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1 Introduction

In recent years complete constructions of super string field theories have become avail-
able [1–7] and there has been interest in explicitly computing the effective action of a given
microscopic string field theory, after integrating out the massive degrees of freedom [8–11],
as originally done in [12]. The construction of effective actions from string field theory
is instrumental for both giving a useful low-dimensional handle on the space of classical
solutions [13–32] as well as for a better grounded approach to superstring perturbation
theory [33–43]. See [44–46] for recent reviews on SFT.

Since the pioneering works of Kajiura [47, 48] and more recently of Sen [39] it has been
recognized that the symmetry structure of the theory in the “ultraviolet” (i.e. the initial
microscopic theory) is reflected in the “infrared” (i.e. the effective theory for the light fields
at low energy). In particular if the original theory has a gauge invariance encoded in a A∞
or L∞ structure, then an isomorphic homotopy structure is retained after the RG flow.

In this paper we elucidate several aspects of the structures which are transferred from
the UV to the IR under the flow induced by classically integrating out a set of degrees
of freedom from the original action. By classically integrating-out we mean that we solve
the equations of motion for a set of degrees of freedom in function of the remaining ones
and then plug the solution back in the original action. This gives the tree-level effective
action, which corresponds to keep the leading contribution in the saddle-point expansion
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of the path integral of the massive fields. Loop corrections, following the general structure
of [39], can be also considered but we will not do so here.1

The (gauge-fixed) solution which expresses the massive fields in terms of the massless
fields is constructed perturbatively in the number of massless fields insertions. We consider
the standard Siegel gauge b0 = 0 for open strings and b0 + b̄0 = 0 for closed strings. Thanks
to the structure of the BRST charge the equation of motion for the Siegel-gauge part of the
massive fields is always solvable in terms of massless fields and Siegel gauge propagators
b0
L0

(1−P0), where P0 is the projector on the kernel of L0. On the other hand, the equations
of motion for the non-Siegel part of the massive fields remain as gauge constraints which
cannot be derived anymore from the gauge fixed-action. However, in the process of our
analysis, we realize that these gauge constraints are in fact automatically accounted for by
the effective equations of motion for the massless fields. So nothing is lost in fixing Siegel
gauge for the massive fields.2

This direct perturbative approach towards the effective action we have just outlined
becomes quickly cumbersome, just like any Feynman diagram expansion. However the
underlying homotopy structure of the original action allows to package the perturbation
theory in the convenient language of co-algebras, co-derivations and co-homomorphisms in
the (symmetrized, in case of L∞) tensor algebra [50–52]. Equipped with this convenient
language we are able to find closed-form expressions for the solution of the massive fields
in terms of the massless fields and, more importantly, a closed form expression for the
all-order tree-level effective action and its corresponding effective vertices. The process of
projecting out a set of fields in the tensor algebra can be rephrased as a strong-deformation-
retract (SDR) [48] and the final form of the effective vertices is in fact directly implied by
the homological perturbation lemma [53–55] which describes how the SDR for the initially
free theory is deformed by switching on interactions. This nicely parallels what we have
obtained by directly solving the equations of motion for the massive fields by automatically
encoding in the co-algebra language all the tree-level Feynman diagrams. In this approach
it is evident that the full equations of motion of string field theory (including the out-of-
gauge equations for the massive fields) are obeyed whenever the massless fields solve the
equations of motion of the effective action.

The co-algebra language turns out to be very efficient also to discuss a new general
class of observables (i.e. gauge invariant quantities) beside the action itself. Just like the
action is associated with the set of multi-string vertices encoded into odd cyclic (nilpotent)
coderivations m =

∑∞
n=1 mn, these new observables are associated to a set of odd cyclic

(not necessarily nilpotent) coderivations e =
∑∞
n=0 en which commute (as coderivations)

with the A∞ products m. These observables get modified in the IR upon integrating
out the massive fields but they remain invariant under the gauge transformations of the
effective action. Interestingly the explicit form of the effective observables coincide with the
original observables of the UV theory where the original massive fields are substituted by
their on-shell expression in terms of the massless fields, just as it happens for the effective
action itself.

1Some aspects in this regard are discussed in [49].
2This consistency property was already observed up to the first few orders in perturbation theory in

WZW-like heterotic string field theory [8].
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We then continue our analysis by studying what happens when, after having integrated
out some degrees of freedom, we decide to integrate out more fields. The two processes
can be performed one after the other and at each stage the homotopy-algebraic structure
is obviously preserved. But in fact the double-step integration can be performed in a single
step by considering an Hodge-Kodaira decomposition of the BRST charge in which the
propagator is the sum of the two subsequent propagators and the corresponding projector
is the product of the two subsequent projectors. This results in a very compact way to
handle the resulting doubled perturbation theory in a single set of diagrams where external
legs are the final projected fields and the internal propagators are the sum of the two
propagators. We call this process horizontal composition.

On a complementary line, it is often useful to consider deformations of the original UV
action that preserve the homotopy structure and therefore the gauge invariance. This is for
example what happens by adding to the action an observable of the kind discussed above
whose defining odd coderivation e is also nilpotent, so that (m+µe)2 = 0. It is interesting
to explore the structure of the effective action after the deformation. The full result of
integrating out can be obtained from the homological perturbation lemma by deforming
the free theory with m + µe, however the resulting perturbation theory is not very clearly
organized in this form. In fact, we would be more physically interested in computing the
effective action starting directly from the interacting theory with m and treating µe as
a deformation, by running the homological perturbation lemma on the initial interacting
SDR (and not on the free one). But in fact it turns out that the two effective actions
are just the same and this is guaranteed by the possibility of (de)composing interacting
SDR’s by simply decomposing the corresponding interactions. We call this process vertical
decomposition. Interestingly the final effective action will contain infinite non-linear terms
in the coderivation e accounting for the fact that the coderivation of the induced effective
observable is not nilpotent anymore, in general, and therefore it is not enough to add it to
the undeformed effective vertices to retain the A∞-relations in the infrared.

The second part of the paper is focused on examples of the above general structures
in the context of Witten bosonic open string field theory. We first describe the process of
horizontal composition needed to consistently treat the auxiliary level-zero field given by
c0|0, k〉, which plays the role of a Nakanishi-Lautrup (NL) field for the open string gluon.
This field would be set to zero in Siegel gauge, however at level zero this would leave
out-of-gauge equations which would not be accounted for by the remaining massless fields,
contrary to what happens for the massive fields. Therefore this field has to be integrated
out, rather than being set to zero and this is thus an instance where horizontal composition
becomes handy. The resulting effective action is expressed via off-shell amplitudes for the
gauge field where in addition to the usual worldsheet propagator b0

L0
(1−P0) there is also an

“algebraic” propagator of the form 1
2c0b−1b1P0. This propagator (which already appeared

in [8] in heterotic string field theory, with the understood superstring corrections) has
been recently discussed by Sen in the context of string perturbation theory in D-instantons
background [56] and our analysis offers a complementary (and equivalent in our tree-level
treatment) viewpoint.

At last we consider the Ellwood Invariant [57–59] as an example of our generic class of
observables. This observable is constructed using a single nilpotent coderivation consisting
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of a zero-string product given by the insertion of an on-shell closed string state at the
midpoint of the identity string field. This defines an open string state which behaves
as a tadpole in the action. We show how the vertical decomposition allows to account
for all the tree-level open-closed effective couplings whose structure can be systematically
extracted out at every order in perturbation theory. The fate of the tadpole in the full
theory depends on the possibility of removing the tadpole in the effective theory. Indeed
we show that the obstructions to the vacuum shift in the full theory are just the equations
of motion for the vacuum shift in the effective theory. If these equations are solvable then
a new shifted vacuum will show up, with no tadpole anymore and a deformed spectrum
of physical states, corresponding to the original D-brane having adapted to the new bulk
CFT. However it is also possible that the vacuum shift is obstructed at some order which
physically corresponds to the fact that the closed string deformation is incompatible with
the boundary conditions of the starting D-brane system.

The paper is organized as follows. In section 2 we present the detailed construction
of the tree-level effective action for a string field theory with A∞ gauge symmetry. We
start pedagogically in the product-notation and we gradually upgrade the language to
tensor co-algebras where we can write down explicit all-order statements. We discuss
observables in the UV and in the IR in subsection 2.3. In subsection 2.4 we describe the
concept of horizontal composition which is useful to integrate out further degrees of freedom
and in subsection 2.5 we describe vertical decomposition which is useful to calculate the
deformation of the effective action under a deformation of the microscopic action. In
section 3 we apply our constructions to Witten OSFT. In subsection 3.2 we show how
to integrate-out the NL field, maintaining the A∞ gauge symmetry and ending up with
off-shell amplitudes whose propagator is the sum of the usual Siegel gauge propagator and
a new algebraic propagator. In subsection 3.3 we give the structure of the effective action
deformed by the Ellwood invariant and we discuss some of the physics associated to the
closed string tadpole and the corresponding change in the bulk CFT. We conclude in
section 4 with final comments and an outlook for the future. In appendix A we review the
necessary mathematics of the strong deformation retract and the homological perturbation
lemma which we use thoroughly during the paper and finally in appendix B we extend
the construction of the effective action to string field theories based on L∞-algebras. The
technical new result here is given by the construction of the uplift of the propagator to an
appropriate operator in the symmetrized tensor co-algebra which is consistent with the co-
algebraic Hodge-Kodaira decomposition and therefore reproduces the correct perturbation
theory.

Some of the results presented in this paper are also discussed in the doctoral thesis [83]
by one of the authors.

Note added. During the writing of this paper we have learnt that [84] also obtained and
discussed the effective open-closed couplings in Witten OSFT. Our papers will appear on
the same day.
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2 Effective physics for an A∞ theory

The goal of this section will be to outline the framework for computing tree-level effective
actions for general string field theories based on a cyclic A∞ structure. Parallel considera-
tions can be applied to a cyclic L∞ structure, and the details are presented in appendix B.

2.1 Product notation

Let us first lay out the basic principles of constructing tree-level SFT effective actions
using the intuitive language of products on the string Hilbert space H. This is a graded
vector space, where the grading will be provided by the degree d(A) = |A| + 1 (with |A|
denoting the ghost-number of A ∈ H). The vertices of the full SFT actions which we will
be considering are given by degree-odd multilinear products

mk : H⊗k −→ H , (2.1)

which satisfy the A∞-relations [50]
k∑
l=1

mlmk+1−l = 0 . (2.2)

For k = 1, 2, 3, . . ., these can be explicitly written out as

0 = m1(m1(A1)) , (2.3a)
0 = m1(m2(A1, A2)) +m2(m1(A1), A2)+

+ (−1)d(A1)m2(A1,m1(A2)) , (2.3b)
0 = m1(m3(A1, A2, A3)) +m2(m2(A1, A2), A3)+

+ (−1)d(A1)m2(A1,m2(A2, A3))+

+m3(m1(A1), A2, A3) + (−1)d(A1)m3(A1,m1(A2), A3)+

+ (−1)d(A1)+d(A2)m3(A1, A2,m1(A3)) , (2.3c)
...

for A1, A2, A3, . . . ∈ H. The property (2.3a) says that the operation m1 is nilpotent, the
Leibniz-like property (2.3b) tells us that m1 is a derivation of the 2-product m2, while the
property (2.3c) says that the failure of m1 to be a derivation of m3 is exactly balanced by
the failure of the associativity of m2 (that is, m2 is associative up to a homotopy). The
1-string product m1 is usually given by the BRST charge Q

m1 = Q. (2.4)

The only remaining ingredient needed to write down the action is the symplectic form
ω : H⊗2 −→ C. This is a graded anti-symmetric bilinear map with respect to which the
products mk are cyclic

ω(A1, A2) = −(−1)d(A1)d(A)2ω(A2, A1) , (2.5a)

ω(A1,mk(A2, . . . , Ak+1)) = −(−1)d(A1)ω(mk(A1, . . . , Ak), Ak+1) , (2.5b)
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for Ai ∈ H. In practice, ω is usually given in terms of the BPZ inner product on H. Fixing
a degree-even element Ψ ∈ H to denote the dynamical string field, the full SFT action can
then be written as

S(Ψ) =
∞∑
k=1

1
k + 1ω(Ψ,mk(Ψ⊗k)) . (2.6)

We will often find it useful to get rid of the fractional coefficients 1/(k+1) in the action (2.6)
by introducing an arbitrary smooth interpolation Ψ(t) for 0 ≤ t ≤ 1 such that Ψ(0) = 0,
Ψ(1) = Ψ. Using cyclicity of mk with respect to ω, we can then rewrite the action (2.6) as

S(Ψ) =
∫ 1

0
dt
∞∑
k=1

ω(Ψ̇(t),mk(Ψ(t)⊗k)) , (2.7)

where the t-dependence is purely topological. Varying the action with respect to Ψ and
using cyclicity, we obtain the equation of motion

EOM(Ψ) =
∞∑
k=1

mk(Ψ⊗k) ≡ QΨ + J (Ψ) , (2.8)

where the interacting part of the equation of motion J (Ψ) has been defined. In the
mathematical context, this is usually called the Maurer-Cartan equation and any Ψ∗ ∈ H
which satisfies EOM(Ψ∗) = 0 (i.e. a classical solution) is called a Maurer-Cartan element.
It is also a simple exercise to show that the action (2.6) is invariant under the linearized
gauge transformation

δΛΨ =
∞∑
k=1

k−1∑
l=0

mk(Ψ⊗l,Λ,Ψ⊗(k−l−1)) , (2.9)

where Λ ∈ H is a degree-odd gauge parameter. Indeed, using cyclicity of mk and graded
anti-symmetry of ω a number of times, we have

δΛS =
∞∑
n=1

ω(δΛΨ,mn(Ψ⊗n)) (2.10a)

=
∞∑
n=1

∞∑
k=1

ω(Λ,mkmn(Ψ⊗k+n−1)) (2.10b)

= 0 , (2.10c)

where the last line holds by the A∞ relations (2.2).
Especially for the illustrative purposes of fixing Siegel gauge for the massive fields at

the beginning of our presentation, we should keep in mind the concrete examples of the
bosonic cubic OSFT (where the products truncate at m2) or the A∞ open superstring
field theory constructed in [4, 51]. At some point we will, however, realize that there is an
abstract way of fixing the gauge purely in terms of the propagator for the massive modes,
which does not require referring to concrete operators such as b0, c0 (which might be, in
principle, theory-specific).
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2.1.1 Splitting the string field

Let us consider a projector P acting on H (and denote P̄ = 1− P ) which is BPZ-even

ω(PA1, A2) = ω(A1, PA1) . (2.11)

For the purposes of our initial exposition in Siegel gauge, we will also require that ker L0 ⊂
imP . Introducing then an operator (b0/L0)P̄ ≡ h, we can write a Hodge-Kodaira decom-
position

hQ+Qh = 1− P . (2.12)

Here we note that h is always well-defined because since we assume that kerL0 ⊂ imP ,
we have (denoting by P0 the projector onto kerL0) P̄ = P̄0P̄ and (b0/L0)P̄0 is well-
defined by construction. As a consequence of (2.12) and the super-Jacobi identity, we have
[P,Q] = [P, h] = 0. Note that since we have (b0)2 = 0 = PP̄ = P̄P , we recover the
conditions h2 = Ph = hP = 0. We then decompose the string field as

Ψ = ψ +R, (2.13)

where ψ = PΨ and R = P̄Ψ. Using the BPZ property (2.11) of the projector P and
varying the action separately with respect to ψ and R, the equations of motion for ψ and
R read

EOMψ(ψ,R) = P EOM(ψ +R) = Qψ + PJ (ψ +R) , (2.14a)
EOMR(ψ,R) = P̄ EOM(ψ +R) = QR+ P̄J (ψ +R) . (2.14b)

2.1.2 Fixing Siegel gauge for R

We now want to use the equation of motion (2.14b) to integrate R out using h as a
propagator and extract the effective dynamics of ψ. In order to do this, we will need to
fix a gauge for R. For pedagogical reasons, we shall first do so by explicitly applying the
Siegel gauge condition b0R = 0. Let us therefore assume that, as in the case of the open
(super)string, we can decompose

Q = c0L0 + b0M
+ + Q̂ , (2.15)

where M and Q̂ do not contain any zero modes (see e.g. [60] for concrete expressions for
M+ and Q̂ for both bosonic string and superstring).

Defining the Siegel-gauge projector Ps = b0c0 together with P̄s = 1 − Ps = c0b0 and
assuming [P, Ps] = 0 (which is clearly the case for instance for P = P0), we then decompose
R = R+ R̃ where R = PsR and R̃ = P̄sR. Gauge-fixing of the R component of the string
field can then be effected by requiring R̃ = 0. The equation of motion EOMR(ψ,R)
therefore decomposes into two components

EOMR(ψ,R) = P̄sQR+ P̄sP̄J (ψ +R) , (2.16a)
EOMR̃(ψ,R) = PsQR+ PsP̄J (ψ +R) . (2.16b)

The first gives the equation of motion for R which is to be solved for R(ψ). The second gives
the gauge constraint (out-of-Siegel equation) which generally needs to be kept alongside
the in-Siegel equation of motion.

– 7 –
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2.1.3 Solving for R(ψ)

Note that using (2.15), we can rewrite

EOMR(ψ,R) = c0L0R+ c0b0P̄J (ψ +R) . (2.17)

That is, since b0R = 0, the solution R(ψ) needs to satisfy

R(ψ) = −hJ (Ψ)
∣∣
Ψ=ψ+R(ψ) . (2.18)

Denoting G(A) = −hJ (A) and assuming the initial condition R(0) = 0, we therefore obtain
the solution

R(ψ) = G(ψ + G(ψ + G(ψ + . . .))). (2.19)

Up to cubic order in ψ, R(ψ) can be expanded as

R(ψ) = −hm2(ψ,ψ)− hm3(ψ,ψ, ψ)+
+ hm2(hm2(ψ,ψ), ψ) + hm2(ψ, hm2(ψ,ψ)) + . . . (2.20)

so that substituting back into the splitting of the string field (2.13), we obtain

Ψ(ψ) ≡ ψ +R(ψ) (2.21a)
= ψ − hm2(ψ,ψ)− hm3(ψ,ψ, ψ)+

+ hm2(hm2(ψ,ψ), ψ) + hm2(ψ, hm2(ψ,ψ)) + . . . (2.21b)

Note that the terms inside Ψ(ψ) containing k powers of ψ can be given a Feynman-
diagrammatic interpretation as consisting of all possible rooted trees with k leaves and
at least 3-valent nodes. This means that the number of terms arising at order ψ⊗k is given
by the kth super-Catalan number.

2.1.4 Checking the out-of-Siegel constraint

Let us now show that the out-of-Siegel constraint (2.16b) is, in fact, automatically satisfied
whenever ψ solves the equation of motion (2.14a). We can first act Q on (2.18) and then
use the Hodge-Kodaira decomposition (2.12) to show that

QR(ψ) = −P̄J (Ψ(ψ)) + hQJ (Ψ(ψ)) . (2.22)

Substituting this into (2.16b), we obtain

EOMR̃(ψ,R(ψ)) = hQJ (Ψ(ψ)) . (2.23)

Using the A∞ relations we may now show that

QJ (Ψ) = −
∞∑
k=2

k−1∑
l=0

mk(Ψ⊗l, QΨ,Ψ⊗(k−1−l))+

−
∞∑
k=3

k−1∑
m=2

mmmk+1−m(Ψ⊗k) . (2.24)
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Expressing QΨ as

QΨ(ψ) = EOM(Ψ)− J (Ψ) (2.25)

and substituting (2.25) into the r.h.s. of (2.24) by straightforward manipulation of the
products, we eventually obtain

QJ (Ψ) = −
∞∑
k=2

k−1∑
l=0

mk(Ψ⊗l,EOM(Ψ(ψ)),Ψ⊗(k−1−l)) . (2.26)

Substituting this back into (2.23), as well as assuming that the equation of motion for
ψ is solved (that is, taking ψ = ψ∗ such that EOMψ(ψ∗, R(ψ∗)) = 0) and noting that
EOMR(ψ,R(ψ)) = 0, we obtain

EOMR̃(ψ∗, R(ψ∗)) = F [EOMR̃(ψ∗, R(ψ∗))] , (2.27)

where we have defined the linear operator

F [X] = −
∞∑
k=2

k−1∑
l=0

hmk(Ψ(ψ∗)⊗l, X,Ψ(ψ∗)⊗k−1−l) . (2.28)

Therefore, assuming that the operator 1−F is invertible,3 it follows that

EOMR̃(ψ∗, R(ψ∗)) = 0 . (2.29)

2.1.5 Abstract gauge-fixing

There is a more abstract (but nevertheless equivalent) way of fixing the gauge for R and
solving (2.14b), namely by requiring that hR = 0 (see [47, 48]). Assuming this condition,
it is then possible to derive the key recursion relation (2.18) by simply hitting (2.14b)
with h and using the Hodge-Kodaira decomposition (2.12). Consistency of (2.18) then also
requires that we have h2 = Ph = 0 (as can be seen by acting on (2.18) with h and P

and requiring the gauge condition hR = 0, as well as that PR = 0). Finally, h2 = 0 in
conjunction with the Hodge-Kodaira decomposition implies [h, P ] = 0 which in turn gives
the remaining condition hP = 0.

The associated out-of-gauge constraints can then be indirectly seen to hold by noting
that the total SFT equation of motion is automatically satisfied whenever the equation of
motion for ψ is solved (namely that EOM(Ψ(ψ∗)) = 0 whenever we consider ψ = ψ∗ such
that EOMψ(ψ∗, R(ψ∗)) = 0). Indeed, using the identity (2.22) (which is purely a conse-
quence of acting with Q on (2.18) and applying the Hodge-Kodaira decomposition (2.12)),
we may show that

EOM(Ψ(ψ)) = EOMψ(ψ,R(ψ))− hQJ (Ψ(ψ)) . (2.30)

3This should be the case at least for small ψ∗ because, since R(0) = 0, then also F should be small for
small ψ∗
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Using the result (2.26) (which is derived independently of having fixed Siegel gauge) and
substituting ψ = ψ∗, we obtain

EOM(Ψ(ψ∗)) = F [EOM(Ψ(ψ∗))] . (2.31)

Assuming again invertibility of 1 − F , it follows that EOM(Ψ(ψ∗)) = 0. This is how the
gauge constraints are trivialized for the abstract gauge fixing hR = 0.

