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1 Introduction

In this paper we generalize the QCD factorization formula [1, 2]〈
M1M2|Qi|B̄

〉
= FB→M1× T I

i ∗ φM2 + T II
i ∗ φM1 ∗ φM2 ∗ φB (1.1)

for non-leptonic B decays into two light mesons to include QED. The formula is valid in
the heavy-quark limit and expresses the matrix elements of operators Qi from the effective
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weak interactions below the electroweak scale in terms of B →M1 transition form factors,
light-cone distribution amplitudes (LCDAs) of the B meson and final mesons M1,2, and
their convolution with short-distance kernels. The latter can be computed in an expansion
in the strong coupling αs. The first term in the formula is usually referred to as the
“form-factor term”, the second one as the “hard spectator-scattering term”.

The QCD corrections to the short-distance kernels T I,II
i are already known to O(α2

s)
(NNLO) [3–10]. Together with the expectation of high-precision measurements from LHCb
and from the BELLE II experiment at KEK, this motivates the consideration of QED effects
despite the smallness of the electromagnetic coupling αem. We shall present first estimates
for a number of observables in this work. However, its main purpose is to investigate
whether and how QED can be included in a factorization formula for non-leptonic B decays.
Quite generally, and perhaps contrary to intuition, the factorization of QED effects is more
complicated than that of QCD, because the mesons are always colour-neutral, but can
be electrically charged. Recent work on electromagnetic corrections to Bs → µ+µ− has
shown [11, 12] that they can manifest qualitatively new effects such as power-enhancement
in the heavy-quark limit relative to the leading pure-QCD amplitude. While no such power-
enhancement appears in the non-leptonic amplitudes discussed in this work, QED again
leads to a number of effects not present in QCD alone, all related to the non-decoupling of
soft photons from the electrically charged initial and final states. Although QED is weak,
the interaction of photons with soft quarks is non-perturbative, which leads to a much
more complicated structure of the hadronic matrix elements, required to account for QED
corrections. The main results of this paper demonstrate that factorization for non-leptonic
B decays can be extended to include QED, provide operator definitions for the hadronic
matrix elements, and give the short-distance QED kernels at O(αem).

To put our discussion into a more general perspective, let us emphasize that the branch-
ing fraction for the decay B → M1M2 is not infrared-finite once QED corrections are in-
cluded. Likewise the matrix elements 〈M1M2|Qi|B̄〉 are infrared divergent. The observable
of interest is the branching fraction B →M1M2(γ), where γ represents any number of soft
photons with total energy less than ∆E in the B-meson rest frame, and we assume that
∆E � ΛQCD, the scale of the strong interaction. QED effects above this “ultrasoft” scale
∆E are therefore purely virtual. What we compute for the first time in this paper are the
QED corrections to the so-called non-radiative amplitude, which corresponds to the purely
virtual contribution to the non-radiative process B →M1M2 with virtual corrections below
the scale of a few times ∆E removed.

A standard treatment of QED effects takes the pure-QCD amplitude and dresses it with
Bloch-Nordsieck factors that exponentiate the large collinear and soft logarithms ln mB

mM
and

ln mB
∆E , respectively. This procedure is incomplete in several respects. The choice of the

B-meson mass mB in the logarithm implies that the mesons are assumed to be point-like
to distances of order 1/mB instead of the true size of hadrons, 1/ΛQCD. It also neglects
electromagnetic effects above the scale mB. While the latter can be taken into account in
a conceptually straightforward way by including electromagnetic effects into the matching
and evolution of the Wilson coefficients of the effective weak interaction operators Qi, below
the scale mB the situation becomes more complicated. As discussed in [12], between mB
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and a scale a few times ΛQCD, QED effects can be computed in the QED extension of the
soft-collinear effective theory (SCET) framework, more precisely by the two-step matching
to SCETI and SCETII. At the scale ΛQCD, SCETII is strongly coupled but soft photons
can still resolve the structure of the mesons. Only at scales a few times ∆E � ΛQCD,
perturbative computations are again possible, since the mesons can now be treated as
point-like particles in a multipole expansion, in which the leading interaction term is fixed
by gauge invariance. In the present paper, we accomplish the systematic factorization
and calculation of electromagnetic effects within SCET and therefore extend the rigorous
computation of QED effects from mB down to scales of a few times ΛQCD. There remains
a gap in our ability to compute QED effects related to the intrinsically non-perturbative
effects at the scale ΛQCD, which prevent a perturbative matching of SCETII to the effective
theory of point-like hadrons.

