4)m’2+m11 +maz+mig (_h?’)m’l +miatmastmas (— h5)m’3 +miz+moz+mas

X
(p2)2m’1+m11+M12+M22+m33 (p2—|—1—d/2)m/1

(=m0 )mis (—hs+mi+mig+mostmiz+kae+kss)m: —mi,

ma1!(miz—mih3—7j1)!

! / !/
(=m2) w11+ (—hatmotmoy+mar+mas+kez)m, —myy

i
k3slmia!(maog—mby—kao)!
! / / .
(_m23)m13+m23—m53 —Jj1 (—hs+mz+myz+miz+mas+ksz—ji )m/23+m§3—m13—m23+j1
N /
Ji'koa!mas!(mg3—m/3—ks3)!
ml, 6 \m/
(1_Uab) ab

(ug)
X(_l)k22+k33F6 H L H 2

1<a<3 Ma' j<g<p<z  Mab’

Similarly, using the identity

(—hs+my+mig+mbstmio+ka+kss)m —my,

m/ —T12
— Z < 11j2 (—hg—i—m’l+m’22+m12+m33+k22)m/u,mlz,ﬁ(—m33+m’13+k33)j2,
J2

we can compute the sum over k33 and we get

Gos =Y

(p3 = h2 + ha)imy tmas (P2 + A3) it 1may (D3 + B2 + 5 )it 1mas
(153 + h2)2mg+m12+m13+m23+m33 (133 +hy+1- d/2)m'3

(p2 + hQ)m’1+m’3—m’2+m12+m33 (p3)m’2—m’l+m’3+m13+m23 (_hQ)m'l +mby—mb+mi1+mas
(p3 - h2)2m’2+m11+m22+m13+m23 (p3 —hy+1- d/2)m'2

(_h4)m’2 +mi1+maz2+mi3 (_ h3)m’1 +mi2+maa+mss (_hB)mg +mf g +mba+ml,

X
(p2)2m’1+m11+m12+m22+m33 (p2 +1- d/2)m’1
(=M1 1) maztje (—ha + my + mhy +maz + mas + k22) iy
m11!(m13 — mg3 — ]1)'
(=mA2)mar i (—ha +mb +mby +mar +mag + k22)mt gy —jy
mia!(mag — mby — kag)!
% (_ml23)m13+m23+m33—m'13—m/33—jl —J2
(=hs + mj + mag + mag + ma3)—j, —j, J1 G2l kag!mas! (mss — mi3 — j2)!
/ !
X (—1)k22F6 H (ug)ma H (1 — Ugb)mab
!
1<a<3 mg! 1<a<b<3 mab!
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Once again, we introduce

(—h3—|—m’1 +m/22+m12+m33+k22)m'11—m12—j2

:Z mi,—miz—j2 (

/ /
i —hg+m; +m12+m22+m33)m/ufmmfjrjg, (—m22+m22+k‘22)j3 )

J3

and sum over koo to obtain

5 (p3 = h2 + ha)imy tmas (P2 + A3) it 1may (D3 + B2 + 5 )it 1mas

Ges = — =
(p3 + h2)2mg+m12+m13+m23+m33 (p3 +he+1- d/2)m'3

(p2 + hQ)m’l +mb—mi+mia+mas (p3)m’2—m’1+m'3+m13+m23 (_hg)m’l +mby—mb+mi1+mas
(ps — h2)2m’2+m11+77122+m13+m23 (p3 —ha+1— d/2)m'2

(_h4)m’2 +m/ oy +mbhy+mi3—j1 (_ hi’))m'1 +m/, +maza+maz—ja—j3 (_h5)ml3 +mf 3 +mhy+my,

X
(p2)2m’1+m11+m12+m22+m33 (p2 +1- d/2)m’1

!/
(7m12)m11 +mag—mb,+j1—J3

X s
(—ha +mb 4+ maz + ma1 + maz) —jymaz!(maz — mhy — js)!

