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1 Introduction

The Drell-Yan (DY) processes, depicted at leading order in figure 1, have big cross sections
and clean experimental signatures, and thus are one of the best-studied processes at the
LHC. In particular they can be used to determine important parameters in the electroweak
(EW) sector like the weak mixing angle and W boson mass [1, 2]. The DY processes are
also playing an important role as standard candles for the LHC in the form of luminosity
measurements and detector calibrations. Furthermore the abundance of clean data make
the DY processes a perfect place to determine parton distribution functions and search for
Beyond Standard Model (BSM) physics. All these applications rely on a precise theoretical
description of the DY processes, making it crucial for the physics program at the LHC.

The perturbative corrections to the Drell-Yan processes can be divided into two classes.
The pure QCD corrections only occur in the initial state of the DY processes, due to the
colorless nature of the leptonic final state. These corrections are known differentially up
to next-to-next-to leading order (NNLO) [3, 4] and inclusively at next-to-next-to-next-
to-leading order (NNNLO) [5]. In contrast the EW corrections can involve both the
quarkonic initial and leptonic final state. These corrections have been computed at next-
to-leading order (NLO) [6–17] and there is an ongoing effort to extend the computation
to NNLO [18–21].

Starting at NNLO the EW and QCD corrections start to mix and are currently assumed
to be the largest unknown correction in the high energy region [22]. These mixed corrections
can be further divided according to the number of vector boson exchanges. While the
factorizable contributions are characterized by a single vector boson exchange between the
initial and final state, the non-factorizable contributions involve the exchange of two or more
bosons. Among the factorizable Feynman diagrams, the mixed double virtual corrections
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(a) Neutral Current (b) Charged Current

Figure 1. Feynman diagrams for the partonic Neutral Current and Charged Current DY processes
at LO. The diagrams have been generated using Feynarts [42].

were computed for the W and Z boson decay [23, 24] and the Z boson production [25].
The double real contribution to the total cross section for the on-shell single gauge boson
production has been presented in [26] and the O(ααs) corrections to the total partonic
cross section of the process qq̄ → Z +X is calculated in [27].

For the non-factorizable contributions, significant work has been done in the QCD-
QED sector [28–32] and by adopting the pole approximation [33–36]. Nevertheless BSM
physics might also show up in regions outside the resonance and therefore it is important
to have control over the non-factorizable corrections beyond the pole approximation. Cur-
rently all ingredients, including the master integrals [37–39], for the construction of the
amplitudes in the zero lepton mass limit are known.

However there are observable effects due to the lepton masses, when considering
collinear radiation of photons. While the KLN theorem ensures that for a fully inclu-
sive observable, all these effects cancel out, the use of lepton identification cuts breaks the
fully inclusive nature of the measured cross sections [14]. These analysis cuts give rise to
large logarithmic contributions of the form log(s/m2

l ), which, due to their photonic origins,
arise only from the QED part of the EW corrections [40, 41]. Therefore we can fully cap-
ture these logarithmic contributions by only considering the QED part of this amplitude
for non-zero lepton masses. The calculation of the latter requires master integrals with a
non zero lepton mass, which are the main subject of this publication.

Fortunately the huge number of multi scale integrals appearing in loop amplitudes are
linearly dependent through integration-by-parts identities (IBPs) [43–45]. Therefore this
huge number of integrals can be expressed in terms of a much smaller set of basis integrals
called master integrals. Interestingly the IBPs can be also employed for the solutions of
these master integrals, since their derivatives in respect to the kinematic invariants lay
within the same space that is spanned by the IBPs. The resulting first order differential
equations [46–48] can then be integrated, in order to obtain solutions for the sought-after
master integrals.

Recently it has been noticed that the freedom of choosing different sets of master inte-
grals can be exploited to find particular simple differential equations, the so called canonical
forms [49]. Such forms are characterized by a total differential in d log form and by the
factorization of the dimensional regularization parameter from the kinematics. The argu-
ments of the d log’s are called letters and together form the alphabet of our problem. While
canonical forms greatly simplify the solution of differential equations and expose many of
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Figure 2. Example Feynman diagrams for each of the topologies cosidered for the non-factorizable
mixed QCD-QED correction to the neutral current DY process.

the underlying mathematical structures, finding these forms can be challenging and has
been the subject of several publications [50–56]. In this work we follow the algorithm
outlined in [51, 57] and first find a form that is linear in the dimensional regularization pa-
rameter, which then is brought to the ε-factorized form through the Magnus algorithm [51].
This approach has been shown to work in a variety of applications [37, 57–62], including
cases with many kinematic invariants, non-planar integrals and non-rational alphabets.
The resulting ε-factorized form is then expanded in the ratio of lepton over Z boson mass,
leading to a rational alphabet. This new alphabet agrees with the one presented in the
massless calculation [37, 38] up to the desired logarithms in the lepton mass. Due to the
rational nature of the alphabet our results can be conveniently written in terms of general-
ized polylogarithms up to weight four. The results and the corresponding rotation matrix
found by the Magnus algorithm are given in the supplementary material.

Throughout this computation we made use of publicly available codes Kira [63] and
Reduze [64] for the generation of the IBPs and the differential equations, LiteRed [65] for
the dimensional reduction identities, SecDec [66] for the numerical validation of our results
and GiNaC [67] for the numerical evaluation of the generalized polylogs.