We can conclude that the conditions hP = Ph = h2 = 0, as well as the Hodge-Kodaira
decomposition (2.12) seem to be the key ingredients for the whole construction of tree-level
effective action to work (ref. [48] arrives at the same conclusion). Noting that we can split
P = IΠ, where

Π : H −→ PH (2.32)

is the canonical projection and

I : PH −→ H (2.33)

is the canonical inclusion (so that we also have Πh = hI = 0), it neatly follows that
the algebraic properties we have encountered so far can be summarized by the strong
deformation retract (or SDR; see appendix A for a working review)

(−h) (H, Q) Π

I
(PH,ΠQI) , (2.34)

where the propagator h is (minus) the contracting homotopy operator.

2.1.6 Effective action and the minimal model theorem

Substituting the solution (2.21b) into (2.14a), we obtain that the equation of motion for ψ
can be rewritten as

eom(ψ) = m̃1(ψ) + m̃2(ψ,ψ) + m̃3(ψ,ψ, ψ) + . . . (2.35)

where we have introduced new multi-linear products m̃k : H⊗k −→ H

m̃1(A1) = Pm1(A1) , (2.36a)
m̃2(A1, A2) = Pm2(A1, A2) , (2.36b)

m̃3(A1, A2, A3) = Pm3(A1, A2, A3)+
− Pm2(hm2(A1, A2), A3)− Pm2(A1, hm2(A2, A3)) , (2.36c)

...

for A1, A2, A3 ∈ PH. Below we will prove, using the techniques of tensor coalgebra, that
the products m̃k satisfy A∞ relations. Also, assuming that the contracting homotopy
operator (−h) is BPZ self-conjugate (which is clearly true for the Siegel-gauge propagator
h = (b0/L0)P̄ )

ω(A1, hA2) = (−1)d(A1)ω(hA1, A2) , (2.37)
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we will show that the products m̃k are cyclic with respect to ω̃ ≡ ω|PH (in accordance
with [47, 48]). Nevertheless, it is a rewarding exercise to verify cyclicity and A∞ relations
explicitly at least for m̃1, m̃2 and m̃3 and we encourage the reader who might not have
familiarity with this to do so. These results, together with the above result that the out-
of-gauge constraints are automatically solved when ψ satisfies EOMψ(ψ,R(ψ)), imply that
the dynamics of ψ is completely captured by the effective action S̃(ψ) = S(ψ+R(ψ)) where

S̃(ψ) =
∞∑
k=1

1
k + 1 ω̃(ψ, m̃k(ψ⊗k)) . (2.38)

Furthermore, the action (2.38) manifests the gauge invariance

δ̃λψ = m̃1(λ) + m̃2(λ, ψ) + m̃2(ψ, λ)+
+ m̃3(λ, ψ, ψ) + m̃3(ψ, λ, ψ) + m̃3(ψ,ψ, λ) + . . . , (2.39)

associated with the effective products m̃k (where λ ∈ PH is a gauge parameter). We shall
see below how this is related to the gauge transformation of the full SFT.

All of these results have appeared in some form in [47, 48], where the author mostly
specializes on integrating out all fields outside of the BRST cohomology. As a result,
he obtains effective products with m̃1 = 0. The effective A∞ structure (PH, {m̃k}∞k=2)
therefore provides the minimal model4 for the original UV A∞ structure (H, {mk}∞k=1).
Existence of such minimal model is guaranteed by the minimal model theorem [75].

Notice, however, that it is a priori not always clear how the products m̃k of the minimal
model can be explicitly constructed in practice for any given SFT: while it is straightfor-
ward how to expand the effective products m̃k in terms of the propagator h and the UV
products mk, it is not immediately obvious what is the explicit expression for h which
would implement integrating out all modes outside of the cohomology of Q. For instance,
considering the cubic OSFT, the Siegel-gauge propagator (b0/L0)P̄0 only integrates out
the modes outside of kerL0 while there are known examples of states in kerL0 (such as
∂c) which are clearly not BRST closed.5 Below in subsection 2.4 we will present a method
of integrating such modes out by adding a correction to the Siegel-gauge propagator, thus
providing an explicit example of an effective SFT action given by a minimal A∞ algebra
(by restricting to zero momentum), which is related to the original UV SFT A∞ algebra
by means of an explicit A∞ quasi-isomorphism.

Note that while it may not be obvious how to write down an explicit expression for the
propagator integrating out the states inside kerL0 which do not belong to the cohomology
of Q, such an operator can always be defined implicitly as follows.6 For each BRST non-
invariant state |s〉, one can introduce an operator h(s) by requiring that

h(s)|s〉 = 0 , (2.40a)
4An A∞ algebra (H, {mk}∞k=1) is called minimal if m1 = 0.
5At this point it is important to remember that we have only established that it is consistent to fix

Siegel gauge for the massive modes which are projected away by P0 (and which were already integrated
out). It does not seem to be possible to fix Siegel gauge also for the modes ψ ∈ kerL0 in such a way that
the corresponding out-of-Siegel equations would be trivialized by the in-Siegel equations of motion, as it
was the case above for the massive modes [8].

6We thank the referee of this paper for pointing this out to us.
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h(s)Q|s〉 = |s〉 , (2.40b)
h(s)|r〉 = 0 for all other states |r〉, (2.40c)

so that h(s) inverts the action of Q on |s〉 (that is, Qh(s) + h(s)Q acts as an identity
operator on the pair (|s〉, Q|s〉) and kills all other states). The operator h(s) can therefore
be identified with a propagator for |s〉. The total propagator which can be used to integrate
out all7 BRST non-invariant states |s〉 is then given by summing h(s) for all such states |s〉
(see subsection 2.4 for an explanation of this fact). This implicit procedure gives a clear and
physical argument for the existence of the minimal model, however, it does not appear to
be doable to enumerate in closed form all the auxiliary states to be integrated out (although
it can certainly be done systematically level by level) and the procedure appears to depend
sensibly on the string theory under consideration, as well as on the chosen background.
It is quite an interesting open problem to obtain a closed form expression for a modified
propagator which integrates out all states outside the cohomology at every massive level
and leaves us exactly with the full minimal model at generic momenta.

2.2 Tensor coalgebra language

We will now unleash the full power of tensor coalgebras [50] (see especially [52] for a self-
contained introduction of the necessary concepts, whose knowledge we will assume here)
and homological perturbation theory (see appendix A for a working review) to derive the
A∞ effective action in a closed and compact form. As the story will develop, we will
recognize that the mechanism behind constructing the effective action is clearly governed
by the homological perturbation lemma (for strong deformation retracts), as introduced in
appendix A: see also [54, 61].

2.2.1 A∞ SFT in tensor coalgebra language

Let us start by lifting the various maps and products on H defined in subsection 2.1 to the
tensor-product space

TH = H⊗0 ⊕H⊗1 ⊕H⊗2 ⊕ . . . , (2.41)

where H⊗0 consists of scalars multiplying the identity element 1TH of the tensor-product
space TH (that is 1TH ⊗ V = V ⊗ 1TH = V for all V ∈ TH). We will denote by

πk : TH −→ H⊗k (2.42)

the projection onto the k-string component H⊗k of TH. The space TH can be equipped
with a co-associative deconcatenation co-product ∆TH : TH −→ TH⊗′ TH which acts as

∆TH(A1 ⊗ . . .⊗Ak) =
k∑
l=0

(A1 ⊗ . . .⊗Al)⊗′ (Al+1 ⊗ . . .⊗Ak) . (2.43)

7Note that this method can, in principle, be used to integrate out also the states outside of kerL0. This
job can be, however, performed much more easily using e.g. the Siegel-gauge propagator (b0/L0)P̄0.
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In the cases where the summation index l in (2.43) attains the values l = 0 or l = k,
the summand should be understood as being equal to 1TH ⊗′ (A1 ⊗ . . . ⊗ Ak) and (A1 ⊗
. . . ⊗ Ak) ⊗′ 1TH, respectively. The pair (TH,∆TH) then constitutes a tensor coalgebra.
We will also denote by ∇TH the corresponding associative concatenation product ∇TH :
TH⊗′ TH −→ TH, which simply acts by replacing ⊗′ with ⊗.
Considering first the k-string products mk, let us define the maps

mk : TH −→ TH (2.44)

by requiring that on H⊗N , they act as (denoting by 1H the identity map on H, i.e. 1H(A) =
A for all A ∈ H)

mkπN =
N−k∑
n=0

[
(1H)⊗N−k−n ⊗mk ⊗ (1H)⊗n

]
πN (2.45)

for N ≥ k and that they vanish on H⊗N for N < k. The maps mk then act as coderivations,
that is

∆THmk = (mk ⊗′ 1TH + 1TH ⊗′mk)∆TH, (2.46)

where 1TH denotes the identity cohomomorphism on TH (i.e. we have 1TH(V ) = V for all
V ∈ TH, as well as ∆TH1TH = (1TH ⊗′ 1TH)∆TH). Defining the total coderivation

m =
∞∑
k=1

mk, (2.47)

the A∞ relations (2.2) can be succinctly expressed as

[m,m] = 0 . (2.48)

Introducing the bra-notation 〈ω| : H⊗2 −→ C for the symplectic form ω by writing
ω(A1, A2) = 〈ω|A1 ⊗A2, cyclicity of the coderivation m is simply expressed as

〈ω|π2m = 0 . (2.49)

The UV SFT action (2.7) is then rewritten as

S(Ψ) =
∫ 1

0
dt 〈ω|π1∂t

1
1−Ψ(t) ⊗ π1m

1
1−Ψ(t) , (2.50)

where ∂t is the coderivation corresponding to the operator ∂t understood as a 1-string
product on H and

VΨ(t) ≡
1

1−Ψ(t) = 1TH + Ψ(t) + Ψ(t)⊗Ψ(t) + . . . ∈ TH , (2.51)

is the group-like element corresponding to Ψ(t) ∈ H, which satisfies

∆THVΨ(t) = VΨ(t) ⊗′ VΨ(t). (2.52)
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Introducing an infinitesimal variation

δΨ(t) = π1δ(t) 1
1−Ψ(t) (2.53)

for some even coderivation δ(t), it is then straightforward to use cyclicity8 of m to show
that δS(Ψ) receives contributions only from the boundary terms, namely

δS(Ψ) = 〈ω|δΨ(1)⊗ π1m
1

1−Ψ(1) − 〈ω|δΨ(0)⊗ π1m
1

1−Ψ(0) . (2.55)

Setting first δ(0) = δ(1) = 0, so that δΨ(0) = δΨ(1) = 0, then (2.55) clearly gives
δS(Ψ) = 0 which confirms that the t-dependence in (2.50) is purely topological. Second,
setting δ(0) = 0 and keeping δ(1) (and therefore δΨ) arbitrary, gives us the equation of
motion for Ψ

EOM(Ψ) = π1m
1

1−Ψ = m1(Ψ) +m2(Ψ,Ψ) + . . . . (2.56)

Finally, setting δ(t) = [m,Λ(t)] for a degree-odd cyclic coderivation Λ(t) such that Λ(0) =
0, Λ(1) = Λ, the action (2.50) can also be shown (using cyclicity of both m, Λ, as well
as (2.48)) to remain invariant under the infinitesimal gauge transformation9

δΨ = π1[m,Λ] 1
1−Ψ . (2.58)

Notice that unless we choose the coderivation Λ so that it corresponds purely to a 0-
string product (that is π1Λπk = 0 for all k > 0), the gauge transformation will contain
trivial pieces which vanish on-shell. Indeed, in general we may consider Λ =

∑∞
k=0 Λk

where Λk are cyclic coderivations corresponding to k-string products Λk : H⊗k −→ H.
Expanding (2.58) in terms of the products mk, Λk, we would obtain

δΨ =
∞∑
k=1

∞∑
r=0

[mk,Λr](Ψ⊗k+r−1) (2.59a)

=
∞∑
k=1

∞∑
r=0

k−1∑
l=0

{
mk(Ψ⊗l,Λr(Ψ⊗r),Ψ⊗(k−l−1))+

+ Λr(Ψ⊗l,mk(Ψ⊗k),Ψ⊗(r−l−1))
}
, (2.59b)

8Given any two coderivations d1, d2 and a cyclic coderivation s on TH, it is possible to establish [63, 64]
the identity

〈ω|π1sd1
1

1−A ⊗ π1d2
1

1−A = −(−1)d(s)d(d1)〈ω|π1d1
1

1−A ⊗ π1sd2
1

1−A (2.54)

for any A ∈ H.
9In general, it is possible to show that an infinitesimal transformation

δΨ = π1S 1
1−Ψ (2.57)

generated by a cyclic degree-even coderivation S is a symmetry of the action whenever we have [m,S] =
0. This condition is clearly satisfied when S = [m,Λ], that is when S generates an infinitesimal gauge
transformation (by invoking the A∞ relations and the super-Jacobi identity).
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where the first term in (2.59b) gives the usual gauge transformation (generally with a Ψ-
dependent gauge parameter

∑∞
r=0 Λr(Ψ⊗r)), while the second term in (2.59b) (which is

present only if Λr 6= 0 for some r > 0) constitutes a trivial transformation which vanishes
on-shell.

2.2.2 Unperturbed SDR

Let us further define a projector

P : TH −→ TH (2.60)

acting on the tensor-product space TH by requiring

Pπk = P⊗kπk . (2.61)

The map P clearly acts as a cohomomorphism, namely ∆THP = (P⊗′P)∆TH. Given this
definition, we can therefore write

P(TH) = (PH)⊗1 ⊕ (PH)⊗2 ⊕ . . . ≡ TPH ⊂ TH, (2.62)

where TPH can again be equipped with a coassociative deconcatenation coproduct ∆TPH :
TPH −→ TPH ⊗′ TPH (which is induced from TH) so that the pair (TPH,∆TPH)
constitutes a tensor coalgebra. Defining also Q to be the coderivation corresponding to
the 1-string product Q, we have [Q,P] = 0 (because [Q,P ] = 0 as a consequence of the
decomposition (2.12) and the super-Jacobi identity). We also define the map h : TH −→
TH by requiring

hπk =
k−1∑
l=0

[
(1H)⊗l ⊗ h⊗ P⊗(k−1−l)]πk . (2.63)

This definition can be motivated by the fact that h then satisfies the tensor coalgebra
version of the Hodge-Kodaira decomposition

Qh + hQ = 1TH −P ≡ P̄ , (2.64)

as it is easy to check explicitly. However, note that such h does not quite behave as a
coderivation: instead we turn out to have

∆THh = (h⊗′ P + 1TH ⊗′ h)∆TH . (2.65)

The annihilation conditions h2 = Ph = hP = 0 clearly imply that h2 = Ph = hP = 0.
Also note that we can formally separate

P = IΠ,

where
Π : TH −→ TPH,

I : TPH −→ TH
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are the canonical projection and inclusion, respectively, mapping between TH and TPH.
On the other hand, we clearly have

ΠI = 1TPH.

Both Π and I again act as cohomomorphisms, that is we have

∆THI = (I⊗′ I)∆TPH

and
∆TPHΠ = (Π⊗′Π)∆TH.

Since we also have the annihilation conditions Πh = hI = 0 = h2, as well as the Hodge-
Kodaira decomposition (2.64), we have therefore established the following tensor coalgebra
version of the SDR (2.34)

(−h) (TH,Q) Π

I
(TPH,ΠQI) . (2.66)

Apart from defining the co-derivation m =
∑∞
k=1 mk, we also define δm =

∑∞
k=2 mk so

that we can view the full interacting set of products m as a perturbation of the free-theory
product Q, namely m = Q + δm.

2.2.3 Perturbed inclusion Ĩ

Let us start with the full SFT action (2.50). Splitting the string field using the BPZ-even
projector P as in the previous subsection, the equations of motion for ψ and R (2.14a),
(2.14b) can be expressed as

EOMψ(Ψ) = π1Pm 1
1−Ψ , (2.67a)

EOMR(Ψ) = π1P̄m 1
1−Ψ . (2.67b)

Isolating the interacting part of the full equation of motion

J (Ψ) = π1δm
1

1−Ψ , (2.68)

we observe that having fixed the gauge hR = 0 for R, the recursive relation (2.18) for R(ψ)
can be recast as

R(ψ) = −π1hδm
1

1−Ψ(ψ) . (2.69)

This therefore allows us to write the following equation for Ψ(ψ)

Ψ(ψ) = ψ − π1hδm
1

1−Ψ(ψ) . (2.70)
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Expressing Ψ(ψ) in terms of π1 acting on the corresponding group-like element, moving
the second term on the r.h.s. of (2.70) to the l.h.s., and finally, assuming that the map
1TH + hδm is invertible, we can further rewrite (2.70) as

π1(1TH + hδm)
( 1

1−Ψ(ψ) −
1

1TH + hδmI 1
1− ψ

)
= 0 . (2.71)

At this point, it is useful to note that the map Ĩ : TPH −→ TH defined by

Ĩ = 1
1TH + hδmI (2.72)

is in fact a cohomomorphism (by virtue of the annihilation conditions hI = Πh = h2 = 0;
see e.g. appendix A of [54] for a proof). Using the fact that cohomomorphisms map group-
like elements to group-like elements, we can write the unique solution to (2.71) satisfying
Ψ(0) = 0 as

Ψ(ψ) = π1Ĩ
1

1− ψ . (2.73)

As we will see below, the image of Ĩ does not span the whole of TH so that the cohomo-
morphism Ĩ is only invertible on its image. Unpackaging the tensor coalgebra notation in
terms of ordinary products on H, we can write (thanks to (2.63))

Ψ(ψ) = π1Ĩ
1

1− ψ (2.74a)

= ψ − hm2I(ψ ⊗ ψ)− (hm3 − hm2hm2)I(ψ ⊗ ψ ⊗ ψ) + . . . (2.74b)
= ψ − hm2(ψ,ψ)− hm3(ψ,ψ, ψ)+

+ hm2(hm2(ψ,ψ), ψ) + hm2(ψ, hm2(ψ,ψ)) + . . . (2.74c)

which agrees with our previous result (2.21b).

2.2.4 Perturbed projection Π̃

Let us proceed with defining the cohomomorphism

Π̃ = Π 1
1TH + δmh . (2.75)

To check that Π̃ is indeed a cohomomorphism, we proceed in a parallel manner to the
proof for Ĩ.10 We then clearly have

Π̃Ĩ = Π 1
1TH + δmh

1
1TH + hδmI (2.76a)

= ΠI (2.76b)
= 1TPH , (2.76c)

10This does not seem to work for general homotopy equivalence data, but only if we work with an SDR
where we have the annihilation conditions hI = Ph = h2 = 0.
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where we have used that h2 = 0. Also note that similarly hI = 0 implies Π̃I = 1TPH and
that Ph = 0 implies ΠĨ = 1TPH. We also define the cohomomorphism P̃ : TH −→ TH by

P̃ = ĨΠ̃ (2.77a)

= 1
1TH + hδmP 1

1TH + δmh . (2.77b)

Note that adding the interactions δm creates a new (perturbed) embedding of TPH inside
TH given by the image of P̃ (which is the same as the image of Ĩ): given an element
ψ ∈ PH, it may be uniquely associated to an element Ψ ∈ im P̃ ⊂ TH (but not in the
whole of TH). Put in another way, the cohomomorphisms Π̃ and Ĩ are invertible only if
we restrict the domain of Π̃ and the target of Ĩ on im P̃ ⊂ TH.

2.2.5 Effective products

We can now substitute the solution for Ψ(ψ) into the equation of motion (2.67a) for ψ
which yields

eom(ψ) = π1ΠmĨ 1
1− ψ (2.78a)

≡ π1m̃
1

1− ψ . (2.78b)

Here we have introduced a new map

m̃ ≡ ΠmĨ (2.79a)

= ΠQI + Πδm 1
1TH + hδmI (2.79b)

and where in the last equality, we have used the fact that Ph = 0 (see also (2.86) below for
some alternative ways of expressing m̃). Let us show that m̃ is a coderivation on TPH:
we first have

∆TPHm̃ =
(
ΠmĨ⊗′ΠĨ + ΠĨ⊗′ΠmĨ

)
∆TPH , (2.80)

where we note that Πh = 0 implies ΠĨ = 1TPH, so that the map m̃ = ΠmĨ is indeed a
coderivation on TPH. It is also straightforward to unpackage the coalgebra notation and
see that the definition (2.79) of m̃ gives k-products π1m̃πk which precisely agree with the
effective products (2.36) computed in the previous subsection.

2.2.6 Effective theory as a homotopy transfer

By now it should be easy to observe that comparing the definitions (2.72), (2.75), (2.79)
with the output (A.6) of the homological perturbation lemma applied on the SDR (2.66)
(where we perturb Q→m = Q + δm) we have established the perturbed SDR

(−h̃) (TH,m)
Π̃

Ĩ
(TPH, m̃) , (2.81)
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provided that we also introduce (minus) the perturbed contracting homotopy11

h̃ = 1
1TH + hδmh . (2.83)

The homological perturbation lemma therefore immediately tells us that m̃ must be a nilpo-
tent differential, namely m̃2 = 0. The products m̃k = π1m̃πk encoded by the coderivation
m̃ therefore indeed satisfy A∞ relations, as we claimed in the previous subsection. Another
consequence of the perturbed SDR (2.81) is the corresponding chain-map relation

mĨ = Ĩm̃ . (2.84)

This implies that the cohomomorphism Ĩ is in fact an A∞-morphism. In particular, in
the cases where π1m̃π1 = 0, this construction provides the minimal model for (TH,m).
Similarly we have the chain-map relation

Π̃m = m̃Π̃ . (2.85)

Also it is important to note that we can in fact express m̃ in multiple ways as

m̃ = ΠmĨ = Π̃mI = Π̃mĨ , (2.86)

because (2.84) implies Π̃mI = m̃Π̃I = m̃ and Π̃mĨ = Π̃Ĩm̃ = m̃, while (2.85) implies
ΠmĨ = ΠIm̃ = m̃. We therefore learn that the effective IR SFT interactions are given by
a homotopy transfer applied to the full UV SFT interactions. Finally, we note in passing
that the perturbed Hodge-Kodaira decomposition

h̃m + mh̃ = 1TH − P̃ (2.87)

together with the super-Jacobi identity imply that [P̃,m] = 0.

