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1 Introduction

Compactification from higher dimensional field theories is a powerful tool for engineering
consistent lower dimensional theories. One of well-studied such examples in M-theory
context is compactifications of the six-dimensional N = (2, 0) superconformal field theory
(SCFT) living on a stack of M5-branes. A large number of (5+1)d and (4+1)d SCFTs
have been realized in String theory/M-theory [1–4], and compactifications of these higher
dimensional theories give rise to a rich class of supersymmetric theories in lower dimensions.

For example, compactifications of the (5+1)d SCFTs on a circle realizes (4+1)d Kaluza-
Klein theories that are conjectured to be the progenitors of all (4+1)d SCFTs via renormal-
ization group (RG) flows [5, 6], and also families of interesting N = 1, 2 supersymmetric
quantum field theories in four dimensions have been constructed in compactifications from
six dimensions on 2d Riemann surfaces [7–9]. Similarly, many examples of (2+1)d supercon-
formal field theories have been geometrically realized in M-theory using compactifications
of the (5+1)d N = (2, 0) SCFT on three-manifolds [10–12]. These constructions elucidate
deep connections between the (2+1)d physics and geometric properties of 3-manifolds in
the compactifications.

The aim of this paper is to construct a new classification scheme for topological field
theories in 2+1 dimensions based on the geometric properties of 3-manifolds in the compact-
ifications of the six-dimensional N = (2, 0) theory. In condensed matter physics text, this
corresponds to building a new approach for generating and thus classifying a series of dif-
ferent (2+1)d topological phases supporting anyons, which is currently an active research
topic. The anyons are the particle-like excitations, whose braiding statistics is different
from those of conventional fermions and bosons. They hold the key to the decoherence-
free quantum computation, and thus have been pursued extensively both in theory and
experiment [13]. Theoretically, the mathematical framework for bosonic anyon theories,
i.e., “unitary modular tensor category (UMTC)”, has been identified and scrutinized. Es-
sentially, a UMTC consists of a few defining data of anyons (such as fusion rule) and their
algebraic relations. See appendix A and [14, 15] for a review. Because different solutions
of the algebraic equations correspond to different anyon theories, we can in principle ob-
tain a complete classification of topological phases by generating all the possible solutions
of UMTCs. Unfortunately, this has not been completed despite of significant amount of
efforts, see for example [16–19]. Hence, it is desirable to develop an entirely new, physics-
oriented approach for generating the consistent anyon theories, which is independent with
the previous algebraic approaches.

We achieve this by establishing a novel correspondence between (2+1)d topological field
theory and geometry of non-hyperbolic 3-manifolds. When the 3-manifold, around which
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we compactify the 6d N = (2, 0) theory, is a hyperbolic manifold, it is well established that
the (2+1)d theory flows to a superconformal fixed point in the low energy limit. These
types of (2+1)d SCFTs have been studied extensively in the earlier literature, see for
example [10–12]. In a sharp contrast to this, we consider the cases with the internal non-
hyperbolic 3-manifolds. Unlike the hyperbolic type, the (2+1)d field theories constructed
out of non-hyperbolic manifolds do not, in general, flow to conformal theories. Instead, we
show that such theories of non-hyperbolic manifolds (enjoying certain properties) flow to
topological quantum field theories (TQFT) with anyons at the infrared (IR) fixed point. In
that case, properties of the IR anyon theories are fully controlled by the topology of the non-
hyperbolic manifolds. Exploiting this, we explicitly build a map between non-hyperbolic
3-manifolds and (2+1)d TQFTs. Hence, we find a systematic classifying algorithm for
topological phases from the topology of non-hyperbolic manifolds.

As a beginning of our classification program using 3-manifolds, we provide a list of
non-hyperbolic 3-manifolds and flat connections that realize all known UMTCs of rank
≤ 4. See table 1. This includes famous TQFTs like Fibonacci, Toric code, and Ising. For
these models, modular structures of TQFTs, i.e., S- and T -matrices, are directly obtained
from the partition functions of the associated 3-manifolds. As a bonus, we also obtain
the chiral central charges c2d (mod 1

2) for our particular geometric realizations of TQFTs.
Although we primarily focus on bosonic anyon theories at lower ranks ≤ 4, our geometric
approach is more general and hence can capture higher rank ones and fermionic anyon
theories as well. Indeed, we provide explicit constructions of some higher rank UMTCs
and a unitary fermionic MTC via non-hyperbolic 3-manifolds, which exhibits the power of
our approach.

One advantage of our approach is that it can immediately generate a UV-complete,
consistent field theory description for the anyon theories. Previously, they were described
only by abstract modular data (and c2d) or lattice constructions for limited cases. This
advantage is due to the dictionary between (2+1)d supersymmetric field theories and the
3-manifolds [10, 12]. Any closed 3-manifold can be constructed by gluing a number of
minimal building blocks, called ideal tetrahedron and solid-torus, together. In (2+1)d field
theory context, this construction amounts to gauging some flavor symmetries of elementary
chiral multiplets with particular choice of Chern-Simons levels as well as superpotential
couplings. The resulting continuum field theory is the UV avatar for a desired TQFT.
Its supersymmetric nature allows us to compute various observables of the IR TQFT. For
example, the ground state degeneracy on a genus-g Riemann surface and the modular
structures in the IR TQFTs can be obtained using localization technique.

On top of these, our approach can also be used to produce natural unitary embeddings
of non-unitary TQFTs such as Lee-Yang model, from which we can initiate the classification
of the non-unitary MTCs. We will find that some of non-hyperbolic manifolds exhibit
modular structure of the non-unitary TQFTs. This sounds puzzling at first sight: since we
compactify a unitary (5+1)d theory on a Riemannian manifold, the low energy theory is
also expected to be unitary. As we demonstrate through several examples in this paper, it
turns out that the (2+1)d field theories from this type of non-hyperbolic manifolds enjoy
emergent global symmetry in IR. Taking into account the IR R-symmetry correctly, we
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find that these theories in fact flow to a unitary superconformal field theory. The seemingly
non-unitary TQFT structure arises just from a particular sub-sector of the unitary SCFT,
whose correlation functions can be obtained by a non-unitary mass deformation in the path
integral. Similar non-unitary sub-sectors appear in various supersymmetric models, e.g.,
the Schur operators in 4d N = 2 SCFTs equipped with 2d chiral algebra structure [20].
Keeping this in mind, in this paper we build unitary embeddings and classification of the
non-unitary MTCs up to rank ≤ 4 as a concrete demonstration of our proposal.

The rest of the paper is organized as follows. In section 2, we introduce the recipes for
geometric engineering of (2+1)d TQFT, notated as TFT[M ], from wrapped M5-branes and
clarify the physical meaning of emergent modular structures at IR. In section 3, we next
give a systematic algorithm for computing modular structure of bosonic TQFTs for the
case of trivial H1(M,Z2). In section 4, we give the construction of an effective continuum
field theory for TFT[M ]. In section 5, we present the concrete examples in section 2. In
section 6, we extend our analysis to the cases with non-trivial H1(M,Z2). In appendices,
we collect the technical details.

2 TQFT from wrapped M5-branes

In this section, we present a brief introduction to the construction of (2+1)d quantum field
theories by compactifying (5+1)d N = (2, 0) SCFTs on a compact 3-manifold M . Such
construction has been mainly focused on the hyperbolic M . Basing on this, we extend it
to the non-hyperbolic M and the conditions for M to generate a (2+1)d topological theory
at IR.

There are two fundamental objects in M-theory: M2-brane and M5-brane. A variety of
quantum systems can be engineered by embedding the fundamental objects into subspaces
of various (10+1) dimensional space-time. In this paper, we use M5-branes to geometrically
engineer (2+1)d topological phases. The concrete set-up is as follows:

11-dimensional space-time: R1,2 × (T ∗M)× R2 ,

Two coincident M5-branes on R1,2 ×M .
(2.1)

M is a compact 3-dimensional manifold and T ∗M is its cotangent bundle. The cotangent
bundle is a local Calabi-Yau manifold and the configuration is stable thanks to supersym-
metry. At length scale above the characteristic size of the compact internal 3-manifold, the
world-volume theory of M5-branes is described by a quantum theory on R1,2. The lower
dimensional (2+1)d quantum theory depends only on the topology of the internal manifold
M (modulo some discrete choices explained in appendix C). This fact allows us to denote
the (2+1)d theory by

T [M ] := (2+1)d quantum theory determined by M . (2.2)

From the geometrical construction of T [M ] in (2.2), we expect that the 3d theory enjoys
supersymmetry with 4 supercharges as well as an U(1) R-symmetry. The U(1) R-symmetry
comes from rotational symmetry acting on the transverse R2 in the above set-up. We call
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NB
c 3-manifold h1, h2, · · · , hN comment Sec.

1B1 S2(2, 3, 3) 0 (1)
2B±14/5 S2(2, 3, 5) 0,±2

5 Fibonacci (2)
2B±1 S2(3, 3, 3) 0,±1

4 Semion (4)
3B±8/7 S2(2, 3, 7) 0,∓1

7 ,±
2
7 (A1, 5) 1

2
(5)

3B±1/2 S2(3, 3
2 , 4)I 0, 1

2 ,±
1
16 Ising (8)

3B±7/2 S2(3, 3
2 , 4)II 0, 1

2 ,±
7
16 SO(7)1 (8)

3B±3/2 S2(3, 3, 4)I 0, 1
2 ,±

3
16 (A1, 2) (9)

3B±5/2 S2(3, 3, 4)II 0, 1
2 ,±

5
16 SO(5)1 (9)

3B±2 S2(2, 3, 6) 0,±1
3 ,±

1
3 (A2, 1) (1)

4B±10/3 S2(2, 3, 9) 0,±1
3 ,±

2
9 ,∓

1
3 (A1, 7) 1

2
(10)

4B±19/5 S2(3, 3, 5)I 0,±1
4 ,∓

7
20 ,±

2
5 (13)

4B±9/5 S2(3, 3, 5)II 0,∓1
4 ,±

3
20 ,±

2
5 (13)

4B±12/5 S2(2, 5, 5) 0,∓2
5 ,∓

2
5 ,±

1
5 (15)

4B,c0 S2(2, 4, 5
4) 0, 0, 2

5 ,−
2
5 (16)

4B,a0 S2(4, 4
7 ,

3
2)I 0, 0, 0, 1

2 Toric code (2)
4B4 S2(4, 4

7 ,
3
2)II 0, 1

2 ,
1
2 ,

1
2 (D4, 1) (2)

4B±1 S2(4, 4, 3
2)I 0,±1

8 ,±
1
8 ,

1
2 (A3, 1) (2)

4B±3 S2(4, 4, 3
2)II 0,±3

8 ,±
3
8 ,

1
2 (2)

4B±2 S2(4, 4
3 ,

3
2)I 0,±1

4 ,±
1
4 ,

1
2 (2)

4B,b0 S2(4, 4
3 ,

3
2)II 0, 0, 1

4 ,−
1
4 Double semion (2)

Table 1. Geometric realizations of topological phases NB
c . In this table, we used the nomenclature

in [16] to denote unitary bosonic topological phases with rank N and central charge c. The geometry
denoted by S2(ri)a with three rational numbers ri=1,2,3 is a Seifert fiber 3-manifold and the subscript
a labels the maps between anyons and flat connections. N anyons have spins h1, h2, · · · , hN . The
table contains all bosonic topological phases with N ≤ 4.

the U(1) R-symmetry as UV R-symmetry since it originates from the symmetry of the
UV M-theoretical set-up. During the last decade, there have been remarkable progresses
in understanding this type of theories [10–12]. For example, a systematic algorithm of
finding purely gauge theoretical descriptions for T [M ] was introduced in [12, 21]. Most
studies on the subject have focused on the theories generated from hyperbolic manifolds.
For a hyperbolic M , the corresponding gauge theory flows to a non-trivial superconformal
theory at the end of a RG-flow. However, this is in general not the case for non-hyperbolic
manifolds.

This article is devoted to understanding quantum field theories associated with non-
hyperbolic 3-manifolds. In the followings, we will argue that there exists a large class
of non-hyperbolic 3-manifold M hosting modular structures and interpret the modular
structure of M as the modular structure of the (2+1)d topological theory obtained from
M5-branes wrapped on M . More precisely, we clarify a) what kind of 3-manifolds gives
such topological phases (in equation (2.3)), b) how to obtain the full S-matrix using a

– 4 –



J
H
E
P
1
1
(
2
0
2
0
)
1
1
5

flat-connection-to-loop-operator map (in section 3.2), c) supersymmetric gauge theories
T [M ] for the topological phases (in section 4), and d) topological phases with non-trivial
H1(M,Z2) (in section 6).

By passing, we note that previously curious modular structures for some non-hyperbolic
3-manifolds were reported in mathematics literatures [22–24] from the study of Witten-
Reshetikhin-Turaev invariant [25, 26], but those references missed the connection of the
modular structure with the physics of (2+1)d TQFTs. Non-semi simple modular tensor
categories associated to 3d N = 2 theories have been studied in [27–29]. It woud be
interesting to understand the precise relation between our modular structures of topolog-
ical theories associated to non-hyperbolic 3-manifolds and their non-semi simple modular
tensor categories associated to any 3d N = 2 theories.

2.1 Topological field theories

We first claim that for a non-hyperbolic 3-manifold M satisfying the following conditions,
the corresponding (2+1)d theory T [M ] has a modular structure:

i)There are (non-empty) finitely many
irreducible SL(2,C) flat connections on M ,

ii)All of them are gauge equivalent to either
SU(2) or SL(2,R) flat connections,

(2.3)

There are infinitely many examples of 3-manifolds satisfying the above conditions [30]. We
will present a systematic algorithm to compute the modular data of T [M ] from the non-
hyperbolic manifold M with (2.3) in the next section. Before presenting the algorithm,
let us first clarify the physical meaning of the modular structure. It has distinct physical
interpretations depending on whether the modular structure is unitary or not.

We first consider the unitary case. We conjecture that

Conjecture: T [M ] for M obeying (2.3) flows to a topological
field theory described by a modular structure at IR if the
associated modular structure is unitary. (2.4)

Here, the modular structure being unitary means that the first column of the S-matrix
satisfies |S00| ≤ |S0α| for all α. We denote the resulting (2+1)d topological phase by

TFT[M ] :=TQFT from non-hyperbolic M obeying (2.3). (2.5)

Explicit checks of the conjecture with several choices ofM will be given in the section 4
and 5.

Let us sketch our reasoning behind this conjecture, while deferring the details to the
appendix D. In the compactification (2.1), there exists a natural map between the flat
connections on M and the classical vacua in the (2+1)d supersymmetric theory [10]. The
vacua are sometimes called Bethe-vacua in the recent literature and they play important
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roles in the study of IR dynamics of (2+1)d supersymmetric gauge theories [31–36]. Var-
ious supersymmetric partition functions can be written in terms of the Bethe-vacua. For
example,

Isci(x) =
∑

α:Bethe-vacua
Bα(x)

(
Bα(x−1)

)∗
,

Itop(x) =
∑

α:Bethe-vacua
Bα(x)Bα(x−1) .

(2.6)

Here, the superconformal index Isci(x) and the (topologically) twisted refined index Itop(x)
are partition functions of a (2+1)d supersymmetric theory on two distinct supersymmetric
backgrounds with topology S2×S1 [37–39]. Bα(x) is the so-called holomorphic block, which
computes the partition function on R2×S1 with an asymptotic boundary condition deter-
mined by the choice of a Bethe-vacuum α. The fugacity x is related to the circumference
β of Euclidean time circle S1 as x = e−β .

In the language of canonical quantization, the superconformal index counts supersym-
metric (so-called BPS) local operators (i.e. supersymmetric states in the radially quantized
Hilbert-space) preserving 2 supercharges, whereas the twisted refined index counts the su-
persymmetric ground states on a topologically twisted S2 with unit background magnetic
flux coupled to the U(1) R-symmetry.

Isci(x) = TrHrad(S2)(−1)Rx
R
2 +j3 ,

Itop(x) = TrHtop(S2)(−1)Rxj3 ,
(2.7)

where Hrad(S2) stands for the radially quantized Hilbert-space of T [M ] and Htop(S2)
stands for the ground states Hilbert-space of T [M ] on the topologically twisted S2. R

denotes the charge of the UV U(1) R-symmetry and j3 ∈ Z/2 is the Cartan charge of the
SO(3) isometry of S2. The UV R-charge is always quantized as R ∈ Z.

Now here comes our key observation. The conditions in (2.3) imply that (Bα(x))∗ =
Bα(x) for all α (see appendix D for details). Therefore, for the T [M ] from the 3-manifold
M satisfying (2.3), we find

Isci(x) = Itop(x) of T [M ] . (2.8)

The only possible explanation on the match of two indices is that the theory T [M ] flows
to a topological theory so that the partition functions only depend on the topology of the
background Eucledian space-time. Let us explain this below.