2 Notation

This article considers the mixed QCD-QED two-loop corrections to the Drell-Yan process

q(p1) + q̄(p2)→ l+(p3) + l−(p4) , (2.1)

specified by the following kinematics

p2
1 = p2

2 = 0 , p2
3 = p2

4 = m2
l ,

s = (p1 + p2)2 , t = (p1 − p3)2 , u = (p2 − p3)2 = 2m2
l − s− t , (2.2)

where the lepton mass ml was kept non-zero throughout the calculation. In particular our
work is concerned with the quantum corrections involving the exchange of a photon and a
Z boson between the initial and final state, depicted in figure 2. The appearing integrals
are of the form

I(n1, . . . , n9) ≡ 1
C(ε)

∫
ddk1ddk2

1
Dn1

1 . . . Dn9
9
, (2.3)
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with the normalization factor

C(ε) = − 1
2

( 1
iπd/2

)2
(
m2
z

µ2

)2ε

Γ (1 + ε) Γ (1− ε) Γ (1 + 2ε) , (2.4)

and the propagator definitions

D1 = k2
1, D2 = k2

2,

D3 = (k1 + p1)2, D4 = (k1 + p1 + p2)2,

D5 = (k2 + p1 + p2)2 −m2
z, D6 = (k2 + p3)2 −m2

l , D7 = (k1 − k2)2,

D8 = (k2 + p1)2, D9 = (k1 + p3)2 . (2.5)

In the above definitions ki denote the loop momenta and the normalization factor C(ε) has
been chosen such that the canonical integral I9 is set to one.

3 Differential equations

Integration-by-parts identities allow us to express the derivative of a complete set of Feyn-
man integral in respect to some kinematic invariant as a linear combination of the initially
chosen Feynman integrals. This leads to a coupled first order differential equation, which
can be solved in order to determine those Feynman integrals. For the process under con-
sideration it is convenient to combine the invariants into three dimensionless ratios

− s

m2
z

= x, − t

m2
z

= y,
m2
l

m2
z

= z. (3.1)

resulting in a set of three partial differential equations

∂x~F = Ãx~F, ∂y~F = Ãy~F, ∂z~F = Ãz~F . (3.2)

The solution of these differential equations can be written as series of iterated integrals W
over the matrices Ã and a vector of boundary constants ~F0

~F = W ~F0 . (3.3)

By rescaling the master integrals ~F with the appropriate powers in the dimensional regu-
larization parameter ε = 4−D

2 we can ensure that the matrix W exhibits a Taylor series in ε

W = W (0) + εW (1) + ε2W (2) + ε3W (3) + ε4W (4) +O(ε5) . (3.4)

The matricesW can be obtained by integrating one of the partial differential equations and
then fixing the resulting integration constant by matching the derivative of the obtained
solution successively to the other partial differential equations. In our case we choose to
integrate first in x, then y and finally z, resulting in the following recursive formulas

W (i) = W (i)
x +W (i)

y +W (i)
z , (3.5)

W (i)
x =

∫
ÃxW (i−1) dx , (3.6)

W (i)
y =

∫
ÃyW (i−1) − ∂yW (i)

x dy , (3.7)

W (i)
z =

∫
ÃzW (i−1) − ∂zW (i)

x − ∂zW (i)
y dz , (3.8)

– 4 –



J
H
E
P
1
1
(
2
0
2
0
)
1
0
7

where at the first step W (−1) is replaced by the identity matrix. An important step in
the integration of a differential equation is the identification of a functional basis that
includes all integrals encountered during those integrations. For the presented integrals
this was achieved by choosing a particular basis of master integrals, where the dimensional
regularization parameter ε factorizes from the kinematics, which are encoded in a d log-
form. After an expansion for small z all arguments of the d log’s are simple rational
functions, which enable us to express the integrals in terms of the well known generalized
polylogarithms [67–70]

G(a;u) =
∫ u

0

dt

t− a
, (3.9)

G(an, . . . , a1;u) =
∫ u

0

dt

t− an
G(an−1, . . . , a1;u) , (3.10)

G(~0n;u) = 1
n! log(u)n , (3.11)

with weights ai and argument u. In our case the weights are drawn from the sets{
−1, 0,−y,− y

1 + y

}
, {0, 1} , {0} , (3.12)

for arguments x, y and z respectively. Due to the expansion for small z, some integrals
can not be directly expressed as generalized polylogartihms. Nevertheless after repeatedly
applying integration by parts identities of the form∫ u

0
h(t)G(~a; t) dt =

[
H(t)G(~a; t)

]u
0
−
∫ u

0
H(t) ∂tG(~a; t) dt , (3.13)

we either obtain an integral corresponding to a generalized polylogarithm or a purely
rational function.

4 ε-factorized form

As a first step towards the calculation of the relevant master integrals we identify a special
set of master integrals, for which the dimensional regularization parameter factorizes from
the kinematics. This can be achieved in a two step process through the Magnus algorithm,
presented in [51, 57]. First we identify a special set of master integrals

F1 = ε2 T1 , F2 = ε2 T2 , F3 = ε2 T3 ,

F4 = ε2 T4 , F5 = ε3 T5 , F6 = ε2 T6 ,

F7 = ε2 T7 , F8 = ε2 T8 , F9 = (1− ε)ε2 T9 ,

F10 = ε3 T10 , F11 = ε3 T11 , F12 = ε2 T12 ,

F13 = ε4 T13 , F14 = ε2 T14 , F15 = ε2 T15 ,

F16 = ε2 T16 , F17 = ε3 T17 , F18 = ε2 T18 ,

– 5 –



J
H
E
P
1
1
(
2
0
2
0
)
1
0
7

F19 = ε2 T19 , F20 = ε3 T20 , F21 = ε3 T21 ,

F22 = (1− 2ε)ε3 T22 , F23 = ε3 T23 , F24 = ε3 T24 ,

F25 = ε3 T25 , F26 = ε2 T26 , F27 = ε4 T27 ,

F28 = ε3 T28 , F29 = ε3 T29 , F30 = ε2 T30 ,

F31 = ε3 T31 , F32 = ε2 T32 , F33 = ε4 T33 ,

F34 = ε3 T34 , F35 = (1− 2ε)ε3 T35 , F36 = ε3 T36 ,

F37 = (1− 2ε)ε2 T37 , F38 = ε4 T38 , F39 = ε3 T39 ,

F40 = ε2 T40 , F41 = ε3 T41 , F42 = ε3 T42 ,

F43 = ε4 T43 , F44 = ε3 T44 , F45 = ε4 T45 ,

F46 = ε3 T46 − ε3
t−m2

l

m2
z

T47 , F47 = ε3 T47 , F48 = ε4 T48 ,

F49 = ε4 T49 , F50 = ε4 T50 , F51 = ε4 T51 . (4.1)

which are depicted in figure 3. These integrals satisfy a precanonical differential equation,
which has a linear dependence on the dimensional regularization parameter ε. Secondly we
follow the Magnus algorithm to build a rotation matrix, which identifies the corresponding
factorized master integrals