2.2.7 Out-of-gauge constraints and classical solutions

Let us now substitute the string field Ψ(ψ) after integrating out the unwanted degrees
of freedom (as expressed in terms of the cohomomorphism Ĩ in (2.73)) into the full SFT
equation of motion EOM(Ψ). Using the chain-map property (2.84), we can first write

EOM(Ψ(ψ)) = π1Ĩm̃
1

1− ψ . (2.88)

Realizing then that any coderivation d satisfies the identity (for any A ∈ H)

d 1
1−A = 1

1−A ⊗
(
π1d

1
1−A

)
⊗ 1

1−A (2.89)

11This can be shown to satisfy the expected property

∆THh̃ = (1TH ⊗′ h̃ + h̃⊗′ P̃)∆TH . (2.82)
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and recalling the form (2.78b) of the equation of motion for ψ, we can finally express

EOM(Ψ(ψ)) = π1Ĩ
{ 1

1− ψ ⊗ eom(ψ)⊗ 1
1− ψ

}
. (2.90)

We therefore obtain that eom(ψ) = 0 implies EOM(Ψ(ψ)) = 0. This means that once
the effective equation of motion eom(ψ) is satisfied, there are no additional constraints on
the dynamics of Ψ. In other words, the out-of-gauge constraints EOMR̃ are automatically
satisfied on any solution of eom. Any classical solution ψ∗ ∈ TPH of the effective theory
therefore automatically provides a classical solution Ψ∗ ∈ im P̃ ⊂ TH of the full theory
which is given by

Ψ∗ = π1Ĩ
1

1− ψ∗ . (2.91)

Hence, the above-described effective framework enables us to look for certain solutions of
the full SFT equation of motion EOM(Ψ) by only working with a smaller (possibly finite)
number of degrees of freedom ψ which we can anticipate to be dominantly excited by such
solutions. Then, after solving the effective equation of motion eom(ψ) for ψ∗, we can always
construct12 a solution Ψ∗ to the full SFT equation of motion by using (2.91).

We can summarize our discussion up to this point by saying that the homological
perturbation lemma automatically takes care of integrating out degrees of freedom from
an interacting A∞ SFT whenever the modes ψ we wish to keep are given by a BPZ-even
projector P , and, the remaining modes R can be integrated out by a propagator h, where
h and P are such that we may write an SDR of the form (2.34). In other words, the
lemma provides a way of packaging the Feynman diagram expansion of tree-level effective
interactions in any A∞ SFT. The propagator (a.k.a. –minus– the contracting homotopy
operator) also implicitly imposes the gauge-fixing condition hR = 0 in such a way that the
out-of-gauge constraints are automatically satisfied upon using the equation of motion for
the remaining modes ψ.

2.2.8 Obstructions to marginal deformations and the massless equation of
motion

We shall now give a more tangible example of how the solutions of the tree-level effective
equation of motion eom(ψ) provide classical solutions in the full SFT. In particular, we set
P = P0 (where P0 projects onto kerL0) and look for continuously parametrized families of
classical solutions of eom(ψ)

ψ(λ) =
∞∑
k=1

λkψk ∈ P0H . (2.92)

Then, expanding the equation of motion (2.78b) order by order in λ using the explicit
expressions (2.36), we obtain equations

eom1 = P0m1(ψ1) , (2.93a)
eom2 = P0m1(ψ2) + P0m2(ψ1, ψ1) , (2.93b)

12Modulo possible issues with convergence of Ψ∗ after applying the cohomomorphism Ĩ on ψ∗.
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eom3 = P0m1(ψ3) + P0m2(ψ1, ψ2) + P0m2(ψ2, ψ1)+
+ P0m3(ψ1, ψ1, ψ1)− P0m2(h0m2(ψ1, ψ1), ψ1)+
− P0m2(ψ1, h0m2(ψ1, ψ1)) , (2.93c)

...

where we have introduced the propagator h0 = (b0/L0)P̄0 for the massive modes. The
corresponding classical solution

Ψ(ψ(λ)) = π1Ĩ
1

1− ψ(λ) (2.94)

of the full SFT equation of motion can then be expanded order by order in λ as

Ψ(ψ(λ)) =
∞∑
k=1

λkΨk , (2.95)

where we have

Ψ1 = ψ1 , (2.96a)
Ψ2 = ψ2 − h0m2(ψ1, ψ1) , (2.96b)
Ψ3 = ψ3 − h0m2(ψ1, ψ2)− h0m2(ψ2, ψ1)+

− h0m3(ψ1, ψ1, ψ1) + h0m2(h0m2(ψ1, ψ1), ψ1)+
+ h0m2(ψ1, h0m2(ψ1, ψ1)) . (2.96c)

...

It is therefore manifest (see e.g. [8, 15, 62] and the references therein) that eomk should be
interpreted precisely as the obstructions to exactness of the marginal deformation Ψ(ψ(λ))
arising at order λk. The individual terms of Ψ(ψ(λ)) (as given by (2.96)) then exactly
agree with order-by-order expansion of classical solution of the full SFT equation of mo-
tion which corresponds to a marginal deformation of the original perturbative vacuum. We
can therefore conclude that exactly marginal deformations of the given open-string back-
ground are in one-to-one correspondence (via the cohomomorphism Ĩ) with those classical
solutions ψ(λ) to the P0-effective equation of motion, which are continuously connected
to the effective perturbative vacuum ψv = 0. Put in other words, the string fields ψ(λ)
traversing local minima of the P0-effective potential such that ψ(0) = 0, are in one-to-one
correspondence with exactly marginal deformations of the full SFT for the background at
hand. This is how the moduli spaces of consistent open string backgrounds make their
appearance in string field theory.

2.2.9 Cyclicity

Let us now proceed with showing that the effective products m̃k = π1m̃πk are cyclic with
respect to the following symplectic form 〈ω̃| : PH⊗2 −→ C on PH

〈ω̃|π2 ≡ 〈ω|π2I , (2.97)
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whenever m is cyclic with respect to 〈ω|. Crucially, in order for this proof to work, we will
need to assume that P and h are BPZ-selfconjugate, that is

ω(Ψ1, hΨ2) = (−1)d(Ψ1)ω(hΨ1,Ψ2) , (2.98a)
ω(Ψ1, PΨ2) = ω(PΨ1,Ψ2) , (2.98b)

for any Ψ1,Ψ2 ∈ H. The definition (2.97) is clearly motivated by the expression (2.38) for
the effective action we derived above (note that the same definition is used in [48]). In
other words, the symplectic form ω̃ is defined so that the cohomomorphism I is cyclic.13

On the other hand, neither the cohomomorphism Π, nor the cohomomorphism P are cyclic
because we clearly have

ω(PΨ1, PΨ2) 6= ω(Ψ1,Ψ2) (2.100)

for general Ψ1,Ψ2 ∈ H. Note that the definition of ω̃ clearly makes it graded anti-
symmetric.

Given these assumptions, we will first show that also the perturbed inclusion cohomo-
morphism Ĩ is cyclic, namely

〈ω̃|π2 = 〈ω|π2Ĩ . (2.101)

To show this, we note that the product ∇TH and the coproduct ∆TH satisfy the identity
(see [52] for a more detailed discussion)

πk+l = ∇TH(πk ⊗′ πl)∆TH . (2.102)

Applying the splitting property (2.102) on π2 and using the fact that Ĩ is a cohomomor-
phism, it is then possible to write

〈ω|π2Ĩ = 〈ω|∇TH(π1Ĩ⊗′ π1Ĩ)∆TPH . (2.103)

As a consequence of the BPZ properties (2.98) and the annihilation conditions hP = Ph =
h2 = 0, we clearly have

ω(Iψ1, hΨ2) = 0 , (2.104a)
ω(hΨ1, hΨ2) = 0 , (2.104b)

for any ψ1 ∈ PH, Ψ1,Ψ2 ∈ H. Noting then that we have π1I = Iπ1, π1h = hπ1 and
expanding the perturbed inclusion Ĩ in terms of I,h, δm, we therefore learn that

〈ω|∇TH(π1Ĩ⊗′ π1Ĩ)∆TPH = 〈ω|∇TH(π1I⊗′ π1I)∆TPH (2.105a)
= 〈ω|π2I (2.105b)
= 〈ω̃|π2 , (2.105c)

which concludes the proof of (2.101).
13A cohomomorphism F : TH −→ TH′ is said to be cyclic with respect to the symplectic forms ω and

ω′ on TH and TH′ whenever we have

〈ω′|π2F = 〈ω|π2 . (2.99)

– 22 –



J
H
E
P
1
1
(
2
0
2
0
)
1
2
3

By exploiting cyclicity of the cohomomorphism Ĩ, it is now straightforward to show that
the coderivation m̃ is cyclic. This is because we in addition have the property [m, P̃] = 0.
Indeed we can first use cyclicity of Ĩ to write

〈ω̃|π2m̃ = 〈ω|π2ĨΠ̃mĨ . (2.106)

Realizing that ĨΠ̃ = P̃ and that [m, P̃] = 0, we can therefore write

〈ω̃|π2m̃ = 〈ω|π2mP̃Ĩ (2.107a)
= 0 , (2.107b)

which gives us the required result. This shows that the effective products m̃k are cyclic
with respect to the symplectic form ω̃. It is instructive to work out the first couple of
orders explicitly. While the results for m̃1 and m̃2 are arguably trivial, for m̃3 we can write
(for any A1, A2, A3, A4 ∈ PH)

ω̃(A1, m̃3(A2, A3, A4)) = ω(A1, Pm3(A2, A3, A4))+
− ω(A1, Pm2(hm2(A2, A3), A4))
− ω(A1, Pm2(A2, hm2(A3, A4))) (2.108a)

= −(−1)d(A1)ω(Pm3(A1, A2, A3), A4)+

+ (−1)d(A1)ω(Pm2(A1, hm2(A2, A3)), A4)

+ (−1)d(A1)ω(m2(A1, A2), hm2(A3, A4)) (2.108b)

= −(−1)d(A1)ω(Pm3(A1, A2, A3), A4)+

+ (−1)d(A1)ω(Pm2(A1, hm2(A2, A3)), A4)

− (−1)d(A2)ω(hm2(A1, A2),m2(A3, A4)) (2.108c)

= −(−1)d(A1)ω(Pm3(A1, A2, A3), A4)+

+ (−1)d(A1)ω(Pm2(A1, hm2(A2, A3)), A4)

+ (−1)d(A1)ω(Pm2(hm2(A1, A2), A3), A4) (2.108d)

= −(−1)d(A1)ω̃(m̃3(A1, A2, A3), A4) , (2.108e)

where in the first step we have substituted from (2.36), in the second step we have used
the BPZ property (2.98b) of P and cyclicity of m2, m3, in the third step we have used the
BPZ property (2.98a), while in the fourth step we have again made use of cyclicity of m2,
thus finally showing that m̃3 is cyclic with respect to ω̃. Similarly for m̃4, m̃5 and so on.

Finally, let us consider a general coderivation d : TH −→ TH which is cyclic with
respect to ω, that is 〈ω|π2d = 0, but, which may not satisfy that [d, P̃] = 0. We will
now show that then the coderivation d̃ = Π̃dĨ is still cyclic with respect to ω̃, namely
〈ω̃|π2d̃ = 0. Following some straightforward manipulations, we first write

〈ω̃|π2d̃ = 〈ω|π2ĨΠ̃dĨ (2.109a)
= 〈ω|π2

(
1TH −mh̃− h̃m

)
dĨ (2.109b)

= −〈ω|π2h̃mdĨ , (2.109c)
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where we have first used cyclicity of Ĩ, then we have realized that ĨΠ̃, substituted the
perturbed Hodge-Kodaira decomposition (2.87) and finally made use of cyclicity of both
m and d. Using now the property (2.102) in the form π2 = ∇TH(π1 ⊗′ π1)∆TH, as well
as the perturbed annihilation condition h̃Ĩ = 0 and the chain-map property mĨ = Ĩm̃, we
eventually find

〈ω|π2h̃mdĨ = 〈ω|∇TH(π1h̃mdĨ⊗′ π1P̃Ĩ + (−1)d(d)π1h̃dĨ⊗′ π1P̃mĨ+
− π1P̃Ĩm̃⊗′ π1h̃dĨ + π1P̃Ĩ⊗′ π1h̃mdĨ)∆TPH . (2.110)

Finally, we note that when h̃ acts on anything, the π1 projection of the result will always
have an overall factor of h in front. Similarly, when P̃ acts on anything, the π1 projection
of the result will be always have an overall factor of either P or h in front. But at the same
time, we have the BPZ properties (2.104) so that this leads us to conclude that we indeed
have

〈ω̃|π2d̃ = 0 . (2.111)

2.2.10 Effective action

Realizing that the coderivation m̃ encoding the effective multi-string products m̃k = π1m̃πk
is cyclic with respect to ω̃, we can conclude that the equation of motion (2.78b) must be
reproduced by the action

S̃(ψ) =
∫ 1

0
dt 〈ω̃|π1∂t

1
1− ψ(t) ⊗ π1m̃

1
1− ψ(t) =

∞∑
k=1

1
k + 1ω

(
ψ, m̃k

(
ψ⊗k

))
, (2.112)

where we have introduced an interpolation ψ(t) ∈ ΠH for 0 ≤ t ≤ 1 with ψ(0) = 0 and
ψ(1) = ψ. Since we have shown that the equation of motion eom(ψ) automatically implies
the full equation of motion EOM(Ψ(ψ)), the action (2.112) fully captures the dynamics of
ψ and can be therefore called the effective action for ψ. Let us now show that (2.112) can
be also derived by directly substituting the group-like element

1
1−Ψ(ψ) = Ĩ 1

1− ψ (2.113)

into the full SFT action (2.50). To this end, let us choose a particular interpolation
Ψ(t) ∈ H, namely such that

1
1−Ψ(t) = Ĩ 1

1− ψ(t) . (2.114)

Note that this is a valid choice, because Ĩ maps group-like elements on TPH to group-like
elements on im P̃ ⊂ TH and we also have Ψ(0) = π1Ĩ1TPH = 0. Substituting (2.114) into
the action (2.50), we first obtain

S(Ψ(ψ)) =
∫ 1

0
dt 〈ω|π1Ĩ∂t

1
1− ψ(t) ⊗ π1Ĩm̃

1
1− ψ(t) (2.115)
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where we have used the chain-map relation (2.84), as well as the fact that [Ĩ,∂t] = 0. We
then have to realize that for any two coderivations d1, d2 on TH and any cohomomorphism
F : TH −→ TH′ which is cyclic with respect to the symplectic forms 〈ω|, 〈ω′|, we have the
identity (see [63, 64] for a proof)

〈ω′|π1Fd1
1

1−A ⊗ π1Fd2
1

1−A = 〈ω|π1d1
1

1−A ⊗ π1d2
1

1−A (2.116)

for any A ∈ H. Using cyclicity of Ĩ and (2.116), we can finally write

S(Ψ(ψ)) =
∫ 1

0
dt 〈ω|π1∂t

1
1− ψ(t) ⊗ π1m̃

1
1− ψ(t) (2.117a)

= S̃(ψ) . (2.117b)

We have therefore managed to reproduce the result (2.112) for the effective IR SFT action
by directly substituting Ψ(ψ) into the full UV SFT action (2.50).

2.2.11 Gauge transformation

We will now look at the interplay of the homotopy transfer with the gauge transformation
in both UV and IR. Consider first a gauge transformation of the effective SFT

δψ = π1[m̃,λ] 1
1− ψ , (2.118)

where the degree-odd coderivation λ plays the role of a gauge parameter. One should then
be interested into the corresponding gauge transformation of the full UV SFT induced on
the image of P̃ from (2.118) by acting with the perturbed inclusion Ĩ on (2.118). We clearly
have

δΨ(ψ) = π1Ĩ[m̃,λ]Π̃ 1
1−Ψ(ψ) . (2.119)

Recalling that the chain map properties (2.84) and (2.85) give us that Ĩm̃Π̃ = P̃m = mP̃,
we note that we can rewrite the gauge transformation induced on the UV SFT in terms of
Ĩ[m̃,λ]Π̃ = [m,Λ] where we have denoted

Λ ≡ ĨλΠ̃ , (2.120)

which clearly satisfies P̃Λ = ΛP̃ = Λ. It can be easily shown that the parameter Λ is
a coderivation only when restricted onto im P̃, and, that Λ is cyclic provided that also λ
is cyclic. Altogether we learn that the effective gauge transformation with parameter λ
induces a gauge transformation on im P̃ ⊂ TH with parameter Λ = ĨλΠ̃.

Observe that even if we choose λ to correspond only to a 0-string product (that is
λ = λ0 and π1λπk = 0 for k > 0) then we generally have π1Λπk 6= 0 for k > 0. For
instance, unpackaging the coalgebra notation, we obtain

π1Λπ1 = π1
1

1TH + hδmIλ0Π
1

1TH + δmhπ1 (2.121a)

= π1
1

1TH + hδm(Iλ0 ⊗ P + P ⊗ Iλ0) (2.121b)

= −hm2(Iλ0 ⊗ P )− hm2(P ⊗ Iλ0) , (2.121c)
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that is, the induced coderivation Λ contains a 1-string product Λ1 with

Λ1(Ψ) = −hm2(λ0, PΨ)− hm2(PΨ, λ0) (2.122)

(as well as the 0-string product π1Λπ0 = λ0 and higher products π1Λπk for k > 1). As a
result, the gauge transformation induced on the full SFT will contain trivial pieces which
vanish on-shell.

Going in the other direction, let us consider a gauge transformation of the full theory

δΨ = [m,Λ] 1
1−Ψ , (2.123)

where Λ is a cyclic coderivation. This clearly generates the transformation of the effective
theory

δψ = π1Π̃[m,Λ]Ĩ 1
1− ψ , (2.124)

on TPH. It can be straightforwardly shown that Π̃[m,Λ]Ĩ is always a coderivation on
TPH. Note that using the fact that [m, P̃] = 0, we also have Π̃[m,Λ]Ĩ = [m̃,λ] where we
have denoted

λ = Π̃ΛĨ . (2.125)

Given that Λ is a cyclic coderivation, it follows from (2.111) that λ is also a cyclic coderiva-
tion. We can therefore conclude that an infinitesimal gauge symmetry Λ of the full theory
on TH always induces an infinitesimal gauge symmetry on TPH, which is generated by
λ = Π̃ΛĨ.

2.3 Observables

Having discussed at some length the effective actions for A∞ SFTs, as well as their as-
sociated gauge symmetries, it is only fitting that we now turn to considering the fate of
observables (gauge-invariant quantities) after integrating out some portion of degrees of
freedom. We will start by briefly discussing a possible framework for observables within
the context of A∞ SFTs (more details are to be presented in [65]). We will then show that
applying the homotopy transfer onto an observable falling into this class always yields an
observable for the effective theory.

2.3.1 General discussion

Let (H, {mk}k≥1, ω) be a cyclic A∞ algebra defining an A∞ SFT given by the action (2.6)
for a degree-even string field Ψ. Let us start by considering a quantity

E(Ψ) =
∞∑
k=0

1
k + 1ω(Ψ, ek(Ψ⊗k)) , (2.126)

where ek are cyclic degree-odd products. It is easy to see that in a manner completely
parallel to the action, this may be rewritten in the tensor coalgebra notation as

E(Ψ) =
∫ 1

0
dt 〈ω|π1∂t

1
1−Ψ(t) ⊗ π1e

1
1−Ψ(t) , (2.127)
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where e =
∑
k ek and ek are the cyclic coderivations corresponding via (2.45) to the cyclic

products ek. As usual, Ψ(t) for 0 ≤ t ≤ 1 interpolates between Ψ(0) = 0 and Ψ(1) = Ψ.
We would now like to isolate conditions on e such that E(Ψ) is gauge-invariant (possibly
up to trivial pieces which vanish on-shell). To this end, let us introduce an infinitesimal
variation δΨ(t) given by (2.53) in terms of a degree-even coderivation δ(t). As in the case
of the action, it is possible to use cyclicity of e (by applying (2.54)) to show that δE(Ψ)
receives contributions only from the boundary terms, namely

δE(Ψ) = 〈ω|δΨ(1)⊗ π1e
1

1−Ψ(1) − 〈ω|δΨ(0)⊗ π1e
1

1−Ψ(0) . (2.128)

Setting first δΨ(0) = δΨ(1) = 0 again serves to confirm that the t-dependence in (2.127)
is topological. On the other hand, considering the gauge transformation δ(t) = [m,Λ(t)]
where Λ(t) with Λ(0) = 0, Λ(1) = Λ is a degree-odd cyclic coderivation, we obtain
(denoting by . . . pieces that vanish on-shell),

δE(Ψ) = 〈ω|π1Λ
1

1−Ψ ⊗ π1[m, e] 1
1−Ψ + . . . , (2.129)

where we have used cyclicity of m through the property (2.54). Hence, the condition on
E(Ψ) to be an observable (on-shell gauge-invariant) reads

[m, e] 1
1−Ψ∗ = 0 (2.130)

for any classical solution Ψ∗. In particular, in order for (2.130) to be satisfied, it is therefore
sufficient to require that [m, e] = 0. An example of an observable, which is present for any
A∞ SFT, is clearly the action, because setting e = m gives [e,m] = [m,m] = 0. Another
example of an observable is the Ellwood invariant [57–59] in cubic OSFT, which is given by
e = e0, where e0 is the coderivation corresponding to a 0-string product e0 whose output
is a midpoint insertion of an on-shell primary (h, h̄) = (0, 0) closed-string state. This
has been recently generalized [67] to the case of the “Munich” A∞ open superstring field
theory [51], where the corresponding coderivation e = E turns out to consist of k-string
products Ek for all k > 0 (details will be reported in [65, 68]). In both the cubic OSFT case
and the Munich case, the coderivation e is nilpotent with [e,m] = 0, so that introducing
the perturbed coderivation M(µ) = m + µe, we obtain

M(µ)2 = m2 + µ[m, e] + µ2e2 = 0 . (2.131)

Hence, any nilpotent coderivation e giving rise to an observable with [e,m] = 0 via (2.127)
can be used to deform the products of the theory so that they continue to satisfy A∞
relations.14 See below subsections 2.5 and 3.3 for more details.

Also note that any observable for which we can write e = [m, s] for some arbitrary
degree-even cyclic coderivation s, is automatically trivial: while it is true that we then
have [m, e] = 0 by super-Jacobi identity, we can use cyclicity of both s and m to show
that E(Ψ) is equal to the variation of the action induced by s so that on-shell it necessarily
vanishes.

14In general, these will be the weak A∞ relations, that is, we will have M0(µ) 6= 0.