The superconformal index is in general an infinite power series in the fugacity x1/2 for
R + 2j3 charge. Note that the BPS operators captured in the superconformal index are
labelled by their conformal dimensions ∆ and spins via the BPS relation R+ 2j3 = ∆ + j3.
Generic (2+1)d SCFTs has no bound on ∆ + j3 of the supersymmetric operators. On the
other hand, the refined index is a (finite) Laurent polynomial in x1/2 since Htop(S2) is
finite dimensional. This strongly suggests that the theories with (2.8) are topological. For
topological theories, the superconformal index is just 1, i.e. Isci(x) = 1, since the theory has
no non-trivial local operator, while the refined twisted index is also given by 1 since there
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is only one ground states on S2. Independence of superconformal index on the fugacity
x is a characteristic property of topological field theory. One can actually compute the
superconformal index Isci(x) of T [M ] using localization and show that it becomes 1 for
various examples of M satisfying (2.3). See [40] for some concrete examples.

With this in mind, let us give some technical and general comments on flat connections
on 3-manifolds. Conventionally, a G flat connection for a Lie group G is described by a
gauge field configuration Aα satisfying the flatness equation, dAα +Aα ∧Aα = 0, modulo
gauge transformations. A G flat connection is fully characterized by its holonomy matrices
ρα(a) along closed loops {a} in the fundamental group,

ρα(a) = P exp
(∮

a
A
)
∈ G , a ∈ π1M . (2.9)

Here P represents the path-ordered integral. Gauge transformations act on the holonomy
matrices as simultaneous conjugation of G. The holonomy matrices of the flat connections
satisfy the fundamental group relations. Thus a G flat connection can be alternatively
described by a homomorphism ρα ∈ Hom[π1M → G] up to conjugation of G.

G flat connection Aα on M

↔ Group homomorphsim ρα from π1(M) to G
Conjugation of G .

(2.10)

Using the above identification, the symbols Aα and ρα are interchangeably used throughout
this paper. The homomorphism description is much easier to handle in the actual com-
putation and distinguishes differences in the global structure of G, such as the difference
between SL(2,C) and PSL(2,C). An SL(2,C) flat connection ρα is called reducible if their
holonomy matrices are all mutually commuting and called irreducible otherwise.

2.2 Non-unitary modular structures

We next discuss the T [M ] theories with non-unitary modular structures.
In the above discussions, we assumed that there is no accidental U(1) flavor symmetry

in the IR limit of T [M ]. However, there could be an additional accidental Abelian sym-
metry in T [M ].1 If a new U(1) flavor symmetry emerges in the lower dimensional theory,
then the UV U(1) R-symmetry of T [M ] theory may differ from the proper IR R-symmetry
because the UV R-symmetry can mix with the emergent U(1) symmetry in the IR fixed
point. In this case the superconformal R-symmetry of the IR CFT can be computed using
F-extremization given in [41]. Then the index IUVsci (x) in (2.7) computed using the UV R-
charge does not agree with the usual superconformal index of the IR CFT computed using
IR R-charge. Namely, IUVsci (x) 6= IIRsci (x) when the UV R-symmetry is not equal to the IR
R-symmetry. Our geometric conditions in (2.3) only guarantees that IUVsci (x) = 1, but not
IIRsci (x) = 1 when IUVsci (x) 6= IIRsci (x). So we cannot say that the IR theory is topological.

1When we say accidental U(1) symmetry, it is a symmetry not manifest in the UV M-theoretical set-
up (2.2). The accidental symmetry is not necessarily accidental in the effective (2+1)d gauge theory T [M ]
proposed in [12, 21]. For most cases, the accidental symmetry is manifest in the effective 3d gauge theory.
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We suggest that the T [M ] theory from a non-hyperbolic manifold M of (2.3) equipped
with a non-unitary modular structure has such an emergent Abelian symmetry at low en-
ergy. In addition, the IR theory at the fixed point is a SCFT instead of being topological.
We again emphasize that the IR SCFT is a unitary theory as expected in the compacti-
fication of the unitary (5+1)d SCFT. The non-unitary modular structure just resides in
a special subset of the spectrum in the IR SCFT. We call this subset as the non-unitary
sector. The UV index IUVsci (x) for such theory can be interpreted as a certain degeneration
limit (by specializing the fugacity for the emergent U(1) symmetry) of the full supercon-
formal index IIRsci (x) in the IR CFT. In this degeneration limit, the path-integral receives
contributions only from the states in the non-unitary sector. One finds that IUVsci (x) = 1 for
the T [M ] theories with non-unitary modular structures. This implies that the non-unitary
sector has no local excitations and thus topological. We expect that the non-unitary sec-
tor of the IR CFT is described by the non-unitary modular tensor category. To ease our
convention, we will again refer to the non-unitary sector as TFT[M ].

TFT[M ] := non-unitary sub-sector of T [M ] . (2.11)

As a consequence, we claim that a unitary theory T [M ] provides a unitary extension
of the non-unitary MTC. Although denoted in the same fashion, one should distinguish
physical meaning of TFT[M ] for unitary cases from that for non-unitary cases. TFT[M ]
describes the full IR dynamics of T [M ] for unitary cases, while TFT[M ] for non-unitary
cases describes only the non-unitary sub-sector of T [M ] in IR.

In summary, we have the following conclusion

Modular structure associated to M is non-unitary
⇔ T [M ] flows to a SCFT with Abelian flavor symmetry

containing non-unitary modular structure in its sub-sector .
(2.12)

Explicit checks of this claim will be given in section 4 and 5.

3 Full Modular structure of TFT[M ] with trivial H1(M,Z2)

A consistent bosonic anyon theory, namely a UMTC, is characterized by the set of defining
data associated with fusion and braiding. See the brief review at appendix A. The most
fundamental data are the fusion rules Nγ

αβ of anyons, and the two gauge-dependent uni-
taries, i.e., F , R symbols. From these, the two gauge-independent topological data, which
label the topological phases, can be derived: namely, S- and T -matrix. They contain the
most quintessential properties of anyons, i.e., self and mutual statistics, and are called as
“modular structure” of the anyon theory. They can label the UMTC and thus can be used
to distinguish the different UMTCs.

As one of our main results of this paper, we propose a systematic algorithm for de-
termining the modular structure of our geometric realization TFT[M ] from topological
data of M . The algorithm is summarized in table 2. In the table, CS[ρα] and Tor[ρα] are
the Chern-Simons action and the adjoint Reidemeister torsion of an irreducible SL(2,C)
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TFT[M ] 3-manifold M
Irreducible SL(2,C) flat connections ρα on M

Anyons or
Loop operators

⊗
κ(a(κ)

α , R
(κ)
α ) on M

GSDg
∑
δ(2Tor[ρδ])g−1

Tαβ δαβ exp
(
− 2πiCS[ρα]

)
S00

∣∣∑
δ

exp(−2πiCS[ρδ ])
2Tor[ρδ ]

∣∣ = (2Tor[ρα=0])−1/2

Wβ(α) ±
∏
κTrR(κ)

α
(ρβ(a(κ)

α )), Equation (3.20)
Unitarity Equation (3.9)

Table 2. Modular structure of TFT[M ], the topological phase associated to a non-hyperbolic
3-manifold M satisfying (2.3) with trivial H1(M,Z2). The information of central charge c2d and
topological spins {hα} of the boundary chiral conformal field theory are encoded in the T -matrix
as given in (3.7). GSDg denotes the ground state degeneracy on a Riemann surface Σg of genus
g. We define Wβ(α) := Sαβ

S0β
, from which one can compute S-matrix Sαβ = Wβ(α)W0(β)S00 and

the fusion coefficients Nαβγ =
∑
δ(S0δ)2Wδ(α)Wδ(β)Wδ(γ). The primitive loop operator (a,R) is

labelled by the choice of an 1-cycle a on M and an irreducible representation R of SU(2).

flat connection ρα on the internal 3-manifold M respectively. See appendix B for more
explanations on those invariants. These invariants are complex valued for general SL(2,C)
flat connections. However, for the 3-manifolds M subject to the conditions in (2.3), the
invariants evaluated on the flat connections are real since the flat connections are conjugate
to SU(2) or SL(2,R) flat connections.

In this and subsequent sections, we mainly focus on TFT[M ] for a 3-manifold M

with trivial H1(M,Z2). From geometrical analysis in [42], the corresponding TFT[M ] is
expected to be a bosonic (non-spin) self-dual TQFT

TFT[M ] = Bosonic self-dual TQFT ,
when H1(M,Z2) is trivial .

(3.1)

Here, ‘self-dual’ means that the charge conjugation in the TFT maps an anyon to itself, i.e.
S2 = C = 1 (appendix A). Generalization to the cases with non-trivial H1(M,Z2) will be
discussed in section 6 where we will see the emergence of a richer structures of topological
phases.

3.1 Dictionary for GSDg, S00 and Tαβ

Certain supersymmetric observables, such as topologically twisted partition functions, in
the UV theory T [M ] can be written in terms of topological invariants on the internal 3-
manifoldM [43–45]. In addition, these supersymmetric observables are protected and thus
receive no quantum corrections along RG-flows. This enables us to find an explicit map
between the UV observables in T [M ] and the modular data in the IR topological theory
TFT[M ]. Exploiting this map, in this section, we clarify the dictionary summarized in
table 2.
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For this, we express some basic modular data encoded in the partition functions of
TFT[M ] in terms of topological data of M . Recently, there have been huge progresses in
computing partition functions of supersymmetric gauge theories on curved backgrounds
using localization technique. Combining the localization technique with the field theoretic
construction of T [M ], we can exactly compute the partition functions of the IR TFT[M ]
on appropriate curved backgrounds, from which we will extract the topological data.

Let Mg,p be the degree p S1-bundle over a Riemann surface Σg of genus g. When
g = 0 and p = 1, for example, the manifold is the 3-sphere S3, while the manifold is just
Σg×S1 when p = 0. By properly choosing the metric and turning on the background fields
coupled to the U(1) R-symmetry, we can put (2+1)d supersymmetric theories on Mg,p

while preserving some supercharges [34, 39, 46–48]. Applying the localization technique to
the supersymmetric T [M ] on theMg,p background, we can find [43–45]

Z
[
T [M ] onMg,p∈2Z with fixed metric, background fields

]
=
∑
α

(2Tor[ρα])g−1 exp (−2πipCS[ρα]) , (3.2)

which is valid for any compact 3-manifoldM with trivial H1(M,Z2). OnMg,p with even p,
there are two possible spin structures preserving some supercharges depending on whether
fermions are periodic or anti-periodic along the fiber S1-direction [35]. The above formula is
valid only for the anti-periodic boundary condition. The anti-periodic boundary condition
is not compatible with supersymmetry for odd p and thus the above formula does not work
for odd p. The summation is over all irreducible SL(2,C) flat connections onM . Protected
by the supersymmetry, this partition function is invariant under the RG-flow.

When T [M ] flows to a bosonic topological theory, i.e. when M satisfies the conditions
in (2.3) and has trivial H1(M,Z2) , the partition functions onMg,p are independent of the
choice of the metric and the background fields as well as the spin structure. So, in the case
at hand, the above quantity becomes

Z
[
TFT[M ] onMg,p

]
=
∑
α

(2Tor[ρα])g−1 exp (−2πipCS[ρα]) . (3.3)

Note that we did not need to specify the choices, e.g., those of the metric, the background
fields or the spin structure. Moreover, the formula is valid even for odd p.

This formula with p = 0 reproduces the dictionary for the ground state degeneracy,
GSDg, in table 2:

GSDg = Z[TFT[M ] on Σg×S1] =
∑
δ

(2Tor[ρδ])g−1 . (3.4)

From this result, one can also deduce that the flat connections on M are mapped to the line
operators, which represent anyons in the topological theory. Furthermore, by comparing
the above expression with the following general result of topological theories [25, 49]

Z
[
TFT onMg,p

]
=
∑
α

(S0α)2−2g(Tαα )p , (3.5)
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we find

(S0α)2 = 1
2Tor[ρα] , Tαα ∼ exp(−2πiCS[ρα]) . (3.6)

We note that the second relation is not the exact equality, but only the proportionality ∼.
This is because the partition function (3.3) suffers from an overall phase ambiguity. One
can freely add the gravitational Chern-Simons counterterm to the UV Lagrangian and shift
the overall phase of the partition function [50]. The partition function (3.3) is essentially
the partition function of the theory T [M ] put on spin manifolds Mg,p. So for the spin
Mg,p, the physically meaningful factor in the overall phase e

2πikg
24 is kg mod 1

2 . Here, kg is
the gravitational Chern-Simons coefficient in the (2+1)d theory.

The T -matrix in a MTC is related to the basic data of the corresponding 2d boundary
chiral CFT as follows [25]

Tαβ = δαβ exp
(
±2πi(hα −

c2d
24 )

)
. (3.7)

Here hα (mod 1) is the conformal weight of the 2d primary field on which α-th anyon
ends, and c2d (mod 24) is the chiral central charge of the 2d CFT. The conformal weight
hα is identified with the topological spin of the anyon. We have hα = 0 for the vacuum
state α = 0. The second relation in (3.6) allows us to compute hα precisely from CS[ρα].
However, the central charge c2d that is now identified with kg in the above relations is
determined only by c2d mod 1

2 , due to the overall phase ambiguity.
Finally, the sign ± choice (3.7) depends on the (2+1)d space-time orientation. This ori-

entation choice is also correlated with the orientation of the associated internal 3-manifold
M . The Chern-Simons action CS[ρα] flips its overall sign under the orientation-reversal of
either (2+1)d space-time or the internal M .

Let us now determine S00 using the first equation of (3.6). We first need to figure out
which flat connection ρα corresponds to the trivial anyon (α = 0). For this, we use the
following universal property of TQFTs

S00 = |Z(TFT on S3)| =
∣∣∑
α

(S0α)2Tαα
∣∣

⇒ 1√
2Tor[ρα=0]

=
∣∣∣∣∑
α

exp(−2πiCS[ρα])
2Tor[ρα]

∣∣∣∣ . (3.8)

The first line follows from the SL(2,Z) relation, S00 = (T−1ST−1ST−1)00, combined with
diagonality and unitarity of T . The SL(2,Z) structure emerges only when T [M ] flows to
a topological theory. On the other hand, the summation on r.h.s. can be defined for any
3-manifold M . For a general M , however, we do not expect that there is a special flat
connection ρα=0 satisfying the above relation. Only for M with trivial H1(M,Z2) with the
condition in (2.3), we expect that there exists a special flat connection ρα=0 satisfying the
above relation, which we identify with the trivial anyon. From this analysis, we now have
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the following topological criterion on M for the associated modular structure to be unitary

Modular structure of [M ] is unitary, if
∣∣∑

α
exp(−2πiCS[ρα])

2Tor[ρα]
∣∣ ≤ |2Tor[ρ]|−1/2 ∀ρ

non-unitary, otherwise .

(3.9)

This inequality simply means |S00| ≤ |S0α| for α 6= 0, which is the unitarity condition in
modular tensor category.

For some cases, there are multiple flat connections {ρI , ρII , . . .} which satisfy the con-
dition for ρα=0 in (3.8). We label such flat connections by Roman capital letters, I, II, · · · .
In the case, we have a freedom to choose the true vacuum (or the trivial anyon) ρα=0.
Choosing any of these flat connections as the vacuum we can attempt to construct a mod-
ular structure. If a vacuum choice, say ρα=o = ρI , leads to a consistent unitary modular
structure, then we claim that there exists a (2+1)d topological theory described by the
modular structure.

TFT[MI ] := TFT[M ] at the choice ρα=0 = ρI . (3.10)

The subscript in MI denotes our vacuum choice. Different vacuum choices among
{ρI , ρII , . . .} for a given 3-manifold M can give rise to distinct (2+1)d topological phases.
Quite interestingly, we observe that these topological phases are all related to each other
by the Lorentz symmetry fractionalization (up to time reversal) studied in [51], which may
imply that the vacuum choice in the flat connections of M is correlated with activating a
non-trivial background for an anomalous Z2 1-form symmetry in the (2+1)d TQFT using
the Lorentz group background fields.

3.2 Flat-connection-to-loop-operator map

One characteristic property of a topological phase is that ground states on a two-torus are
indexed by loop operators, or equivalently, anyons. For a general T [M ] in (2.2), it is known
that the ground states correspond to the set of irreducible flat connections on M while the
loop operators are related to those of SL(2,C) Chern-Simons theory onM . Therefore when
the T [M ] flows to a topological theory, we expect that there exists a natural map between
the two, i.e., flat connections and loop operators on M . In this map, one can interpret
anyons in TFT[M ] as M2-branes wrapping an 1-cycle inside M . The flat-connection-to-
loop-operator map plays an important role below in calculating S-matrix.