I1 = − sF1 , I2 = s2 F2 ,

I3 = − sF3 , I4 = − s r2
2mz

(
F1 − F3 + 2m2

l F4
)
,

I5 = − s r1 F5 , I6 = − sF6 ,

I7 = − sF7 , I8 = 2m2
z F7 + (m2

z − s)F8 ,

I9 =F9 , I10 = − (t−m2
l )F10 ,

I11 = − sF11 , I12 = − m2
z

m2
z + s

(3s
2 F6+F9+(m2

z−s) sF12

)
,

I13 = − sF13 , I14 =m2
l F14 ,

I15 = − tF15 , I16 = 2m2
l F15 − (t−m2

l )F16 ,

I17 = r1 F17 , I18 =m2
l r1 F18 ,

I19 = s

(3
2 F17+m2

l F18−m2
l F19

)
, I20 = r1 F20 ,

I21 = s (t−m2
l )F21 , I22 = −

(
t−m2

l

)
F22,
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I23 = − (m2
z − s)(t−m2

l )F23 , I24 = −m2
z(t−m2

l )F24 ,

I25 = s tF25 , I26 = −m2
l s
(
F25 − (t−m2

l )F26
)
,

I27 = (u−m2
l )F27 , I28 = s (t−m2

l )F28 ,

I29 = r1 F29 , I30 =mz r2
(
3F29 + (m2

z − s)F30
)
,

I31 = −
(
t−m2

l

)
F31,

I32 =− r2
4mz(m2

l + t)

[
12m2

z tF31 +
(
t−m2

l

)
2
(
2F15 + F16 + 6F31 + 4m2

z F32
)

+ 2
(
t−m2

l

)
F9 + 4m4

z tF32
]
,

I33 = (u−m2
l )F33 , I34 = − (m2

z − s)(t−m2
l )F34 ,

I35 = r1 F35 , I36 = − (m2
z − s)(t−m2

l )F36 ,

I37 = − mz

r2

(1
2F9 −m2

l F14 −m2
l F37

)
, I38 = r1 F38 ,

I39 = − s r1 F39 ,

I40 = s

(1
2F1 −

1
2F3 − F17 − F38 +m2

l (F4 − F18) + sF39 + 1
2r

2
2 F41

)
−m2

z F29

−m
2
z

r2
2

(1
2F9 −m2

l F14 −m2
l F37

)
+ 1

2
(
s−m2

z

) (
F29 +m2

z F30 + 2 sm2
l F40

)
,

I41 =mz r1 r2 F41 , I42 =m2
z r1 F42 ,

I43 = −
(
t−m2

l

)
F43 , I44 = −m2

z

(
t−m2

l

) (
F21 + (m2

z − s)F44
)
,

I45 = s
(
t−m2

l

)
F45 , I46 = − smz r2

(
2F45 +m2

z F46
)
,

I47 =−1
2s
(
2(t−m2

l ) +m2
z

) (
m2
z F46 + 2F45 + s tF47

)
− s

(
m4
l − t2

)
F47

I48 =
√
m4
l (m2

z − s)
2 − 2m2

l

(
t (m2

z − s)
2 +m2

z s (m2
z + s)

)
+ (s t−m2

z(s+ t))2 F48 ,

I49 = − s
(
t−m2

l

) (
s−m2

z

)
F49 , I50 = − s r1 F50 ,

I51 =
(
t−m2

l

) (
s−m2

z

)
F48 − s

(
s−m2

z

) (
m2
l F49 − F51

)
, (4.2)

where we introduced the abbreviations r1 =
√
−s
√

4m2
l − s and r2 =

√
m2
z − 4m2

l . The
transformations given in eq. (4.2) and (4.1) are provided in the supplementary material.
The presented integrals satisfy a set of three partial differential equations

∂x~I = εAx~I, ∂y~I = εAy~I, ∂z~I = εAz~I , (4.3)

where the dimensional regularization parameter ε has been factorized from the kinematic
dependence encoded in A.
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Figure 3. The master integrals T1...51 for the two-loop mixed QCD-QED corrections to Drell-
Yan. Thin black lines represent massless propagtors, while thick black lines and red lines represent
massive propagtors with mass mz or ml respectively. The dots represent additional powers of the
propagator and potential numerators are written on top of each figure.

5 Solution

The vastly different size of the lepton mass compared to the Z boson mass allows us to
expand the differential equations for small values of z = m2

l
m2

z
. This expansion captures

the important logarithms in the lepton mass, while keeping the analytic complexity at a
manageable level. In particular for the leading term in the z-expansion the matrices Ax
and Ay are independent of z and are completely comprised of rational entries. Combining
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the expanded differential equations into a total differential

d~I = εdA~I , (5.1)

exposes the d log form of our problem

dA =
7∑
i=1

Mid log(ηi) , (5.2)

with an alphabet that up to the logarithm in the lepton mass is identical to the massless
case [37, 38]

η1 = 1 + x , η2 = x , η3 = y ,

η4 = z , η5 = 1− y , η6 = x+ y ,

η7 = x+ y + x y .