– 27 –



J
H
E
P
1
1
(
2
0
2
0
)
1
2
3

2.3.2 Homotopy transfer of observables

Let us now assume that a degree-odd cyclic coderivation e provides via (2.127) an observ-
able for the full theory on TH (so that (2.130) holds for any classical solution Ψ∗ of the
full SFT). Introducing now a new degree-odd coderivation ẽ = Π̃eĨ on TPH (which is
cyclic by virtue of the discussion preceding (2.111)), it is straightforward to show (for any
classical solution ψ∗ of the effective theory)

[m̃, ẽ] 1
1− ψ∗ = (Π̃mP̃eĨ + Π̃eP̃mĨ) 1

1− ψ∗ (2.132a)

= Π̃[m, e]Ĩ 1
1− ψ∗ , (2.132b)

where we have used that [m, P̃] = 0 as well as that P̃Ĩ = Ĩ and Π̃P̃ = Π̃. Recalling
then (2.91), we note that since Ψ(ψ∗) = Ĩ 1

1−ψ∗ is a classical solution of the full SFT,
then (2.132b) needs to vanish by virtue of (2.130). This shows that ẽ satisfies the condi-
tion (2.130) as well, so that the quantity

Ẽ(ψ) =
∫ 1

0
dt 〈ω̃|π1∂t

1
1− ψ(t) ⊗ π1ẽ

1
1− ψ(t) (2.133)

is an on-shell gauge invariant of the effective theory. Note that explicitly we may expand

ẽ0 = Pe0 , (2.134a)
ẽ1(ψ) = Pe1(ψ)− m̃2(he0, ψ)− m̃2(ψ, he0) , (2.134b)

ẽ2(ψ,ψ) = Pe2(ψ,ψ)− Pe1(hm2(ψ,ψ))+
− m̃2(he1(ψ), ψ)− m̃2(ψ, he1(ψ))+
− m̃3(he0, ψ, ψ)− m̃3(ψ, he0, ψ)− m̃3(ψ,ψ, he0) (2.134c)

... (2.134d)

which in turn gives the expansion of Ẽ(ψ). Note that when we have ek = 0 for k > 0 (which
is for instance the case for the Ellwood invariant in cubic OSFT), the formulae (2.134)
reduce to

ẽk(ψ⊗k) = −
k−1∑
l=0

m̃k(ψ⊗l, he0, ψ
⊗k−1−l) , (2.135)

which is valid for k > 0.
In general we can in fact show that it is possible to write

Ẽ(ψ) = E(Ψ(ψ)) , (2.136)

namely that it is possible to express the effective observable Ẽ(ψ) by substituting the string
field Ψ(ψ) after having integrated out the unwanted degrees of freedom into the UV SFT
observable E(Ψ). Indeed, using cyclicity of Ĩ, we can first express

Ẽ(ψ) =
∫ 1

0
dt 〈ω|π1Ĩ∂t

1
1− ψ(t) ⊗ π1P̃eĨ 1

1− ψ(t) , (2.137)
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where we have also used that Ĩẽ = P̃eĨ. We can now substitute for P̃ from the perturbed
Hodge-Kodaira decomposition (2.87): note that the h̃m part actually does not contribute
because π1h̃ acting on anything always has h as a prefactor and therefore (using the BPZ
property (2.98) and the fact that we have the annihilation conditions hP = Ph = h2 = 0)
necessarily gives zero because π1Ĩ acting on anything always contains either h or P as a
prefactor. Using that [∂t, Ĩ] = 0, we therefore obtain

Ẽ(ψ) = E(Ψ(ψ))−
∫ 1

0
dt 〈ω|π1∂tĨ

1
1− ψ(t) ⊗ π1mh̃eĨ 1

1− ψ(t) . (2.138)

We then notice that since h̃Ĩ = 0, we can replace h̃e in (2.138) with [h̃, e]. This then acts
as a coderivation on the group-like element (1 − Ψ(ψ(t)))−1 = Ĩ(1 − ψ(t))−1 because we
have

∆TH[h̃, e]Ĩ 1
1− ψ(t) =

(
[h̃, e]⊗′ P̃ + 1TH ⊗′ [h̃, e]+

+ h̃⊗′ [P̃, e]
)
(Ĩ⊗′ Ĩ)∆TPH

1
1− ψ(t) (2.139a)

=
(
1TH ⊗′ [h̃, e] + [e, h̃]⊗′ 1TH

)
∆THĨ 1

1− ψ(t) , (2.139b)

where in the last step we have used P̃Ĩ = Ĩ, as well as that h̃Ĩ = 0. Given this preparation,
one may then invoke cyclicity of m (by applying (2.54)) and subsequently the chain-map
property (2.84) as well as [∂t,m] = [∂t, m̃] = [∂t, Ĩ] = 0 to eventually obtain

Ẽ(ψ) = E(Ψ(ψ)) +
∫ 1

0
dt 〈ω|π1Ĩm̃∂t

1
1− ψ(t) ⊗ π1h̃eĨ 1

1− ψ(t) , (2.140)

where now the second term in (2.140) clearly vanishes by applying (2.98) because π1h̃
acting on anything always gives h as a prefactor while π1Ĩ gives either h or P . This finally
proves the equality (2.136).

On the other hand, assuming that, in addition to (2.130), we have e2 = 0, then

ẽ2 = Π̃eĨΠ̃eĨ (2.141a)
= Π̃eP̃eĨ , (2.141b)

which is in general non-zero (unless, for instance, we have [P̃, e] = 0). This tells us that if
we use e to perturb the multi-string products of the parent UV action as M(µ) = m + µe
(in the case that e2 = 0), then the corresponding perturbation of the effective action cannot
be effected simply by adding ẽ to m̃. Indeed, as we will see below in subsection 3.3, we will
need to consider effective couplings containing arbitrary powers of e in order to implement
the corresponding perturbation on the level of open SFT effective action.

2.4 Horizontal composition

In certain situations one needs to perform two consecutive procedures of integrating out
unwanted degrees of freedom: see subsection 3.2 for a concrete example in the context of
Witten’s cubic OSFT. We will now see how this can be dealt with in one step using a
composite propagator.
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2.4.1 Composite propagator

Let us assume that we first need to integrate out degrees of freedom which are singled out
using a projector P̄(1) ≡ 1TH −P(1), where the projector P(1) : TH −→ TH is associated
to a propagator h(1) : TH −→ TH via the Hodge-Kodaira decomposition

Qh(1) + h(1)Q = 1TH −P(1) . (2.142)

Decomposing the projector as P(1) = I(1)Π(1) into a canonical projection Π(1) : TH −→
TP (1)H and the canonical inclusion I(1) : TP (1)H −→ TH (so that we recover the retract
relation Π(1)I(1) = 1TP (1)H), we will further assume (as directed by the discussion in
subsection 2.1) the annihilation conditions h(1)I(1) = (h(1))2 = Π(1)h(1) = 0 (so that, in
particular, (2.142) yields [P(1),Q] = [P(1),h(1)] = 0). Altogether, we can therefore write
the SDR

(−h(1)) (TH,Q) Π(1)

I(1)
(TP (1)H,Q(1)) , (2.143)

where we have introduced the coderivation Q(1) = Π(1)QI(1). The chain-map relations
QI(1) = I(1)Q(1) and Π(1)Q = Q(1)Π(1) clearly follow using the fact that [P(1),Q] = 0.

Let us consider that furthermore, we want to integrate out some degrees of freedom
from im P(1). These are specified by a projector P̄(2) ≡ 1TP (1)H−P(2), where the projector
P(2) should be understood as a map P(2) : TP (1)H −→ TP (1)H (so that it is implicit
that im P(2) ⊂ im P(1)). Assuming that the degrees of freedom outside of im P(2) can be
integrated out using a propagator h(2) : TP (1)H −→ TP (1)H satisfying the Hodge-Kodaira
decomposition

Q(1)h(2) + h(2)Q(1) = 1TP (1)H −P(2) , (2.144)

(so that, in particular, we have [P(2),Q(1)] = [P(2),h(2)] = 0) where the associated canoni-
cal projection Π(2) : TP (1)H −→ TP (2)P (1)H and inclusion I(2) : TP (2)P (1)H −→ TP (1)H
satisfy I(2)Π(2) = P(2), as well as the retract relation Π(2)I(2) = 1TP (2)P (1)H and the
annihilation relations h(2)I(2) = (h(2))2 = Π(2)h(2) = 0, we can therefore write the SDR

(−h(2)) (TP (1)H,Q(1)) Π(2)

I(2)
(TP (2)P (1)H,Q(2)) , (2.145)

where we introduce the coderivation Q(2) = Π(2)Q(1)I(2) = Π(2)Π(1)QI(1)I(2). The corre-
sponding chain-map relations again follow using the fact that [P(2),Q(1)] = 0.

We will now show that defining a composite propagator h(12) : TH −→ TH by

h(12) ≡ h(1) ◦ h(2) ≡ h(1) + I(1)h(2)Π(1) , (2.146)

as well as defining composite projection Π(12) : TH −→ TP (2)P (1)H and inclusion I(12) :
TP (2)P (1)H −→ TH as

Π(12) = Π(2)Π(1) , (2.147a)

I(12) = I(1)I(2) , (2.147b)
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we can write the horizontally composed SDR

(−h(12)) (TH,Q) Π(12)

I(12)
(TP (2)P (1)H,Q(2)) , (2.148)

where we can clearly write the coderivation Q(2) as Q(2) = Π(12)QI(12). To do this, we
will need to establish the homotopy-equivalence relations

Qh(12) + h(12)Q = 1TH − I(12)Π(12) , (2.149a)

QI(12) = I(12)Q(2) , (2.149b)

Π(12)Q = Q(2)Π(12) , (2.149c)

as well as the retract relation

Π(12)I(12) = 1TP (2)P (1)H (2.150)

and the annihilation conditions

Π(12)h(12) = (h(12))2 = h(12)I(12) = 0 . (2.151)

As we will see explicitly in the following subsection, the composite propagator h(12) provides
us with a possibility of going directly from TH to TP (2)P (1)H by integrating out the modes
outside of the image of P(12) ≡ I(12)Π(12) by “cutting out the middleman” which takes on
the form of TP (1)H.

First, the retract relation follows because

Π(12)I(12) = Π(2)Π(1)I(1)I(2) (2.152a)

= Π(2)1TP (1)HI(2) (2.152b)
= 1TP (2)P (1)H , (2.152c)

where we have used the retract relations for the SDRs (2.143) and (2.145). Second, we can
use the definition (2.146) to expand

Qh(12) + h(12)Q = Qh(1) + h(1)Q + QI(1)h(2)Π(1) + I(1)h(2)Π(1)Q , (2.153)

where we can substitute from the Hodge-Kodaira decomposition (2.142) and use the chain-
map relations QI(1) = I(1)Q(1), Π(1)Q = Q(1)Π(1) to rewrite (2.153) as

Qh(12) + h(12)Q = 1TH − I(1)Π(1) + I(1)(Qh(2) + h(2)Q
)
Π(1) . (2.154)

Finally, substituting from the elementary Hodge-Kodaira decomposition (2.144), we there-
fore obtain the required composite Hodge-Kodaira decomposition for the SDR (2.148)

Qh(12) + h(12)Q = 1TH − I(1)Π(1) + I(1)1TP (1)HΠ(1) − I(1)I(2)Π(2)Π(1) (2.155a)

= 1TH − I(12)Π(12) . (2.155b)
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Recalling the definition P(12) ≡ I(12)Π(12) of the composite projector, the decomposi-
tion (2.144) implies [P(12),Q] = [P(12),h(12)] = 0 which, in particular, yields the chain-
map relations QI(12) = I(12)Q(2) and Π(12)Q = Q(2)Π(12). Finally, it is straightforward to
verify the composite annihilation conditions. Indeed, we can expand

(h(12))2 = (h(1))2 + h(1)I(1)h(2)Π(1) + I(1)h(2)Π(1)h(1) + I(1)h(2)Π(1)I(1)h(2)Π(1) ,

(2.156)

where we can use the elementary annihilation conditions (h(1))2 = 0, h(1)I(1) = 0 and
Π(1)h(1) = 0 to get rid of the first three terms in (2.156), while the last term can be seen
to vanish by realizing that Π(1)I(1) = 1TP (1)H and (h(2))2 = 0. This therefore gives us the
composite annihilation condition (h(12))2 = 0. We can also expand

Π(12)h(12) = Π(2)Π(1)h(1) + Π(2)Π(1)I(1)h(2)Π(1) , (2.157)

where the first term vanishes by the annihilation condition Π(1)h(1) = 0 and the second
term vanishes by realizing that Π(1)I(1) = 1TP (1)H and using the annihilation condition
Π(2)h(2) = 0. This then establishes the composite annihilation condition Π(12)h(12) = 0.
Similarly for h(12)I(12) = 0.

Finally, it is easy to see that the composite maps Π(12), I(12) retain the required
coalgebraic properties, namely that Π(12), I(12) are again cohomomorphisms. On the other
hand, we now clearly have

∆THh(12) 6= (h(12) ⊗′ P(12) + 1TH ⊗′ h(12))∆TH . (2.158)

Thus, instead of following the rule (2.63), the action of the composite propagator on TH
is now given by

h(12)πk =
k−1∑
l=0

(1H)⊗l ⊗ h(1) ⊗ (P (1))⊗(k−1−l)+

+
k−1∑
l=0

(P (1))⊗l ⊗ I(1)h(2)Π(1) ⊗ (P (12))⊗(k−1−l) . (2.159)

One therefore needs to exercise extra care when recasting coalgebraic expressions in terms
of ordinary products on H. Observe that the action (2.159) of the composite propagator
h(12) on the tensor space TH gives us an alternative possibility (besides the rule (2.63))
of uplifting the map h(1) + I(1)h(2)Π(1) from H to TH, such that the respective map on
TH satisfies the tensor version (2.155) of the Hodge-Kodaira decomposition with projec-
tor P(12).

2.4.2 Perturbing horizontally composed SDR

By now we should recognize that there are in principle two ways of integrating out the
degrees of freedom specified by the projectors P̄(1) and P̄(2): either we can (a) perform this
procedure in two steps by sequentially integrating out first the P̄(1) degrees of freedom using
the propagator h(1) and only then integrating out the P̄(2) degrees of freedom using the
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propagator h(1), or, we can (b) do everything in one step by using the composite propagator
h(12). We will now show that both of these procedures lead to the same effective action.

Following the sequential procedure (a), we can first integrate out the P̄(1) degrees of
freedom using the propagator h(1) so as to obtain the perturbed SDR

(−h̃(1)) (TH,m = Q + δm) Π̃(1)

Ĩ(1)
(TP (1)H, m̃(1) = Q(1) + δm̃(1)) , (2.160)

where the perturbed data are given by the by-now-familiar relations

δm̃(1) = Π(1)δm 1
1TH + h(1)δm

I(1) , (2.161a)

h̃(1) = 1
1TH + h(1)δm

h(1) , (2.161b)

Ĩ(1) = 1
1TH + h(1)δm

I(1) , (2.161c)

Π̃(1) = Π(1) 1
1TH + δmh(1) . (2.161d)

Furthermore, integrating out the P̄(2) degrees of freedom by means of the propagator h(2),
we obtain the δm̃(1)-perturbed version of the SDR (2.145)

(−h̃(2)) (TP (1)H, m̃(1) = Q(1) + δm̃(1)) Π̃(2)

Ĩ(2)
(TP (2)P (1)H, m̃(2) = Q(2) + δm̃(2)) ,

(2.162)
where we can immediately write down the explicit expressions

δm̃(2) = Π(2)δm̃(1) 1
1TP (1)H + h(2)δm̃(1) I(2) , (2.163a)

h̃(2) = 1
1TP (1)H + h(2)δm̃(1) h(2) , (2.163b)

Ĩ(2) = 1
1TP (1)H + h(2)δm̃(1) I(2) , (2.163c)

Π̃(2) = Π(2) 1
1TP (1)H + δm̃(1)h(2) . (2.163d)

Using our discussion in subsection (2.4.1), we can also write down the corresponding hori-
zontally composed SDR

(−h̃(1) ◦ h̃(2)) (TH,m = Q + δm) Π̃(2)Π̃(1)

Ĩ(1)Ĩ(2)
(TP (2)P (1)H, m̃(2) = Q(2) + δm̃(2)) ,

(2.164)
where

h̃(1) ◦ h̃(2) ≡ h̃(1) + Ĩ(1)h̃(2)Π̃(1) (2.165)

gives the composite propagator.
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On the other hand, we can alternatively proceed to construct an effective action by
pursuing method (b), that is by integrating out everything in one go by using the composite
propagator h(12). We would then directly obtain a perturbed version of the SDR (2.148)

(−h̃(12)) (TH,m = Q + δm) Π̃(12)

Ĩ(12)
(TP (2)P (1)H,Q(2) + δ′m̃(2)) , (2.166)

where the homological perturbation lemma instructs us that we should put

δ′m̃(2) = Π(12)δm 1
1TH + h(12)δm

I(12) , (2.167a)

h̃(12) = 1
1TH + h(12)δm

h(12) , (2.167b)

Ĩ(12) = 1
1TH + h(12)δm

I(12) , (2.167c)

Π̃(12) = Π(12) 1
1TH + δmh(12) . (2.167d)

As we have already hinted at above, it turns out that the methods (a) and (b) yield the
same effective action. Put in quantitative terms, we will now show that we in fact have

δm̃(2) = δ′m̃(2) , (2.168a)

h̃(12) = h̃(1) ◦ h̃(2) , (2.168b)

Ĩ(12) = Ĩ(1)Ĩ(2) , (2.168c)

Π̃(12) = Π̃(2)Π̃(1) , (2.168d)

namely that the SDRs (2.164) and (2.166) are identical. In other words, starting with the
diagram

(−h(1)) (TH,Q) Π(1)

I(1)
(−h(2)) (TP (1)H,Q(1)) Π(2)

I(2)
(TP (2)P (1)H,Q(2))

δ
m

δ
m̃

(1
)

δ
m̃

(2
)

(−h̃(1)) (TH,m) Π̃(1)

Ĩ(1)
(−h̃(2)) (TP (1)H, m̃(1)) Π̃(2)

Ĩ(2)
(TP (2)P (1)H, m̃(2))

depicting the δm-deformation of the horizontally concatenated SDRs (2.143) and (2.145)
yielding the horizontally concatenated SDRs (2.160) and (2.162), we can instead draw the
horizontally composed diagram

(−h(12)) (TH,Q) Π(12)

I(12)
(TP (2)P (1)H,Q(2))

δ
m

δ
′ m̃

(2
)

(−h̃(12)) (TH,m) Π̃(12)

Ĩ(12)
(TP (2)P (1)H, m̃(2))
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where the identification (2.168) of the data is understood to take place. In particular the
interaction vertices of the effective SFT action after integrating out both P̄1 and P̄2 degrees
of freedom are expressed in terms of the products which are encoded in the coderivation

δm̃(2) = Π(2)Π(1)δm 1
1TH + (h(1) + I(1)h(2)Π(1))δm

I(1)I(2) . (2.169)

Here we recall that we noted in subsection 2.4.1 that the composite propagator h(12) =
h(1) + I(1)h(2)Π(1) does not act on TH in the way prescribed by the rule (2.63). However,
as we will see explicitly in subsection 3.2, it is possible to show that after unpackaging
the coalgebra notation, the effective products will be given in terms of the propagator
h(1) + P (1)h(2) precisely in the way as if the (uplifted) composite propagator h(12) acted
on TH according to (2.63). It may well be possible that in order to recover the correct
perturbation expansion, it is only crucial to ensure that the uplifted propagator h(12)

satisfies the Hodge-Kodaira decomposition while the precise way in which this uplift is
implemented might not play any role.

Let us first show (2.168a). Starting with the expression (2.163a) for δm̃(1) and substi-
tuting for δm̃(1) from (2.161a), we can straightforwardly obtain (it helps to expand various
denominators as power series)

δm̃(2) = Π(2)Π(1)δm 1
1TH + h(1)δm

1
1TP (1)H + I(1)h(2)Π(1)δm 1

1TH+h(1)δm
I(1)I(2) . (2.170)

Noting that composition of invertible maps generally obeys (AB)−1 = B−1A−1, we can
combine the two denominators in (2.170) so as to show that (2.170) is equal to (2.169),
which, in turn, is clearly equal to the expression (2.167a) for δ′m̃(2). Continuing with
(2.168b) and taking the expressions (2.161) for h̃(1), Ĩ(1), Π̃(1), as well as the expres-
sion (2.163b) for h̃(2) (where, inside h̃(2), we also substitute for δm̃(1) using (2.161a)), we
can write

h̃(1) + Ĩ(1)h̃(2)Π̃(1) = 1
1TH + h(1)δm

h(1)+

+ 1
1TH + h(1)δm

I(1) 1
1TP (1)H + h(2)Π(1)δm 1

1TH+h(1)δmI(1) h(2)Π(1) 1
1TH + δmh(1) .

(2.171)

Using analogous manipulations as in the case of δm̃(2) previously, this can be brought into
the form

h̃(1) + Ĩ(1)h̃(2)Π̃(1) = 1
1TH + h(1)δm

h(1)+

+ 1
1TH + h(1)δm + I(1)h(2)Π(1)δm

I(1)h(2)Π(1)
(

1TH −
1

1TH + δmh(1) δmh(1)
)
.

(2.172)
A number of additional purely algebraic manipulations are then required to rewrite this as

h̃(1) + Ĩ(1)h̃(2)Π̃(1) =
(

1TH −
1

1TH + h(12)δm
I(1)h(2)Π(1)δm

) 1
1TH + h(1)δm

h(1)+

+ 1
1TH + h(12)δm

I(1)h(2)Π(1) . (2.173)
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Substituting then I(1)h(2)Π(1) = h(12) − h(1), we eventually obtain

h̃(1) + Ĩ(1)h̃(2)Π̃(1) = 1
1TH + h(12)δm

(
1TH + h(1)δm

) 1
1TH + h(1)δm

h(1)+

+ 1
1TH + h(12)δm

I(1)h(2)Π(1) (2.174a)

= 1
1TH + h(12)δm

(h(1) + I(1)h(2)Π(1)) , (2.174b)

which is clearly equal to h̃(12). Finally, the relations (2.168c) and (2.168d) follow by
performing steps, which are completely analogous to those which we have employed above
to show that δm̃(2) = δ′m̃(2). This therefore concludes the proof of the equivalence (2.168).