/
(_m23>m13+m23 +maz—m) 3 —mfs—j1—j2

X — -
(—hs +m3 + miz + ma3 + masz)—j, —j,j1'72'j3!mas! (msz — misz — j2)!

6\m! 6 \m/
('_mlll)mlz—i;jz—i-j;;' |F6 H (ua)/n'% H (1 — v/ab')mab )
mi1!(miz — mis — j1)! 1Zass Mol alies ml,)

At this point, we define mos = m — mq; and evaluate the summation over mi1, always
using (A.1), to find

(p3 —ha + h4)m'2+m23 (pQ + h3)m’1 (]33 + ho + h5)mg+m12
(ﬁ3 =+ h2)2m’3+m12+m13+m23+m33(_3 + h2 +1- d/2)m§

Ges =

(pQ + h2)m’1 +mfG—mi+miz2+mas (p3)m’2—m'1+m’3+m13+m23 (_hQ)m’l +mp—mi+m
(P3 = h2)amy +mtrmigtmas (P3 — ha + 1 —d/2)

(=ha)my+m,y+mlyy+maz—is (—R8)me +mi +my+mas—ia (— P8 ) mltmd s +mi +mi,

X
(p2)2m/1+m+m12+m33 (p2 +1- d/2)m'1
y (p2 + 2my + miy + Moo +M33 — J2)m—my, —js (12 m—m, 151 s
(=ha +mh + m + maz)_j;mazl(m — may, — js)!
y (_ml23)m13+m23+m33—m’13—mgg—jl —J2

(—hs + mb + myz + mag + mag) —j, —j,Mmas! (Mm33 — mls — ja)!

/ /
(_mlll)m12+j2+j3 Fs H (ug)ma H (1 — USb)mab
(m13 - mg’)3 - jl)' 1<a<3 m:zl 1<a<b<3 mflb!
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We now express the summation over js as a 3Fy-hypergeometric function, use (A.3),
and re-expand the 3 Fs-hypergeometric function as a sum over js to rewrite Ggg as

Ges =Y

(p2 +h2)m/1 +m4—mb+miz+ma3 (p3)m/2 —m} +mf+miz+mas <_h’2)m/1 +mfh—mf+m
(P3=h2)2mly +-m+mys-+mas (P3—h2+1=d/2)

(P3—h2+ha)my 4 mas (P2+73) mr (P3+h2+h5 ) s m
(133+h2)2m5+m12+m13+m23+m33 (p3+h2+1_d/2)m’

(—ha)mg 4 miy iy s —gis (18t vt by miss—io (R Dt ot s om
(p2)2m’1 +m’22+m12+m33+j3 (p2+1 _d/2)m/

X

/ /
% (_m12)m—m’22+j1 —7J3 (_m23)m13+m23+m33—m’13—m33—j1 —7J2
; — — —
(—hs+mg+miz+maz+mss)—j —j, J11j2ljslmas! (m—mby —js)mas! (mas —m’ 3 —ja2)!

/
a

/
( mll)m12+J2+J3F H (G)m H (1_Ugb)mab.
(m13 m33 «71) 1<a<3 mg' 1<a<b<3 m;b!

X

After changing m by m — m+mb,+j3, we evaluate the summation over m, leading to

G Z (P3—h2+ha)my+mas (P2+R3)m, (P3+h2+hs)my 1m,s
S = — —
¥ (p3+h2)2m'3+m12+m13+m23+m33 (p3+h2+1_d/2)m

(pz +h2)m’1 +mf—mb+miz+mas (p3)m’2 —m/ +mi+mi,+miz+maz—j1 (_h2)7n’1 +mby—mi+mb,+j3

(pg *h2)2m’2 +m,+mbh,+miz+maz—j1+i3 (pg —ha+1 *d/2)m

(_h4)m’2 +miy+my,+mis—ji+is (_hB)m’l +mf, +moy,+maz—j2 (_h5)mg+m’13+m’23+mg3
(p2)2m’1+m’22+m12+m33+j3 (p2+1_d/2)m

X

/ !
% (7m12)j1(7m23)m13+m23+m33—m'lg—mé,g—jl—jz
- - —
(—hs+mi+miz+mag+mas)_j, —j, j1'J2!d3!mi2lmas! (maz—mi 5 —j2)!