To proceed, let us remind a few basic properties of TQFTs. Generally, anyons in
bosonic topological phases have two seemingly different physical interpretations. One is
to consider anyons as quasiparticles. In the language of abstract quantum field theory,
they correspond to different types of loop operators. The one-dimensional curve on which
a loop operator is supported can be thought of as the trajectory of the corresponding
quasiparticle. On the other hand, anyons can be considered as the label of the ground
states on a 2-torus. In a general quantum field theory, two sets (the set of loop operators
and of ground states on a 2-torus) are different. In bosonic topological phases, two sets are
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equivalent since all ground states on a 2-torus can be generated by acting line operators
on the trivial vacuum |0〉

|α〉 = OBα |0〉 . (3.11)

Here the quantum operator OBα denotes the loop operator of type α along a primitive one-
cycle B on a 2-torus. The quantum operators {OAα } along the other primitive one-cycle A
are canonically conjugate to {OBα }. Without losing generality, we choose the ground state
basis |α〉 as simultaneous eigenstates of {OAα }. The loop operators around the two cycles
are related to each other by the conjugation of S-matrix

OAα = S−1OBα S . (3.12)

This reflects that the two one-cycles are related to each other by the S-transformation in
the mapping class group. On this basis, the operators OAα and OBα act as

OAα |β〉 = (S−1OBα S)|β〉 =Wβ(α)|β〉 ,

OBα |β〉 = OBαOBβ |0〉 =
∑
γ

Nγ
αβ |γ〉 .

(3.13)

We used the relation (S−1NαS)γβ = δγβWβ(α) in the first line and (Nα)γβ := Nγ
αβ is the

fusion coefficient. Here Wβ(α) = Sαβ
S0β

.
Now we use the above two different interpretations to identify the set of anyons in

TFT[M ] from the topological data of M . First, by interpreting anyons as ground states
on a 2-torus, one can identify them as a label of vacua on M . More precisely, the vacua
are turned out to be the set of irreducible SL(2,C) flat connections [10, 12].

Anyon of type α in TFT[M ]
←→ Irreducible SL(2,C) flat connection ρα on M

(3.14)

The above identification is also expected from (3.2).
On the other hand, by interpreting anyons as different types of loop operators, we can

identify them as loop operators of SL(2,C) Chern-Simons theory on M [52]. A primitive
loop operator onM is specified by the choice of an 1-cycle a ∈ (conjugacy classes in π1(M))
and an irreducible unitary representation R of SU(2):

Loop operator (a,R) : TrRP exp(
∮
a
A) . (3.15)

Here A is the SL(2,C) gauge field. TrR(g) is the trace (character) of g ∈ SL(2,C) taken
in the representation R. More explicitly,

TrSymn=0�(g) = 1 , TrR=Symn=1�(g) = Tr(g) ,

TrSymn+2�(g) = Tr(g)TrSymn+1�(g)− TrSymn�(g) .

We denote the (n + 1)-dimensional unitary irreducible representation of SU(2) by R =
Symn�, n-th symmetric power of the fundamental representation �.
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The loop operators originate from M2-branes intersecting with the two coincident M5-
branes wrapped on M [53, 54]. To be supersymmetric (thus stable), the M2-branes should
stretch along the time direction in (2+1)d space-time and wrap around an one-cycles in
M . This thus gives line operators or equivalently anyons in TFT[M ]. The type of the
corresponding anyon depends on the choice of a, the one-cycle on internal 3-manifold M

along which the M2-branes are wrapping, and an irreducible representation R = Symn�,
where the n is the number of the M2-brane defects. General loop operators on M can be
obtained by taking direct products of the primitive ones,

Anyon of type α in TFT[M ]

−→ Loop operator
⊗
κ

(
a(κ)
α , R(κ)

α

)
on M ,

(3.16)

where κ runs over the primitive loop operators for α-th anyon. The two relations (3.14)
and (3.16) then naturally suggest

flat-connection-to-loop-operator map:

ρα −→
⊗
κ

(a(κ)
α , R(κ)

α ) , (3.17)

for non-hyperbolic 3-manifolds satisfying (2.3).
The above two alternative viewpoints on anyons also endow the coefficient Wβ(α) =

Sαβ
S0β

with a novel interpretation

Wβ(α) = 〈β|OAα |β〉 (3.18)
= Expectation value of loop operator OAα at the vacuum |β〉 .

Consequently, we have the following dictionary

Wβ(α) = VEV of loop operator
⊗
κ

(a(κ)
α , R(κ)

α ) at the irreducible flat connection ρβ ,

(3.19)

=


∏
κTrR(κ)

α

(
ρβ(a(κ)

α )
)
, if TFT[M ] is unitary∏

κTrR(κ)
α

(
−ρβ(a(κ)

α )
)
, otherwise .

The TrR(ρα(a)) is nothing but the classical value of the loop operator (a,R) in (3.15)
evaluated at the saddle point (flat connection) Aα. For non-unitary cases, the extra sign
factor is necessary to obtain the correct S-matrix from Sαβ =Wβ(α)W0(β)S00, which gives
a projective representation of SL(2,Z) combined with the T -matrix in (3.6).

Now, the remaining non-trivial task is to determine the flat-connection-to-loop-
operator map in (3.17). First, the flat connection ρα=0 for the trivial anyon in (3.8)
can naturally be mapped to the trivial loop:⊗

κ

(a(κ)
α , R(κ)

α )
∣∣
α=0 =

(
trivial loop with R(κ)

α = Symn=0�
)

⇒Wβ(α = 0) = 1 . (3.20)
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The non-trivial anyons can be identified as follows. We start with the fact that there are
two ways of computing S0α: one is using the relation in (3.6) and the other one is using
the relation S0α =W0(α)S00 from the dictionary in table 2. By equating two results as∣∣∣∣∑

β

exp(−2πiCS[ρβ ])
2Tor[ρβ ]

∣∣∣∣|W0(α)| = 1√
2Tor(ρα)

, (3.21)

one can determine W0(α) up to sign. The W0(α) is the classical value of the loop operator⊗
κ(a(κ)

α , R
(κ)
α ) evaluated at the vacuum ρα=0 as presented in (3.8). The classical value

severely restricts possible candidates for the flat-connection-to-loop-operator map up to
the gauge equivalence.2

Once a trial map is prepared, it is straightforward to construct the modular structure
S- and T -matrices as well as the fusion coefficients Nαβγ . One then needs to check if the
result satisfies the following consistency conditions

Nαβγ ∈ Z≥0 , Nαβ0 = δαβ , Sαβ = Sβα ,

S2 = 1 , (ST )3 = (a phase factor)× 1 ,
(3.22)

for being a UMTC. The phase factor in (ST )3 is of the form ei
πn
8 |n∈Z and is not physically

meaningful in our construction as it can be cancelled by the gravitational counterterms.
We find that these conditions are strong enough to uniquely fix the flat-connection-to-loop-
operator map for a bosonic TFT[M ].

In the above, we assumed the self-dual property S2 = C = 1 for TFT[M ] from M

with trivial H1(M,Z2). The self-duality is guaranteed for this case since all loop operators
(or equivalently anyons) take values in unitary representations R of SU(2), which are real.
To engineer non-self dual anyonic models in our geometric setup, one needs to consider
another class of M with non-trivial H1(M,Z2) or increase the number of M5-branes. We
will come back to these generalizations in the section 6.

4 Supersymmetric gauge theories

One nice feature of our construction of TFT[M ] is that it provides a concrete supersym-
metric gauge theory T [M ] [12, 21]. In this section, we will review a general prescription
to obtain a supersymmetric gauge theory T [M ] from a closed 3-manifold M and provide
several examples of its applications for non-hyperbolic manifolds.

4.1 Dehn surgery description of 3-manifold: M = (S3\K)p/q

One well-known way of constructing closed 3-manifolds is using Dehn surgery along a knot
K on a 3-sphere S3. We denote the 3-manifold obtained by Dehn surgery along a knot K
with slope p/q ∈ Q ∪ {∞ = 1/0} by (S3\K)p/q.

2We regard two loop operators (a,R) and (a′, R′) as equivalent at infrared if their expectation values
TrR(ρα(a)) and TrR′ (ρα(a′)) are identical for all irreducible flat connections ρα.
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The Dehn surgery procedure is carried out in two steps: drilling and Dehn filling.
First, drilling is a procedure of removing the tubular neighborhood of a knot K from a
3-sphere S3. This creates a 3-manifold S3\K called the knot complement of K:

S3\K := S3 − (tubular neighborhood of a knot K) . (4.1)

The knot complement has a single two-torus (T2) boundary surrounding the removed tubu-
lar neighborhood. There is a canonical basis choice for 1-cycles on the boundary called the
meridian (µ) and the longitude (λ) defined as

H1
(
∂(S3\K),Z

)
= H1(T2,Z) = Z× Z = 〈µ, λ〉 . (4.2)

Dehn filling is a procedure of gluing a solid-torus back to the knot complement. The
way of gluing back is not unique but depends on the choice of a boundary 1-cycle pµ+ qλ

that will be glued to the shrinkable boundary cycle of the solid-torus. The closed 3-manifold
after the Dehn filling procedure is denoted as (S3\K)p/q.

(S3\K)p/q =
(
(S3\K) ∪ (solid-torus)

)
/ ∼ , (4.3)

(pµ+ qλ) ∼ (shrinkable boundary 1-cycle of solid-torus) .

Obviously, (S3\K)p/q=1/0 is just S3 for any knot K.
The Dehn surgery construction can be extended to more general cases by replacing a

knot K by a general link L which consists of several knots

(S3\L){pi/qi} , L =
⋃
i

Ki . (4.4)

In the case, we need to specify a slope pi/qi for each component of the link. As one of
fundamental theorems in 3d topology, it is known that any closed orientable 3-manifold
can be constructed from a Dehn surgery on a link on S3 [55, 56].

To construct the (2+1)d gauge theory T [M ] associated to a closed 3-manifold M , we
first need to choose a Dehn surgery description of the 3-manifold. To avoid clutter, let us
assume that the 3-manifold is given by a Dehn surgery along a knot K, i.e.M = (S3\K)p/q.
One can first construct a field theory T [S3\K] associated to the knot complement S3\K
using an algorithm proposed in [12], which is based on an ideal triangulation of the knot
complement. It is known that this knot complement theory T [S3\K] has a SO(3) flavor
symmetry at IR [21]. Then, the theory associated to the Dehn filled closed 3-manifold
T [M = (S3\K)p/q] is given by

T [M = (S3\K)p/q] = T [S3\K]
SO(3)p/q

. (4.5)

Here, T /SO(3)p/q stands for “gauging the SO(3) symmetry with Chern-Simons level p/q”
of a (2+1)d gauge theory T . The “gauging” procedure in (2+1)d gauge theory corresponds
to the Dehn filling operation in the internal 3-manifold. It is a usual supersymmetric
gauging when p/q ∈ 2Z. We also refer to [21] for more explanations on the “gauging”
operation with general p/q ∈ Q ∪ {1/0}.
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In the subsequent sections, we give explicit constructions of T [M ] for M =
(S3\41)p/q, (S3\52)p/q and (m007)p/q where 41 is the figure-eight knot (or 2-twist knot)
and 52 is the 3-twist knot. For naming knots, we follow the Alexander-Briggs notation. 41
is the 1st simplest knot with 4 crossings while 52 is the 2nd simplest (next to 51, a torus
knot) knot with 5 crossings. These are the 1st and 2nd simplest hyperbolic knots. A knot
K is called hyperbolic when its complement S3\K is hyperbolic.

m007 is a hyperbolic 3-manifold with a torus boundary. Here we follow the nomen-
clature of SnapPy [57]. This manifold cannot be realized as a knot complement on S3.
Instead, it can be obtained by performing a Dehn filling on one torus boundary of the
Whitehead link complement, 52

1. The link is the 1st simplest link with 2 components and
5 crossings. (m007)p/q is the closed 3-manifold obtained from the Dehn filling along a
boundary 1-cycle determined by p/q. In terms of Dehn surgery along the Whitehead link,
(m007)p/q = (S3\52

1)−3/2,−p/q−3. The Whitehead link is symmetric under the exchange of
two components and thus (S3\52

1)p1/q1,p2/q2 = (S3\52
1)p2/q2,p1/q1

4.2 T [M = (S3\41)p/q]

The (2+1)d gauge theory from M = (S3\41)p/q is [12, 21]

T
[
M = (S3\41)p/q

]
= T [S3\41]
SO(3)p/q

where

T [S3\41] = U(1)0 coupled to 2 Φ’s of charge +1 .
(4.6)

Here U(1)k means the U(1) gauge theory at Chern-Simons level k and Φ is a supersym-
metric chiral multiplet which consists of a complex scalar and a Weyl fermion. The theory
T [S3\41] has the manifest SU(2)×U(1) flavor symmetry as well as the U(1) R-symmetry.
The SU(2) acts on the 2 chiral multiplets while the U(1) comes from so-called topologi-
cal symmetry associated to the dynamical U(1) gauge field. The charge of the topological
symmetry is given by the magnetic flux of the Abelian gauge field. Interestingly, the theory
T [S3\41] is known to have the flavor symmetry enhancement SU(2) × U(1) → SU(3) at
the IR fixed point [21, 58, 59]. After gauging the SO(3) subgroup of the SU(3), however,
this theory does not have any flavor symmetry.

The 3-manifolds (S3\41)p/q with p/q other than p/q ∈ {0,±1,±2,±3,±4, 1/0} are all
hyperbolic. For those hyperbolic M , the gauge theory T [M ] flows to a non-trivial super-
conformal field theory. When p/q ∈ {0,±1,±2,±3}, on the other hand, the 3-manifolds
(S3\41)p/q are non-hyperbolic and satisfy the condition in (2.3). Also, (S3\41)p/q with odd
p has trivial H1(M,Z2). For those cases, one can compute the superconfomal index and
check that [40] (for p/q ∈ {0,±1,±2,±3}) ,

(Isci(x) of T [(S3\41)p/q]) = 1 . (4.7)

Note that since the IR theory has no flavor symmetry, the IR R-symmetry will be the
same as the UV R-symmetry. So the above index as it is the superconformal index of
the IR fixed point and it counts only a single operator, the vacuum. This is a strong
signal that the IR theory has no local excitations. From this, one can expect that the
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T
[
M = (S3\41)p/q

]
flows not to a SCFT with local operators, but instead to a topological

theory. Accordingly, we shall compute the modular structures of M = (S3\41)p/q=±1,±3
in section 5 and confirm that they are all unitary. Unitarity of the modular structure
plugged in the conjecture in (2.4) implies that the IR limit of T

[
M = (S3\41)p/q

]
is a

unitary topological quantum field theory, which is indeed in a good agreement with our
expectation from the index computation.

4.3 T [M = (S3\52)p/q]: additional U(1)

The (2+1)d gauge theory from M = (S3\52)p/q is [21]

T
[
M = (S3\52)p/q

]
= T [S3\52]
SO(3)p/q

, where

T [S3\52] = U(1)− 1
2
coupled to 3 Φ’s of charge +1 .

(4.8)

Note that the correct quantization for Chern-Simons level k of the dynamical U(1) gauge
field is k ∈ Z + (the number of Φs)

2 = Z + 1
2 due to the one-loop shift of Chern-Simons level

after integrating out the chiral fermions in 3 Φ’s.
The theory T [S3\52] has SU(3)×U(1) flavor symmetry, where the SU(3) rotates 3 Φ’s

and U(1) is the topological symmetry. In the above, we “gauge” the SO(3) ⊂ SU(3) flavor
symmetry to obtain T

[
M = (S3\52)p/q

]
. Taking into account of the background Chern-

Simons level −4 of the SO(3) flavor symmetry in T [S3\52], the actual “Chern-Simons
level” in the gauging should be p/q−4. After the gauging, the theory T

[
M = (S3\52)p/q

]
still has the U(1) flavor symmetry.

When p/q ∈ {1, 2, 3}, the 3-manifolds (S3\52)p/q are non-hyperbolic and satisfy the
condition in (2.3). Furthermore, the 3-manifold (S3\52)p/q has trivial H1(M,Z2) when
p/q ∈ {1, 3}. One computes the superconformal indices for these cases using localization
technique,

(Isci(x) of T [(S3\52)p/q=1]) = 1 + (u− 1)x+
(
−2 + u2 + 1

u

)
x2 + . . . ,

(Isci(x) of T [(S3\52)p/q=3]) = 1 + (u− 1)x+
(
−2 + u+ 1

u

)
x2 + . . . .

(4.9)

Here, the superconformal index is computed using the UV R-symmetry. u is the fugacity
for the additional U(1) symmetry. The superconformal index with a different R-symmetry
can be obtained by replacing u in the above by u(−x1/2)ν . ν is the parameter for the
mixing of the R-symmetry with the U(1) flavor symmetry that for the superconformal
R-symmetry can be fixed by F-maximization in [41]. The above indices are non-trivial and
thus these theories will flow to non-trivial SCFTs.

Amazingly, in the limit u → 1, a huge cancellation occurs and the index reduces to
just 1!

(Isci(x) of T [(S3\52)p/q=1,3])|u=1 = 1 . (4.10)

This is a quite remarkable result showing that the index in this limit receives no contribu-
tion from local operators in the CFT. This strongly suggests that the IR SCFT may have a
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topological sub-sector in the limit u→ 1. In section 5, we will show that the non-hyperbolic
3-manifold M = (S3\52)p/q=1,3 actually has a non-unitary modular structure. We there-
fore suggest that the T

[
M = (S3\52)p/q=1,3

]
flows to a superconformal field theory with

U(1) flavor symmetry, and includes a topological sub-sector, which can be isolated in the
special limit u→ 1, described by a non-unitary MTC. Thus the above index computations
before/after taking the limit u→ 1 give a non-trivial confirmation of the claim in (2.12).