(5.3)

A precise approximation of the integrals appearing in the amplitude is only guaranteed
if the integrals Ti are well described within the expansion. For this reason the kinematic
factors defined in eq. (4.2) need to be considered, when determining the appropriate point
at which we can drop all higher order terms. Expanding the kinematic factors for small
lepton masses (small z) we find divergences in those factors

Ti =
∑
j

R−1
ij

z
Ij +

∑
j

R0
ijIj +O (z) . (5.4)

For this reason we have expanded our canonical integrals Ij up to the first order in z such
that all finite pieces are captured for the integrals Ti. These higher order terms can be
integrated as described in section 3 and lead to rational terms in our canonical master
integrals. Since the rational functions do not contribute to the alphabet and are irrelevant
for the analytic continuation, the differential equations were integrated under the same
constraints as the massless case

x > 0 ∧ 0 < y < 1 ∧ z > 0 , (5.5)

which correspond to the unphysical region

s < 0 ∧ t < 0 ∧ m2
l > 0 ∧ m2

z > 0 . (5.6)

Furthermore the analytic continuation to the physical region follows the same recipe that
was already laid out in [37].

5.1 Boundary conditions

By the nature of determining the Feynman integrals through their derivative, a boundary
constant has to be specified in order to determine the exact solution. These constants can
be obtained by either matching our solutions to easier integrals through some appropriate
limit or by demanding the absence of unphysical thresholds in our alphabet. For our
problem at hand we used the following conditions
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• The integrals I3,14 were provided as an independent input.

• In the limit m2
l → 0, integrals I37,43 were matched against their massless counterparts

presented in [37].

• The boundary constants of integrals I2,4,5,7,8,11,13,22,29,30,32,35,38,39,40,41 were fixed by
demanding regularity in the limit s→ 0.

• The integrals I1,6,9,10,12,15,...,20 were matched against the full solutions presented
in [59].

• Demanding regularity at the pseudo threshold s = −t, fixed the boundary constants
of integrals I21,23,25,...,28,33,34,36,44,...,47,50,51.

• Taking the limit t→ −m2
z and demanding its regularity results in relations between

boundary constants of integrals I24,31,49.

• Integrals I42,48 were fixed by demanding regularity in the limit t→ −m2
z s

m2
z−s

.

In our normalization (2.4) the independent input integrals have the following expressions

I3 = (x z)−ε
(
−2 + 6 ζ(2) ε2 − 15

2 ζ(4) ε4 +O(ε5)
)
, (5.7)

I14 = z−2ε
(1

2 + ζ(2) ε2 + 5 ζ(3) ε3 + 45
2 ζ(4) ε4 +O(ε5)

)
. (5.8)

The weight structure of the boundary constants established through the input integrals
persists for all master integrals. Namely the boundary constants at order εi for 0 ≤ i ≤ 4
are proportional to the corresponding constants 1, 0, ζ(2), ζ(3) and ζ(4). The obtained
boundary constants finalize the determination of the master integrals, whose expression
are provided as supplementary material.

5.2 Consistency checks

In order to verify the obtained solutions we performed a number of checks:

• We independently computed the equivalent one-loop integrals to our process and
checked that all factorizable integrals I1,2,3,4,5 analytically agree with the actual prod-
uct of one-loop integrals.

• Our expanded expressions were compared with the exact integrals obtained numeri-
cally by the package SecDec and we found agreement within the expected errors due
to our approximation.

• Following the steps outlined in section 7.1 of [59], we took the lepton mass to zero for
311 combinations of our integrals and found agreement with the solutions presented
in [37].

1Only 29 zero lepton mass limits provide a true consistency check, since we already used two for the
boundary fixing of integrals I37 and I43.
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The zero lepton mass limit for the last check was taken by performing a Jordan decompo-
sition of the pole matrix Az,−1 defined as

Az = Az,−1
z

+O[z0] . (5.9)

The Eigenvectors v =
∑
ciIi of this matrix define linear combinations of our canonical

integrals, whose behavior in the limit z going to zero is defined by the corresponding
Eigenvalue

lim
z→0

vi = zλiεh(ε) , (5.10)

where h(ε) is some function that is independent of z. The 31 Eigenvectors belonging to the
Eigenvalue 0 define linear combinations of our integrals that are finite in the limit z → 0.
These finite combinations can be employed in two ways. Firstly we can now safely take the
z → 0 limit directly on the analytic expressions of these combinations. Secondly we take
the lepton mass to zero directly at the integrand level of these combinations. The resulting
integrals can then be expressed in terms of the master integrals presented in the massless
calculation [37]. Finally we found that the 31 expressions derived from our analytic results
were in full agreement with the equivalent expressions derived by taking the lepton mass
to zero at the integrand level.

6 Conclusions

The subject of this publication was the calculation of the previously unknown master inte-
grals, needed for the two-loop mixed QCD-QED virtual corrections to the neutral current
Drell-Yan process (qq̄ → l+l−). The lepton mass dependence was kept up to logarithmic
terms, such that the incomplete cancellation of these potentially large contributions can
be studied in cross sections which are not fully inclusive due to lepton identification cuts.
This study requires the knowledge of the two-loop virtual amplitudes, whose computation
is now feasible through this publication.

The 51 master integrals were evaluated with the method of the differential equations.
In particular we found a set of MIs obeying a precanonical system of differential equations,
which was brought to an ε-factorized form with the help of the Magnus exponential. After
an expansion for small lepton masses, the boundary conditions were imposed by matching
the solutions onto simpler integrals at special kinematic points, or by requiring the reg-
ularity of the solution at pseudo-thresholds. Finally the coefficients of the Taylor series
around four space-time dimensions were given in terms of generalized polylogarithms up
to weight four.