6)ml

’
(_mlll)m12+j2+j3F H (ua H (1_Ugb)mab
6 I mo

X .
(maz—miz—j1)!

1<a<3 @’ 1<a<b<3 ab’

We then change the variable mis by mi3 — mis+mis+71 and compute the summation
over ji. As a result, we get

G Z (p3fh2+h4)m/2+m23 (p2+h3)m’1 (ﬁ3+h2+h5)mg+m’12+m12
6S = — —
(Ps +h2)2m’3+m’12+mg3+m12+m13+m23+m33 (Ps +h2+17d/2>m’3

(p2 +h2)m’1 +mf—mbh+miz+mss (p3)m/2 —mj4+mi+mi,+mls+miz+mas (_h2)m/1 +mb—mf4+ml,+js3

(pS 7h2)2m’2+m/12 +mby+ml,+miz+meoz+js (p3 —ha+1 *d/2)m

(_h4)m’2+m’12 +mb,+mba+miz+js (_hB)m/1 +mi,+mbhy+msz—jo (_h5)mg+m/13+7n’23+m§53

X
(p2)2m/1+m/22+m12+m33+j3 (p2+1_d/2)m

/
(_m23)m13+m23+m33*m33*j2
7 7 1 7 :
(—h5+m3+m33+m13+m23+m33),j2]2!]3!m12!m23!(m33—m13—]2)!

’
X( mll)m12+]2+]3F H H (1—vg,) e
A :

(1m13)! 1<a<3 M 1<a<b<s  lab’
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We now redefine mo3 = n—m;3 and evaluate the summation over my3 with (A.1), which
implies

Gos Z Ep37h2+h4)m/2 (P2+h3)m;, (ﬁ3+h24:h5)m’3+m'12+m12
(p3+h2)ng+m’12+mg3+m12+n+m33 (P3+h2+1—d/2)mg
(pg-l—hg)m/l +mf—ml+my2Fmas (ps)m/zfm’1+mg+m/12+mg3+n(_h2)m’1 +mb—mi+mh,+j3
(P3—h2)2my+m, +mp, +my, +js (P3—h2+1—d/2)my

(_h4>7n’2+m’12+m/22 +mis+7s (_h3>7n’1 +mf, +mhy+maz—jo (_h5)m.’3+m’13+m’23+m§3

X
(P2)2m ) +mfy +mastmas+is (P2+1=d/2)m;

!/
(_m23)n+m33—m’13—j2
(—hs+ma+misz+ntmss)—j, j2!jlmiz! (maz—miz—j2)!
5T Mg TMg3TNTIN33)—j,]2:]3:M12:(TM33 =M 13—]2):

1 !

(*m'11)m12+j2+j3F H (ug)me H (1—08,)™a
n! 6 m! ! m.,l

1<a<3 @’ 1<a<b<3 ab

X

We can proceed with the summation over j,, which gives a 3F>-hypergeometric func-
tion, use (A.3) once more, and re-expand with the same index of summation to rewrite
Ges as

o > (p3—ha+ha)m; (P2+h3)m; (P3+h2+hs)my +my, +mis
6S — — —
(p3+h2)2mé+m’12+m’33+m12 +n+mss (p3+h2+1_d/2)mé

(p2 +h2)m’1 +m’3 —mb+miz+mas3 (p3)m'2 —m/ +mé+m’12 +mé3+n (_h2)m'1 +m —mé+m'22+j3
(p3_h2)2m’2+m/12+m'22+mg3+j3 (p3_h2+]—_d/2)m’2

() miymiy s tis (R3)mi 4y +migtmg, (FR8 g md tmpmi 4o

X
(p2)2m’1 +mb,+miz+masz+js (p2+1 —d/2)m/1

li / / . . /
(—hg+mi+mig+moy+mis+iot+is)mss—m),—js (—M03 ) mas—m!,— i

X — ;
Joljalmaal(mags—m/i3—j2)!