2.5 Vertical decomposition

Thus far we have seen that in order to derive the effective physics of modes given by
a projector P by integrating out the remaining modes using a propagator h such that
Qh + hQ = 1TH − P (within the context of an interacting A∞ SFT with products m =
Q + δm), one simply needs to apply the homological perturbation lemma on the “free”
SDR (2.66), treating the interactions δm as a perturbation. Sometimes, however, it is
natural to decompose the perturbation δm into two separate parts δm(1) and δm(2) as
δm = δm(1) +δm(2). When deriving an effective action, one can then conceive of either (a)
integrating out degrees of freedom in the fully-interacting theory with products m = Q +
δm, or, (b) first deriving an effective action for the theory with interactions δm(1) and only
then adding the interactions δm(2) by once more applying the homological perturbation
lemma, thus viewing the final theory (derived from a full theory with products m) as
a δm(2)-perturbation of the “intermediate” effective theory which is derived from the full
theory with products m(1) = Q+δm(1). While one could expect that these two procedures
may in general give two different effective theories, we will now show that they are in fact
completely equivalent.15

2.5.1 Consecutive perturbations

As we have already hinted at above, we will consider two consecutive perturbations of
the BRST charge Q by coderivations δm(1) and δm(2). Namely, we first perturb Q −→
m(1) = Q + δm(1), and subsequently we perturb m(1) −→m ≡m(2) = m(1) + δm(2). The
perturbations are of course chosen in such a way that we have

(Q + δm(1))2 = (m(1) + δm(2))2 = 0 . (2.175)

Notice that in the situations where δm(2) can be consistently rescaled by a continuous
parameter µ as δm(2) → µδm(2), we need to satisfy

(m(1))2 + µ[m(1), δm(2)] + µ2(δm(2))2 = 0 (2.176)

15We thank Lada Peksová for a discussion on this topic.
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order by order in µ, so that we need separately

[δm(2),m(1)] = (δm(2))2 = 0 . (2.177)

In particular, we learn that under such circumstances, the coderivation δm(2) ≡ e yields
an observable of the form (2.127) for the m(1)-interacting theory (recalling our discussion
in subsection 2.3).

Starting with the free-theory SDR

(−h) (TH,Q) Π

I
(TPH,ΠQI) (2.178)

we first perturb Q by δm(1) to obtain the interacting-theory SDR

(−h̃(1)) (TH,m(1) = Q + δm(1)) Π̃(1)

Ĩ(1)
(TPH, m̃(1) = ΠQI + δm̃(1)) , (2.179)

where the coderivation m̃(1) encodes the effective products after integrating out the degrees
of freedom (which are singled out by the projector P̄ = 1TH − P) using the interactions
given by δm(1). As usual, the homological perturbation lemma gives us the following
prescription for the δm(1)-perturbed data

δm̃(1) = Πδm(1) 1
1TH + hδm(1) I , (2.180a)

h̃(1) = 1
1TH + hδm(1) h , (2.180b)

Ĩ(1) = 1
1TH + hδm(1) I , (2.180c)

Π̃(1) = Π 1
1TH + δm(1)h

. (2.180d)

Furthermore, let us perturb the differential products m(1) by adding more interactions
δm(2) in order to obtain yet another SDR

(−h̃(2)) (TH,m = m(1) + δm(2)) Π̃(2)

Ĩ(2)
(TPH, m̃(2) = m̃(1) + δm̃(2)) , (2.181)

where the homological perturbation lemma instructs us to take

δm̃(2) = Π̃(1)δm(2) 1
1TH + h̃(1)δm(2) Ĩ(1) , (2.182a)

h̃(2) = 1
1TH + h̃(1)δm(2) h̃(1) , (2.182b)

Ĩ(2) = 1
1TH + h̃(1)δm(2) Ĩ(1) , (2.182c)

Π̃(2) = Π̃(1) 1
1TH + δm(2)h̃(1) . (2.182d)

While the coderivation m̃(2) clearly encodes products of an interacting theory with A∞
structure for modes in TPH, strictly speaking its physical meaning should not be entirely
clear at this point, as the m̃(2)-theory was not obtained by perturbing a free theory.
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2.5.2 Composing the perturbations

Our aim will now be to show that the just outlined procedure of applying the homological
perturbation lemma twice for two consecutive perturbations δm(1), δm(2) produces the
same resulting SDR as if we perturbed the BRST Q in the original free-theory SDR (2.178)
directly by δm ≡ δm(1) + δm(2) so as to obtain

(−h̃) (TH,m = Q + δm) Π̃

Ĩ
(TPH, m̃ = ΠQI + δm̃) , (2.183)

where

δm̃ = Π
(
δm(1) + δm(2)) 1

1TH + h
(
δm(1) + δm(2))I , (2.184a)

h̃ = 1
1TH + h

(
δm(1) + δm(2))h , (2.184b)

Ĩ = 1
1TH + h

(
δm(1) + δm(2))I , (2.184c)

Π̃ = Π 1
1TH +

(
δm(1) + δm(2))h . (2.184d)

That is, we are going to show that the SDR (2.183) with data (2.184) is identical to the
SDR (2.181) with data (2.182). Rephrasing what we just wrote in quantitative terms, we
are going to show that

δm̃ = δm̃(1) + δm̃(2) , (2.185a)

h̃ = h̃(2) , (2.185b)

Ĩ = Ĩ(2) , (2.185c)

Π̃ = Π̃(2) . (2.185d)

Put in other words, starting with the diagram

(−h) (TH,Q) Π

I
(TPH,ΠQI)

δ
m

δ
m̃

(−h̃) (TH,m) Π̃

Ĩ
(TPH, m̃)

which is schematizing the deformation δm ≡ δm(1) +δm(2) of the free-theory SDR (2.178),
one can introduce an intermediate step in the form of the SDR (2.179) (by first deforming
the SDR (2.178) only by δm(1)) so as to obtain a new, vertically decomposed deformation

– 38 –



J
H
E
P
1
1
(
2
0
2
0
)
1
2
3

diagram

(−h) (TH,Q) Π

I
(TPH,ΠQI)

δ
m

(1
)

δ
m̃

(1
)

(−h̃(1)) (TH,m(1)) Π̃(1)

Ĩ(1)
(TPH, m̃(1))

δ
m

(2
)

δ
m̃

(2
)

(−h̃(2)) (TH,m(2)) Π̃(2)

Ĩ(2)
(TPH, m̃(2))

where the identification (2.185) of the data is in place. In particular, this means that when
one wants to view the effective theory for P-degrees of freedom derived using the full set
δm of interactions as a δm(2)-perturbation of the effective theory derived using a partial
set δm(1) of interactions, one may conveniently use the expression (2.182a) to write the
effective products as

m̃ = m̃(1) + Π̃(1)δm(2)Ĩ(1) +
∞∑
k=1

(−1)kΠ̃(1)δm(2)(h̃(1)δm(2))kĨ(1) . (2.186)

Here we recall that in the above-described situation where the perturbation δm(2) can be
consistently rescaled by a continuous parameter, it follows from (2.177) that Π̃(1)δm(2)Ĩ(1)

yields an observable for the m̃(1) effective theory (recalling our discussion in subsection 2.3).
Hence, while in such situations it is true that at leading order in δm(2) the effective action
is perturbed by an observable of the m̃(1) effective theory, the expression (2.186) makes it
manifest that in general we need to add corrections at higher orders in δm(2). This must be
the case because we generally have (Π̃(1)δm(2)Ĩ(1))2 = Π̃(1)δm(2)P̃(1)δm(2)Ĩ(1) 6= 0, unless,
for instance, we have [P̃(1), δm(2)] = 0 (then the sum in (2.186) clearly vanishes by virtue
of the annihilation condition P̃(1)h̃(1) = 0).

Let us now proceed with proving the equivalence (2.185). Indeed, remembering that
composition of invertible maps generally satisfies (AB)−1 = B−1A−1, we can for instance
start with the expression (2.184d) for Π̃ and write

Π̃ = Π 1
1TH + δm(1)h + δm(2)h

(2.187a)

= Π 1(
1TH + δm(2)h 1

1TH+δm(1)h
)
(1TH + δm(1)h)

(2.187b)

= Π 1
1TH + δm(1)h

1
1TH + δm(2) 1

1TH+hδm(1) h
(2.187c)

= Π̃(1) 1
1TH + δm(2)h̃(1) (2.187d)

= Π̃(2) , (2.187e)

where in the third equality we have recognized the expressions (2.180b) and (2.180d) for h̃(1)

and Π̃(1), while in the fourth equality, we have finally recognized the expression (2.182d)
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for Π̃(2). The results (2.185b) and (2.185c) then follow by performing completely anal-
ogous steps. Finally, starting with the expression (2.184a), we can first perform some
straightforward algebraic manipulations to obtain

δm̃ = Π
(
δm(1) + δm(2)) 1

1TH + 1
1TH+hδm(1) hδm(2)

1
1TH + hδm(1) I (2.188)

Next, isolating the term starting with Πδm(1) and substituting for Π in terms of Π̃(1) into
the remaining term, we eventually obtain

δm̃ = Π̃(1)δm(2) 1
1TH + h̃(1)δm(2) Ĩ(1)+

+ Π 1
1TH + δm(1)h

δm(1)hδm(2)×

× 1
1TH + 1

1TH+hδm(1) hδm(2)
1

1TH + hδm(1) I+

+ Πδm(1) 1
1TH + 1

1TH+hδm(1) hδm(2)
1

1TH + hδm(1) I . (2.189)

Since the prefactor-part of second term in (2.189) may be rewritten as

Π 1
1TH + δm(1)h

δm(1)hδm(2) = Πδm(1) 1
1TH + hδm(1) hδm(2) (2.190)

it can be straightforwardly combined with the last term in (2.189) to yield

δm̃ = Π̃(1)δm(2) 1
1TH + h̃(1)δm(2) Ĩ(1)+

+ Πδm(1)
(

1TH + 1
1TH + hδm(1) hδm(2)

)
×

× 1
1TH + 1

1TH+hδm(1) hδm(2)
1

1TH + hδm(1) I (2.191a)

= Π̃(1)δm(2) 1
1TH + h̃(1)δm(2) Ĩ(1) + Πδm(1) 1

1TH + hδm(1) I , (2.191b)

which is clearly equal to δm̃(1) + δm̃(2).

2.6 Summary

Before analyzing in detail the specific example of Witten bosonic OSFT, let us summarize
the main results of this section, which are valid for all theories based on A∞ (or L∞, see
appendix B) structures and which can be taken as general instructions to build tree-level
effective actions.

• Given a projector P projecting on the set of fields that we want to retain, we should
identify a (BPZ even) propagator h which provides an Hodge-Kodaira decomposition

[Q, h] = 1− P, (2.192)
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in such a way that hP = Ph = h2 = 0. Then the Feynman diagrams which give
the effective vertices (and thus the effective action) for the fields in the image of P
are directly obtained by running the homological perturbation lemma (2.79b) which
automatizes the process of solving the equations of motion for the fields in ker P and
plugging back the result into the original action. If we start with cyclic A∞ (or L∞)
vertices we end up with cyclic A∞ (or L∞) vertices in the effective theory. Moreover,
solutions to the equation of motion of the effective theory automatically uplift to
solutions of the full microscopic theory.

• A general class of observables in the UV theory can be constructed (2.126). The ho-
mological perturbation lemma tells us what these observables become in the IR (2.133),
(2.134), (2.136) and guarantees that they will be gauge-invariant with respect to the
gauge transformations of the effective theory.

• When we integrate out in different successive steps we should in principle run the
homological perturbation lemma with the given propagator and projector at every
step. But equivalently we can run it just once, simply considering the sum of the
involved propagators and the product of the projectors (2.169). This is the horizontal
composition.

• When we deform the UV theory with a new consistent interaction (which is often
provided by an observable), the effective theory will be accordingly deformed. The
homological perturbation lemma allows to cleanly identify the new deformed struc-
tures in the effective theory which will be given by the homotopy transfer of the
deforming observable plus an infinite set of non-linear corrections (2.186). This is the
vertical decomposition.

• It doesn’t matter in which order we do horizontal composition and vertical decompo-
sitions because the two processes commute as one can easily verify by simple algebraic
manipulations at the level of coalgebra operators.

3 Application to Witten OSFT

In this section we will apply our formalism to Witten bosonic OSFT which is based on an
A∞ algebra with just two multi-string products m1 and m2, corresponding respectively to
the BRST charge and Witten’s star product. The action is given by

S(Ψ) =
2∑

k=1

1
k + 1ω(Ψ,mk(Ψ⊗k)) = 1

2ω(Ψ, QΨ) + 1
3ω (Ψ,m2(Ψ,Ψ)) , (3.1)

where Ψ is a degree-even, ghost number one state of a bosonic matter/ghost factorized
BCFT0. The 2-product m2 is related to Witten star product as

m2(Ψ1,Ψ2) = (−1)d(Ψ1)Ψ1 ∗Ψ2, (3.2)
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where the degree d(Ψ) is given by the ghost number augmented by one (mod 2). Similarly
the symplectic form ω is related to BPZ inner product 〈·, ·〉 as

ω(Ψ1,Ψ2) = 〈ω|Ψ1 ⊗Ψ2 = −(−1)d(Ψ1)〈Ψ1,Ψ2〉. (3.3)

The full coderivation giving rise to propagation and interactions is given by

m = Q + m2 (3.4)

and it is nilpotent

m2 = 0, (3.5)

which means that Q is nilpotent and it is a derivation of Witten product which is in turn
associative. The coderivations mk are also cyclic with respect to the symplectic form

〈ω|π2mk = 0. (3.6)

To make contact with the previous general discussion, we can also write the action in WZW
form as

S(Ψ) =
∫ 1

0
dt 〈ω|π1∂t

1
1−Ψ(t) ⊗ π1m

1
1−Ψ(t) , (3.7)

where we have chosen a standard interpolation such that Ψ(0) = 0 and Ψ(1) = Ψ.16

3.1 Effective action for massless fields

We would like now to obtain the effective action for the massless open string states of
Witten theory. We will consider a generic class of open string backgrounds (BCFTs) which
can be decomposed as a direct product of a (D + 1)-dimensional non-compact and flat
worldvolume with momentum k (described by a standard external free-field BCFText with
c = D + 1 and spacetime indices µ, ν, . . . = 0, . . . , D) times an internal unitary BCFTint

with c = 25 − D. Under such conditions, the zero-mode of the total stress-energy tensor
(including the ghost sector) can be decomposed as

L0 = α′k2 + L̂0, (3.8)

where [k2, L̂0] = 0. Our first aim will be to get an effective action for the fields in the
kernel of L̂0.

To start with we will specialize to a projector P = P̂0, projecting on ker L̂0 ∪ kerL0,
where the cohomology of Q is fully contained. By construction P̂0 projects on all massless
states which may be away from the mass-shell and also on all, generally massive, states
on the mass-shell. Such projector clearly commutes with Q and also satisfies (manifestly)
that kerL0 ⊂ imP̂0, so that the propagator

h0 = b0
L0

(1− P̂0) (3.9)

16Later on, when we will be dealing with the Ellwood invariant, we will (equivalently) choose a different
value for Ψ(0).
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is well-defined. In practice however, we will assume the presence of a gap in the spectrum
of L̂0. That is, we will assume that there exists a value hmin 6= 0 such that

|L̂0| < |hmin| =⇒ L̂0 = 0 . (3.10)

We will then be interested in determining the effective action for the off-shell fields in
ker L̂0 at momenta k well below the cut-off hmin/α

′, that is for α′|k2| � |hmin|. Under
such circumstances we can safely ignore the presence of the massive fields in im P̂0, thus
considering P̂0 ∼ P̂ ′0 where P̂ ′0 projects on just ker L̂0 (excluding therefore the massive
cohomology). Under this cut-off we will be effectively dealing with the propagator b0/L0(1−
P̂ ′0) and to see to which extent is this propagator well defined, we can expand

1
L0

(1− P̂ ′0) = 1
α′k2 + L̂0

(1− P̂ ′0) = 1
L̂0

∞∑
n=0

(
−α
′k2

L̂0

)n
(1− P̂ ′0). (3.11)

In this expression the inverse of L̂0 always appears protected by the corresponding projector
(1− P̂ ′0) and therefore the only possible concern is that the infinite sum could not converge.
The sum is in fact an expansion in α′ and this expansion converges precisely when α′|k|2 <
|hmin|. This is essentially saying that every propagator will give rise to an α′ expansion
which converges whenever α′|k|2 < |hmin|, which is just our working hypothesis of effective
field theory. Part of the α′-expansion associated to derivative couplings of the effective
action will be due to this mechanism.

With these remarks in mind, in the following we will nevertheless use the projector P̂0
so that the structure of the SDR will be cohomologically consistent, with the understanding
that we will only be interested in α′|k|2 < |hmin|.17

The propagator (3.9) and the projector P̂0 clearly satisfy the annihilation conditions
h2

0 = h0P̂0 = P̂0h0 = 0 as well as the Hodge-Kodaira decomposition

h0Q+Qh0 = 1− P̂0 , (3.12)

so that defining the canonical projection Π0 : H −→ P̂0H and inclusion I0 : P̂0H −→ H
such that I0Π0 = P̂0 and Π0I0 = 1

P̂0H
, we have the SDR

(−h0) (H, Q) Π0

I0
(P̂0H,Π0QI0) . (3.13)

Promoting all these maps on the vector spaces H and P̂0H to the corresponding maps on
the tensor coalgebras TH and T P̂0H in the way specified in section 2, we obtain the tensor
coalgebra version of the SDR (3.13)

(−h0) (TH,Q) Π0

I0
(T P̂0H,Π0QI0) , (3.14)

17We can interpret the P̂0 projection as giving rise to the effective action of the massless fields, together
with the “almost” minimal model (i.e. on the mass-shell but not necessarily on the cohomology) for the
massive fields which are invisible by our cut-off. We thank Ted Erler for offering us this picture.

– 43 –



J
H
E
P
1
1
(
2
0
2
0
)
1
2
3

where we recall from section 2 that we have defined

P0πk = I0Π0πk = P̂0 ⊗ . . .⊗ P̂0︸ ︷︷ ︸
k times

, (3.15)

h0πk =
k−1∑
l=0

(1H)⊗l ⊗ h0 ⊗ P̂⊗(k−1−l)
0 . (3.16)

Perturbing then m1 ≡ Q → m = Q + m2 by adding the cubic interaction and applying
the homological perturbation lemma, we obtain a new (perturbed) SDR

(−h̃0) (TH,m) Π̃0

Ĩ0
(T P̂0H, m̃) , (3.17)

where the perturbed structures are

Ĩ0 = 1
1TH + h0m2

I0 , (3.18)

Π̃0 = Π0
1

1TH + m2h0
, (3.19)

P̃0 = Ĩ0Π̃0 = 1
1TH + h0m2

P0
1

1TH + m2h0
, (3.20)

h̃0 = 1
1TH + h0m2

h0 = h0
1

1TH + m2h0
(3.21)

and finally the effective products are given by

m̃ = Π̃0mĨ0 = Π0mĨ0 = Π̃0mI0 (3.22a)

= Π0QI0 + Π0m2
1

1TH + h0m2
I0 , (3.22b)

from which, carefully using (3.16), the products m̃k = π1m̃πk can be extracted

m̃1(ψ) = P̂0m1(ψ) , (3.23a)
m̃2(ψ1,ψ2) = P̂0m2(ψ1,ψ2) , (3.23b)

m̃3(ψ1,ψ2,ψ3) =−P̂0 (m2(h0m2(ψ1,ψ2),ψ3)+m2(ψ1,h0m2(ψ2,ψ3))) (3.23c)

m̃4(ψ1,ψ2,ψ3,ψ4) = pP̂0
(
m2(h0m2(h0m2(ψ1,ψ2),ψ3),ψ4)

+m2(h0m2(ψ1,ψ2),(h0m2,ψ3,ψ4))
+m2(h0m2(ψ1,h0m2(ψ2,ψ3),)ψ4)+m2(ψ1,h0m2(h0m2(ψ2,ψ3),ψ4))

+m2(ψ1,h0m2(ψ2,h0m2(ψ3,ψ4)))
)

(3.23d)
... .

Since h0 is BPZ even, it follows that the coderivation m̃ and the cohomomorphism Ĩ0 are
cyclic with respect to the symplectic form

〈ω̃|π2 ≡ 〈ω|π2I0.
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The effective action for ψ ∈ ker L̂0 therefore reads

S̃(ψ) =
∫ 1

0
dt 〈ω̃|π1∂t

1
1− ψ(t) ⊗ π1m̃

1
1− ψ(t) =

∞∑
k=1

1
k + 1ω

(
ψ, m̃k

(
ψ⊗k

))
, (3.24)

for some interpolation ψ(t) such that ψ(0) = 0 and ψ(1) = ψ.

3.2 The Nakanishi-Lautrup field and horizontal composition

Inside ker L̂0 there is more than just the physical fields cV1e
ik·X (for V1 a matter primary

field with h = 1). We also find the auxiliary Nakanishi-Lautrup field ∂c eik·X .
Denoting by Vi1 a generic h = 1 primary matter fields and jµ = i

√
2
α′∂X

µ, we can
write

V1(k) = φi(k)Vi1 +Aµ(k)jµ, (3.25)

with φi(k)Vi1 ∈ BCFTint an internal matter primary and Aµ(k)jµ ∈ BCFText. We can
generally allow for both φi(k) and Aµ(k) to carry Chan-Paton factors. The only states
residing in ker L̂0 at ghost number 1 are then18

ψ1(k) = cV1(k)eik·X , (3.26a)
ψ̂1(k) = B(k)∂ceik·X , (3.26b)

while at ghost number 2 we have

ψ2(k) = c∂cṼ1(k)eik·X , (3.27a)
ψ̂2(k) = B̃(k)c∂2ceik·X . (3.27b)

Finally, at ghost number 0 and ghost number 3 we find respectively

ψ0(k) = D(k)eik·X

ψ3(k) = D̃(k)c∂c∂2ceik·X .

There are no states at other ghost numbers. Also note that ψ1,2(k) are primaries for
V1(k) = φi(k)Vi1 but generally non-primary for V1(k) = Aµ(k)jµ. The full classical string
field in ker L̂0 can be expressed as

ψ =
∫
α′|k2|�hmin

dD+1k

(2π)D+1 e
ik·X(cV1(k) +B(k)∂c

)
, (3.28)

and we will usually write ψ(k) for the integrand of (3.28).