4.4 T [(m007)p/q = (S3\52
1)−3/2,−p/q−3]

For M = (m007)p/q, the corresponding (2+1)d gauge theory is [21]

T
[
M = (m007)p/q

]
= T [m007]
SO(3)p/q

, where

T [m007] = U(1) 3
2
coupled to 4 chirals (Φ1,Φ2,Φ3,M)

of charge (1, 1, 1,−2) with superpotential
W = M(Φ2

1 + Φ2
2 + Φ2

3) .

The theory T [m007] has SO(3) × U(1) flavor symmetry, where the SO(3) rotates 3 Φ’s
and the U(1) is the topological symmetry. Gauging the SO(3) flavor symmetry leads to
T
[
M = (m007)p/q

]
. Taking into account of the background Chern-Simons level −1 of the

SO(3) flavor symmetry in T [m007], the actual “Chern-Simons level” in the gauging should
be p/q − 1. The resulting theory T

[
M = (m007)p/q

]
has the U(1) flavor symmetry.

When p/q ∈ {−2,−1, 0, 1, 2}, the 3-manifolds (m007)p/q are non-hyperbolic and
satisfy the condition in (2.3); the 3-manifold (m007)p/q has trivial H1(M,Z2) when
p/q ∈ {−2, 0, 2}. One computes the superconformal indices with the UV R-symmetry
for these cases,

(Isci(x) of T [(m007)p/q=−2]) = 1 + (u− 1)x+
(
−2 + u2 + 1

u

)
x2 + . . . ,

(Isci(x) of T [(m007)p/q=0,2]) = 1 ,
(4.11)

where u is the fugacity for the additional U(1) symmetry. Interestingly, the u-dependence
in the index disappears for p/q = 0 or 2.

The index for the T
[
M = (m007)p/q=−2

]
is non-trivial and it depends on the fugacity

u. Moreover, the index reduces to ‘1’ in the limit u → 1. As for other examples above,
we suggest that the T

[
M = (m007)p/q=−2

]
flows to a superconformal field theory with

U(1) flavor symmetry at low energy that contains a non-unitary topological sub-sector of
the limit u → 1. In section 5, we will confirm that the modular structure associated to
the 3-manifold M = (m007)p/q=−2 is actually non-unitary. This gives another non-trivial
confirmation of the claim in (2.12).

On the other hand, the index for the theory T
[
M = (m007)p/q=0,2

]
is trivial and

independent of u. This signals that the theory is topological and the U(1) global symmetry
decouples at low energy. In section 5, we will also confirm that the modular structure
associated to the 3-manifoldM = (m007)p/q=0,2 is actually unitary. We thus conclude that
the T

[
M = (m007)p/q=0,2

]
flows to a topological theory described by a unitary MTC. This

agrees with the conjecture in (2.4).
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p4/q4 = 0

p1/q1 p2/q2 p3/q3

c c c

Figure 1. Dehn surgery presentation of the Seifert fiber manifold S2(p1
q1
, p2
q2
, p3
q3

) using a link with
4 components.

5 Examples

5.1 Seifert fiber manifold S2
(
p1
q1
, p2
q2
, p3
q3

)
Let us now introduce a class of non-hyperbolic 3-manifolds defined as

S2
(
p1
q1
, p2
q2
, p3
q3

)
:= (Seifert fiber manifold over S2) ,

(pi, qi) are coprimes with pi > 0 , (5.1)

which provides infinitely many examples of 3-manifolds satisfying the topological condi-
tions in (2.3). See figure 1 for the Dehn surgery representation of this 3-manifold. This
manifold is invariant under the permutation of the three rational numbers {pi/qi}i=1,2,3.
The fundamental group of the manifold is

π1

(
S2
(
p1
q1
,
p2
q2
,
p3
q3

))
=
〈
x1, x2, x3, h : xpii h

qi = 1, hxi = xih,
3∏
i=1

xi = 1
〉
. (5.2)

The manifold has trivial H1(M,Z2) if and only if

p1p2p3

(
q1
p1

+ q2
p2

+ q3
p3

)
∈ 2Z + 1 .

The Chern-Simons action CS[ρ] and the adjoint Reidemeister torsion Tor[ρ] for irre-
ducible flat connections ρ on the 3-manifold are known in [60]. Let ρ be an irreducible flat
connection on S2({pi/qi}3i=1) whose holonomy matrices are of the following form,3

ρ(h) = diag{e2πiλ, e−2πiλ} with λα ∈
{

0, 1
2

}
and (5.3)

eigenvalues of ρ(xi) =
{

exp
(
±2πini

pi

)}
with ni ∈

1
2Z .

Then we have

CS[ρ] =
3∑
i=1

(
ri
pi
n2
i − qisiλ2

)
(mod 1) ,

Tor[ρ] =
3∏
i=1

pi

4 sin2 (2π( ripini + siλ)
) , (5.4)

3To be an irreducible flat connection, ρ(h) should be an element of center Z2 ∈ SL(2,C). Otherwise,
all ρ(xi) with i = 1, 2, 3 as well as ρ(h) belong to the same GL(1,C) subgroup of SL(2,C) and thus ρ is
reducible.
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where the integers (ri, si) are chosen such that pisi − qiri = 1. The choice of (ri, si) is not
unique, but the above invariants are independent of the choice.

5.2 M = S2
(
3, 3,−4

3

)
= (S3\41)p/q=3

From the topological fact that M = S2(3, 3,−4/3) = (S3\41)p/q=3 [61, 62], the (2+1)d
theory TFT[M ] is expected to describe the IR physics of T [(S3\41)p/q] in (4.6) with p/q =
3. In the notation of [61], (S3\41)p/q corresponds to (m004)p/q.4

There are 3 irreducible flat SL(2,C) connections ρα=0,1,2 on this 3-manifold with

CS[ρα=0] = 25
48 , CS[ρα=1] = 1

12 , CS[ρα=2] = 1
48 ,

Tor[ρα=0] = Tor[ρα=2] = 2, Tor[ρα=1] = 1. (5.5)

Refer to appendix E for detailed computations. According to table 2, the GSDg, S00 and
T -matrix of M are given by

{GSDg}g=0,1,2,... = {1, 3, 10, 36, 136, 528, . . .} ,

S00 = 1
2 , T = diag{e−

25iπ
24 , e−

iπ
6 , e−

iπ
24 } .

(5.6)

The topological spins hα = ±(CS[ρα]− CS[ρα=0]) for three anyons are

{hα}2α=0 =
{

0, 9
16 ,

1
2

}
. (5.7)

Since S00 =
∣∣∑

δ
exp(−2πiCS[ρδ ])

2Tor[ρδ ]
∣∣ ≤ 1√

2Tor[ρα]
for all α, the TFT[M ] is a unitary topological

theory according to (3.9). The unitarity is expected since the effective supersymmetric
theory T [M ] in (4.6) does not have any Abelian symmetry (see (2.12)). In the above, we
chose ρα=0 as the true vacuum. The 3-manifold with this vacuum choice will be denoted
by S2(3, 3,−4

3)I. The same manifold with a distinct vacuum choice that we refer to as
S2(3, 3,−4

3)II will be discussed below.
Using the formula for the W0(α) in (3.21), we compute

|W0(α = 0, 2)| = 1 , |W0(α = 1)| =
√

2 . (5.8)

From the classical value of loop operator at the flat connection ρα=0, one can easily deduce
the flat-connection-to-loop-operator map as follows.

ρα → (a = x3, R = Symα�) ,
⇒ {W0(α)}2α=0 = {1,

√
2, 1}, {W1(α)}2α=0 = {1, 0,−1},

{W2(α)}2α=0 = {1,−
√

2, 1}. (5.9)

Here we use the explicit holonomy matrices ρα(x3) given in (E.2) and the formula in (3.20).
Then, using the relation Sαβ =Wβ(α)W0(β)S00, we find the full S-matrix

S =


1
2

1√
2

1
2

1√
2 0 − 1√

2
1
2 −

1√
2

1
2

 . (5.10)

4More precisely, they denote it by m004(p, q). The Seifert manifold S2( p1
q1
, p2
q2
, p3
q3

) is denoted by
S2 ((p1, q1), (p2, q2), (p3, q3)) .
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The modular S- and T - matrices are identical to those of 3B7/2 (following notation in [16]),
up to the fact that in our procedure the 2d central charge c2d can be captured only modulo
1
2 while that in the usual UMTCs is defined modulo 8. From the T -matrix and (3.7), we
compute

(
c2d of TFT[M = S2(3, 3,−4/3)I]

)
= 0

(
mod 1

2

)
,

while(
c2d of 3B7/2

)
= 7

2 = 0
(
mod 1

2

)
.

So our result agrees with the 2d central charge of 3B7/2 model modulo 1
2 . We therefore

conclude that
TFT[M = S2(3, 3,−4/3)I] ∼ 3B7/2 .

In the above, TFT1 ∼ TFT2 means that the two topological theories TFT1 and TFT2
have the same modular structure including c2d modulo 1

2 .
Now let us discuss the modular structure of S2(3, 3,−4

3)II with the vacuum ρα=2. For
convenience, we first rename flat connections as follows

ρ̃α=0 := ρα=2 , ρ̃α=1 := ρα=1 , ρ̃α=2 := ρα=0 ,

and choose the ρ̃α=0 as the true vacuum. In the choice, the flat-connection-to-loop-operator
map should be modified as follows:

ρ̃α → (a = x3.h, R = Symα�) . (5.11)

TheWα(β) and the S-matrix in this choice are the same as before. However, the T -matrix
and thus c2d and topological spins change as

T̃ = diag{e−
iπ
24 , e−

iπ
6 , e−

25iπ
24 } ,

⇒ c̃2d = 0
(
mod 1

2

)
, {h̃α}2α=0 =

{
0, 1

16 ,
1
2
}
.

(5.12)

From the modular data, we conclude that

TFT[M = S2(3, 3,−4/3)II] ∼ 3B1/2 .

Note that the two different choices of the true vacuum lead to the two distinct (2+1)d
topological phases described by the UMTCs 3B7/2 and 3B1/2, respectively, that are related to
each other by the Lorentz symmetry fractionalization.

5.3 M = S2
(
3, 3,−5

3

)
= (S3\52)p/q=3

From the topological fact that M = S2(3, 3,−5/3) = (S3\52)p/q=3 [61, 62], the TFT[M ]
arises in the IR limit of T [(S3\52)p/q] in (4.8) with p/q = 3. In the notation of [61],
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(S3\52)p/q corresponds to (m015)p/q−2. There are 4 irreducible flat connections ρα=0,1,2,3
on this 3-manifold with

{CS[ρα]}3α=0 =
{14

15 ,
11
60 ,

11
15 ,

59
60
}
, (5.13)

{Tor[ρα]}3α=0 =
{5−

√
5

2 , 5−
√

5
2 , 5+

√
5

2 , 5+
√

5
2
}
.

According to table 2, the GSDg, S00 and T -matrix are

{GSDg}g=0,1,2,... = {1, 4, 20, 120, 800, 5600, . . .} , (5.14)

S00 = 1√
5−
√

5
, T = diag{e−

28iπ
15 , e−

11iπ
30 , e−

22iπ
15 , e−

59iπ
30 } ,

and the topological spins are

{sα}3α=0 =
{

0, 1
4 ,

4
5 ,

1
20

}
. (5.15)

Note that S00 >
1√

2Tor[ρα]
for α = 2 and α = 3. According to (3.9), this modular data is

non-unitary.
There are two choices of the true vacuum: I. ρα=0 and II. ρα=1. Let us first discuss the

case with the vacuum I. We then read

|W0(α = 0, 1)| = 1 , |W0(α = 2, 3)| = 1
2

(
1−
√

5
)
. (5.16)

This implies the flat-connection-to-loop-operator map

ρα=1 → (a = x2, R = �) , ρα=2 → (a = x2
3, R = �) ,

ρα=3 → (a = x2, R = �)⊗ (a = x2
3, R = �)

⇒
{
W0(α)

}3
α=0 =

{
1, 1, 1−

√
5

2 , 1−
√

5
2

}
,{

W1(α)
}3
α=0 =

{
1,−1, 1−

√
5

2 ,
√

5−1
2

}
,{

W2(α)
}3
α=0 =

{
1, 1, 1+

√
5

2 , 1+
√

5
2

}
,{

W3(α)
}3
α=0 =

{
1,−1, 1+

√
5

2 , −1−
√

5
2

}
. (5.17)

Here we use the explicit holonomy matrices given in (E.4). Then, using the relation Sαβ =
Wβ(α)W0(β)S00, we compute the full S-matrix

S = 1√
5−
√

5


1 1 (1−

√
5)

2
(1−
√

5)
2

1 −1 (1−
√

5)
2

(√5−1)
2

(1−
√

5)
2

(1−
√

5)
2 −1 −1

(1−
√

5)
2

(√5−1)
2 −1 1


=

 1 (1−
√

5)
2

(1−
√

5)
2 −1

⊗ ( 1 1
1 −1

)
. (5.18)
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The modular S and T -matrices are equivalent to those of (Lee-Yang) ⊗ (Semion), the
product of the Lee-Yang model and the semion UMTC, up to the central charges

c2d[TFT[S2(3, 3,−5/3)]] = 1
10

(
mod 1

2

)
, while

c2d[(Lee-Yang)⊗ (Semion)] = −22
5 + 1 = −17

5 = 1
10

(
mod 1

2

)
.

(5.19)

As discussed in the previous section, the effective theory T [(S3\52)p/q=3] flows to a SCFT
with an additional Abelian symmetry. We expect that this (2+1)d SCFT for the vac-
uum choice I involves a non-unitary sub-sector described by the modular structure of
(Lee-Yang)⊗ (Semion).

TFT[S2(3, 3,−5/3)I] ∼ (Lee-Yang)⊗ (Semion) .

Now let us consider the choice II. For convenience, we first rename the flat connections
as follows:

ρ̃α=0 := ρα=1 , ρ̃α=1 := ρα=0 ,

ρ̃α=2 := ρα=3 , ρ̃α=3 := ρα=2 .

In this choice, the flat-connection-to-loop-operator map is given by

ρ̃α=1 → (a = x2, R = Sym3�) , ρ̃α=2 → (a = x2
3, R = �) ,

ρ̃α=3 → (a = x2, R = Sym3�)⊗ (a = x2
3, R = �) . (5.20)

The Wα(β) and S-matrix are the same as those for the choice I. The T -matrix changes as

T̃ = diag{e−
11iπ

30 , e−
28iπ

15 , e−
59iπ

30 , e−
22iπ

15 } . (5.21)

⇒ c̃2d = 1
5

(
mod 1

2

)
, {h̃α}3α=0 =

{
0, 3

4 ,
4
5 ,

11
20
}
.

One notices that the resulting MTC coincides with the non-unitary (Lee-Yang) ⊗
(FLorentz[Semion]) MTC where FLorentz[Semion] denotes the Lorentz symmetry fractional-
ization of the semion MTC with respect to the 1-form symmetry generated by the semion
with spin 1

4 . We thus conclude that

TFT[S2(3, 3,−5/3)II] ∼ (Lee-Yang)⊗ (FLorentz[Semion]) .

5.4 More 3-manifolds studied in section 4

In section 4, we study the supersymmetric gauge theories T [M ] for seven non-hyperbolic
3-manifolds, (S3\41)p/q=1,3, (S3\52)p/q=1,3 and (m007)p/q=−2,0,2, obeying the topological
conditions (2.3) with trivial H1(M,Z). Based on (2.4) and (2.12) combined with the
superconformal index computation, we have conjectured that

T [M ] with M = (S3\41)p/q=1,3 or (m007)p/q=0,2

flows to a unitary topological theory,
while
T [M ] with M = (S3\52)p/q=1,3 or (m007)p/q=−2

flows to a SCFT with U(1) symmetry which contains
a non-unitary topological phase as a sub-sector.

(5.22)
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In the previous subsection, we have shown that the modular structures associated to M =
(S3\41)3 are indeed unitary, whereas the modular structures associated to M = (S3\52)3
are non-unitary, which confirms two cases with p/q = 3 in the conjecture (5.22).

Let us now confirm the conjecture (5.22) for other 5 manifolds. We shall basically
employ the unitarity criterion in (3.9) to show that the associated modular structures are
unitary/non-unitary.

a. (S3\41)p/q=1 = S2(2, 3,−7
6) There are 3 irreducible SL(2,C) flat connections {ρα}2α=0

with

{CS[ρα]} =
{

1
168 ,

121
168 ,

25
168

}
,

Tor[ρα] = 7
8 csc2

(
(2α+1)π

7

)
.

Thus, according to (3.9), the associated modular structure is unitary.

b. (S3\52)p/q=1 = S2(2, 3,−11
9 ) There are 5 irreducible SL(2,C) flat connections

{ρα}4α=0 with

{CS[ρα]} =
{

239
264 ,

215
264 ,

167
264 ,

95
264 ,

263
264

}
,

Tor[ρα] = 11
8 csc2

(
5(2α+1)π

11

)
.