! !
« (_m/ll)m12+j2+j3 Ja H (ug)ma H (1_v3b)mab
n! 6 A 1

I
m
1<a<3 1<a<b<3 a

This allows us to sum over n, leading to

Ie Z (p3_h2+h4)m’2 (p2+h3)m’1 (ﬁ3+h2+h5)mg+m’12+m12
65 = = -
(D3+h2) 2 iyt g+l +mlyg +mas-+ga (P3Hh2+1=d/2)

y (p2 +h2)m’1 +mb—ml+ml +mhs+miatjs (pS)mé —m/+mfi+mi,+ml, (= )m’1 +my—mi+mb,+is
(P3—h2)2ml+-my+mpy +miy+is (P3—h2+1=d/2)
()t ety 4o (P8 )t oty ety (205 Yt et s iy
(p2)2m/1 +mi,+miz+maz+is (p2+1_d/2)m/1

X

/! ! ! - - !
(—ha+mi+mi3+moy+mia+ia+s) mgs —my, —j» (M3 ) mss —m/ 5~

(m3z—my3—j2)!

% (_mlll)m12+j2+j3 F H (ug)ma H (1_Ugb)mab )

Joljzlmasa! ! -~

/
1<a<3 a’ 1<a<b<3 ab’
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We then change mg33 by mss — mss+m/s+j2 and sum over msz to get

Gos — Z (P3—ha+ha)m, (P2Hh3)m! +my, (D3+Hh2+hs)m) vt +mas
<ﬁ3+h2)2mg+m’12+m’13+m’23+m’33+m12+j2 (P3t+ha+1—d/2)m,
y (P2+P2 )t 4ty —miy +my +miy +mna+ iz (P3) my —mi +m+m y +mby (—R2)mg +my —mg +mi, +js
(P3—h2)2my +-m,+mh,+mhy+ijs (P3—h2+1=d/2) 1,

(=P g ity mi iy s (T8 )i pmi 4y msy, (RS Vg md 4mtmi o

X
(p2)2m’1+m’13+m;2+m;3+m12+j2+j3 (p2+1—=d/2)m;
/ 6\m’ 6 \m’
% (=M1 mastiatis Fy H (ug)™a H (1—vgp) M ar
151, | /1 | ’
J2:J3:M12: 1<0<3 a* 1<a<b<3 mab.

We now sum over miz, leading to a 3Fy-hypergeometric function, and use (A.3) one
last time to rewrite Ggg as

Z p3 h2+h4)m2 (p2+h3)m +m23(p3+h2+h5)m +m12
(p3+h2) 2mg+mf,+mig+mystmis+miatio (P3+ho+1- d/2)

« (p2+h2)m'1+m'3—m'2+m'13+m'23+m12+j2 (pd)mé—m’l +’m'3+7n’12+’m'33 (_hQ)m'l+m’2—m'3+m’11+m'22—m12—j2
(p3_h2)2m'2+m'12+m'22+m’33+j3 (p3_h2+1_d/2)m’

m
(_1) 12 (_h4)m’2+m’12+m’22+m'33+j3 (_h3)m’1+m’11+m’13+m'22 (_h5)m’3+m’13+m’23+m'33+m12+j2

X
(p2)2m’ +m’11+m’13+m/22+m/23 (p2+1_d/2)m/1

X

(_mlll)’”12+j2+“F H ) H (1_U2b)mab'

iolj3lmya! m’! m' !
J2:]3:Mm12 1<a<s M@’ 1<a<i<s ab

This transformation allows us to sum over js following (A.1), which leads to

e g = Z (p3_h2+h4)’m'2+7n'11—7n12—j2 (p2+h3)’m'1+7n’23 (p3+h2+h5)’m'3+7n’12
6S — — —
(p3+h2)2m’3+m’12+m’13+m’23+m'33+m12+j2 (p3+h2+1_d/2)m’3