18The products of fields are understood to be normal-ordered.
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3.2.1 Algebraic propagator

The effective products (3.23) yield an effective action in terms of both the physical modes
φi(k), Aµ(k) and the unphysical modes B(k). So we would like to get rid of B(k). In [8],
where a similar problem was solved to the first few orders in Heterotic String Field The-
ory, it was observed that setting the analogue of the B field to zero by imposing Siegel
gauge would leave out-of-Siegel gauge equations which would not be accounted for by the
remaining equations of motion (as instead it happens by fixing Siegel gauge for the massive
fields). Therefore to get rid of the unphysical field B(k) we have to integrate it out. If
we can do this we end up with a gauge invariant action for φi and Aµ only. But since we
are now in ker L̂0 we cannot use the usual propagator to do that. Luckily a new structure
comes to rescue. To this end, we recall the decomposition of the BRST charge

Q = c0L0 + b0M
+ + Q̂ , (3.29)

where we have introduced the zero-mode-free operator

Q̂ =
∑
n 6=0

c−nL
m
n −

1
2

∑
m,n 6=0
m+n 6=0

(m− n) : c−mc−nbm+n : , (3.30)

as well as M+, together with the generators

M+ = −
∑
n>0

2nc−ncn , (3.31a)

M− = −
∑
n>0

1
2nb−nbn , (3.31b)

Mz = 1
2
∑
m>0

(c−mbm − b−mcm) , (3.31c)

which satisfy the SU(1, 1) algebra

[M+,M−] = 2Mz , (3.32a)
[Mz,M

+] = +M+ , (3.32b)
[Mz,M

−] = −M− . (3.32c)

Let us now consider the following operator

g = c0M
−P̂0 , (3.33)

whereM− is one of the generators (3.31) which satisfy the SU(1, 1) algebra (3.32). In fact,
it is not difficult to see that since the M− inside g only acts on the states in ker L̂0, it can
always be replaced by (1/2)b1b−1 so that we can write

g = 1
2c0b1b−1P̂0 . (3.34)

For the reasons which shall become clear below, we will call g the algebraic propagator.
Note that we have [c0, P̂0] = [M−, P̂0] = [Q, P̂0] = 0 as well as g2 = 0 = [g, P̂0]. Recalling
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that the BRST charge Q may be decomposed according to (3.29), it is not hard to show
that the zero-mode free part Q̂ (3.30) of Q satisfies

[M−, Q̂] = −
∑
m 6=0

1
2mb−mL

m
m +

∑
m,n 6=0
m+n 6=0

(m− n) 1
2nc−mb−nbm+n ≡W , (3.35)

so that we also have [W, P̂0] = [W, c0] = 0. We can then define the operator

p =
{

(b0 +W )c0P̂0 at ghost number 0, 1
c0(b0 −W )P̂0 at ghost number 2, 3

(3.36)

and we can show that inside ker L̂0 we have

m̃1g + gm̃1 = 1− p , (3.37)

simply by testing (3.37) on all states in ker L̂0 at ghost numbers 0,1,2,3, as listed above.
Combining (3.37) with the super-Jacobi identity then yields [g, p] = [m̃1, p] = 0. Further-
more, we can show (again by testing on all states in ker L̂0) that gp = 0 and therefore also
pg = 0. This finally enables us to get

(1− p)2 = (1− p)(m̃1g + gm̃1) (3.38a)
= m̃1g + gm̃1 (3.38b)
= 1− p , (3.38c)

so that p is a projector and (3.37) is therefore a Hodge-Kodaira decomposition with the
algebraic propagator g playing the role of a contracting homotopy for m̃1. Denoting p̄ =
1− p, we can then decompose ker L̂0 as

P̂0H = pP̂0H⊕ p̄P̂0H . (3.39)

Thinking about p as a map p : P̂0H −→ P̂0H, let us define the associated canonical
projection and inclusion

π : P̂0H −→ pP̂0H , (3.40a)
ι : pP̂0H −→ P̂0H , (3.40b)

so that we have ιπ = p and πι = 1
pP̂0H

as well as the annihilation conditions gι = πg =
0 = g2. This finally establishes the SDR

(−g) (P̂0H, m̃1) π

ι
(pP̂0H, πm̃1ι) . (3.41)

The projector p can also be shown to be BPZ self-conjugate: for instance, this can be
easily seen by considering the Hodge-Kodaira decomposition (3.37) and the known BPZ
properties of m̃1 and g.
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3.2.2 Algebraic reduction of ker L̂0

It is interesting to explicitly look at the subspace where the projector p projects. Acting
with p on the states in ker L̂0, we can explicitly compute

ϕ(k) ≡ pψ(k) =
[
cφi(k)Vi1 +A(k) ·

(
cj +

√
α′

2 k∂c
)]
eikX , (3.42a)

r(k) ≡ p̄ψ(k) =
(
B(k)−

√
α′

2 k ·A(k)
)
∂ceikX . (3.42b)

Integrating out r(k) will therefore yield an effective action for the physical polarizations
φi(k), Aµ(k) only, which was our goal from the start. Interestingly we can also explicitly
verify that

L1(pψ(k)) = L2(pψ(k)) = 0,

so that ϕ(k) = pψ(k) is in fact a primary of the full mater-ghost CFT. This is a good
news for the effective action which will greatly simplify the computation of the associated
off-shell amplitudes. Another explicit computation yields the useful result

Q(pψ(k)) = c∂c
[
− α′k2φi(k)Vi1 + α′

(
kµkν − k2gµν

)
Aν(k)jµ

]
eikX , (3.43)

which gives the expected gauge-invariant kinetic terms for Yang-Mills and the scalar.
Now we can promote g to a map g : T P̂0H −→ T P̂0H on the tensor coalgebra T P̂0H such
that it acts as

gπk =
k−1∑
l=0

(1
P̂0H

)⊗l ⊗ g ⊗ p⊗(k−1−l) (3.44)

and satisfies g2 = 0. In this way we end up with the tensor coalgebra version of the
Hodge-Kodaira decomposition (3.37)

gm̃1 + m̃1g = 1
T P̂0H

− p , (3.45)

where we have defined the cohomomorphism p corresponding to p acting as pπk = p⊗k.
Analogously we define the coalgebra extensions π and ι of the projection π and inclusion
ι satisfying the annihilation conditions

gι = πg = 0 = g2.

This establishes the tensor coalgebra version of the SDR (3.41)

(−g) (T P̂0H, m̃1) π

ι
(TpP̂0H,πm̃1ι) . (3.46)

Adding interactions by perturbing m̃1 → m̃ = m̃1 + δm̃ (where m̃ is expressed in terms of
the original microscopic products as m̃ = Π̃0mĨ0) we can apply the homological pertur-
bation lemma to obtain a new SDR

(−g̃) (T P̂0H, m̃) π̃

ι̃
(TpP̂0H,M) . (3.47)
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In particular, this gives us the effective products

N = πm̃ 1
1
T P̂0H

+ gδm̃
ι , (3.48)

which are cyclic with respect to the symplectic form

〈Ω|π2 ≡ 〈ω̃|π2ι = 〈ω|π2I0ι , (3.49)

as is the cohomomorphism ι̃. The products Nk = π1Nπk then determine the vertices of
the effective action

S̃p(ϕ) =
∫ 1

0
dt 〈Ω|π1∂t

1
1− ϕ(t) ⊗ π1N

1
1− ϕ(t) , (3.50)

which now contains only the physical modes φi(k), Aµ(k) and by construction has an A∞
gauge symmetry.

3.2.3 Horizontal composition

Let us summarize our construction. In order to obtain the effective action (3.50) for the
physical massless modes ϕ(k), we have first used the propagator h0 = (b0/L0)(1 − P̂0) to
integrate out fields which were outside of ker L̂0 and subsequently employed the algebraic
propagator g = c0M

−P̂0 to integrate out the unphysical fields inside ker L̂0. It is then
natural to ask if these two procedures can be combined by introducing a new propagator
which would take care of both steps in one go — this would clearly streamline the explicit
evaluation of the vertices of the effective action (3.50). We shall now see that the answer
to this question turns out to be positive: it is not difficult to note that the two SDRs (3.14)
and (3.46) can be horizontally concatenated as

(−h0) (TH,Q) Π0

I0
(−g) (T P̂0H,Π0QI0) π

ι
(TpP̂0H,πΠ0QI0ι) ,

(3.51)
so that using our discussion in section 2, we can establish the corresponding horizontally
composed SDR

(−h0 ◦ g) (TH,Q) πΠ0

I0ι
(TpP̂0H,πΠ0QI0ι) , (3.52)

where (minus) the composed contracting homotopy (i.e. the propagator) h0◦g is defined as

h0 ◦ g = h0 + I0gΠ0 . (3.53)

By construction this propagator satisfy the Hodge-Kodaira decomposition at the co-algebra
level [

πΠ0QI0ι , h0 + I0gΠ0
]

= 1
TpP̂0H

− pP0. (3.54)

– 49 –



J
H
E
P
1
1
(
2
0
2
0
)
1
2
3

The products N (3.48) can therefore be equivalently computed by instead perturbing the
horizontally composed SDR (3.52) by Q→ Q+m2. Applying the homological perturbation
lemma, we simply obtain

N = πΠ0m
1

1TH + (h0 + I0gΠ0)m2
I0ι . (3.55)

Order by order in ϕ, the effective products Nk = π1Nπk can be therefore written down. In
doing this it is important to be aware that the composed co-algebraic propagator h0+I0gΠ0
acts on the tensor algebra as

(h0 + I0gΠ0)πk =
k−1∑
l=0

(1H)⊗l ⊗ h0 ⊗ P̂⊗(k−1−l)
0 +

k−1∑
l=0

P̂⊗l0 ⊗ gP̂0 ⊗
(
pP̂0

)⊗(k−1−l)
.(3.56)

Then one can readily verify that this gives the following cyclic-A∞ effective products

N1(ϕ) = pP̂0Qϕ , (3.57a)
N2(ϕ1, ϕ2) = pP̂0m2(ϕ1, ϕ2) , (3.57b)

N3(ϕ1, ϕ2, ϕ3) = −pP̂0
(
m2(h′0m2(ϕ1, ϕ2), ϕ3) +m2(ϕ1, h

′
0m2(ϕ2, ϕ3))

)
(3.57c)

N4(ϕ1, ϕ2, ϕ3, ϕ4) = pP̂0
(
m2(h′0m2(h′0m2(ϕ1, ϕ2), ϕ3), ϕ4)

+m2(h′0m2(ϕ1, ϕ2), (h′0m2, ϕ3, ϕ4))
+m2(h′0m2(ϕ1, h

′
0m2(ϕ2, ϕ3), )ϕ4) +m2(ϕ1, h

′
0m2(h′0m2(ϕ2, ϕ3), ϕ4))

+m2(ϕ1, h
′
0m2(ϕ2, h

′
0m2(ϕ3, ϕ4)))

)
(3.57d)

...,

which reproduce the string tree-level perturbation theory, but with a modified propagator

h′0 = b0
L0

(1− P̂0) + 1
2c0b1b−1P̂0. (3.58)

This expression for the propagator is tightly related to Sen’s prescription for computing
amplitudes at zero momentum given in [56]: the first term gives the standard world-sheet
amplitude where all the logarithmic divergences due to massless fields are removed thanks
to (1− P0).19 The second term adds the contribution from integrating out the NL field c0
without gauge fixing, but using the classical gauge invariant action for the path integral.
Notice that this second step, while obviously needed for consistency, does not have a natural
world-sheet interpretation in terms of moduli space but it is essentially field-theoretical.

Notice also that at zero momentum we have N1(ϕ) ≡ pP0Qϕ = 0, so that our
method gives an explicit construction of the minimal model (pP0H, {Nk}∞k=2) for the zero-
momentum cubic OSFT. It would be interesting to extend this mechanism to the massive
fields above the threshold and to give an explicit construction of the complete minimal
model to get the full “correct” prescription to compute all tree-level amplitudes.

19Tachyon divergences are also automatically taken care of as in [19, 33].
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At generic momentum, the results derived in this subsection can be used to explicitly
compute the vertices of the ker L̂0 effective action (3.50) and to investigate the induced
A∞ gauge symmetry and the associated derivative couplings. On this regard let us note
that exploiting the primariness of ϕ, it is easy to verify (using the explicit expression for
the Witten’s star product [66] which is expressed in terms of a symmetric OPE) that
P̂0m2(ϕ,ϕ) is proportional to c∂c, with no contamination of c∂2c. Therefore we have that

P̂0gm2(ϕ,ϕ) = 0, (Witten vertex)

so that up to quartic order the algebraic propagator does not contribute into the effective
action for ϕ ∈ pP̂0H. Note however, that this would cease to be true had we used a non-
twist invariant cubic vertex (see [56] for a related discussion). The algebraic propagator
will anyhow give contributions at loop level even in Witten theory.

3.3 Deformations by closed string backgrounds and vertical decomposition

In the context of Witten theory we now consider deforming the original action by adding
the Ellwood invariant [57–59], so that we will be dealing with a deformed UV theory of
the form

S(µ)(Ψ) = 1
2ω(Ψ, QΨ) + 1

3ω(Ψ,m2(Ψ,Ψ)) + µω(Ψ, e)

= S(µ)(Ψ0) +
∫ 1

0
dt 〈ω|π1∂t

1
1−Ψ(t) ⊗ π1M(µ) 1

1−Ψ(t) , (3.59)

where Ψ(t) is a generic interpolation for the full string field such that Ψ(1) = Ψ and Ψ(0) =
Ψ0. Here Ψ0 is any constant open string field which will be later fixed to a convenient
value. Notice that for µ 6= 0 the theory has a tree-level tadpole, whose consequences will
be analyzed in the next subsection.

The full coderivation describing propagation and interactions is

M(µ) = m + µ e, (3.60)

which is composed of the usual coderivations of the Witten theory m = Q + m2 and the
coderivation e associated to the 0-string product e

π1eπ0 = e = V (i,−i)|I〉, (3.61)

which corresponds to the insertion of a weight zero physical closed string field V (z, z̄) at
the midpoint of the identity string field. From the on-shellness and the midpoint properties
of V we have

[m, e] = 0,

which, together with the trivial
e2 = 0,

gives rise to a (weak) A∞ algebra. In this section, for simplicity, we will be interested in
the zero momentum sector and therefore we will consider the projector on the kernel of L0,
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P0, which gives rise to the following SDR for the free theory

(−h0) (TH,Q) Π0

I0
(TP0H,Π0QI0) . (3.62)

To compute the effective action we run the homotopy transfer triggered by

Q→M(µ) = Q + δM(µ) (3.63)

to get the deformed SDR

(−h̃0(µ)) (TH,M(µ))
P̃0(µ)

Ĩ0(µ)
(TP0H, M̃(µ)) . (3.64)

The deformed inclusion and projection can be expressed using the homological perturbation
lemma as

Ĩ0(µ) = 1
1TH + h0δM(µ)I0 , (3.65a)

P̃0(µ) = Π0
1

1TH + δM(µ)h0
. (3.65b)

From this we can express the total field Ψ as a function of the massless one ψ as

Ψ(µ;ψ) = π1Ĩ0(µ) 1
1− ψ . (3.66)

It should be stressed that, due to the presence of the zero string product e in (3.66), the
total field Ψ(µ;ψ) does not vanish when the massless field is set to zero, but it is given by
a constant value

Ψ(µ; 0) = π1Ĩ0(µ) 1TH = π1
1

1TH + 1
1TH+h0m2

µ e
1TH

= −µh0 e+ µ2 h0m2 (h0 e, h0 e) (3.67)
−µ3 h0 (m2 (h0e,m2 (h0e, h0e)) + (m2 (m2 (h0e, h0e) , h0e)) +O(µ4).

The effective products in the infrared will be given by

M̃(µ) = Π0M(µ) 1
1TH + h0(µe + m2)I0 , (3.68)

but a more intelligible form is given by applying the vertical (de)composition discussed in
section 2 and write them as

M̃(µ) = m̃ + µΠ̃0e
1

1TH + µh̃0e
Ĩ0 (3.69a)

= m̃ + µẽ−
∞∑
α=1

(−µ)α+1Π̃0e(h̃0e)αĨ0 , (3.69b)
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where we recall the main objects obtained by deforming the free theory with just m2 (the
middle step in the vertical decomposition)

Ĩ0 = 1
1TH + h0m2

I0 , (3.70a)

Π̃0 = Π0
1

1TH + m2h0
, (3.70b)

h̃0 = 1
1TH + h0m2

h0 , (3.70c)

m̃ = Π0(Q + m2) 1
1TH + h0m2

I0. (3.70d)

In equation (3.69b) we see that the effective products in the infrared are the sum of three
contributions. The first is m̃ which is the effective coderivation of original Witten theory
without the closed string deformation. The second is ẽ, which is the homotopy transfer
(not deformed by the closed string) of the UV coderivation e

ẽ = Π̃0eĨ0. (3.71)

This coderivation can be used to construct an observable in the effective theory (not de-
formed by the closed string) via

Ẽ(ψ) =
∞∑
k=0

1
k + 1ω(ψ, ẽk(ψ⊗k)) (3.72)

=
∫ 1

0
dt 〈ω|π1∂t

1
1− ψ(t) ⊗ π1ẽ

1
1− ψ(t) (3.73)

= ω

(
π1

1
1TH + h0m2

1
1− ψ , e

)
, (3.74)

which indeed coincides with the original Ellwood invariant when the full string field Ψ is
expressed in terms of the massless field ψ without the closed string deformation. Notice
that this quantity computes S-matrix elements between massless open strings and a single
physical closed string.20 This is an observable of the effective theory because, from the
general construction of section 2 we have

[m̃, ẽ] = 0. (3.75)

However it is easy to check that ẽ2 6= 0 and therefore m̃+µẽ is not a nilpotent coderivation.
The A∞ structure in the infrared is saved thanks to the third term in (3.69b) which couples
an arbitrary number of open strings to at least two closed strings. Therefore we see that
even if in the UV theory the closed string couples linearly to the open string field, in
the infrared an infinite number of non-linear couplings between open and closed strings is
generated.

20These amplitudes are relevant for constructing the boundary state associated to a perturbative solution
of the massless equations, see [19] for a fully computable example, although not in Siegel gauge.
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Also note that the algebraic properties of M̃(µ) (namely that it is a cyclic coderivation)
need to by satisfied order by order in µ. Hence, it follows from (3.69b) that Π̃0e(h̃0e)αĨ0
are cyclic coderivations for all α ≥ 0. In general we can write (3.69b) as a double expansion

M̃(µ) =
∞∑
k=0

M̃k(µ) =
∞∑
k=0

∞∑
α=0

µαnkα , (3.76)

where we have introduced cyclic coderivations nkα with k counting the open string inputs
and α counting the closed string insertions. We can therefore write the effective products as

M̃
(µ)
k ≡ π1M̃k(µ)πk =

∞∑
α=0

µαnkα , (3.77)

where we can express

nkα = 1
α!

dα

dµα
π1M̃(µ)πk

∣∣
µ=0 . (3.78)

In more detail, we can explicitly write

nk0 = m̃k , (3.79a)
nk1 = ẽk , (3.79b)
n01 = P0e , (3.79c)

nkα(ψ⊗k) =
∑

l1,...,lα≥0∑α+1
i=1 li=k

(−1)αm̃k+α(ψ⊗l1 , h0e, ψ
⊗l2 , h0e, . . . , ψ

⊗lα , h0e, ψ
⊗lα+1) , (3.79d)

where the last line is valid for (k, α) 6= (0, 1).
We can now write down the effective action. We can do it directly by substituting (3.66)

into (3.59). In order to do this we choose the natural interpolation

Ψ(t) = Ψ (µ;ψ(t)) = π1Ĩ0(µ) 1
1− ψ(t) , (3.80)

where ψ(0) = 0 and ψ(1) = ψ. In this interpolation we have from (3.67)

Ψ(0) = π1Ĩ0(µ) 1TH ≡ Ψ0, (3.81)

which fixes Ψ0 in (3.59). Then we explicitly get

S̃(µ)(ψ) = S(µ) (Ψ(µ;ψ)) = S(µ) (Ψ0) +
∫ 1

0
dt 〈ω̃|π1∂t

1
1− ψ(t) ⊗ π1M̃(µ) 1

1− ψ(t)

= S(µ) (Ψ0) +
∞∑
k=0

1
n+ 1ω

(
ψ, M̃

(µ)
k

(
ψ⊗k

))
= S(µ) (Ψ0) +

∞∑
k=0

∞∑
α=0

µα

n+ 1ω
(
ψ, nkα

(
ψ⊗k

))
. (3.82)

Notice that the constant term S(µ) (Ψ0) contributes to the vacuum energy but not to
the effective equation of motion and the (tree-level) dynamics of the massless fields ψ is
governed by the effective open-closed couplings nkα which have been defined in (3.79).
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3.3.1 Tadpole removal and bulk-induced boundary flows

Keeping on the interpretation that the Ellwood invariant is a gauge invariant deformation
of the original action, we have now to address the fact that the deformed action (3.59)
contains a tadpole, which means that Ψ = 0 is not a vacuum anymore. In order to remove
the tadpole, we need to shift the vacuum of the theory by a classical solution Ψv(µ) to the
equation of motion of the deformed theory

µe+QΨ +m2(Ψ,Ψ) = 0. (3.83)

With the assumption that limµ→0 Ψv(µ) = 0 we can search for the solution perturbatively21

Ψv(µ) =
∞∑
α=1

µαΨα , (3.84)

and, order by order in µ, we obtain the following equations for Ψα

0 = QΨ1 + e , (3.85a)
0 = QΨ2 +m2(Ψ1,Ψ1) , (3.85b)
0 = QΨ3 +m2(Ψ1,Ψ2) +m2(Ψ2,Ψ1), (3.85c)
...

If we use Siegel gauge to invert Q, the solution can be expressed as (denoting h0 =
(b0/L0)P̄0)

Ψ1 = −h0e+ ψ1 , (3.86a)
Ψ2 = h0m2(h0e− ψ1, h0e− ψ1) + ψ2 , (3.86b)

...

where ψ1, ψ2, · · ·ψα, · · · are in the kernel of L0 (since the component in the complementary
space is already accounted for by the part of the state with h0 in front)

P0ψα = ψα. (3.87)

Analogously to the discussion in [15, 62], we will have a solution provided that the following
obstructions (obtained by hitting (3.86) with Q, in order to verify the equations of motion)

O1 = P0e+Qψ1 , (3.88a)
O2 = P0m2(−h0e+ ψ1,−h0e+ ψ1) +Qψ2 , (3.88b)

...