Thus, according to (3.9), the associated modular structure is non-unitary.

c. (m007)p/q=−2 = S2(2, 3,−9
7) There are 4 irreducible SL(2,C) flat connections

{ρα}3α=0 with

{CS[ρα]} =
{

47
72 ,

13
24 ,

23
72 ,

71
72

}
,

Tor[ρα] = 9
8 csc2

(
4(2α+1)π

9

)
.

Thus, according to (3.9), the associated modular structure is non-unitary.

d. (m007)p/q=0 = S2(3, 3,−3) There are 2 irreducible SL(2,C) flat connections {ρα}1α=0
with

{CS[ρα]} =
{

2
3 ,

11
12

}
, Tor[ρα] = 1 .

Thus, according to (3.9), the associated modular structure is unitary.

e. (m007)p/q=2 = S2(2, 3
2 ,−3) There is only one irreducible SL(2,C) flat connection

{ρα}2α=0 with
CS[ρα=0] = 19

24 , Tor[ρα=0] = 1
2 .

Thus, according to (3.9), the associated modular structure is unitary.

5.5 TFT[M = S2(p1
q1
, p2
q2
, p3
q3

)] with trivial H1(M,Z2) and rank ≤ 4

The list of unitary cases is given in table 1 while non-unitary cases are given in table 3.
Detailed analysis of modular structures of the TFT[M ] is given in appendix F.
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Rank 3-manifold TFT[M]
2 S2(2, 3, 5

2) Gal]=2
[
(A1, 3)1/2

]
3 S2(2, 3, 7

2) Gal]=2
[
(A1, 5)1/2

]
S2(2, 3, 7

3) Gal]=3
[
(A1, 5)1/2

]
S2(2, 3, 9

2) Gal]=2
[
(A1, 7)1/2

]
S2(2, 3, 9

4) Gal]=4
[
(A1, 7)1/2

]
4 S2(3

2 , 3,
5
2) Gal]=2

[
(A1, 3)1/2

]
⊗ (2B±1)

S2(2, 5, 5
2) Gal]=2

[
(A1, 3)1/2

]
⊗ (A1, 3)1/2

S2(2, 5
2 ,

5
2) Gal]=2

[
(A1, 3)1/2

]
⊗Gal]=2

[
(A1, 3)1/2

]
Table 3. List of non-unitary TFT[M = S2(p1

q1
, p2
q2
, p3
q3

)] with trivial H1(M,Z2) up to rank 4. The
(A1, k)1/2 theory admits its non-unitary Galois conjugations Gal](A1, k)1/2 where 1 < ] < k+2

2 is
an positive integer relatively prime to k + 2 [63]. Gal]=2(A1, 3)1/2 corresponds to the Lee-Yang
model.

6 Extension to non-trivial H1(M,Z2)

Here we generalize the analysis in the previous sections to non-hyperbolic 3-manifolds with
non-trivial H1(M,Z2).

6.1 TFT[M ] and T̃FT[M ]

When H1(M,Z2) is non-trivial, there are some additional discrete choices in the geomet-
rical construction in (2.1) as recently studied in [42]. The choice is in the one-to-one
correspondence with the choice of a subgroup H of the cohomology group H1(M,Z2). See
appendix C for a brief review on the choice. Correspondingly, there are discrete variants
of TFT[M ] depending on the choices. For example, we denote the topological theory as-
sociated to the choice H = ∅ by T̃FT[M ] while the theory associated to H = H1(M,Z2)
by TFT[M ].

From the geometrical analysis in [42], T̃FT[M ] is expected to have the cohomology
group H1(M,Z2) as 1-form flavor symmetry [64].5 Generally, 1-form symmetries in a
topological theory are generated by anyons. We define such anyons as

Aη : Anyon generating 1-form symmetry η ∈ H1(M,Z2) . (6.1)

Since η2 = 1 for η ∈ H1(M,Z2), the corresponding anyon satisfies the fusion rule6

Aη ×Aη = 1 . (6.2)

On spin manifolds, a 1-form symmetry η is anomaly free only if the generating anyon Aη
has integer or half-integer spin [65]. In fact, the global 1-form symmetry H1(M,Z2) is
anomaly free [42]. Thus the anyons Aη have topological spins hη = 0 or 1

2 mod 1.
5T̃FT[M ] can have bigger 1-form symmetry than the geometrically expected symmetry. It is also possible

that some subgroup of H1(M,Z2) trivially acts on all anyons and thus is effectively absent in the topological
theory.

6For a ZN symmetry, the symmetry generating anyon A shows AN = 1.
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T̃FT[M ] 3-manifold M
Anyons {ρPSL ⊗ η}

i) ±CS[ρPSL ⊗ η] (mod 1)
hα − c2d

24 (for anyons with w2(ρPSL) = 0) ,
ii) Equation (6.11)

(for anyons with non-trivial w2(ρPSL))
(S0α)2 (2|H1(M,Z2)|Tor[ρPSL])−1

WρPSL⊗η′(Aη) (−1)
∫
M
η∪w2(ρPSL) ∈ {±1}

Table 4. Some modular data of T̃FT[M ], the topological phase associated to a non-hyperbolic
3-manifold M satisfying (2.3) with general H1(M,Z2). Here w2 denotes the 2nd Stiefel-Whitney
class. For a PSL(2,C) flat connection ρPSLα with trivial w2, the ρPSLα ⊗ η can be regarded as
SL(2,C) flat connections uplifted from the PSL(2,C) flat connection and the Chern-Simons action
CS[ρPSLα ⊗ η] is well-defined modulo 1. |H1(M,Z2)| denotes the order of the cohomology group.

We can gauge a 1-form symmetry if the symmetry is anomaly free. In the context of
anyon theories, gauging a 1-form symmetry is also called as anyon condensation of the sym-
metry generating anyon. Gauging a subgroup H ⊂ H1(M,Z2) leads to another topological
phase which we call TFT[M ;H]. The topological phase TFT[M ] is in fact TFT[M ;H] with
H = H1(M,Z2) obtained by gauging all the anomaly free 1-form symmetries in T̃FT[M ].

In the subsequent sections, we give an algorithm for determining (partial) modular
structures of T̃FT[M ] and TFT[M ] from topological information of the 3-manifold M .

6.2 Modular structures of T̃FT[M ]

Some basic modular data of the topological theory is summarized in (4). The table can
be derived following the similar logic used in deriving table 2 combined with analysis on
Bethe-vacua of T̃ [M ] := T [M ;H = ∅] theory in [42]. In the table, ρPSL is an irreducible
PSL(2,C) flat connection on M and η ∈ H1(M,Z2) is the Z2 flat connection. The holon-
omy matrix of the PSL(2,C) flat connection can be written as

ρPSL(a) = [ρSL(a)] , (6.3)

where ρSL(a) ∈ SL(2,C) is a representative uplift from PSL(2,C) to SL(2,C). Here, [. . .]
denotes the equivalence class under the Z2 in PSL(2,C) = SL(2,C)/Z2,

[g] = [−g] ∈ PSL(2,C) , g ∈ SL(2,C) . (6.4)

Generally, ρSL does not give a homomorphism in Hom [π1M → SL(2,C)]. Only for ρPSL

with trivial 2nd Stiefel-Whitney class, i.e. w2(ρPSL) = 0, we can choose ρSL to be a
homomorphism and give a SL(2,C) flat connection. For ρPSL with trivial w2, the set
{ρPSL⊗η}η∈H1(M,Z2) can be regarded as the set of SL(2,C) flat connections, where ⊗ rep-
resents a formal tensor product of ρPSL and the Z2 flat connection η under the equivalence
relation

ρPSL ⊗ η1 = ρPSL ⊗ η2 if ∃ g ∈ SL(2,C) such that

η1(a)ρSL(a) = g ·
(
η2(a)ρSL(a)

)
· g−1 , ∀a ∈ π1(M) .

(6.5)
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For the cases with trivial H1(M,Z2), the dictionary in table 4 is just a subset of that in
table 2. In this case, PSL(2,C) flat connections are in one-to-one correspondence with
SL(2,C) flat connections since their w2 ∈ H2(M,Z2) = H1(M,Z2) is automatically trivial.

The 1-form symmetry generating anyon Aη in (6.1) can be identified with

Aη = ρPSLα=0 ⊗ η , (6.6)

where ρα=0 is the flat-connection whose corresponding ρPSLα=0 ⊗1 is the trivial anyon. Hence
the fusion rules between the Aη and other anyons have the following simple structure,

Aη × (ρPSL ⊗ η̃) = ρPSL ⊗ (η · η̃) . (6.7)

The fusion rule determines how the anyon Aη along B-cycle in two-torus acts on the ground
states in the Hibert-space as illustrated in (3.13). The action of the anyon along A-cycle is
determined byWρPSL⊗η′(Aη) in the table 4, which is called monodromy charge. This action
is particularly important in the gauging procedure. Upon gauging a 1-form symmetry
generated by Aη, the anyons ρPSL⊗ η̃ with monodromy charge WρPSL⊗η̃(Aη) = −1 are all
projected out.

The cohomology group H1(M,Z2) admits a Z2 grading defined as

η ∈ H1(M,Z2) is calledbosonic , if CS[η ⊗ ρ] = CS[ρ] for all ρ
fermionic , otherwise .

(6.8)

Here ρ are SL(2,C) flat connections on M and η ⊗ ρ denotes the tensor product of ρ and
η whose holonomy matrix is given by

(η ⊗ ρ)(a) = η(a)ρ(a) , η(a) ∈ {±1} . (6.9)

The anyon Aη for η ∈ H1(M,Z2) has the topological spin

hη =

0 , if η is bosonic
1
2 , if η is fermionic

(6.10)

The quantum number ȟ := h− c2d
24 (mod 1) for anyons ρPSL⊗ η with non-trivial w2(ρPSL)

satisfies following conditions

i) (ȟ of ρPSL ⊗ η) = CS[ρPSL]
(
mod 1

2

)
,

ii)
(
ȟ of ρPSL ⊗ (η · η̃)

)
−
(
ȟ of ρPSL ⊗ η̃

)
for all η̃

=

0 , if ε(η)× (−1)η∪w2(ρPSL) = 1
1
2 , if ε(η)× (−1)η∪w2(ρPSL) = −1 ,

(6.11)

where we defined

ε(η) :=

1 , if η if bosonic
−1 , if η if fermionic

(6.12)
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TFT[M ] 3-manifold M
Irreducible PSL(2,C) flat connections

Anyons ρPSL on M with w2(ρPSL) = 0.
(Count with multiplicity |Inv(ρPSL)|)

Bosonic/Fermionic Equation (6.13)
hα − c2d

24 ±CS[ρPSL] (mod 1) for bosonic
±(CS[ρPSL] (mod 1

2) for fermionic
(S0α)2 |H1(M,Z2)|(2Tor[ρ]|Inv(ρPSL)|2)−1

Table 5. Some modular data of TFT[M ], topological phase associated to non-hyperbolic 3-manifold
M satisfying (2.3) with general H1(M,Z2).

Note that CS[ρPSL] for a flat connection ρPSL with non-trivial w2 is defined only modulo
1/2. The condition ii) follows from the universal property of bosonic topological phases,
e.g. proposition 2.10 in [66], combined with the fusion rule in (6.7) and the dictionary for
monodromy charge in table 4. The above conditions uniquely determine the spectrum of
ȟ when all η ∈ H1(M,Z2) are bosonic. On the other hand, we leave the detailed analysis
of the cases with the fermionic η as a future work.

6.3 Modular structures of TFT[M ]

The topological theory TFT[M ] after gauging all η ∈ H1(M,Z2) could be either a spin
(fermionic) TQFT or a symmetry enriched topological phase with non-self-dual anyons [67,
68]. Some basic modular data of the topological theory is summarized in table (5). Detailed
derivation of the dictionary in table 5 will be reported in [69].

We propose the following criterion:

TFT[M ] is

bosonic , if all η ∈ H1(M,Z2) are bosonic
fermionic , otherwise

(6.13)

In the table, Inv(ρPSL) denotes the subgroup of H1(M,Z2) invariant under tensoring with
a flat connection ρPSL.

Inv(ρPSL) := {η ∈ H1(M,Z2) : ρPSL ⊗ η = ρPSL ⊗ 1} . (6.14)

We remark that for a bosonic η, each anyon ρPSL ⊗ η with non-trivial Inv(ρPSL) in the
mother theory T̃FT[M ] becomes multiple anyons in TFT[M ] with multiplicity |Inv(ρPSL)|,
the order of symmetry generated by Aη [65]. For a fermionic case, the topological spin h
is defined only up to modulo 1

2 since two anyons, ρPSL ⊗ 1 and ρPSL ⊗ η for a fermionic η
whose topological spins differ by 1/2, are regarded as a single anyon ρPSL after the gauging.

6.4 M = S2(2, 3, 8): fermionic topological phase

Let us consider the TFT[M ] with M = S2(2, 3, 8), which is one of the simplest fermionic
TFTs. The 3-manifold M has non-trivial H1(M,Z2) = H1(M,Z2) = Z2 and allows 4
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irreducible PSL(2,C) flat connections. The adjoint torsions for the flat connections are

{Tor[ρPSLα ]}3α=0 =
{

csc2
(
π(α+ 1)

8

)}3

α=0
(6.15)

Among them, ρPSLα for α = 0 and α = 2 have trivial 2nd Stiefel-Whitney class w2 and they
are not invariant under the tensoring with H1(M,Z2), i.e. |Inv(ρPSLα=0,2)| = 1. According to
the dictionary in table 5, we have

{
GSDg[TFT[S2(2, 3, 8)]]

}∞
g=0

=

 ∑
α=0,2

(S0α)2−2g} = {
∑
α=0,2

csc2g−2
(
π(α+ 1)

8

)
= {1, 2, 8, 48, 320, . . .} .

From this result, one can confirm that TFT[M = S2(2, 3, 8)] is not included in the classi-
fication of UMTCs, for example, in [18]. The reason is that this theory is actually a spin
TQFT, not a bosonic topological theory.

There are again 4 irreducible SL(2,C) flat connections on M = S2(2, 3, 8). These are
uplifts of the two PSL(2,C) flat connections ρPSLα=0 and ρPSLα=2 .

4 irreducible SL(2,C) flat connections on M = S2(2, 3, 8)
= {ρPSLα=0 , ρ

PSL
α=0 ⊗ η, ρPSLα=2 , ρ

PSL
α=2 ⊗ η} . (6.16)

Their Chern-Simons invariants are

CS[ρPSLα=0 ] = 25
96 , CS[ρPSLα=2 ] = 49

96 ,

CS[ρPSLα=0 ⊗ η] = 73
96 , CS[ρPSLα=2 ⊗ η] = 1

96 .
(6.17)

Since CS[ρPSLα=0,2 ⊗ η] − CS[ρPSLα=0,2] = 1
2 , TFT[S2(2, 3, 8)] is fermionic according to the

criterion in (6.13).
This spin TQFT turns out to be obtained by condensating the fermionic anyon in the

SU(2)6 theory [66], i.e.

TFT[S2(2, 3, 8)] = Condensating fermionic anyon in SU(2)6 . (6.18)

This theory enjoys the following exotic fusion relation [66]

τ2 = 1 + 2τ , (6.19)

which can not be realized in bosonic topological phases [70].
Moreover, one can confirm that the mother theory T̃FT[M = S2(2, 3, 8)] is actu-

ally the SU(2)6 theory, which is a rank 7 UMTC, using table 4. Among 4 irreducible
PSL(2,C) flat connections, the last flat connection ρPSLα=3 is invariant under the tensoring
with H1(M,Z2) = {1, η}, namely

η ⊗ ρPSLα=3 = 1⊗ ρPSLα=3 . (6.20)
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Thus there are in total 7 anyons in T̃FT[M = S2(2, 3, 8)]:

{ρPSLα ⊗ 1}3α=0 , {ρPSLα ⊗ η}2α=0 . (6.21)

Using the table and the equation (6.15), one can compute

(S0α)2 = 1
2 sin2

(
π(α+ 1)

8

)
(6.22)

for the 7 anyons, which agrees with the S2
0α of 7 anyons in the SU(2)6 theory. From the

results in (6.17), one can further confirm that the topological spins ρPSL ⊗ η of 4 anyons
with trivial w2(ρPSL) in T̃FT[M = S2(2, 3, 8)] are

h(ρPSLα=0 ) = 0 , h(ρPSLα=2 ) = 1
4 ,

h(ρPSLα=0 ⊗ η) = 1
2 , h(ρPSLα=2 ⊗ η) = 3

4 ,
(6.23)

This spectrum nicely matches the topological spins of Z2 invariant 4 anyons in the SU(2)6
theory.

7 Conclusions

In this paper, we have proposed a correspondence between a certain class of non-hyperbolic
3-manifolds (2.3) and (2+1)d topological phases based on the physics of M-theory 5-branes
compactified on the 3-manifolds. From this new correspondence, we developed a systematic
program for generating and classifying the topological phases. Specifically, we provided an
algorithm to read off the modular structure of the topological phases from topological
data of the 3-manifold, and worked out infinitely many examples of Seifert fiber manifolds
S2(p1

q1
, p2
q2
, p3
q3

). From this, we have successfully reproduced (and thus classified) all the
known UMTCs up to rank 4. See the table 1. Not only this, we have also illustrated
that our scheme can be universally applicable to the fermionic anyon theories, non-unitary
MTCs, and symmetry-enriched models.