« (p2+h2)m'1+m'3—m/2+m'13+m'23+m12+j2 (pd)mé—m’l +’m'3+7n’12+1’n'33 (_hQ)m'1+m’2 —m'3+m’11+m'22—m12—j2

(p3_h2)2m’2+m/11+m’12+m’22+m’33—m12—j2 (pd_h2+1_d/2)m’
(D)™ (ha)mytmiymyymiy (R3)mi 4mt bty tms, (F5)mg bmd b 4y +mas -+

(p2)2m’ +ml +mi+mh,+mh, (p2+1—d/2)m/

6 \m’

x( mi) mlz+ng H (ug)™e H (1—vgy)™av

| ’ .
Jalmaz! 1<a<3 mg! 1<a<b<3  ab’

X

6)711

We are thus left with two extra sums (over my» and j2). However, they are both trivial.
Indeed, by redefining j, — jo—mi2 and using the binomial identity

1 1 )
—mer = (1-1)%2,
Z( ) ma!(ja—miz)! 32!( )

mi2

we find that j, = 0 and thus

G Z (p3_h2+h4)m’2+m’11(p2+h3)m’l+m’23 (ﬁ3+h2+h5)mg+m’12
65 — - —
(p3+h2)2m§+m’12+m’13+m’23+mg3 (p3+h2+17d/2)m’

(p2+h2)m’1 +mi—mi+mis+mb, (pB)m'Q —mj+mi+m],+mi, (7h2)m’1 +mh—mi+mi +mb,

(P3—h2)2mitmi, +miy 4 miy +mi, (P3—ho+1=d/2)m;
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() miymiy +miyy (R3)mg 4, +migtmg, (SR ) md 4y my,
(P2)2ms +m +m, s +miyy+mi, (P2H1—d/2)m;
! !
(u) (1=u8,)
XFG H a/ | H %b )

m’! m’,!
1<a<3 a’ 1<a<b<3 ab

X

which implies Ggs = Gg and proves (3.3).

C.3 Permutations of the dendrites

Finally, we present the proof of the invariance of the scalar six-point correlation functions
under dendrite permutation P (3.4). For this proof, we use the alternative form (B.6) for
which F§ = Fg (2.16), where Fj — F¢ trivially under P. Equation (3.4) thus becomes

*(d,ha,h3,ha,hs5;p2,p3,04,05,06) (, %6 %6 , %6, %6 %6 %6  +6 %6 _ %6
G6\snowﬂakc (ul )y Ug ™y Ug ,Ull,’t}12,vl3,’022,1}23,'033)

= (v19)"2 (v33)"2 (vi5)"

*6 *6 *6,),%6 ), %6 *6 *6 *6
XG*(d7h2»*P2*hs,h4’h5§P27P3,P4,P5,Z76) ( Uy Ug uz vy 1 1 1 vy v33 U33)
6|snowflake *6,,%6 7 , %6, %6 *6 7 k67 %67 k67 %67 ) %67 , %6 :
| V11V12 V11V12 V13 V11 V12 Vi3 V12 U1z Uig

(C.4)
For notational simplicity, we rewrite (C.4) as G§ = Gjp.
First, by expanding Gf, in terms of the initial conformal cross-ratios, we obtain

GF, — Z <_h2)m1+m2—m3+m12+m22(_h5)m3+m13+m23+m33 (ﬁ3+h2+h5)m3
or (]33+h2)2m3+m13+m23+m33 (ﬁ3+h2+1_d/2)m3

(_h3)m1+m11+m13 (p2+h2)m1 —ma+msz+mi3 (p3)m2*m1+m3+m23+m33
(P2)2mi +myy +mastmas (P2+H1=d/2)m,