Acknowledgments

The authors would like to thank Roberto Bonciani, Pierpaolo Mastrolia, Doreen Wackeroth
and Ciaran Williams for useful discussion. US is supported by the National Science Foun-
dation awards PHY-1719690 and PHY-1652066. Support provided by the Center for Com-
putational Research at the University at Buffalo. SMH carried out part of the project at

– 11 –



J
H
E
P
1
1
(
2
0
2
0
)
1
0
7

the University at Buffalo, supported in part by the National Science Foundation under
grant no. NSF PHY-1719690.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] ATLAS collaboration, Measurement of the W -boson mass in pp collisions at
√
s = 7 TeV

with the ATLAS detector, Eur. Phys. J. C 78 (2018) 110 [Erratum ibid. 78 (2018) 898]
[arXiv:1701.07240] [INSPIRE].

[2] CMS collaboration, Measurement of the weak mixing angle using the forward-backward
asymmetry of Drell-Yan events in pp collisions at 8 TeV, Eur. Phys. J. C 78 (2018) 701
[arXiv:1806.00863] [INSPIRE].

[3] T. Matsuura, S.C. van der Marck and W.L. van Neerven, The calculation of the second order
soft and virtual contributions to the Drell-Yan cross-section, Nucl. Phys. B 319 (1989) 570
[INSPIRE].

[4] R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order α2
s

correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. 644
(2002) 403] [INSPIRE].

[5] C. Duhr, F. Dulat and B. Mistlberger, The Drell-Yan cross section to third order in the
strong coupling constant, Phys. Rev. Lett. 125 (2020) 172001 [arXiv:2001.07717] [INSPIRE].

[6] G. Altarelli, R. Ellis and G. Martinelli, Large perturbative corrections to the Drell-Yan
process in QCD, Nucl. Phys. B 157 (1979) 461 [INSPIRE].

[7] D. Wackeroth and W. Hollik, Electroweak radiative corrections to resonant charged gauge
boson production, Phys. Rev. D 55 (1997) 6788 [hep-ph/9606398] [INSPIRE].

[8] U. Baur, S. Keller and D. Wackeroth, Electroweak radiative corrections to W boson
production in hadronic collisions, Phys. Rev. D 59 (1999) 013002 [hep-ph/9807417]
[INSPIRE].

[9] S. Dittmaier and M. Krämer, Electroweak radiative corrections to W boson production at
hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [INSPIRE].

[10] U. Baur and D. Wackeroth, Electroweak radiative corrections to pp̄→W± → `±ν beyond the
pole approximation, Phys. Rev. D 70 (2004) 073015 [hep-ph/0405191] [INSPIRE].

[11] V.A. Zykunov, Radiative corrections to the Drell-Yan process at large dilepton invariant
masses, Phys. Atom. Nucl. 69 (2006) 1522 [Yad. Fiz. 69 (2006) 1557] [INSPIRE].

[12] A. Arbuzov et al., One-loop corrections to the Drell-Yan process in SANC. I. The Charged
current case, Eur. Phys. J. C 46 (2006) 407 [Erratum ibid. 50 (2007) 505] [hep-ph/0506110]
[INSPIRE].

[13] C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini, Precision electroweak
calculation of the charged current Drell-Yan process, JHEP 12 (2006) 016 [hep-ph/0609170]
[INSPIRE].

[14] U. Baur, S. Keller and W.K. Sakumoto, QED radiative corrections to Z boson production
and the forward backward asymmetry at hadron colliders, Phys. Rev. D 57 (1998) 199
[hep-ph/9707301] [INSPIRE].

– 12 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1140/epjc/s10052-017-5475-4
https://arxiv.org/abs/1701.07240
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.07240
https://doi.org/10.1140/epjc/s10052-018-6148-7
https://arxiv.org/abs/1806.00863
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.00863
https://doi.org/10.1016/0550-3213(89)90620-2
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB319%2C570%22
https://doi.org/10.1016/0550-3213(91)90064-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB359%2C343%22
https://doi.org/10.1103/PhysRevLett.125.172001
https://arxiv.org/abs/2001.07717
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.07717
https://doi.org/10.1016/0550-3213(79)90116-0
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB157%2C461%22
https://doi.org/10.1103/PhysRevD.55.6788
https://arxiv.org/abs/hep-ph/9606398
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9606398
https://doi.org/10.1103/PhysRevD.59.013002
https://arxiv.org/abs/hep-ph/9807417
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9807417
https://doi.org/10.1103/PhysRevD.65.073007
https://arxiv.org/abs/hep-ph/0109062
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0109062
https://doi.org/10.1103/PhysRevD.70.073015
https://arxiv.org/abs/hep-ph/0405191
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0405191
https://doi.org/10.1134/S1063778806090109
https://inspirehep.net/search?p=find+J%20%22Phys.Atom.Nucl.%2C69%2C1522%22
https://doi.org/10.1140/epjc/s2006-02505-y
https://arxiv.org/abs/hep-ph/0506110
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0506110
https://doi.org/10.1088/1126-6708/2006/12/016
https://arxiv.org/abs/hep-ph/0609170
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0609170
https://doi.org/10.1103/PhysRevD.57.199
https://arxiv.org/abs/hep-ph/9707301
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9707301


J
H
E
P
1
1
(
2
0
2
0
)
1
0
7

[15] V.A. Zykunov, Weak radiative corrections to Drell-Yan process for large invariant mass of
di-lepton pair, Phys. Rev. D 75 (2007) 073019 [hep-ph/0509315] [INSPIRE].

[16] C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini, Precision electroweak
calculation of the production of a high transverse-momentum lepton pair at hadron colliders,
JHEP 10 (2007) 109 [arXiv:0710.1722] [INSPIRE].

[17] A. Arbuzov et al., One-loop corrections to the Drell–Yan process in SANC. (II). The neutral
current case, Eur. Phys. J. C 54 (2008) 451 [arXiv:0711.0625] [INSPIRE].

[18] G. Degrassi and A. Vicini, Two loop renormalization of the electric charge in the standard
model, Phys. Rev. D 69 (2004) 073007 [hep-ph/0307122] [INSPIRE].