21In this discussion we are limiting ourselves to solutions which are analytic at µ = 0
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all vanish. As we can see, setting to zero the obstructions means to impose dynamical
equations for ψα ∈ kerL0. And in fact these obstructions are nothing but the equations of
motion of the effective action (3.82) for the massless fields

π1M̃(µ) 1
1− ψ = 0, (3.89)

when we perturbatively expand ψ in powers of µ

ψ =
∞∑
α=1

µαψα. (3.90)

To see this consider that a solution for the vacuum shift in the full theory Ψv(µ) can be
obtained from a solution of the effective theory ψv(µ) via (3.66)

Ψv(µ) = π1Ĩ0(µ) 1
1− ψv(µ) . (3.91)

In order to verify whether Ψv(µ) solves the equation of motion derived from the ac-
tion (3.59), we compute

π1M(µ) 1
1−Ψv(µ) = π1M(µ)Ĩ0(µ) 1

1− ψv(µ) (3.92a)

= π1Ĩ0(µ)M̃(µ) 1
1− ψv(µ) , (3.92b)

where we have used that Ĩ0(µ) is an A∞-morphism intertwining between the (weak) A∞
structures M(µ) and M̃(µ)

M(µ)Ĩ0(µ) = Ĩ0(µ)M̃(µ) . (3.93)

Therefore if ψv(µ) solves the equation of motion of the effective theory then Ψv(µ) will
solve the equation of motion of the full theory. Finally writing

ψv(µ) =
∞∑
α=1

µαψα

and expanding order by order in µ, we can verify that the obstructions (3.88) are just the
coefficients of the power series expansion of the equation of motion

π1M̃(µ) 1
1− ψv(µ) = µ

(
P0e+Qψ1

)
+

+ µ2(P0m2(h0e+ ψ1, h0e+ ψ1) +Qψ2
)

+O(µ3) (3.94a)

=
∞∑
k=1

µαOα . (3.94b)

Just as it happens that putative solutions for marginal deformations may fail to solve
the massless equations of motion and are thus obstructed (which corresponds to the fact
that the current used to define the solution is not exactly marginal), here also it is not
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guaranteed that these massless equations (and therefore the full equations) will have a
(perturbative) solution. However if a perturbative solution of the effective theory ψv(µ) is
found, then we will be able to expand around it and by construction the theory around the
vacuum shift will have a proper A∞ structure with no zero-product, i.e. with no tadpole.
And thanks to the homotopy transfer that we have discussed the same will be true for
the full theory. This new A∞ structure will vary continuously with µ and therefore the
cohomology of its 1-product will be a µ-deformation of the cohomology of the original Q.
This describes how the physical spectrum of the D-brane changes as we change the closed
string background, when the starting boundary conditions are compatible with the exactly
marginal bulk deformation parametrized by µ. Examples of this will be reported in [68].

If, on the other hand, there is no (perturbative) solution to the massless equation
of motion, this means that there is not going to be a stationary point (at least not one
µ-parametrically close to Ψ = 0). From a physical point of view this can happen for a
couple of reasons. The closed string insertion in the Ellwood invariant can still be an
exactly marginal deformation of the closed string background but the boundary conditions
of the starting OSFT D-brane are unable to adapt to the bulk deformation.22 Then the
D-brane will decay presumably towards some other D-branes whose boundary conditions
can adapt to the bulk deformation [70], or simply to the tachyon vacuum. In this case
indeed we would expect that other non-perturbative solutions (e.g. [13, 14]) will admit a
consistent µ-deformation and therefore will survive, corresponding to the D-branes that
are compatible with the bulk marginal deformation. In particular, if the closed string is
exactly marginal, we would always expect to find the (properly deformed) tachyon vacuum
solution [32], at least for reasonable small-but-finite values of µ. It would be interesting
to see this explicitly. The story is expected to be different however when the closed string
insertion is not exactly marginal. In this case the physical picture suggests that all the
existing solutions at µ = 0 (including the tachyon vacuum) should just cease to exist and
no vacuum will be found at all (we don’t expect to have a consistent OSFT when the bulk
is not conformal). This is also a quite interesting area to investigate.

4 Conclusions and outlook

In this paper we have analyzed several aspects of string field theory effective actions whose
gauge invariance is encoded in homotopy structures of A∞ or L∞ type. The associated co-
algebra description allows to efficiently package the whole perturbation theory and closed-
form expressions for the whole tree-level perturbative series become easily accessible to all
orders. In the particular case of A∞ we have defined a new class of observables and we have
studied their fate in the effective theory. We have moreover discussed two variations on the
process of integrating out which we have called horizontal composition and vertical decom-
position. These two operations allow, respectively, to extract the effective action after two
subsequent processes of integration out, and to systematically obtain the corrections in the

22The simplest example of this is given by a generic SU(2) boundary condition for a free boson at the
self-dual radius [69], under a change in the radius, which will only be compatible with Neumann or Dirichlet
boundary conditions.
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effective action after a consistent deformation of the initial UV theory. After having dis-
cussed these general structures, we have then considered Witten bosonic open string field
theory as a simple theoretical lab to test them at work. The horizontal composition has
been used to efficiently integrate out the Nakanishi-Lautrup field from the set of level zero
fields, resulting in corrections to the usual scattering amplitudes of physical massless fields
due to an extra algebraic propagator. This is related to the discussions in [56] concerning
the role of the extra ghost zero mode c0 in the massless sector and it would be interesting to
further explore this relation. The vertical decomposition has been used to account for the
effective open-closed couplings that are generated in the infrared by deforming the original
theory with the Ellwood Invariant, which acts as a tadpole. Depending on the nature of
the on-shell closed string insertion the tadpole can be removed by a vacuum shift in the
open string field. This vacuum shift physically describes how the original D-brane adapts
itself to the new background given by the closed string deformation. If the tadpole can be
removed in the effective theory then the same will be true for the full theory. The interplay
between closed-strings deformations and change in open-string boundary conditions will
be further discussed and developed in [68] also in the context of superstring theories.

In the next future we would like to further investigate the structure of the low-energy
effective field theory for the massless fields (for example the gauge field on a stack of
D-branes) and compare it with more conventional approaches to this problem. By con-
struction our effective action has an A∞-gauge symmetry inherited from the UV and it is
interesting to understand how this structure will relate to the α′-expansion.

Our analysis has been purely classical (tree-level) but it should be possible to general-
ize the horizontal composition and vertical decomposition to include loop corrections and
thus to work at the level of the full perturbative path-integral, following the general con-
struction of [39] which reduces to ours in the leading saddle-point approximation around
the perturbative vacuum.

Continuing in this direction one could also address the possibility of computing non-
perturbative corrections to the effective action, for example due to D-brane instantons, in
situations where the bosonic string makes sense at the quantum level (see e.g. [56, 71–74])
and where exact OSFT solutions describing any D-brane system are analytically known in
closed form [13, 14, 32].

With an eye towards a superstring generalization, we hope that the effective string field
theory approach that is being developed will be instrumental for a better understanding
of string theory at the perturbative as well as at the non-perturbative level.
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A Homological perturbation lemma

The goal of this appendix will be to review the homological perturbation lemma in as
simple terms as possible. In other words, we will only aim for a bare minimum, which will
enable us to understand how to make use of this powerful concept in writing down compact
expressions for tree-level effective SFT actions. As we explain in section 2, the main virtue
of the lemma lies in its ability to automatically provide the Feynman diagram expansions
for the tree-level effective interactions. For a more mathematically minded exposition, the
reader should consult [53, 77], as well as [76, 78] where the applications in the BV formalism
are detailed. See also [49, 54, 55, 61] for recent applications of the lemma in string field
theory.

We will specialize on perturbing a particular type of homotopy equivalence data (the
strong deformation retract), which we will recognize in section 2 as naturally fitting into
the context of tree-level effective SFT actions.

A.1 Strong deformation retract

Consider two Z-graded vector spaces V andW together with maps π : V −→W , ι : W −→
V . We will assume that the ι-image of W inside V is a retract of V , namely that

πι = 1W . (A.1)

Let us pause here for a while and think about some implications of this definition: defining
further the map p : V −→ V by p = ιπ, we learn that p2 = ιπιπ = ι1Wπ = p, as well as
pιW = ιπιW = ιW , so that p is a projector onto ιW ⊂ V (that is ιW = pV ). Also, we
can use the properties recorded so far to write πV = πιπV = πpV = πιW = W , so that
the map π is necessarily onto.

We will further assume that the vector spaces V,W are equipped with degree-odd
nilpotent differentials dV : V −→ V , dW : W −→ W (that is (dV )2 = 0 and (dW )2 = 0)
such that we have the chain-map properties

dWπ = πdV , (A.2a)
ιdW = dV ι , (A.2b)

together with π and ι being quasi-isomorphisms (meaning that they induce isomorphisms
on the respective cohomologies). Note that given the retract property (A.1), it is then
possible to show that dW is the “pull-back” of dV on W , that is πdV ι = dWπι = dW .
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We will also assume that we have a degree-odd map η : V −→ V (called the contracting
homotopy) which, together with dV , ι and π, satisfy the Hodge-Kodaira decomposition

ιπ − 1V = dV η + ηdV . (A.3)

The map η is therefore a chain homotopy between 1V and ιπ = p. We will also assume the
annihilation conditions

η2 = ηι = πη = 0 (A.4)

(so that we also have pη = ηp = 0). Since the composition of maps on V forms a (graded)
associative algebra, the super-Jacobi identity can be used to show that [p, dV ] = 0. This
finally gives us the chain-map properties.

Altogether, the structure just presented is usually schematized as

η (V, dV )
π

ι
(W,dW ) , (A.5)

and is called a strong deformation retract (SDR) or a contraction (sometimes also called
special deformation retract). This is the structure we will find most relevant for our ap-
plications in computing tree-level effective actions in string field theory. Note, however,
that the homological perturbation lemma (which we are about to state) can be similarly
formulated for ordinary deformation retracts (that is, without assuming the annihilation
conditions η2 = ηι = πη = 0) or even the so-called standard situations (with general ho-
motopy equivalence data, i.e. only assuming the chain-map properties dWπ = πdV and
ιdW = dV ι, as well as the decomposition (A.3) and not assuming that πι = 1W ). In the
simple DR case, however, the retract property πι = 1W does not turn out to be preserved
by the perturbation: see [53] and below for more details. Finally, note that [53] gives a
method of dressing η, which can be used to turn any deformation retract into a strong
deformation retract.

A.2 Homological perturbation lemma: statement

Consider now a strong deformation retract of the form (A.5) and a perturbation δV :
V −→ V of the differential dV such that the perturbed map d̃V = dV + δV satisfies
(dV + δV )2 = 0. The homological perturbation lemma then states that for every such
perturbation (V, d̃V ) = (V, dV + δV ) of (V, dV ), we can define the perturbed data

δW = πδV
1

1V − ηδV
ι , (A.6a)

ι̃ = ι+ ηδV
1

1V − ηδV
ι , (A.6b)

π̃ = π + πδV
1

1V − ηδV
η , (A.6c)

η̃ = η + ηδV
1

1V − ηδV
η , (A.6d)
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so that upon setting d̃W = dW + δW , we obtain a new SDR

η̃ (V, d̃V ) π̃

ι̃
(W, d̃W ) . (A.7)

Note that one can also show that the maps ι̃, π̃ are quasi-isomorphisms (see [53] for a
proof, which will not be presented here). Altogether we can schematize the statement of
the lemma as

η (V, dV ) π

ι
(W,dW )

δ V δ W

η̃ (V, d̃V ) π̃

ι̃
(W, d̃W )

(A.8)

with δW , ι̃, π̃, η̃ as in (A.6).

A.3 Homological perturbation lemma: proof

In order to prove the lemma, we will find it convenient to define

a = δV
1

1V − ηδV
, (A.9)

which allows us to write simply

δW = πaι , (A.10a)
ι̃ = ι+ ηaι , (A.10b)
π̃ = π + πaη , (A.10c)
η̃ = η + ηaη . (A.10d)

It is then easy to see that we have expressions

1V + ηa = 1
1V − ηδV

, (A.11a)

1V + aη = 1
1V − δV η

. (A.11b)

Let us first establish the identity

aιπa+ adV + dV a = 0 . (A.12)

Indeed, substituting first the Hodge-Kodaira decomposition (A.3) for ιπ and then us-
ing (A.11b), (A.11b), we obtain

aιπa+ adV + dV a = (A.13a)
= a(1V + ηdV + dV η)a+ adV + dV a (A.13b)
= aa+ adV (1V + ηa) + (1V + aη)dV a (A.13c)

= aa+ adV
1

1V − ηδV
+ 1

1V − δV η
dV a . (A.13d)
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Introducing further manipulations, using the definition (A.9) and finally using the fact that
(dV )2 = 0, we find

aιπa+ adV + dV a = (A.14a)

= 1
1V − δV η

{
(1V − δV η)aa(1V − ηδV )+

+ (1V − δV η)adV + dV a(1V − ηδV )
} 1

1V − ηδV
(A.14b)

= 1
1V − δV η

{
(δV )2 + δV dV + dV δV

} 1
1V − ηδV

(A.14c)

= 1
1V − δV η

{
(δV )2 + δV dV + dV δV + (dV )2

} 1
1V − ηδV

(A.14d)

= 1
1V − δV η

(dV + δV )2 1
1V − ηδV

(A.14e)

= 0 , (A.14f)

where the last equality holds as per our assumption that (d̃V )2 = (dV + δV )2 = 0. We can
then use this result to show that

(dW + δW )2 = (dW + πaι)2 (A.15a)
= (dW )2 + dWπaι+ πaιdW + πaιπaι (A.15b)
= πdV aι+ πadV ι+ πaιπaι (A.15c)
= π(dV a+ adV + aιπa)ι (A.15d)
= 0 , (A.15e)

where in the third equality we have used the chain-map properties (A.2a) and (A.2b).
This shows that given the definitions (A.6), the perturbed differential d̃W = dW + δW is
indeed nilpotent. Substituting for the perturbed data from (A.10) and using the chain-map
property (A.2a), as well as the Hodge-Kodaira decomposition (A.3), we also have

d̃W π̃ − π̃d̃V = (dW + πaι)(π + πaη)− (π + πaη)(dV + δV ) (A.16a)
= π(aιπa+ dV a+ adV )η+
− πδV + πa(1V − ηδV ) , (A.16b)

so that substituting the definition (A.9) of a, as well as the identity (A.12), gives the
perturbed chain-map relation d̃W π̃ = π̃d̃V . Similarly, we have

ι̃d̃W − d̃V ι̃ = (ι+ ηaι)(dW + πaι)− (dV + δV )(ι+ ηaι) (A.17a)
= ιdW + ηaιdW + ιπaι+ ηaιπaι+
− dV ι− δV ι− dV ηaι− δV ηaι (A.17b)

= dV ι+ ηadV ι+ ιπaι+ ηaιπaι+
− dV ι− δV ι− (−ηdV + ιπ − 1V )aι− δV ηaι (A.17c)
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= η(aιπa+ adV + dV a)ι+
+ aι− δV (1 + ηa)ι (A.17d)

= aι− aι (A.17e)
= 0 , (A.17f)

where in the third equality we have used the Hodge-Kodaira decomposition together with
the chain-map property (A.2b), while in the fourth equality we have made use of the
identity (A.12), as well as of the definition (A.9). In order to show that the perturbed
Hodge-Kodaira decomposition holds, we first write

η̃d̃V + d̃V η̃ = (η + ηaη)(dV + δV ) + (dV + δV )(η + ηaη) (A.18a)
= ηdV + ηaηdV + ηδV + ηaηδV +

+ dV η + δV η + dV ηaη + δV ηaη (A.18b)
= (ηdV + dV η) + ηa(−dV η + ιπ − 1V ) + ηδV + ηaηδV +

+ δV η + (−ηdV + ιπ − 1V )aη + δV ηaη (A.18c)
= ιπ − 1V + η(−adV − dV a)η + ιπaη + ηaiπ+

+ δV η − aη + δV ηaη − ηa+ ηδV + ηaηδV (A.18d)

where we have used the unperturbed Hodge-Kodaira decomposition in the third equality.
Substituting now the identity (A.12) and using the definition (A.9) we have

η̃d̃V + d̃V η̃ = ιπ − 1V + ηaιπaη + ιπaη + ηaιπ+
+ δV η − (1V − δV η)aη − ηa(1V − ηδV ) + ηδV (A.19a)

= (ι+ ηaι)(π + πaη)− 1V +
+ δV η − δV η − ηδV + ηδV (A.19b)

= ι̃π̃ − 1V , (A.19c)

where in the last line we have made use of the definition (A.10) of the perturbed maps ι̃ and
π̃. Notice that up to this point, we have only been using the homotopy-equivalence proper-
ties of the unperturbed data in our proofs (that is, the chain-map properties (A.2a), (A.2b),
as well as the decomposition (A.3)). We can therefore conclude that the perturbed data are
again homotopy equivalence data, even without assuming DR, or even full SDR properties
of the unperturbed data. On the other hand, note that we have

π̃ι̃ = π
1

1V − δV η
1

1V − ηδV
ι (A.20a)

= πι (A.20b)
= 1W , (A.20c)

where the second line follows from the unperturbed annihilation conditions η2 = πη =
ηι = 0. Therefore, in order to show that the perturbed data are a deformation retract, we
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need to assume that the unperturbed data we start with are a strong deformation retract.
Finally, in order to establish the perturbed annihilation conditions, we may write

η̃2 = (η + ηaη)2 (A.21a)
= (1V + ηa)ηη(1V + aη) (A.21b)
= 0 , (A.21c)

because η2 = 0, as well as

η̃ι̃ = (η + ηaη)(ι+ ηaι) (A.22a)
= (1V + ηa)η(ι+ ηaι) (A.22b)
= (1V + ηa)(ηι+ ηηaι) (A.22c)
= 0 , (A.22d)

because η2 = ηι = 0, together with

π̃η̃ = (π + πaη)(η + ηaη) (A.23a)
= (π + πaη)η(1V + aη) (A.23b)
= (πη + πaηη)(1V + aη) (A.23c)
= 0 , (A.23d)

because η2 = πη = 0. We also introduce the perturbed projector

p̃ = 1
1V − ηδV

p
1

1V − δV η
, (A.24)

so that the Hodge-Kodaira decomposition and the super-Jacobi identity together imply
[p̃, d̃V ] = 0. We therefore also have the property

π̃d̃V ι̃ = d̃W π̃ι̃ (A.25a)
= d̃W , (A.25b)

namely that d̃W may be thought of as the “pull-back” of d̃V by the perturbed maps π̃, ι̃.
That is, we may also write

d̃W = π
1

1V − δV η
(dV + δV ) 1

1V − ηδV
ι . (A.26)

Having verified all the properties which enter the definition of a strong deformation retract,
we have therefore successfully verified the homological perturbation lemma.
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B Effective physics of L∞ theories

Having outlined the construction of effective actions for string field theories based on A∞
structures at some length in section 2, we will now briefly turn to discuss the main points of
the corresponding story for string field theories based on L∞ structures, whose paradigm
is Zwiebach’s closed string field theory [79]. As opposed to the A∞ case, L∞ SFTs are
most naturally formulated on symmetrized tensor coalgebras (see in particular [80, 81] for
an overview). As we will see, the main obstacle to overcome in order to be able to use
the homological perturbation lemma, is to define a suitable uplift of the propagator to a
map on the symmetrized tensor coalgebra in such a way that it satisfies an Hodge-Kodaira
decomposition.

B.1 Product notation

Let us first introduce the framework for string field theories based on cyclic L∞ structures
using the simple notation of graded-symmetrized products on a vector space of states H.

B.1.1 Basic definitions

Starting with a degree-graded vector space of states H, let us consider the graded-sym-
metrized spaces H∧k which consist of the linear combinations of states of the form

A1 ∧ . . . ∧Ak =
∑
σ∈Sk

(−1)ε(σ)Aσ(1) ⊗ . . .⊗Aσ(k) , (B.1)

where (−1)ε(σ) are the signs picked up by moving the entries past each other in the manner
prescribed by the permutation σ (here Sk denotes the symmetric group on k elements).
Let us now consider the graded-symmetric multi-linear products lk : H∧k −→ H. Note
that we will often simply write lk(A1 ∧ . . . ∧ Ak) = lk(A1, . . . , Ak). Given now two such
products ck : H∧k −→ H, dl : H∧l −→ H, let us define a new product

ckdl : H∧k+l−1 −→ H (B.2)

by requiring

ckdl(A1, . . . , Ak+l−1) =
∑

σ∈Sk+l−1

(−1)ε(σ)

l!(k − 1)!×

× ck(dl(Aσ(1), . . . , Aσ(l)), Aσ(l+1), . . . , Aσ(k+l−1)) . (B.3)

As in the non-symmetrized case, this can be rewritten more succinctly. First, given any
two multi-linear maps α : H∧k −→ H∧l, β : H∧m −→ H∧n, we can define their wedge
product

α ∧ β : H∧k+m −→ H∧k+n (B.4)

by writing

α ∧ β(A1, . . . , Ak+m) =
∑

σ∈Sk+m

(−1)ε(σ)

k!m! α(Aσ(1), . . . , Aσ(k))∧

∧ β(Aσ(k+1), . . . , Aσ(k+m)) . (B.5)
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The definition (B.3) is then equivalent to writing

ckdl = ck(dl ∧ 1H∧k−1) , (B.6)

where

1H∧k = 1
k! (1H)∧k = (1H)⊗k (B.7)

is the identity operator on H∧k. We can also define the graded commutator of ck and dl
by writing

[ck, dl] = ckdl − (−1)d(ck)d(dl)dlck . (B.8)

Considering a vector space H equipped with a collection of graded-symmetric degree-odd
products lk, we will say that the pair (H, {lk}k≥1) forms an L∞ algebra provided that we
have

k∑
l=1

lllk+1−l = 1
2

k∑
l=1

[ll, lk+1−l] = 0 , (B.9)

for each k ≥ 1. In an analogy to the A∞ case, if the sequence {lk}k≥1 of products truncates
at some k = N < ∞, we will call the algebra LN . For instance, for k = 1, 2, 3, . . ., these
relations can be explicitly listed as

0 = l1(l1(A1)) , (B.10a)

0 = l1(l2(A1, A2)) + l2(l1(A1), A2) + (−1)d(A1)d(A2)l2(l1(A2), A1) , (B.10b)
0 = l1(l3(A1, A2, A3)) + l2(l2(A1, A2), A3)+

+ (−1)d(A1)(d(A2)+d(A3))l2(l2(A2, A3), A1)+

+ (−1)d(A3)(d(A1)+d(A2))l2(l2(A3, A1), A2)+

+ l3(l1(A1), A2, A3) + (−1)d(A1)l3(A1, l1(A2), A3)+

+ (−1)d(A1)+d(A2)l3(A1, A2, l1(A3)) , (B.10c)
...

for all A1, A2, A3, . . . ∈ H. The relation (B.10a) tells us that the map l1 is nilpotent, the
relation (B.10b) says that l1 is a derivation of l2 while the relation (B.10c) says that the
failure of l1 to be a derivation of l3 is exactly compensated by the failure of l2 to satisfy
the super-Jacobi identity. We will further say that the products are cyclic with respect to
a symplectic form ω provided that we have

ω(A1, lk(A2, . . . , Ak+1)) = −(−1)d(A1)ω(lk(A1, . . . , Ak), Ak+1) . (B.11)

If this is satisfied, the triple (H, {lk}k≥1, ω) will then be called a cyclic L∞ algebra.
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B.1.2 L∞ SFT action and symmetrization of A∞ structures

Similarly to the A∞ case, requiring the degree of the dynamical string field to be even, the
action of an L∞ SFT then takes the form

S(Ψ) =
∞∑
k=1

1
(k + 1)!ω(Ψ, lk(Ψ∧k)) . (B.12)

Alternatively, introducing an arbitrary smooth interpolation Ψ(t) for 0 ≤ t ≤ 1 with
Ψ(0) = 0 and Ψ(1) = Ψ, the cyclic property of the products lk with respect to ω allows us
to rewrite (B.12) as

S(Ψ) =
∫ 1

0
dt
∞∑
k=1

1
k!ω(Ȧ(t), lk(Ψ(t)∧k)) . (B.13)

Varying this action with respect to Ψ and using cyclicity of the products lk with respect
to ω, we obtain the equation of motion (Maurer-Cartan equation)

EOM(Ψ) =
∞∑
k=1

1
k! lk(Ψ

∧k) = QΨ + J (Ψ) , (B.14)

where we have separated interactions

J (Ψ) =
∞∑
k=2

1
k! lk(Ψ

k) . (B.15)

Also note that the action (B.12) is invariant under the linearized gauge transformation

δΛΨ =
∞∑
k=1

1
(k − 1)! lk(Λ ∧Ψ∧k−1) , (B.16)

where Λ ∈ H is a degree-odd gauge parameter (the corresponding calculation is very similar
to what we did in (2.10)).