This encourages us to conjecture that all (2+1)d topological phases of matter can be
geometrically engineered by M5-branes wrapping non-hyperbolic 3-manifolds. We have
shown this for the theories with rank ≤ 4. For higher rank TQFTs, in addition to the
ingredients used in this paper one may need to scan over all the non-hyperbolic manifolds
and/or to increase the number of M5-branes wrapped on them, though we’ve already pro-
duced in this paper two higher rank examples by using only 2 M5-branes: the SU(2)4
(rank 5) and the SU(2)6 (rank 7) UMTCs. Some more progress along this direction will be
reported in [69]. Our discussion in this paper merely opened a new door toward a bigger
program to understand topological phases in terms of their concrete geometrical realiza-
tions, and we hope this program provides a more systematic classification of topological
phases of matter.

Going beyond the current results, there are a number of non-trivial future extensions.
Let us list some of them below.
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Beyond modular structure. As recently noticed in [71], there are additional basic
structures beyond modular structure, S- and T -matrices, that we studied in this paper.
These additional structures are important because the modular data is not enough to fully
characterize the different TQFTs at higher ranks [19]. It may be possible that this addi-
tional data is also encoded geometrically in some topological invariants of non-hyperbolic
3-manifolds. An interesting problem is to find and compute such topological invariants on
generic 3-manifolds, which may allow us to achieve geometrically a complete classification
of (2+1)d TQFTs.

Mathematics of Non-hyperbolic 3-Manifolds. our work connects two seemingly un-
related research fields, physics of topological phases and mathematics of non-hyperbolic
3-manifolds, in an unexpected way. This connection will provide new implications to
both fields. Via this connection, some universal properties on topological phases can be
translated into non-trivial mathematical predictions on non-hyperbolic 3-manifolds satis-
fying (2.3). For instance, the additional structures of TQFTs other than modular data can
be related to new topological invariants on 3-manifolds. As concrete examples, we now
propose the following non-trivial mathematical conjectures:

Let {ρα} be the set of irreducible flat connections on M
satisfying conditions in (2.3) and having trivial H1(M,Z2).

Conjecture 1:
∑
α

1
2Tor[ρα] = 1 .

Conjecture 2: There exists a special ρα=0 satisfying
1√

2Tor[ρα=0]
=
∣∣∣∣∑
δ

exp(−2πiCS[ρδ])
2Tor[ρδ]

∣∣∣∣ .
(7.1)

The first conjecture simply follows from the uniqueness of ground states on a two-sphere
, i.e. GSDg=0 = 1 in (3.3), and the 2nd follows from the explanations around the equa-
tion (3.8). It is also interesting to compare the 1st conjecture with its counterpart for
hyperbolic 3-manifolds. For a hyperbolic M , the quantity in the 1st conjecture is claimed
to vanish [45, 72, 73].

More recently, an interesting universal property of bosonic topological phases is pro-
posed in [74]

c2d ×GSDg ∈ 2Z , when g ≥ 3 . (7.2)

The proposed property can be translated into following conjecture.

Conjecture 3: CS[ρα=0]×
∑
δ

(2Tor[ρδ])g−1 ∈ Z
48 ,

for g ≥ 3 .
(7.3)

Here ρα=0 is the special flat connection in the above 2nd conjecture. In the above we use
the fact that CS[ρα=0] = ± 1

24c2d where c2d is only well-defined modulo 1
2 . We checked

that the above conjectures hold for several examples of M = S2(p1
q1
, p2
q2
, p3
q3

) with trivial
H1(M,Z2). It would be interesting to prove/improve or disprove those conjectures.
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A Brief review of UMTC

Here we present a brief summary of UMTC, which is based on [14, 15, 75]. We will focus
on listing the important facts. We recommend the interested readers to read [14, 75]. To
begin with, UMTC is a mathematical framework describing the physics of anyons with the
consistent implementation of fusion and braiding. Roughly speaking, it describes a theory
of anyons with the fundamental particle being a boson.

Hence, we consider a theory of a finite number of anyons,

α, β, γ · · · ∈ C. (A.1)

For all α ∈ C, there is a unique anti-particle ᾱ. There is an unique vacuum (or trivial
particle) 1 = 1̄. The anyons satisfy the fusion rule, i.e.,

α× β =
∑
γ

Nγ
αβγ. (A.2)

Here Nγ
αβ = Nγ

βα is a positive integer, which represents the multiplicity in the fusion. It
satisfies certain algebraic equations. For instance, the associativity of the fusion requires∑
γ N

γ
αβN

η
γδ =

∑
φN

η
αφN

φ
βδ. Also N1

αᾱ = 1, i.e., when α and its antiparticle are fused, they
generate a unique vacuum (among other anyons).

Next we introduce F -symbol. For this, we first introduce the fusion V γ
αβ and splitting

V αβ
γ spaces, which are dual to each other. A vector in V γ

αβ represents an amplitude of the
particle fusion process. When multiple particles are split (or fused), there can be multiple
different ways of decomposing the corresponding spaces into V αβ

γ ’s (or V γ
αβ ’s). For instance,

when V αβγ
δ is considered, i.e., the anyon δ is decomposed into the three α, β, γ, then there

are two different ways of splitting it: V αβγ
δ =

∑
η V

αβ
η ⊗ V ηγ

δ or V αβγ
δ =

∑
φ V

αφ
δ ⊗ V βγ

φ .
Since they all represent the same physical process, there must be an unitary mapping
between them. This unitary matrix is the F -symbol, which must satisfy the pentagon
equation.

One important quantity, which can be derived from F , is the quantum dimension dα
for a given anyon α, ∣∣∣Fαᾱαα11

∣∣∣ = 1
dα
. (A.3)
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Physically, dα represents the asymptotic scaling of the dimension of the Hilbert space under
the repeated fusion of α. That is, when we fuse α N-times, α × α × α × α · · · × α, the
dimension of the fusion Hilbert space scales as ∼ dNα . For the Abelian particle, dα = 1.
The consistency of the fusion requires dαdβ =

∑
γ N

γ
αβdγ .

Next we discuss the braiding of the anyons. The central object is Rαβγ relating V αβ
γ and

V βα
γ . Consistency between the fusion and the braiding requires so-called hexagon equation.

What’s important for us in relation with the main text is the topological spin θα of anyon
α ∈ C. This can be written in terms of R:

θα = 1
dα

∑
γ

dγTr
(
Rααγ

)
, (A.4)

in which the trace is taken over the multiplicities in the fusion channel α× α→ γ.
With these, we are now ready to write out the formula for the modular data. The first

is the S-matrix:
Sαβ = 1

D

∑
γ

Nγ
αβ

θγ
θαθβ

dγ = Sβα, (A.5)

in which D =
√∑

α d
2
α. This represents the quantum amplitude associated with the linking

of the two anyons α and β. Note that the S-matrix is unitary and hence has an inverse.
The theory with this property, i.e., unitary S-matrix, is called as UMTC. For instance, if
the S-matrix is not unitary, we have a non-unitary MTC, which is studied in our main
text. We can also relate certain part of the S-matrix with the quantum dimensions dα, i.e.,
S1α = dα

D . The second modular data is the T-matrix such that

Tαβ = exp
(
−2πic2d

24

)
× δαβθα. (A.6)

Remarkably, the chiral central charge c2d mod 8 can be determined solely from these
modular data.

1
D

∑
α

d2
αθα = exp

(
2πic2d

8
)
, (A.7)

from which we can actually determine the chiral central charge for a series of UMTC. In
contrast to R- and F - symbols above, the modular data, S- and T-matrices, are gauge-
independent though they do not completely characterize the MTC [19].

A side remark is that, in the main text, the charge conjugation C plays an important
role. The charge conjugation can be defined in terms of the modular data as C = S2 = δᾱβ
and C2 = 1. In the main text, we called the theory with C = 1 as “self-dual”.

B Irreducible SL(2,C) flat connections and topological invariants of 3-
manifolds

Here we explain the two invariants, CS[ρα] and Tor[ρα] which play crucial role in the table 2,
using perturbative analysis of SL(2,C) Chern-Simons theory on M . The mathematical
invariants can be understood as the first two perturbative expansion coefficients (the leading
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and the next subleading) of the SL(2,C) Chern-Simons theory. The classical action for
the complex Chern-Simons theory is

CS[A] = 1
8π2

∫
M

Tr(A ∧ dA+ 2
3A ∧A ∧A) . (B.1)

The classical solutions are SL(2,C) flat connections:

δCS[A]
δA

∣∣∣∣
A=Aα

= 0 ⇒ dAα +Aα ∧ Aα = 0 . (B.2)

One can consider following perturbative expansion of the complex Chern-Simons theory
around a flat connection Aα:∫

D(δA)
(gauge)e

− 4π2
~ CS[Aα+δA]

~→0−−−−−−→ 1
vol(Hα) exp

(1
~
Fα0 + Fα1 + . . .

)
,

(B.3)

where Hα is the unbroken gauge group by the flat connection Aα, i.e.

Hα = {h ∈ SL(2,C) : [h, ρα(γ)] = 0 ∀γ ∈ π1(M)} , (B.4)

and vol(Hα) is the volume of the unbroken subgroup. Here, ρα(γ) is the holonomy ma-
trix for Aα. Note that only the flat connection Aα with finite vol(Hα) has non-trivial
perturbative expansion. This is possible only if dimCHα = 0.

A flat connection ρα is

 irreducible, if dimCHα = 0
reducible, otherwise .

(B.5)

Note that only the irreducible flat connections appear in the table 2. The classical part
Fα0 is nothing but the classical Chern-Simons action

Fα0 = −4π2CS[ρα] . (B.6)

The next leading part Fα1 is the 1-loop contribution. This term is related to the adjoint
Reidemeister torsion as

Tor[ρα] = exp (−2Fα1 ) . (B.7)

C 3d theory T [M ] and 3d-3d relations

The theory T [M ] in (2.2) is defined as the (2+1)d field theory obtained from a compacti-
fication of the (5+1)d world-volume theory of two M5-branes along a 3-manifold M . For
a given 3-manifold M , the compactification procedure is not unique. We need to specify
some additional discrete choices [21, 42]. We now explain the discrete choices used in the
definition of T [M ] in this paper.

First, we need to specify a component of vacua in the compactification. There could
be several discrete components of vacua on R1,2 in the compactification. The set of vacua
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is somehow related to the set of flat SL(2,C) (or PSL(2,C)) connections on M . See [21]
for details. In the relation, the subset of irreducible flat connections corresponds to a
component of vacua on R1,2 and we choose the ‘irreducible’ component in the definition
of T [M ].

Secondly, we need to specify a discrete polarization choice of the (5+1)d world-volume
theory as studied in the context of 4d-2d correspondence [76] and 3d-3d correspondence [21,
42]. According to [42], the discrete choice can be characterized by the choice of a subgroup
of H ⊂ H1(M,Z2). Hence the (2+1)d theory in the compactification is labelled by a
3-manifold M and a subgroup H,

T [M ;H] , H ⊂ H1(M,Z2) . (C.1)

This theory has the subgroup H as the 0-form flavor symmetry. In our convention, we
denote by T [M ] for the theory with the choice H = H1(M,Z2),

T [M ] := T [M ;H = H1(M,Z2)] . (C.2)

The theories in this class were studied in [21]. There is also a theory with the opposite
polarization choice, where the subgroup H is chosen to be trivial. We call this theory as

T̃ [M ] := T [M ;H = ∅] (C.3)

The theory T̃ [M ] has the cohomology group H1(M,Z2) as the 1-form flavor symmetry.
The theories T [M ;H] with other generic choices of H can be obtained from T̃ [M ] by
gauging the corresponding 1-form symmetries,

T [M ;H] = Gauging the 1-form symmetry H ⊂ H1(M,Z2) of T̃ [M ] .

It then follows that

T [M ] =
(
Gauging H = H1(M,Z2) of T̃ [M ]

)
. (C.4)

In condensed matter context, gauging a 1-form symmetry can be interpreted as condensa-
tion of the anyon generating the 1-form symmetry [68].

One nice feature of the T [M ] is that its supersymmetric partition function can be
related to invariants of SL(2,C) Chern-Simons theories on M . The relation is called 3d-3d
relation. For example [45, 77–79],

IUVsci (x) = 1
2
∑
α

Bα
M (x)Bα

M (x−1) ,

IUVtop (x) = 1
2
∑
α

Bα
M (x)Bα

M (x−1) .
(C.5)

Here the summations run over all irreducible SL(2,C) flat connections ρα. Note the subtle
but important difference between two lines, there is bar in Bα

M (x−1) in the first line while
no bar in the second line. Bα

M (x) is so-called holomorphic block in SL(2,C) Chern-Simons
theory associated to a flat connection ρα while Bα

M (x) is associated to the flat connection
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(ρα)∗, complex conjugation of ρα. IUVsci (x) and IUVtop (x) are the superconformal index [37, 38]
and the refined twisted index at UV R-symmery choice respectively.

The superconformal index IUVsci (x) is a 3-manifold invariant called ‘3D index’ [80] and
can be systematically computed using a Dehn surgery description of M along a knot K
and an ideal triangulation of the knot complement [21, 77]. The holomorphic block Bα

M (x)
is defined by the following path-integral on M ,

Bα
M (x) :=

∫
Cα(A)

DA
(gauge)e

− 4π2
~ CS[A]

∣∣∣∣
~=log x

. (C.6)

A is the SL(2,C) connections on M and the path-integral contour Cα(A) is the Leftschetz
thimble associated to an irreducible flat connection ρα [81]. The Bα

M (x) shares the same
perturbative expansion with (B.3) in the limit x := e~ → 1,

logBα
M (x) x=e~; ~→0−−−−−−−−−−→

∑
n

Fαn ~n−1 . (C.7)

Thus, Bα
M (x) can be considered as a non-perturbative completion of the perturbative ex-

pansion (B.3). Via the 3d-3d relation [31], the holomorphic block Bα
M of the SL(2,C)

theory is identical to the holomorphic block Bα in (2.6) of the T [M ] theory up to an
overall factor

(Bα(x) of T [M ]) = 1√
2
×Bα

M (x) . (C.8)

The overall factor 1/
√

2 should be replaced by 1/
√
K when the number of M-branes in the

geometrical set-up (2.2) is K instead of 2. The overall factor is important in the study of
large K limit of supersymmetric partition functions [44, 45].

D IR phases of T [M ]

Here we explain how to determine basic properties of IR phases of the 3d supersymmetric
gauge theory T [M ] from basic topological properties of the 3-manifold M .

(No irreducible SL(2,C) flat connection on M) ⇒ (Supersymmetry in T [M ] is
spontaneously broken). Obviously from the 3d-3d relations in (3.2) and (C.5), all the
supersymmetric partition functions onMg,p (such as Isci(x), Itop(x), . . .) vanish when there
is no irreducible SL(2,C) flat connection on M . This implies that the supersymmetry of
the theory T [M ] is spontaneously broken. In the broken phase, the vacuum partition
functions vanish due to the fermion zero modes coming from the broken supercharges.
Among the supersymmetric partition functions, the Witten index (the partition function
on Mg=1,p=0) is independent of the choice of R-symmetry. Thus the above conclusion is
still valid even if the UV R-symmetry is different from the IR R-symmetry.

One famous example of such a 3-manifold having no irreducible flat connection is the
Lens space. The fundamental groups of the Lens spaces are all Abelian and thus there is
no irreducible flat connection. Accordingly, the supersymmetry of the associated (2+1)d
theories T [M ] will be spontaneously broken. One can in fact use the property IUVsci (x) = 0
of the T [M ] from the Lens spaces M to check if a 3-manifold given by a Dehn surgery
description is a Lens space or not [40].
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(Hyperbolic 3-manifold M) ⇒ (non-trivial superconformal field theory). In
the case, there is a canonical complex flat connection Aα=hyp constructed from the unique
hyperbolic structure on M . Locally, the flat connection can be written as

Aα=hyp = ω + ie . (D.1)

Here ω and e are the spin-connection and the dreibein, respectively, constructed from the
hyperbolic structure. Both can be considered as SO(3)-valued 1-forms on M . The above
complex combination gives a SL(2,C) connection which is actually the flat connection
satisfying dA + A ∧ A = 0. The flat connection gives the most exponentially dominant
contribution to the superconformal index Isci(x) in the limit x→ 1 [45, 82]:

log IUVsci (x) x=e−ν ; ν→i0−−−−−−−−−−−−−−→ −2i
ν
vol(M) + o(ν0) .

The above follows from (C.5) and (C.7) combined with following fact

Im [CS[Aα=hyp]] = − 1
4π2vol(M) . (D.2)

Here vol(M) is the hyperbolic volume of the hyperboilc 3-manifold. The non-triviality of
the superconformal index guarantees that the T [M ] flows to a non-trivial superconformal
field theory. More generally, from the same argument, one expects that

If there is an irreducible SL(2,C) flat connection ρ on M
with Im[CS[ρ]] 6= 0
⇒
T [M ] flows to a non-trivial superconformal field theory.