[19] S. Actis, A. Ferroglia, M. Passera and G. Passarino, Two-loop renormalization in the standard
model. Part I: prolegomena, Nucl. Phys. B 777 (2007) 1 [hep-ph/0612122] [INSPIRE].

[20] S. Actis and G. Passarino, Two-loop renormalization in the standard model. Part II:
renormalization procedures and computational techniques, Nucl. Phys. B 777 (2007) 35
[hep-ph/0612123] [INSPIRE].

[21] S. Actis and G. Passarino, Two-Loop renormalization in the standard model. Part III:
renormalization equations and their solutions, Nucl. Phys. B 777 (2007) 100
[hep-ph/0612124] [INSPIRE].

[22] J.M. Campbell, D. Wackeroth and J. Zhou, Study of weak corrections to Drell-Yan,
top-quark pair, and dijet production at high energies with MCFM, Phys. Rev. D 94 (2016)
093009 [arXiv:1608.03356] [INSPIRE].

[23] A. Czarnecki and J.H. Kühn, Nonfactorizable QCD and electroweak corrections to the
hadronic Z boson decay rate, Phys. Rev. Lett. 77 (1996) 3955 [hep-ph/9608366] [INSPIRE].

[24] D. Kara, Corrections of order ααs to W boson decays, Nucl. Phys. B 877 (2013) 683
[arXiv:1307.7190] [INSPIRE].

[25] A. Kotikov, J.H. Kühn and O. Veretin, Two-loop formfactors in theories with mass gap and
Z-boson production, Nucl. Phys. B 788 (2008) 47 [hep-ph/0703013] [INSPIRE].

[26] R. Bonciani, F. Buccioni, R. Mondini and A. Vicini, Double-real corrections at O(ααs) to
single gauge boson production, Eur. Phys. J. C 77 (2017) 187 [arXiv:1611.00645] [INSPIRE].

[27] R. Bonciani, F. Buccioni, N. Rana, I. Triscari and A. Vicini, NNLO QCD×EW corrections to
Z production in the qq̄ channel, Phys. Rev. D 101 (2020) 031301 [arXiv:1911.06200]
[INSPIRE].

[28] W.B. Kilgore and C. Sturm, Two-loop virtual corrections to Drell-Yan production at order
αsα

3, Phys. Rev. D 85 (2012) 033005 [arXiv:1107.4798] [INSPIRE].

[29] D. de Florian, M. Der and I. Fabre, QCD⊕QED NNLO corrections to Drell-Yan production,
Phys. Rev. D 98 (2018) 094008 [arXiv:1805.12214] [INSPIRE].

[30] D. de Florian, G.F.R. Sborlini and G. Rodrigo, QED corrections to the Altarelli-Parisi
splitting functions, Eur. Phys. J. C 76 (2016) 282 [arXiv:1512.00612] [INSPIRE].

[31] J. Blümlein, A. De Freitas, C. Raab and K. Schönwald, The O(α2) initial state QED
corrections to e+e− → γ∗/Z∗

0 , Nucl. Phys. B 956 (2020) 115055 [arXiv:2003.14289]
[INSPIRE].

[32] J. Ablinger, J. Blümlein, A. De Freitas and K. Schönwald, Subleading logarithmic QED
initial state corrections to e+e− → γ∗/Z0∗ to O(α6L5), Nucl. Phys. B 955 (2020) 115045
[arXiv:2004.04287] [INSPIRE].

– 13 –

https://doi.org/10.1103/PhysRevD.75.073019
https://arxiv.org/abs/hep-ph/0509315
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0509315
https://doi.org/10.1088/1126-6708/2007/10/109
https://arxiv.org/abs/0710.1722
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0710.1722
https://doi.org/10.1140/epjc/s10052-008-0531-8
https://arxiv.org/abs/0711.0625
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0711.0625
https://doi.org/10.1103/PhysRevD.69.073007
https://arxiv.org/abs/hep-ph/0307122
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0307122
https://doi.org/10.1016/j.nuclphysb.2007.04.021
https://arxiv.org/abs/hep-ph/0612122
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0612122
https://doi.org/10.1016/j.nuclphysb.2007.03.043
https://arxiv.org/abs/hep-ph/0612123
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0612123
https://doi.org/10.1016/j.nuclphysb.2007.04.027
https://arxiv.org/abs/hep-ph/0612124
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0612124
https://doi.org/10.1103/PhysRevD.94.093009
https://doi.org/10.1103/PhysRevD.94.093009
https://arxiv.org/abs/1608.03356
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.03356
https://doi.org/10.1103/PhysRevLett.77.3955
https://arxiv.org/abs/hep-ph/9608366
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9608366
https://doi.org/10.1016/j.nuclphysb.2013.10.024
https://arxiv.org/abs/1307.7190
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.7190
https://doi.org/10.1016/j.nuclphysb.2007.07.018
https://arxiv.org/abs/hep-ph/0703013
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0703013
https://doi.org/10.1140/epjc/s10052-017-4728-6
https://arxiv.org/abs/1611.00645
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.00645
https://doi.org/10.1103/PhysRevD.101.031301
https://arxiv.org/abs/1911.06200
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.06200
https://doi.org/10.1103/PhysRevD.85.033005
https://arxiv.org/abs/1107.4798
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1107.4798
https://doi.org/10.1103/PhysRevD.98.094008
https://arxiv.org/abs/1805.12214
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.12214
https://doi.org/10.1140/epjc/s10052-016-4131-8
https://arxiv.org/abs/1512.00612
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.00612
https://doi.org/10.1016/j.nuclphysb.2020.115055
https://arxiv.org/abs/2003.14289
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.14289
https://doi.org/10.1016/j.nuclphysb.2020.115045
https://arxiv.org/abs/2004.04287
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.04287


J
H
E
P
1
1
(
2
0
2
0
)
1
0
7

[33] S. Dittmaier, A. Huss and C. Schwinn, Mixed QCD-electroweak O(αsα) corrections to
Drell-Yan processes in the resonance region: pole approximation and non-factorizable
corrections, Nucl. Phys. B 885 (2014) 318 [arXiv:1403.3216] [INSPIRE].