Finally, let us consider an A∞ algebra (H, {mk}k≥1) and define the graded-symmetrized
products

lk(A1, . . . , Ak) =
∑
σ∈Sk

(−1)ε(σ)mk(Aσ(1), . . . , Aσ(k)) , (B.17)

where (−1)ε(σ) is the obvious sign obtained by moving A1, . . . , Ak past each other. In
particular, we have

l1(A1) = m1(A1) , (B.18a)

l2(A1, A2) = m2(A1, A2) + (−1)d(A1)d(A2)m2(A2, A1) , (B.18b)
...

It is then straightforward to show that the products lk satisfy the relations of an L∞
algebra. We therefore observe that given any A∞ algebra, one may always construct an
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L∞ algebra by symmetrizing. In this sense, the notion of an A∞ algebra appears to be
somewhat stronger than that of an L∞ algebra. Moreover, given a symplectic form ω on
H, such that the products mk are cyclic with respect to ω, one can also show that the
corresponding products lk are also cyclic with respect to ω. Noting that we have

lk(A∧k) = k!mk(A⊗k) , (B.19)

these facts allow us to rewrite any A∞ SFT action in an L∞ form.

B.1.3 Integrating out unwanted degrees of freedom

Similarly to what we did in the A∞ case, let us split the string field as Ψ = ψ +R, where
ψ = PΨ and R = (1 − P )Ψ ≡ P̄Ψ. Here P is a BPZ even projector which is such that
R can be integrated out (upon fixing the gauge hR = 0) using a propagator h satisfying
the Hodge-Kodaira decomposition Qh+hQ = 1−P , as well as the annihilation conditions
Ph = hP = h2 = 0 (so that we can write an SDR of the form (2.34)). The equations of
motion for ψ and R then read

EOMψ(ψ,R) = P EOM(ψ +R) = Qψ + PJ (ψ +R) , (B.20a)
EOMR(ψ,R) = P̄ EOM(ψ +R) = QR+ P̄J (ψ +R) . (B.20b)

In a completely parallel way to what we did in the A∞ case, we will now solve (B.20b)
(fixing the gauge hR = 0) to obtain the in-gauge component R of R as a function of ψ.
Denoting G = −hJ , the solution for Ψ(ψ) ≡ ψ +R(ψ) again reads

Ψ(ψ) = ψ + G(ψ + G(ψ + G(ψ + . . .))) , (B.21)

or, explicitly up to quartic order in ψ,

Ψ(ψ) = ψ − 1
2!hl2(ψ,ψ)− 1

3!hl3(ψ,ψ, ψ) + 2
(2!)2hl2(hl2(ψ,ψ), ψ)+

− 1
4!hl4(ψ,ψ, ψ, ψ) + 2

2!3!hl2(hl3(ψ,ψ, ψ), ψ) + 3
2!3!hl3(hl2(ψ,ψ), ψ, ψ)+

− 1
(2!)3hl2(hl2(ψ,ψ), hl2(ψ,ψ))− 22

(2!)3hl2(hl2(hl2(ψ,ψ), ψ), ψ) +O(ψ5) . (B.22)

It is then again possible to show that the resulting out-of-gauge constraints are trivialized
whenever ψ solves (B.20a) (the proof is completely parallel to the A∞ case so that we will
not reproduce it here). Substituting (B.22) into the equation of motion (B.20a) for ψ, we
obtain the effective equation of motion

eom(ψ) =
∑
k=1

1
k! l̃k(Ψ

∧k) , (B.23)

where the effective products l̃k can be expressed as, for Ak ∈ H,

l̃1(A1) = PQ , (B.24a)
l̃2(A1, A2) = Pl2(A1, A2) , (B.24b)
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l̃3(A1, A2, A3) = Pl3(A1, A2, A3)− Pl2(A1, hl2(A2, A3))+

− (−1)d(A1)(d(A2)+d(A3))Pl2(A2, hl2(A3, A1))+

− (−1)d(A3)(d(A1)+d(A2))Pl2(A3, hl2(A1, A2)) . (B.24c)
...

Using the symmetrized tensor coalgebra language (which is to be introduced below in
subsection B.2), we can prove that the products l̃k satisfy L∞ relations. Moreover, assuming
the BPZ property (2.98a), we can also show order by order that the products l̃k are cyclic
with respect to the symplectic form ω̃ on PH (defined identically as in the A∞ case). It
then follows that the effective action for ψ can be written as

S̃(ψ) = S(Ψ(ψ)) =
∞∑
k=1

1
(k + 1)!ω(ψ, l̃k(ψ∧k)) . (B.25)

As a consequence of the fact that the out-of-gauge constraints vanish at classical solutions
of (B.23), we can say that S̃(ψ) completely captures the dynamics of ψ.

Finally, in the cases when the full SFT products lk are given by a symmetrization of A∞
productsmk (see our discussion in subsection (B.1.2) above), the reader can easily convince
herself that the effective products l̃k, as given by (B.24), can be obtained by symmetrizing
the effective products m̃k, as given by (2.36). The property that a particular L∞ structure
is obtained by symmetrizing an A∞ structure is therefore (classically) preserved by going
to IR.

B.2 Symmetrized tensor coalgebra

We will now explain how to derive closed-form expressions for the effective products l̃k using
the formalism of symmetrized tensor coalgebras and homological perturbation theory. We
will observe that once we manage to establish a suitable uplift for the propagator h from H
to SH, the discussion will become identical to the A∞ case which was dealt with in quite
some detail in section 2.

B.2.1 Basic definitions and L∞ SFT action

As in the non-symmetric A∞ case considered in section 2, we will now explore the pos-
sibility of using tensor constructions to package various structures in the symmetric L∞
case (see [80, 81] for some details on symmetrized tensor coalgebras). First, note that
the symmetrized spaces H∧k can be conveniently combined into the symmetrized tensor
product space

SH = H∧0 ⊕H∧1 ⊕H∧2 ⊕ . . . (B.26)

We can introduce a coproduct on SH (recall (B.1) and (B.26) for the definition of SH) as
a linear map ∆SH : SH −→ SH⊗′ SH satisfying (see e.g. [77, 81])

∆SH(A1 ∧ . . . ∧Ak) =
∑
l1,l2

l1+l2=k

∑
σ∈Sl1+l2

(−1)ε(σ)

l1!l2! (Aσ(1) ∧ . . . ∧Aσ(l1))⊗′
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⊗′ (Aσ(l1+1) ∧ . . . ∧Aσ(l1+l2)) . (B.27)

Clearly one can replace the sum over σ ∈ Sl1+l2 in (B.27) with the sum over all (l1, l2)-
unshuffles so that there would be no need for the (l1!l2!)−1 prefactor which is currently
compensating for overcounting. It is easy to see that the definition (B.27) can be induced
from our previous definition (2.43) of the coassociative coproduct on TH by using the
correspondence (B.1). For any multi-linear symmetric k-string product ck : H∧k −→ H, let
us define the coderivations ck : SH −→ SH derived from ck by requiring that for N ≥ k,
these act on H∧N as

ckπN =
[
ck ∧ 1H∧N−k

]
πN (B.28)

and that they vanish on H∧N for N < k. These may be straightforwardly shown to
satisfy the co-Leibniz rule with respect to the coproduct (B.27). In an obvious way, we
can also define the graded commutator [ck,dl] and we may show it to agree with the
coderivation derived (using the relation (B.28)) from the commutator [ck, dl]. Defining a
cohomomorphism F as a linear map F : SH −→ SH′ satisfying the property ∆SH′F =
(F ⊗′ F)∆SH with respect to the coproduct (B.27), we may alternatively express F as a
collection of degree zero multilinear maps (for each k ≥ 0) Fk : H∧k −→ H′ by writing, for
each j, k ≥ 0

πjFπk =
∑

l1+...+lj=k

1
j!
[
Fl1 ∧ . . . ∧ Flj

]
πk . (B.29)

We will often find it convenient to work with (for a degree-even A ∈ H) a group-like element

e∧A = 1TH +A+ 1
2!A ∧A+ 1

3!A ∧A ∧A+ . . . . (B.30)

Acting with the coproduct (B.27) and using the identity

1
k!∆SH(A∧k) =

∑
l1,l2

l1+l2=k

1
l1!l2!A

∧l1 ⊗′ A∧l2 , (B.31)

it is then easy to see that we indeed have the property

∆SH(e∧A) = e∧A ⊗′ e∧A . (B.32)

It therefore follows that cohomomorphisms map group-like elements to group-like elements.
In particular, we can write

F(e∧A) = e∧π1F(e∧A) , (B.33)

as well as

d(e∧A) = e∧A ∧ π1d(e∧A) . (B.34)

for any cohomomorphism F and coderivation d.
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We are now prepared to consider an L∞ structure (H, {lk}k≥1) and use (B.28) to define
the corresponding coderivations lk, together with the total coderivation

l =
∞∑
k=1

lk . (B.35)

The L∞ relations can then be succinctly packaged as

l2 = 1
2[l, l] = 0 . (B.36)

Using the above-collected properties, it follows that the action (B.12) may be rewritten in
a more compact way as

S(Ψ) =
∫ 1

0
dt 〈ω|π1∂t e

∧Ψ(t) ⊗ π1l e
∧Ψ(t) . (B.37)

Again, we should keep in mind that the construction of S(Ψ) ensures that it only depends
on the endpoint Ψ(1) = Ψ of the interpolation Ψ(t). Varying the action (B.37) with respect
to Ψ, we would obtain the equation of motion

EOM(Ψ) = π1l e
∧Ψ . (B.38)

Furthermore, the action (B.37) is invariant under the gauge transformation

δΨ = π1[l,Λ] e∧Ψ , (B.39)

where we have introduced a cyclic degree-odd coderivation Λ which acts as a gauge pa-
rameter. Again, unless we have Λk ≡ π1Λπk = 0 for k > 0, the gauge transformation will
contain trivial pieces which vanish on-shell.

B.2.2 Uplifting the propagator to SH

In order to continue paralleling the discussion of A∞ effective actions in the coalgebra
language, we now need to define suitable uplifts of h and P from H to SH (this of course
also needs to be done for the canonical inclusion I : PH −→ H and canonical projection
Π : H −→ PH). This is very easy in the cases of P , I and Π, where we define the associated
cohomomorphisms P : SH −→ SH, I : SPH −→ SH and Π : SH −→ SPH to simply
act as

Pπk = 1
k!P

∧kπk , (B.40a)

Iπk = 1
k!I
∧kπk , (B.40b)

Ππk = 1
k!Π

∧kπk . (B.40c)

In the case of the propagator h, we would now like to define a map h : SH −→ SH which
would satisfy the Hodge-Kodaira decomposition23

Qh + hQ = 1SH −P , (B.42)
23Here 1SH denotes the identity cohomomorphism on SH which acts as

1SHπk = 1
k! (1H)∧kπk . (B.41)

– 71 –



J
H
E
P
1
1
(
2
0
2
0
)
1
2
3

as well as the annihilation conditions hI = h2 = Πh = 0. Here Q ≡ l1 : SH −→ SH is of
course the coderivation corresponding to Q which acts as

Qπk = 1
(k − 1)!

[
Q ∧ (1H)∧(k−1)]πk . (B.43)

We propose to define h so that it acts as24

hπk = 1
k!

k−1∑
j=0

[
h ∧ (P )∧j ∧ (1H)∧(k−1−j)]πk . (B.44)

Indeed, it is straightforward to compute that

Qhπk = 1
k!

k−1∑
j=0

{
Qh ∧ (P )∧j ∧ (1H)∧(k−1−j)+

− jh ∧QP ∧ (P )∧(j−1) ∧ (1H)∧(k−1−j)+

− (k − 1− j)h ∧ (P )∧j ∧Q ∧ (1H)∧(k−2−j)
}
πk , (B.45a)

hQπk = 1
k!

k−1∑
j=0

{
hQ ∧ (P )∧j ∧ (1H)∧(k−1−j)+

+ jh ∧QP ∧ (P )∧(j−1) ∧ (1H)∧(k−1−j)+

+ (k − 1− j)h ∧ (P )∧j ∧Q ∧ (1H)∧(k−2−j)
}
πk , (B.45b)

so that we eventually obtain

(hQ + Qh)πk = 1
k!

k−1∑
j=0

[
(hQ+Qh) ∧ (P )∧j ∧ (1H)∧(k−1−j)]πk (B.46a)

= 1
k!

k−1∑
j=0

[
(1H − P ) ∧ (P )∧j ∧ (1H)∧(k−1−j)]πk (B.46b)

= 1
k!

{
(1H − P ) ∧ (1H)∧(k−1) + (1H − P ) ∧ P ∧ (1H)∧(k−2) + . . .

. . .+ (1H − P ) ∧ (P )∧(k−1)
}
πk (B.46c)

= 1
k!
[
(1H)∧k − P∧k

]
πk (B.46d)

= (1SH −P)πk . (B.46e)

This means that given that we define the uplift of h from H to SH using (B.44), the
resulting map h satisfies the Hodge-Kodaira decomposition (B.42). We also clearly have
the annihilation conditions hI = Ph = h2 = 0. We can therefore write down the following
free-theory SDR

(−h) (SH,Q) Π

I
(SPH,ΠQI) . (B.47)

24We have learned that in parallel to our work, the same result has been obtained by H. Kunitomo [82].
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It would be interesting to investigate in more detail the properties of h in relation to the
coproduct ∆SH: in contrast to the non-symmetrized case, it seems to be non-trivial to
write in a closed form the corresponding map on SH ⊗′ SH which arises from the action
of ∆SH on h.

B.2.3 Homotopy transfer of L∞ structures

In parallel to the A∞ case, we can proceed to show that the Feynman diagrams describing
the effective interactions of the action for ψ ∈ PH can be neatly organized using the
homological perturbation lemma. Introducing a perturbation δl =

∑
k>1 lk to the free-

theory SDR (B.47), we obtain the interacting SDR

(−h̃) (SH, l) Π̃

Ĩ
(SPH,ΠQI + δl̃) , (B.48)

where the perturbed data can be expressed as usual

δl̃ = Πδl
1

1SH + hδlI , (B.49a)

h̃ = 1
1SH + hδl

h , (B.49b)

Ĩ = 1
1SH + hδlI , (B.49c)

Π̃ = Π 1
1SH + δlh . (B.49d)

We can indeed easily check that order by order in ψ, the perturbed inclusion map Ĩ (as
given by (B.49c)) indeed provides the solution Ψ(ψ) (as given by (B.22)) for integrating out
the modes R which lie outside of imP (fixing the gauge hR = 0). Using (B.28) and (B.44),
we can write

Ψ(ψ) = π1
1

1SH + hδlIe
∧ψ (B.50a)

= π1Ie∧ψ − π1(hδl)Ie∧ψ + π1(hδl)(hδl)Ie∧ψ+
− π1(hδl)(hδl)(hδl)Ie∧ψ +O(ψ∧5) (B.50b)

= ψ − 1
2!π1(hl2)I(ψ ∧ ψ)− 1

3!π1(hl3)I(ψ ∧ ψ ∧ ψ)+

− 1
4!π1(hl4)I(ψ ∧ ψ ∧ ψ ∧ ψ) (B.50c)

+ 1
3!π1(hl2)(hl2)I(ψ ∧ ψ ∧ ψ) + 1

4!π1(hl2)(hl3)I(ψ ∧ ψ ∧ ψ ∧ ψ)+

+ 1
4!π1(hl3)(hl2)I(ψ ∧ ψ ∧ ψ ∧ ψ)+

− 1
4!π1(hl2)(hl2)(hl2)I(ψ ∧ ψ ∧ ψ ∧ ψ) +O(ψ∧5) (B.50d)

= ψ − 1
2!hl2(ψ,ψ)− 1

3!hl3(ψ,ψ, ψ)− 1
4!hl4(ψ,ψ, ψ, ψ)+

+ 1
2hl2(hl2(ψ,ψ), ψ) + 1

6hl2(hl3(ψ,ψ, ψ), ψ) + 1
4hl3(hl2(ψ,ψ), ψ, ψ)+

− 1
8hl2(hl2(ψ,ψ), hl2(ψ,ψ))− 1

2hl2(hl2(hl2(ψ,ψ), ψ), ψ) +O(ψ∧5) , (B.50e)
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so that we see that we have recovered the quartic-order result (B.22), including all sym-
metry factors. Also, while it is trivial to establish that l̃1 = Pl1, l̃2 = Pl2, we have, for
instance,

l̃3(ψ1, ψ2, ψ3) = π1Πl3I(ψ1 ∧ ψ2 ∧ ψ3)− π1Πl2hl2I(ψ1 ∧ ψ2 ∧ ψ3) (B.51a)
= Pl3(ψ1, ψ2, ψ3)− Pl2(hl2(ψ1, ψ2), ψ3)+

− (−1)d(ψ1)(d(ψ2)+d(ψ3))Pl2(hl2(ψ2, ψ3), ψ1)+

− (−1)d(ψ3)(d(ψ1)+d(ψ2))Pl2(hl2(ψ1, ψ2), ψ3) (B.51b)

which clearly agrees with (B.24c) which we derived using the product notation. Similarly
for higher effective products.

As we have already mentioned, it is possible to show order by order in ψ that the
effective products l̃k are cyclic with respect to ω̃ (assuming suitable BPZ properties of h
and cyclicity of lk). It would be interesting to generalize the all-order proof of cyclicity of
A∞ effective products from subsection 2.2.9 to the L∞ case. Here the main obstacle is the
very definition of the action of 〈ω̃| on SH: acting with a graded-antisymmetric form on
a graded-symmetrized space gives automatically zero so some new structure seems to be
needed.

It would be interesting to generalize the proof [54] that Ĩ and Π̃ are cohomomorphisms
from the A∞ to the L∞ case (the fact that δl̃ is a coderivation would then follow imme-
diately from a computation analogous to (2.80)). However, in order to do this, we would
need to have at our disposal a closed-form expression for the action ∆SH on h, which, as
we have commented at the end of subsection B.2.2, is missing at the moment. In fact, it is
easy to see that Ĩ is a cohomomorphism provided that order by order in δl, we satisfy

∆SH(hδl)kI =
k∑
l=0

[
(hδl)lI⊗′ (hδl)k−lI

]
∆SPH . (B.52)

Let us now perform an explicit check of (B.52) for k 6 2. The case k = 0 trivially follows
from the fact that I is a cohomomorphism. After a little algebra (making use of the
annihilation condition hI = 0), one can show that

(hδl)I =
∞∑
k=2

∞∑
l=k

[
hlk(I⊗k) ∧ I⊗(l−k)]πl , (B.53)

so that we clearly have

∆SH(hδl)I =
[
I⊗′ (hδl)I + (hδl)I⊗′ I

]
∆SPH , (B.54)

which verifies (B.52) for k = 1. Going through somewhat more algebra, we have

δl(hδl)I =
∞∑
k=2

∞∑
l=k

l−k+1∑
m=2

[
lm(hlk(I⊗k) ∧ I⊗(m−1)) ∧ I⊗l−k−m+1]πl+

+
∞∑
k=2

∞∑
l=k

l−k∑
m=2

[
lm(I⊗m) ∧ hlk(I⊗k) ∧ I⊗l−k−m

]
πl , (B.55a)
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so that using the annihilation conditions hI = Πh = h2 = 0, we eventually obtain

(hδl)2I =
∞∑
k=2

∞∑
l=k

l−k+1∑
m=2

[
hlm(hlk(I⊗k) ∧ I⊗(m−1)) ∧ I⊗l−k−m+1]πl+

+
∞∑
k=2

∞∑
l=k

l−k+1∑
m=2

l−k−m+1∑
j=0

(l − k −m− j + 1)
(l − k −m+ 2)(l − k −m+ 1)×

×
[
hlm(I⊗m) ∧ hlk(I⊗k) ∧ I⊗l−k−m

]
πl (B.56a)

=
∞∑
k=2

∞∑
l=k

l−k+1∑
m=2

[
hlm(hlk(I⊗k) ∧ I⊗(m−1)) ∧ I⊗l−k−m+1]πl+

+ 1
2

∞∑
k=2

∞∑
l=k

l−k∑
m=2

[
hlm(I⊗m) ∧ hlk(I⊗k) ∧ I⊗l−k−m

]
πl , (B.56b)

where in the last step we have used the result

l−k−m+1∑
j=0

(l − k −m− j + 1)
(l − k −m+ 2)(l − k −m+ 1) = 1

2 . (B.57)

From (B.56b) it is then immediate that we can write

∆SH(hδl)2I =
[
(hδl)2I⊗′ I + I⊗′ (hδl)2I + (hδl)I⊗′ (hδl)I

]
∆SPH , (B.58)

which verifies (B.52) for k = 2. Similarly, we can verify order by order in δl that Π̃ is a
cohomomorphism. Nevertheless, it should be worthwhile to look for an all-order method
of proving these results.
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