_hz)ml +mo—mg+mii+mia (p3_h'2+h4)m2+m12+m33 (_h4)m2+m22+m23 (p2+h3)m1+m12

 (
(

P3—h2)2mytmig+mastmas+mas (P3—ha+1—d/2)m, (=h2)my +ms—mz+mis
(mn) <m12> (mm) (m22> <m23) <m33> (h2+m3—m1—mz—ku)
ki1 ) \ k12 ) \ k13 ) \ k22 ) \ k23 ) \ ka3 mi
y <h2+m3—m1—m2—k12—k22> <h5—m3—k13—k}23—/~c33) <k22 > <k23 ) <k33 )
miy mis miy) \mas ) \mis

6 a
x(~1)Drzezzsbortmio) pe T w
1§a§3 ma' 1Sa§b§3

X

H (1—vkp)™ar

mab!

where all superfluous sums must be evaluated.
After evaluating the summations over all the ky (with change of variables k., —
kap+ml, for 2 <a <b <3), we find

Gip = Z (_h2)m1+nzz—m3+m’12+m§2(_h5)ms+nj’13+m’23+m-’33 (P3+ha+hs)m,
(p3+h2)2m3+m13+"123+m33 (p3+h2+17d/2)m3
(_h3)m1+m11+m13(p2+h2)m1*m2+m3+m13 (pS)m2*m1+m3+m23+m33
(p2)2m1+m11+m12+m13 (p2+1_d/2)m1

(_h2)m1+m2*m3+m11+m12 (p3_h2+h4)m2+m12+m33 (_h4)m2+m22+m23 (p2+h3)m1+m12
(p3_h2)2m2+m12+m22+m23+m33 (p3_h2+1_d/2)m2 (_hQ)m1+m2—m3+m12
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(=M1 )i, (_hZ_m3+m1+m2+mll)m’n—mu (_m/12)m12+m22—m’22

X
mu!(mgg—méz)!(mgg—m’m)!(m33—mé3)! mu!
X(7m,13)m13+m23+m33—m/23—m33Fg H (UZG)ma H (1*”22)m3b
| | ’

mys! mg! m |
13 1<a<3 @ 1<a<b<3 ab

Re-summing over mas, after the change the variable may — mas+mb,, we obtain

Gip=Y" (=h2)my +mz—matml,+mi, (15 ma-tm) s +my, +mi, (D3Hhaths)mg
or (P3+h2)2ms+mas+mas+mss (P3tha+1=d/2)m,

(_h3)m1+m11+m13 (p2+h2)m1 —ma+mgz+mig (p3)m2*m1+m3+m23+m33

X
(p2)2m1+m11+m12+m13 (p2+1_d/2)m1

(*h2)m1+m27m3+m11+m12 (p37h2+h4)m2+m/12+m33 (7h4)m2+m/22+m23 (p2+h3)m1+m12

(pS_h2)2m2+m’12+m/22+m23+m33 (p3_h2+1_d/2)m2 (_hQ)m1+m2—m3+m12

(=M1 )my, (—ha—ma+mi+ma+mit)m —miy (—miy)m,,

mu!(mgg—més)!(mgg—m’%)! m12!
X(7m/13)m13+m23+m33*m/23*mé3 o H (UZG)m“ H (1_v;g)m;b
mys! 6 a! mil
1<a<3 1<a<b<3 ab

Now, we redefine variables such that mas — maes+mbs and mss — msz+mss, and we
define m33 = m—mag3 to evaluate the sums over mo3, m, and m;3, always with the help

of (A.1),

GF . — Z (_hQ)m1+m2*m3+m/12+m'22(_h5)m3+m’13+m’23+m53 (§3+h2+h5)m3
o (ﬁ3+h2)2m3+m’13+m’23+mg3 (ﬁ3+h2+1_d/2)m3

(_h3)m1+m11 (p2+h2)m1*m2+m3+m'13 (p3)m27m1+m3+m'23+m/33
(p2)2m1+m11+m12+m’13 (p2+1_d/2)m1

(_hQ)m1+m2*m3+m11+m12 (p3_h2+h4)m2+m’12+m'33 (_h4)ﬂl2+m’22+m’23 (p2+h3)m1+m12+m’13