[34] S. Dittmaier, A. Huss and C. Schwinn, O(αsα) corrections to Drell-Yan processes in the
resonance region, PoS(LL2014)045 [arXiv:1405.6897] [INSPIRE].

[35] S. Dittmaier, A. Huss and C. Schwinn, Dominant mixed QCD-electroweak O(αsα)
corrections to Drell-Yan processes in the resonance region, Nucl. Phys. B 904 (2016) 216
[arXiv:1511.08016] [INSPIRE].

[36] S. Dittmaier, A. Huss and C. Schwinn, Dominant O(αsα) corrections to Drell-Yan processes
in the resonance region, PoS(RADCOR2015)021 [arXiv:1601.02027] [INSPIRE].

[37] R. Bonciani, S. Di Vita, P. Mastrolia and U. Schubert, Two-loop master integrals for the
mixed EW-QCD virtual corrections to Drell-Yan scattering, JHEP 09 (2016) 091
[arXiv:1604.08581] [INSPIRE].

[38] A. von Manteuffel and R.M. Schabinger, Numerical multi-loop calculations via finite integrals
and one-mass EW-QCD Drell-Yan master integrals, JHEP 04 (2017) 129
[arXiv:1701.06583] [INSPIRE].

[39] M. Heller, A. von Manteuffel and R.M. Schabinger, Multiple polylogarithms with algebraic
arguments and the two-loop EW-QCD Drell-Yan master integrals, Phys. Rev. D 102 (2020)
016025 [arXiv:1907.00491] [INSPIRE].

[40] U. Baur, O. Brein, W. Hollik, C. Schappacher and D. Wackeroth, Electroweak radiative
corrections to neutral current Drell-Yan processes at hadron colliders, Phys. Rev. D 65
(2002) 033007 [hep-ph/0108274] [INSPIRE].

[41] S. Dittmaier and M. Huber, Radiative corrections to the neutral-current Drell-Yan process in
the Standard Model and its minimal supersymmetric extension, JHEP 01 (2010) 060
[arXiv:0911.2329] [INSPIRE].

[42] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys.
Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

[43] F.V. Tkachov, A theorem on analytical calculability of four loop renormalization group
functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].

[44] K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate
β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

[45] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations,
Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

[46] A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams
calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].

[47] E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997)
1435 [hep-th/9711188] [INSPIRE].

[48] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl.
Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

[49] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.
110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

[50] S. Müller-Stach, S. Weinzierl and R. Zayadeh, Picard-Fuchs equations for Feynman integrals,
Commun. Math. Phys. 326 (2014) 237 [arXiv:1212.4389] [INSPIRE].

– 14 –

https://doi.org/10.1016/j.nuclphysb.2014.05.027
https://arxiv.org/abs/1403.3216
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.3216
https://doi.org/10.22323/1.211.0045
https://arxiv.org/abs/1405.6897
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.6897
https://doi.org/10.1016/j.nuclphysb.2016.01.006
https://arxiv.org/abs/1511.08016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.08016
https://doi.org/10.22323/1.235.0021
https://arxiv.org/abs/1601.02027
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.02027
https://doi.org/10.1007/JHEP09(2016)091
https://arxiv.org/abs/1604.08581
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.08581
https://doi.org/10.1007/JHEP04(2017)129
https://arxiv.org/abs/1701.06583
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.06583
https://doi.org/10.1103/PhysRevD.102.016025
https://doi.org/10.1103/PhysRevD.102.016025
https://arxiv.org/abs/1907.00491
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.00491
https://doi.org/10.1103/PhysRevD.65.033007
https://doi.org/10.1103/PhysRevD.65.033007
https://arxiv.org/abs/hep-ph/0108274
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0108274
https://doi.org/10.1007/JHEP01(2010)060
https://arxiv.org/abs/0911.2329
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0911.2329
https://doi.org/10.1016/S0010-4655(01)00290-9
https://doi.org/10.1016/S0010-4655(01)00290-9
https://arxiv.org/abs/hep-ph/0012260
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0012260
https://doi.org/10.1016/0370-2693(81)90288-4
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2C100B%2C65%22
https://doi.org/10.1016/0550-3213(81)90199-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB192%2C159%22
https://doi.org/10.1016/S0217-751X(00)00215-7
https://arxiv.org/abs/hep-ph/0102033
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0102033
https://doi.org/10.1016/0370-2693(91)90413-K
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB254%2C158%22
https://arxiv.org/abs/hep-th/9711188
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9711188
https://doi.org/10.1016/S0550-3213(00)00223-6
https://doi.org/10.1016/S0550-3213(00)00223-6
https://arxiv.org/abs/hep-ph/9912329
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9912329
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1103/PhysRevLett.110.251601
https://arxiv.org/abs/1304.1806
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.1806
https://doi.org/10.1007/s00220-013-1838-3
https://arxiv.org/abs/1212.4389
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.4389


J
H
E
P
1
1
(
2
0
2
0
)
1
0
7

[51] M. Argeri et al., Magnus and dyson series for master integrals, JHEP 03 (2014) 082
[arXiv:1401.2979] [INSPIRE].

[52] T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals
for qq → V V , JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].

[53] R.N. Lee, Reducing differential equations for multiloop master integrals, JHEP 04 (2015) 108
[arXiv:1411.0911] [INSPIRE].

[54] C. Meyer, Transforming differential equations of multi-loop Feynman integrals into canonical
form, JHEP 04 (2017) 006 [arXiv:1611.01087] [INSPIRE].