M satisfying conditions in (2.3) ⇒ Bα
M (x) = Bα

M (x). For a SL(2,R) or SU(2) flat
connection Aα, its complex conjugation (Aα)∗ equals to itself up to a transpose or sign

(Aα)∗ = Aα , for SL(2,R) flat connection ,
(iAα)∗ = (iAα)T , for SU(2) flat connection .

This implies that two flat connections Aα and (Aα)∗ have the same perturbative expansion
in (B.3), i.e. Fαn = Fαn = (Fαn )∗ for all n ≥ 0. Therefore, one finds that for a 3-manifold
subject to the conditions (2.3),

Bα
M (x) = Bα

M (x) for all irreducible flat connections ρα ,
⇒ IUVsci (x) = IUVtop (x) from (C.5) .

E Irreducible flat connections on M = S2(3, 3,−4/3), S2(3, 3,−5/3) and
S2(2, 3, 8)

To obtain irreducible SL(2,C) flat connections on S2(p1
q1
, p2
q2
, p3
q3

), we start from following
ansatz for their holonomy matrices

ρ(x1) =
(
m ε

0 m−1

) ∣∣∣∣
ε∈{0,1}

, ρ(x2) =
(
a b

c d

)
,

ρ(x3) = (ρ(x1) · ρ(x2))−1 , ρ(h) ∈ {+1,−1} . (E.1)
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Then, we solve the matrix equations for the holonomy matrices constrained from the rela-
tions (5.2) in the fundamental group. Among those solutions, we need to discard reducible
flat connections for which all holonomy matrices are mutually commuting, and choose
gauge inequivalent sets of the irreducible ones.

M = S2(3, 3,−4/3). There are 3 irreducible flat connections ρα=0,1,2 on M =
S2(3, 3,−4/3) whose SL(2,C) holonomy matrices are

α = 0 :

ρα(x1) =
(
e
πi
3 0

0 e−
πi
3

)
, ρα=0(h) =

(
−1 0
0 −1

)
,

ρα(x2) =

 1
2 + i

6

(√
3− 2

√
6
)

−
√

2
3

1 1
2 −

i
6

(√
3− 2

√
6
) ,

ρα(x3) =

 1√
2 −

i√
3 + i√

6
1+i
√

3
3
√

2
1
2 i
(√

3 + i
)

1√
2 + i√

3 −
i√
6

 ,
α = 1 :

ρα(x1) =
(
e−

2πi
3 0

0 e
2πi

3

)
, ρα(x2) =

 e−
5iπ

6√
3 −2

3

1 e
5iπ

6√
3

 ,
ρα(x3) =

− i√
3

2
3e

4iπ
3

e−
iπ
3 i√

3

 , ρα(h) =
(

1 0
0 1

)
,

α = 2 :

ρα(x1) =
(
e
πi
3 0

0 e−
πi
3

)
, ρα(h) =

(
−1 0
0 −1

)
,

ρα(x2) =

 1
2 + i

6

(√
3 + 2

√
6
) √

2
3

1 1
2 −

i
6

(√
3 + 2

√
6
) ,

ρα(x3) =

− 1√
2 −

i√
3 −

i√
6 − i(√3−i)

3
√

2
1
2 i
(√

3 + i
)
− 1√

2 + i√
3 + i√

6

 .

(E.2)

One can confirm that all of them are conjugate to either SU(2) or SL(2,R) flat connections
by checking that Tr(ρ(a)) ∈ R for all a ∈ π1(M). ρα=2 is conjugate to SL(2,R) flat
connection while the other twos are conjugate to SU(2) flat connections. Thus the 3-
manifold M satisfies the topological conditions in (2.3). The eigenvalues of the holonomy
matrices are

α = 0 : nα1 = 1
2 , nα2 = 1

2 , nα3 = 1
2 , λα = 1

2 ,

α = 1 : nα1 = 1, nα2 = 1, nα3 = 1
2 , λα = 0,

α = 2 : nα1 = 1
2 , nα2 = 1

2 , nα3 = 3
2 , λα = 1

2 .

(E.3)
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See eq. (5.3) for the definition of the above nαi and λα. From this result, we obtain CS[ρα]
and Tor[ρα] given in (5.5) using the formula in (5.4)

M = S2(3, 3,−5/3). There are 4 irreducible flat connections ρα=0,1,2,3 on M =
S2(3, 3,−5/3) whose SL(2,C) holonomy matrices are

α = 0 :

ρα(x1) =
(
e−

2πi
3 0

0 e
2πi

3

)
, ρα=0(h) =

(
1 0
0 1

)
,

ρα(x2) =

−1
2 −

i(√5+2)
2
√

3

√
5

3

1 −1
2 + i

√√
5

3 + 3
4

 ,
ρα(x3) =

 u − i(√3−i)
3
√

2
1
2 i
(√

3 + i
)

u∗

 ,
α = 1 :

ρα(x1) =
(
e
πi
3 0

0 e−
πi
3

)
, ρα(h) =

(
−1 0
0 −1

)
,

ρα(x2) =

 1
6

(
3− i

√
15
)

−1
3

1 1
6

(
3 + i

√
15
) ,

ρα(x3) =

 1
6

6√−1
(√

15− 3i
) 3√−1

3

(−1)2/3 1
6

3√−1
(
3− i

√
15
)

α = 2 :

ρα(x1) =
(
e−

2πi
3 0

0 e
2πi

3

)
, ρα(h) =

(
1 0
0 1

)
,

ρα(x2) =

−1
2 −

i(−√5+2)
2
√

3 −
√

5
3

1 −1
2 + i

√
−
√

5
3 + 3

4

 ,

ρα(x3) =
(

v −1
3

3√−1
√

5
−(−1)2/3 v∗

)
,

α = 3 :

ρα(x1) =
(
e
πi
3 0

0 e−
πi
3

)
, ρα(h) =

(
−1 0
0 −1

)
,

ρα(x2) =

 1
6

(
3 + i

√
15
)

−1
3

1 1
6

(
3− i

√
15
) ,

ρα(x3) =

 1
6

6√−1
(
−
√

15− 3i
) 3√−1

3

(−1)2/3 1
6

3√−1
(
3 + i

√
15
) .

(E.4)
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Here {u ' −0.809017 − 1.04444i, v ' 0.309017 − 0.398939i, u∗, v∗} are the solutions to
an algebraic equation 9x4 + 9x3 + 9x2 − 6x+ 4 = 0. ρα=0 is conjugate to an SL(2,R) flat
connection while the other threes are conjugate to SU(2) flat connections.

M = S2(2, 3, 8). This manifold has a non-trivial H1(M,Z2) = Z2. Thus, the set of
PSL(2,C) flat connections is different from the set of SL(2,C) flat connections. There
are four irreducible PSL(2,C) flat connections {ρPSLα }3α=0 whose holonomy matrices are
ρPSLα (a) = [ρSL(a)] with

ρSLα (x1) =
(
−i 0
0 i

)
, ρSLα (h) =

(
−1 0
0 −1

)
,

ρSLα=0(x2) =


1
2

(
1− i

√√
2 + 2

)
1
4

(√
2− 1

)
1 1

2

(
1 + i

√√
2 + 2

)
 ,

ρSLα=0(x3) =


1
2

(
−
√√

2 + 2 + i

)
1
4 i
(√

2− 1
)

−i 1
2

(
−
√√

2 + 2− i
)
 ,

ρSLα=1(x2) =

 1
2 −

i√
2 −1

4
1 1

2 + i√
2

 ,

ρSLα=1(x3) =

− 1√
2 + i

2 − i
4

−i − 1√
2 −

i
2

 ,

ρSLα=2(x2) =


1
2

(
1− i

√
2−
√

2
)

1
4

(
−
√

2− 1
)

1 1
2

(
1 + i

√
2−
√

2
)
 ,

ρSLα=2(x3) =


1
2

(
−
√

2−
√

2 + i

)
−1

4 i
(√

2 + 1
)

−i 1
2

(
−
√

2−
√

2− i
)
 ,

ρSLα=3(x2) =
(

1
2 −

3
4

1 1
2

)
, ρSLα=3(x3) =

(
i
2 −

3i
4

−i − i
2

)
.

(E.5)

There are two Z2 flat connections, H1(M,Z2) = {1, η}, where

η(x1) = η(x3) = −1 , η(x2) = η(h) = 0 . (E.6)

Since the tr(ρPSLα=0,1,2(x3)) 6= 0, the first three PSL(2,C) flat connections, ρα=0,1,2, are not
invariant under the tensoring with η. On the other hand, the last flat connection ρα=3
is invariant under the tensoring. Among the 4 PSL(2,C) flat connections, ρPSLα=0,2 can
be uplifted to SL(2,C) flat connections ρα=0,2 whose holonomy matrices are ρSLα=0,2 given
above. Taking into account of tensoring with the Z2 flat connections, there are 4 irreducible
SL(2,C) flat connections, ρα=0,2 and η ⊗ ρα=0,2
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F Modular structure of TFT[M ] in table 1 and 3

Here we give modular structures of TFT[M ] in table 1 and table 3. For simplicity of
presentation, we only give explicit modular data for a specific choice of true vacuum if
there are several possible choices. See the related discussion around the equation (3.10).
The modular data of TFT[M ] with other choices can be easily obtained from the Lorentz
symmetry fractionalization procedure or the parity operation.

F.1 Trivial H1(M,Z2)

a. S2 (2, 3, 3) There is only one irreducible SL(2,C) flat connection ρ with

Tor[ρ] = 1
2 , CS[ρ] = − 7

24 .

Note that the central charge c2d = ±24CS[ρ] = 0 (mod 1
2) and GSDg =

(2Tor[ρ])g−1 = 1 for all g ≥ 0. The modular structure is identical to that of the
trivial bosonic topological phase 1B1 .

b. S2(2, 3, 5) There are two irreducible SL(2,C) flat connections ρα=0,1 with

{Tor[ρα]}1α=0 =
{

(5+
√

5)
4 ,

(5−
√

5)
4

}
,

{CS[ρα]}1α=0 =
{

41
120 ,

89
120

}
.

According to (3.9), the corresponding topological phase is unitary. The flat-
connection-to-loop operator map is

ρα → (a = x3, R = Symα�) .

The S-matrix and the topological spins hα = ±(CS[ρα]− CS[ρα=0]) are

S =


√

1
10

(
5−
√

5
) √

1
10

(
5 +
√

5
)

√
1
10

(√
5 + 5

)
−
√

1
10

(
5−
√

5
)
 ,

{hα}1α=0 = ±
{

0, 2
5

}
.

The ground state degeneracy is

{GSDg}g=0,1,... = {1, 2, 5, 15, 50, 175, . . .} .

The modular structure is identical to that of 2B±14/5.

c. S2
(
2, 3, 5

2

)
There are two irreducible SL(2,C) flat connections ρα=0,1 with

{Tor[ρα]}1α=0 =
{

(5−
√

5)
4 ,

(√5+5)
4

}
,

{CS[ρα]}1α=0 =
{

83
120 ,

107
120

}
.
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According to (3.9), the corresponding topological phase is non-unitary. The flat-
connection-to-loop operator map is

ρα →
(
a = x2

3, R = Symα�
)
.

The S-matrix and the topological spins hα = ±(CS[ρα]− CS[ρα=0]) are

S =


√

1
10

(
5 +
√

5
)
−
√

1
10

(√
5− 5

)
−
√

1
10

(√
5− 5

)
−
√

1
10

(
5 +
√

5
)
 ,

{hα}1α=0 = ±
{

0, 1
5

}
The ground state degeneracy is

{GSDg}g=0,1,... = {1, 2, 5, 15, 50, 175, . . .} .

The modular structure is identical to that of Gal]=2[(A1, 3)1/2] = (Lee-Yang model).

d. S2(3, 3, 3) There are two irreducible flat connections ρα=0,1 with

{Tor[ρα]}1α=0 = {1, 1} ,

{CS[ρα]}1α=0 =
{

0, 3
4

}
.

According to (3.9), the corresponding topological phase is unitary. The flat-
connection-to-loop operator map is

ρα → (a = x3, R = Symα�) .

The S-matrix and the topological spin {hα}1α=0 are

S = 1√
2

(
1 1
1 −1

)
,

{hα}1α=0 = ±
{

0, 3
4

}
.

The ground state degeneracy is
GSDg = 2g .

The modular structure is identical to that of 2B±1.

e. S2(2, 3, 7) There are three irreducible flat SL(2,C) connections ρα=0,1,2 with

{Tor[ρα]}2α=0 = 7
8

{
csc2 (π

7
)
, csc2

(
2π
7

)
, csc2

(
3π
7

)}
,

{CS[ρα]}2α=0 =
{

127
168 ,

151
168 ,

79
168

}
.

According to (3.9), the corresponding topological phase is unitary. The flat-
connection-to-loop operator map is

ρα → (a = x3, R = Symα�)
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The S-matrix and the topological spin {hα}2α=0 are

S =


2 sin(π7 )√

7
2 cos( 3π

14 )√
7

2 cos( π14 )√
7

2 cos( 3π
14 )√

7 −2 cos( π14 )√
7

2 sin(π7 )√
7

2 cos( π14 )√
7

2 sin(π7 )√
7 −2 cos( 3π

14 )√
7

 ,

{hα}2α=0 = ±{0, 1
7 ,

5
7} .

The ground state degeneracy is

{GSDg}g=0,1,... = {1, 3, 14, 98, 833, 7546, . . .} .

The modular structure is identical to that of 3B±8/7.

f. S2
(
2, 3, 7

2

)
There are three irreducible SL(2,C) flat connections ρα=0,1,2 with

{Tor[ρα]}2α=0 = 7
8

{
sec2 ( π

14
)
, csc2 (π

7
)
, sec2

(
3π
14

)}
,

{CS[ρα]}2α=0 =
{

25
168 ,

121
168 ,

1
168

}
.

According to (3.9), the corresponding topological phase is non-unitary. The flat-
connection-to-loop operator map is

ρα →
(
a = x3

3, R = Symα�
)

The S-matrix and the topological spins hα are

S =


2 cos( π14 )√

7
2 sin(π7 )√

7 −2 cos( 3π
14 )√

7
2 sin(π7 )√

7
2 cos( 3π

14 )√
7

2 cos( π14 )√
7

−2 cos( 3π
14 )√

7
2 cos( π14 )√

7 −2 sin(π7 )√
7

 ,

{hα}2α=0 = ±{0, 4
7 ,

6
7} .

The ground state degeneracy is

{GSDg}g=0,1,... = {1, 3, 14, 98, 833, 7546, . . .} .

The modular structure is identical to that of Gal]=2[(A1, 5)1/2].

g. S2
(
2, 3, 7

3

)
There are three SL(2,C) irreducible flat connections ρα=0,1,2 with

{Tor[ρα]}2α=0 = 7
8

{
sec2

(
3π
14

)
, sec2 ( π

14
)
, csc2 (π

7
)}

,

{CS[ρα]}2α=0 =
{

19
168 ,

139
168 ,

115
168

}
.

According to (3.9), the corresponding topological phase is non-unitary. The flat-
connection-to-loop operator map is

ρα →
(
a = x2

3, R = Symα�
)
.
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The S-matrix and the topological spins hα are

S =


2 cos( 3π

14 )√
7 −2 cos( π14 )√

7
2 sin(π7 )√

7

−2 cos( π14 )√
7 −2 sin(π7 )√

7
2 cos( 3π

14 )√
7

2 sin(π7 )√
7

2 cos( 3π
14 )√

7
2 cos( π14 )√

7

 ,

{hα}2α=0 = ±{0, 5
7 ,

4
7} .

The ground state degeneracy is

{GSDg}g=0,1,... = {1, 3, 14, 98, 833, 7546, . . .} .

The modular structure is identical to that of Gal]=3[(A1, 5)1/2].

h. S2
(
3, 3

2 , 4
)
There are three irreducible flat connections ρα=0,1,2 with

{Tor[ρα]}3α=0 = {2, 1, 2} ,

{CS[ρα]}3α=0 =
{

11
16 ,

3
4 ,

3
16

}
.

According to (3.9), the corresponding topological phase is unitary. The flat-
connection-to-loop operator map is

ρα → (a = x3, R = Symα�) .

The S-matrix and the topological spin {hα}2α=0 are

S = 2
3


1
2

1√
2

1
2

1√
2 0 − 1√

2
1
2 −

1√
2

1
2

 ,

{hα}2α=0 = ±
{

0, 1
16 ,

1
2

}
.

The ground state degeneracy is

{GSDg}g=0,1,... = {1, 3, 10, 36, 136, 528, . . .} .

The modular structure is identical to that of 3B±1/2.

i. S2 (3, 3, 4) There are three irreducible flat connections ρα=0,1,2 with

{Tor[ρα]}2α=0 = {2, 1, 2} ,

{CS[ρα]}2α=0 =
{

37
48 ,

1
12 ,

13
48

}
.

According to (3.9), the corresponding topological phase is unitary. The flat-
connection-to-loop operator map is

ρα → (a = x3, R = Symα�)
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The S-matrix and the topological spins {hα}2α=0 are

S = 2
3


1
2

1√
2

1
2

1√
2 0 − 1√

2
1
2 −

1√
2

1
2

 ,

{hα}2α=0 = ±
{

0, 5
16 ,

1
2

}
.