(pS_h2>2m2+m’12+mf‘,2+mé3+m§3 (pg—h2+1—d/2)m2 <_h2)m1+m2*m3+m12

% (7m/11)m11 (7h27m3+m1+m2+m11)m/ll—mll (7m€[2)’n’742

mu! m12!
*6\mg *6\m’
< F* H (uz’) H (1—vgp)™mar
6 ! m,
1<a<3 " 1<a<b<3 ab

The summation over mi; corresponds to a 3Fy-hypergeometric function which can be
transformed with the help of (A.3), leading to

P —m/y, —hs+mi, —ho+mi+mo—msz+mio ) (p2+hs+my +m12+m'13)m/11
3k2 (1| =
p2+2mi+mia+mis, —ha+mi+me—ms (p2+2ma+maig+miz)m,
—mh, —hs+mq, —m
%3 F) 11 /3+ 1/; 12 q
1—p2—h3—m1—m12—m11—m13, —ho+mi+mo—ms
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Hence, we find that

Qo Z (=h2)my +ma—ma+m!y+mly (“h5)matm!  4ml. +m), (D3+haths)m
°r (D3+h2) 2mg+-m  +miy +my, (P3+ha+1=d/2)mg

(7h3)m1+m11 (p2+h2)m1—m2+m3+m/13 (p3)m2—m1+m3+m/23+m/33

X
(P2)2my +m +maz+m), (P2H1—d/2)m,

y (_1)m11 (_m12)m11 (_h4)m2+m'22+m’23 (p2+h3)m1+m127m11+m’11+m’13 (p3_h2+h4)mg+m/12+m/33

(p3 _h2)2'm2 +mf,tmhy+mla+ml, (p3 _h2+1_d/2)m2

(=mi1)ms (—ha—ma+mi+ma+mi)mg —miy (—mi,)

m
X 12
m11! m12!
*6\m *6\m/
* (ua) ¢ (1_Uab) ab

XFG - 5 %.

me! ml,!
1<a<3 1<a<b<3

After evaluating the summation over mis (with mis — mia+my; first) with the help
of (A.1), the result becomes

GF . — Z (_hQ)ml +ma—maz+m/,+mi, (_h5)m3+m’13+m’23+mf33 (ﬁ3+h2+h5)m3
6P (253+h2)2m3+m’13+m/23+mg3 (ﬁ3+h2+1_d/2)m3

(7h3)m1+m/12 (p2+h2)7n1—m2+m3+m’13 (p3)mz—m1+m3+m’23+m/33
(p2)2m1+m’11+m/12+m’13 (p2+1—d/2)m1

% (_h4)m2+m’22+m/23 (p2+h3)m1+m’11+m/13 (pS_h2+h4)m2+m’12+m’33

(p3 _h2)2m2 +m,+mb,+mba+mla (p3 _h2 +1 _d/2)m2

% (_mll2)m11 (_m/ﬂ)mu (_h2_m3+m1+m2+m11)m’llfmn

miq!
*6\m *6\m.,
< F* (ua ) “ (1_Uab) ab
6 II ] II Iy
M- m o,
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Finally, we evaluate the summation over mj; and the result is

G = Z (=h2) s +ma—mg+ml,+my, (15 )mg+ml, +my, +my, (P3Fhaths)m,
0P (D3+h2)2ms+m! -+, +my, (P3Tho+1=d/2)m,

(p3—h2+h4)m2+m’12+mg3 (_h?))m1+m/l2 (p2+h2>m17m2+m3+m/13 (p3)m27m1+m3+m/23+m/33
(p2)2m1+m’11+m’12+m’13 (p2+1—d/2)m1

(_h2)m1+mzfma+m’u+m’12 (_h4)m2+m’22+m§3 (p2th3)m, +mi, +mig

(_h2)m1+m2—m3+m’12p3_h2)2m2+m’12+m52+m’23+mg3 (pS_h2+1_d/2)m2

%6\ Mg *6\m/
< F H (ug’) H (1—vgp)™er
mg! m
1<a<3 @ 1<a<b<3 ab

proving (C.4) and thus (3.4).
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