[55] C. Dlapa, J. Henn and K. Yan, Deriving canonical differential equations for Feynman
integrals from a single uniform weight integral, JHEP 05 (2020) 025 [arXiv:2002.02340]
[INSPIRE].

[56] J. Henn, B. Mistlberger, V.A. Smirnov and P. Wasser, Constructing d-log integrands and
computing master integrals for three-loop four-particle scattering, JHEP 04 (2020) 167
[arXiv:2002.09492] [INSPIRE].

[57] S. Di Vita, P. Mastrolia, U. Schubert and V. Yundin, Three-loop master integrals for
ladder-box diagrams with one massive leg, JHEP 09 (2014) 148 [arXiv:1408.3107]
[INSPIRE].

[58] S. Di Vita, P. Mastrolia, A. Primo and U. Schubert, Two-loop master integrals for the
leading QCD corrections to the Higgs coupling to a W pair and to the triple gauge couplings
ZWW and γ∗WW , JHEP 04 (2017) 008 [arXiv:1702.07331] [INSPIRE].

[59] P. Mastrolia, M. Passera, A. Primo and U. Schubert, Master integrals for the NNLO virtual
corrections to µe scattering in QED: the planar graphs, JHEP 11 (2017) 198
[arXiv:1709.07435] [INSPIRE].

[60] S. Di Vita, S. Laporta, P. Mastrolia, A. Primo and U. Schubert, Master integrals for the
NNLO virtual corrections to µe scattering in QED: the non-planar graphs, JHEP 09 (2018)
016 [arXiv:1806.08241] [INSPIRE].

[61] A. Primo, G. Sasso, G. Somogyi and F. Tramontano, Exact top Yukawa corrections to Higgs
boson decay into bottom quarks, Phys. Rev. D 99 (2019) 054013 [arXiv:1812.07811]
[INSPIRE].

[62] S. Di Vita, T. Gehrmann, S. Laporta, P. Mastrolia, A. Primo and U. Schubert, Master
integrals for the NNLO virtual corrections to qq → tt scattering in QCD: the non-planar
graphs, JHEP 06 (2019) 117 [arXiv:1904.10964] [INSPIRE].

[63] P. Maierhöfer, J. Usovitsch and P. Uwer, Kira — A Feynman integral reduction program,
Comput. Phys. Commun. 230 (2018) 99 [arXiv:1705.05610] [INSPIRE].

[64] A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction,
arXiv:1201.4330 [INSPIRE].

[65] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf.
Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].

[66] S. Borowka, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk and T. Zirke, SecDec-3.0:
numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun. 196
(2015) 470 [arXiv:1502.06595] [INSPIRE].

[67] J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys.
Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].

– 15 –

https://doi.org/10.1007/JHEP03(2014)082
https://arxiv.org/abs/1401.2979
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.2979
https://doi.org/10.1007/JHEP06(2014)032
https://arxiv.org/abs/1404.4853
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.4853
https://doi.org/10.1007/JHEP04(2015)108
https://arxiv.org/abs/1411.0911
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.0911
https://doi.org/10.1007/JHEP04(2017)006
https://arxiv.org/abs/1611.01087
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.01087
https://doi.org/10.1007/JHEP05(2020)025
https://arxiv.org/abs/2002.02340
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.02340
https://doi.org/10.1007/JHEP04(2020)167
https://arxiv.org/abs/2002.09492
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.09492
https://doi.org/10.1007/JHEP09(2014)148
https://arxiv.org/abs/1408.3107
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.3107
https://doi.org/10.1007/JHEP04(2017)008
https://arxiv.org/abs/1702.07331
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.07331
https://doi.org/10.1007/JHEP11(2017)198
https://arxiv.org/abs/1709.07435
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.07435
https://doi.org/10.1007/JHEP09(2018)016
https://doi.org/10.1007/JHEP09(2018)016
https://arxiv.org/abs/1806.08241
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.08241
https://doi.org/10.1103/PhysRevD.99.054013
https://arxiv.org/abs/1812.07811
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.07811
https://doi.org/10.1007/JHEP06(2019)117
https://arxiv.org/abs/1904.10964
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.10964
https://doi.org/10.1016/j.cpc.2018.04.012
https://arxiv.org/abs/1705.05610
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.05610
https://arxiv.org/abs/1201.4330
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1201.4330
https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/10.1088/1742-6596/523/1/012059
https://arxiv.org/abs/1310.1145
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.1145
https://doi.org/10.1016/j.cpc.2015.05.022
https://doi.org/10.1016/j.cpc.2015.05.022
https://arxiv.org/abs/1502.06595
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.06595
https://doi.org/10.1016/j.cpc.2004.12.009
https://doi.org/10.1016/j.cpc.2004.12.009
https://arxiv.org/abs/hep-ph/0410259
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0410259


J
H
E
P
1
1
(
2
0
2
0
)
1
0
7

[68] A. Goncharov, Polylogarithms in arithmetic and geometry, Proc. Int. Congr. Math. 1,2
(1995) 374.

[69] E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15
(2000) 725 [hep-ph/9905237] [INSPIRE].

[70] T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic
polylogarithms, Comput. Phys. Commun. 144 (2002) 200 [hep-ph/0111255] [INSPIRE].

– 16 –

https://doi.org/10.1007/978-3-0348-9078-6_31
https://doi.org/10.1007/978-3-0348-9078-6_31
https://doi.org/10.1142/S0217751X00000367
https://doi.org/10.1142/S0217751X00000367
https://arxiv.org/abs/hep-ph/9905237
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9905237
https://doi.org/10.1016/S0010-4655(02)00139-X
https://arxiv.org/abs/hep-ph/0111255
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0111255

	Introduction
	Notation
	Differential equations
	epsilon-factorized form
	Solution
	Boundary conditions
	Consistency checks

	Conclusions