The ground state degeneracy is

{GSDg}g=0,1,... = {1, 3, 10, 36, 136, 528, . . .} .

The modular structure is identical to that of 3B±5/2.

j. S2(2, 3, 9) There are four irreducible flat connections ρα=0,1,2,3 with

{Tor[ρα]}3α=0 = 9
8

{
csc2 (π

9
)
, csc2

(
2π
9

)
, 4

3 , sec2 ( π
18
)}
,

{CS[ρα]}3α=0 =
{

55
72 ,

31
72 ,

13
24 ,

7
72

}
.

According to (3.9), the corresponding topological phase is unitary. The flat-
connection-to-loop operator map is

ρα → (a = x3, R = Symα�)

The S-matrix and the topological spins {hα}3α=0 are

S =


2
3 sin

(
π
9
) 2

3 sin
(

2π
9

)
1√
3

2
3 cos

(
π
18
)

2
3 sin

(
2π
9

)
−2

3 cos
(
π
18
) 1√

3 −
2
3 sin

(
π
9
)

1√
3

1√
3 0 − 1√

3
2
3 cos

(
π
18
)
−2

3 sin
(
π
9
)
− 1√

3
2
3 sin

(
2π
9

)

 ,

{hα}3α=0 = ±
{

0, 2
3 ,

7
9 ,

1
3

}
.

The ground state degeneracy is

{GSDg}g=0,1,... = {1, 4, 30, 414, 7317, 137862, . . .} .

The modular structure is identical to that of 4B±10/3.

k. S2(2, 3, 9
2) There are four irreducible flat connections ρα=0,1,2,3 with

{Tor[ρα]}3α=0 = 9
8

{
sec2 ( π

18
)
, csc2 (π

9
)
, 4

3 , csc2
(

2π
9

)}
,

{CS[ρα]}3α=0 =
{

29
72 ,

53
72 ,

7
24 ,

5
72

}
.

According to (3.9), the corresponding topological phase is non-unitary. The flat-
connection-to-loop operator map is

ρα →
(
a = x5

3, R = Symα�
)
.
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The S-matrix and the topological spins {hα}3α=0 are

S = 2
3


cos

(
π
18
)
− sin

(
π
9
)
−
√

3
2 sin

(
2π
9

)
− sin

(
π
9
)
− sin

(
2π
9

)
−
√

3
2 − cos

(
π
18
)

−
√

3
2 −

√
3

2 0
√

3
2

sin
(

2π
9

)
− cos

(
π
18
) √

3
2 − sin

(
π
9
)

 ,

{hα}3α=0 = ±
{

0, 1
3 ,

8
9 ,

2
3

}
.

The ground state degeneracy is

{GSDg}g=0,1,... = {1, 4, 30, 414, 7317, 137862, . . .} .

The modular structure is identical to that of Gal]=2[(A1, 7)1/2].

l. S2(2, 3, 9
4) There are four irreducible SL(2,C) flat connections ρα=0,1,2,3 with

{Tor[ρα]}3α=0 = 9
8

{
csc2

(
2π
9

)
, sec2 ( π

18
)
, 4

3 , csc2 (π
9
)}
,

{CS[ρα]}3α=0 =
{

25
72 ,

1
72 ,

19
24 ,

49
72

}
.

According to (3.9), the corresponding topological phase is non-unitary. The flat-
connection-to-loop operator map is

ρα →
(
a = x2

3, R = Symα�
)
.

The S-matrix and the topological spins {hα}3α=0 are

S = 2
3


sin
(

2π
9

)
− cos

(
π
18
) √

3
2 − sin

(
π
9
)

− cos
(
π
18
)

sin
(
π
9
) √

3
2 − sin

(
2π
9

)
√

3
2

√
3

2 0 −
√

3
2

− sin
(
π
9
)
− sin

(
2π
9

)
−
√

3
2 − cos

(
π
18
)

 ,

{hα}3α=0 = ±
{

0, 2
3 ,

4
9 ,

1
3

}
.

The ground state degeneracy is

{GSDg}g=0,1,... = {1, 4, 30, 414, 7317, 137862, . . .} .

The modular structure is identical to that of Gal]=4[(A1, 7)1/2].

m. S2 (3, 3, 5) There are four irreducible flat connections ρα=0,1,2,3 with

{Tor[ρα]}3α=0 =
{√

5+5
2 ,

√
5−5
2 ,

√
5−5
2 ,

√
5+5
2

}
,

{CS[ρα]}3α=0 =
{

47
60 ,

2
15 ,

23
60 ,

8
15

}
.

According to (3.9), the corresponding topological phase is unitary. The flat-
connection-to-loop operator map is

ρα → (a = x3, R = Symα�) .
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The S-matrix and the topological spins {hα}3α=0 are

S = 1
2



√
1− 1√

5

√
1 + 1√

5

√
1 + 1√

5

√
1− 1√

5√
1 + 1√

5

√
1− 1√

5 −
√

1− 1√
5 −

√
1 + 1√

5√
1 + 1√

5 −
√

1− 1√
5 −

√
1− 1√

5

√
1 + 1√

5√
1− 1√

5 −
√

1 + 1√
5

√
1 + 1√

5 −
√

1− 1√
5

 ,

{hα}3α=0 = ±
{

0, 7
20 ,

3
5 ,

3
4

}
.

The ground state degeneracy is

{GSDg}g=0,1,... = {1, 4, 20, 120, 800, 5600, . . .} .

The modular structure is identical to that of 4B±19/5.

n. S2
(

3
2 , 3,

5
2

)
There are four irreducible flat connections ρα=0,1,2,3 with

{Tor[ρα]}3α=0 =
{√

5−5
2 ,

√
5+5
2 ,

√
5+5
2 ,

√
5−5
2

}
,

{CS[ρα]}3α=0 =
{

3
5 ,

2
5 ,

17
20 ,

13
20

}
.

According to (3.9), the corresponding topological phase is non-unitary. The flat-
connection-to-loop operator map is

ρα=1 →
(
a = x2

3, R = �
)
, ρα=2 → (a = x2, R = �) ,

ρα=3 →
(
a = x2

3, R = �
)
⊗ (a = x2, R = �) .

The S-matrix and the topological spins {hα}3α=0 are

S = 1
2



√
1 + 1√

5 −
√

1− 1√
5

√
1 + 1√

5 −
√

1− 1√
5

−
√

1− 1√
5 −

√
1 + 1√

5 −
√

1− 1√
5 −

√
1 + 1√

5√
1 + 1√

5 −
√

1− 1√
5 −

√
1 + 1√

5

√
1− 1√

5
−
√

1− 1√
5 −

√
1 + 1√

5

√
1− 1√

5

√
1 + 1√

5

 ,

{hα}3α=0 = ±
{

0, 4
5 ,

1
4 ,

1
20

}
.

The ground state degeneracy is

{GSDg}g=0,1,... = {1, 4, 20, 120, 800, 5600, . . .} .

The modular structure is identical to that of
(
Gal]2[(A1, 3)1/2]

)
⊗ (2B±1).

o. S2 (2, 5, 5) There are four irreducible flat connections ρα=0,1,2,3 with

{Tor[ρα]}3α=0 =
{

5(3+
√

5)
4 , 5

2 ,
5
2 ,

5(3−
√

5)
4

}
,

{CS[ρα]}3α=0 =
{

31
40 ,

3
8 ,

3
8 ,

39
40

}
.
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According to (3.9), the corresponding topological phase is unitary. The flat-
connection-to-loop operator map is

ρα=1 → (a = x2, R = �) , ρα=2 → (a = x3, R = �) ,
ρα=3 → (a = x2, R = �)⊗ (a = x3, R = �) .

The S-matrix and the topological spins {hα}2α=0 are

S = 1√
5



(√5−1)
2 1 1 (√5+1)

2

1 (1−
√

5)
2

(√5+1)
2 −1

1 (√5+1)
2

(1−
√

5)
2 −1

(√5+1)
2 −1 −1 (√5−1)

2

 ,

{hα}3α=0 = ±
{

0, 3
5 ,

3
5 ,

1
5

}
.

The ground state degeneracy is

{GSDg}g=0,1,... = {1, 4, 25, 225, 2500, 30625, . . .} .

The modular structure is identical to that of 4B±12/5.

p. S2
(
2, 4, 5

4

)
There are four irreducible flat connections ρα=0,1,2,3 with

{Tor[ρα]}3α=0 =
{

5(3+
√

5)
4 , 5

2 ,
5
2 ,

5(3−
√

5)
4

}
,

{CS[ρα]}3α=0 =
{

5
8 ,

9
40 ,

1
40 ,

5
8

}
.

According to (3.9), the corresponding topological phase is unitary. The flat-
connection-to-loop operator map is

ρα=1 → (a = x2, R = �) , ρα=2 → (a = x3, R = �) ,
ρα=3 → (a = x2, R = �)⊗ (a = x3, R = �) .

The S-matrix and the topological spins {hα}3α=0 are

S = 1√
5



(√5−1)
2 1 1 (√5+1)

2

1 (1−
√

5)
2

(√5+1)
2 −1

1 (√5+1)
2

(1−
√

5)
2 −1

(√5+1)
2 −1 −1 (√5−1)

2

 ,

{hα}3α=0 = ±
{

0, 3
5 ,

2
5 , 0
}
.

The ground state degeneracy is

{GSDg}g=0,1,... = {1, 4, 25, 225, 2500, 30625, . . .} .

The modular structure is identical to that of 4B,c0 .

– 49 –



J
H
E
P
1
1
(
2
0
2
0
)
1
1
5

q. S2
(
2, 5, 5

2

)
There are four irreducible flat connections ρα=0,1,2,3 with

{Tor[ρα]}3α=0 =
{

5
2 ,

5
√

5+3
4 , 5(3−

√
5)

4 , 5
2

}
,

{CS[ρα]}3α=0 =
{

37
40 ,

29
40 ,

21
40 ,

13
40

}
.

According to (3.9), the corresponding topological phase is non-unitary. The flat-
connection-to-loop operator map is

ρα=1 →
(
a = x2

3, R = �
)
, ρα=2 → (a = x2, R = �) ,

ρα=3 →
(
a = x2

3, R = �
)
⊗ (a = x2, R = �) .

The S-matrix and the topological spins {hα}3α=0 are

S = 1√
5


1 (1−

√
5)

2 −(1+
√

5)
2 1

(1−
√

5)
2 −1 1 (√5+1)

2

−(1+
√

5)
2 1 −1 (√5−1)

2

1 (√5+1)
2

(√5−1)
2 1

 ,

{hα}3α=0 = diag
{

0, 4
5 ,

3
5 ,

2
5

}
.

The ground state degeneracy is

{GSDg}g=0,1,... = {1, 4, 25, 225, 2500, 30625, . . .} .

The modular structure is identical to that of
(
Gal]=2[(A1, 3)1/2]

)
⊗ (A1, 3)1/2.

r. S2
(
2, 5

2 ,
5
2

)
There are four irreducible flat connections ρα=0,1,2,3 with

{Tor[ρα]}3α=0 =
{

5(3−
√

5)
4 , 5

2 ,
5
2 ,

5(3+
√

5)
4

}
,

{CS[ρα]}3α=0 =
{

3
40 ,

7
8 ,

7
8 ,

27
40

}
.

According to (3.9), the corresponding topological phase is non-unitary. The flat-
connection-to-loop operator map is

ρα=1 →
(
a = x2

3, R = �
)
, ρα=2 →

(
a = x2

2, R = �
)
,

ρα=3 →
(
a = x2

3, R = �
)
⊗
(
a = x2

2, R = �
)
.

The S-matrix and the topological spins {hα}3α=0 are

S = 1√
5



(√5+1)
2 −1 −1 (√5−1)

2

−1 (√5−1)
2

(−√5−1)
2 1

−1 (−√5−1)
2

(√5−1)
2 1

(√5−1)
2 1 1 (√5+1)

2

 ,

{hα}3α=0 = ±
{

0, 4
5 ,

4
5 ,

3
5

}
.
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The ground state degeneracy is

{GSDg}g=0,1,... = {1, 4, 25, 225, 2500, 30625, . . .} .

The modular structure is identical to that of
(
Gal]=2[(A1, 3)1/2]

)
⊗(

Gal]=2[(A1, 3)1/2]
)
.

F.2 Non-trivial H1(M,Z2)

a. S2(2, 3, 6) There are two irreducible PSL(2,C) connections, {ρPSLα }1α=0, with trivial
2nd Stiefel-Whitney class. There are two Z2 flat connections {1, η} ∈ H1(M,Z2).
Among the two PSL(2,C) connections, the ρPSLα=1 is invariant under tensoring with
η, i.e.

ρPSLα=1 ⊗ η = ρPSLα=1 ⊗ 1 ⇒ Inv(ρα=1) = Z2 .

Accoring to table 5, there are 1 + 2 ∗ 1 = 3 anyons in TFT[S2(2, 3, 6)], which are

ρPSLα=0 and ρPSLα=1 (with multiplicity 2) .

We choose the flat connection which is not invariant under tensoring with η as the
trivial anyon. Torsions for the flat connections are

Tor[ρPSLα=0 ] = 3 , Tor[ρPSLα=1 ] = 3
4 .

From the dictionary in table 5, we have

(S2
0α for all three anyons) = 1

3 .

There are 3 SL(2,C) flat connections which are

ρPSLα=0 ⊗ 1 , ρPSLα=0 ⊗ η , ρPSLα=1 ⊗ 1 .

Since the ρPSLα=0,1 have trivial 2nd Stiefel-Whitney class, ρPSLα=0,1⊗δ with δ ∈ H1(M,Z2)
can be regarded as SL(2,C) flat connections on M . Their Chern-Simons actions are

CS[ρα=0 ⊗ 1] = CS[ρα=0 ⊗ η] = 3
4 ,

CS[ρα=1 ⊗ 1] = 5
12 .

From the 1st line, we can confirm that η is bosonic and thus TFT[S2(2, 3, 6)] is a
bosonic topological theory, see (6.8) and (6.13). From the computation of the Chern-
Simons invariants, we have

h(ρPSLα=0 ) = 0 , h(ρPSLα=1 ) = ±1
3 .

Recall that there are two anyons associated to ρPSLα=1 . The spectrum of {S2
0α} and

{hα} are identical to the that of 3B±2.

This also implies that the mother theory T̃FT[M = S2(2, 3, 6)] is the SU(2)4 theory.
This theory is a UMTC with 5 anyons including an anyon generating the 1-form
symmetry H1(M,Z2). By condensing this symmetry generating anyon, this theory
reduces to the TFT[S2(2, 3, 6)].
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b. S2( 4
q1
, 4
q2
, 3

2)

There are three irreducible PSL(2,C) connections, {ρPSLα }2α=0, with trivial 2nd
Stiefel-Whitney class. There are two Z2 flat connections {1, η} ∈ H1(M,Z2). Among
the three PSL(2,C) connections, the ρPSLα=2 is invariant under tensoring with η, i.e.

ρPSLα=2 ⊗ η = ρPSLα=2 ⊗ 1 ⇒ Inv(ρα=2) = Z2 .

According to table 5, there are 2 + 2 ∗ 1 = 4 anyons in TFT[S2(2, 3, 6)], which are

ρPSLα=0 , ρ
PSL
α=1 and ρPSLα=2 (with multiplicity 2) .

Torsions for the flat connections are

Tor[ρPSLα=0 ] = Tor[ρPSLα=1 ] = 4 , Tor[ρPSLα=2 ] = 1 .

From the dictionary in table 5, we have

(S2
0α for all four anyons) = 1

4 .

There are 5 SL(2,C) flat connections which are

ρPSLα=0,1 ⊗ 1 , ρPSLα=0,1 ⊗ η , ρPSLα=2 ⊗ 1 .

Since the ρPSLα=0,1 have trivial 2nd Stiefel-Whitney class, ρPSLα=0,1⊗δ with δ ∈ H1(M,Z2)
can be regarded as SL(2,C) flat connections on M . Their Chern-Simons actions are

CS[ρα=0 ⊗ 1] = CS[ρα=0 ⊗ η] = ± `

48 ,

CS[ρα=1 ⊗ 1] = CS[ρα=1 ⊗ η] = ±
(
`

48 + 1
2

)
,

CS[ρα=2 ⊗ 1] = ±
(
`

48 +
( q1+q2

2 mod 4)
8

)
.

Here ` ∈ 2Z depends on {qi}3i=1. From the 1st and 2nd line, we can confirm that
η is bosonic and thus TFT[S2( 4

q1
, 4
q2
, 3

2)] is a bosonic topological theory, see (6.8)
and (6.13). From the computation of the Chern-Simons invariants, we have

h(ρPSLα=0 ) = 0 , h(ρPSLα=2 ) = ±1
2 ,

h(ρPSLα=2 ) = ±
( q1+q2

2 mod 4)
8 .

Recall that there are two anyons associated to ρPSLα=2 . The spectrum of {S2
0α} and

{hα} are identical to the that of 4B
±( q1+q2

2 mod 4)
.
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