The outline of the paper is as follows. In section 2 we introduce some basic defini-
tions and then immediately state the factorization formulas that include QED effects for
the so-called current-current operators Q1,2 in the effective weak interaction Lagrangian.
The factorization formula takes the same form as in QCD alone. In the SCET formalism
the short-distance information is contained in the hard-scattering kernels of SCETI opera-
tors and the hard-collinear “jet” function from matching the spectator-scattering term to
SCETII. We compute them at O(αem) in QED in sections 3 and 5, respectively. How-
ever, compared to QCD, the non-perturbative objects in (1.1) — the decay constants,
LCDAs and form factors — must be generalized to include QED effects. Their definition
and renormalization is discussed in section 4 and further in section 5, but more details on
their renormalization group equations are left to [13]. Section 6 presents a treatment of
the ultrasoft effects mentioned above at the leading logarithmic accuracy. We end with
first estimates of QED effects in the colour-allowed and colour-suppressed tree amplitudes
for πK two-body final states in section 7, and evaluate ratios of branching fractions that
are often employed as diagnostics of New Physics. An appendix rederives the spectator-
scattering kernels in the “old-fashioned” projection formalism to clarify some subtleties in
the interpretation of endpoint-singular convolutions.

2 Factorization formulas

In this work we consider the decay of a Bq (with q = u, d, s) meson into two light pseudo-
scalar mesons M1 andM2 mediated by the current-current operators for b→ u transitions,
given by the weak Hamiltonian

Heff = GF√
2
V ∗uDVub (C1Q1 + C2Q2) + h.c. (2.1)

with the CMM operator basis [14]

Q1 = [ūγµT a(1− γ5)b][D̄γµT a(1− γ5)u],

Q2 = [ūγµ(1− γ5)b][D̄γµ(1− γ5)u], (2.2)

and D = d or s. T a denotes the SU(3) colour generator.
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Figure 1. “Right” and “wrong” insertions of the operator Q2, respectively.

We have to consider two possible flavour flows depicted in figure 1 for Q2 (see e.g. [3]).
First, the “right” insertion, where the “emitted meson” M2 carries flavour (Dū) and is
formed from the [D̄u] quark bilinear in Q1,2 with spinor indices contracted in the bracket.
This contributes to the colour-allowed tree-amplitude α1(M1M2).1 Second, the “wrong”
insertion, which contributes to the colour-suppressed tree-amplitude α2(M1M2), in which
case M2 is made up of a (uū) pair from two different bilinears in Q1,2. A Fierz transforma-
tion would be required in order to factorize the spinor index contractions into a B → M1
transition and a vacuum → M2 transition. Contributions to penguin amplitudes from
contractions of the u and ū field in the same fermion loop are not considered in this paper.

Our main result is that the QCD factorization formula can be extended to include
QED corrections, and takes the same form as in pure QCD:

〈
M1M2|Qi|B̄

〉
= im2

B

{
FBM1
Q2

(0)
∫ 1

0
duT I

i,Q2(u)FM2ΦM2(u) (2.3)

+
∫ ∞
−∞
dω

∫ 1

0
du dv T II

i,⊗(u, v, ω)FM1ΦM1(v)FM2ΦM2(u)FB,⊗ΦB,⊗(ω)
}
.

However, the short-distance kernels now depend on the electric charge Q2 of M2 or the
charges of both mesons. In this case we use the symbol ⊗ = (Q1, Q2). In addition, all non-
perturbative objects, the heavy and light meson’s decay constants F and LCDAs Φ, and
form factors FBM1(0) at q2 = 0, are generalized to include virtual long- and short-distance
photon exchanges. In particular, the B-meson decay constants, LCDAs, and form factors
become process-dependent.

The QCD×QED factorization formula thus describes the four different cases ⊗ =
(0, 0), (−, 0), (0,−), (+,−). In the first two cases, where the meson M2 emitted from the
B →M1 transition is electrically neutral, only the “wrong” insertion of the operators Q1,2
contributes. Since M2 is colour- and charge-neutral, soft gluons and photons decouple
completely from M2 in the heavy-mass limit mb →∞, and the situation closely resembles
that of pure QCD. Moreover, the SCETI B → M1 form factor can be related to and
substituted by the full QCD×QED B → M1 transition form factor as is usually done in
pure QCD. The full QCD×QED B →M1 form factor will be slightly different for a charged
and a neutral meson transition due to QED effects.

When the emitted meson M2 is charged, corresponding to ⊗ = (0,−), (+,−) only the
“right” operator insertion contributes, but the situation is more involved. Soft photon
exchanges between M2 and the B →M1 transition do not cancel and require introducing a

1Notation as in [15].
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process-dependent B →M1 transition “form factor” FBM1
Q2

(0) that knows about the electric
charge and direction of flight of M2. This generalized SCETI B → M1 form factor will
contain soft spectator-scattering contributions, which would otherwise result in endpoint-
singular convolution integrals. As in the case of neutral M2, the SCETI form factor could
be replaced by a QCD×QED transition form factor. The relevant amplitude is the non-
radiative semi-leptonic B̄ → M1`

−ν̄` amplitude in the kinematic limit where the neutrino
becomes soft, q2 = 0 and E` = mB/2. We then replace2

FBM1
− (q2 = 0) → 1

CslZ`
×Anon-rad

B̄→M1`−ν̄`
(q2 = 0, E` = mB/2) , (2.4)

together with an appropriate redefinition of the hard scattering kernel T I
i , which follows

from the QED factorization formula for the semi-leptonic transition, analogous to (2.3).
Here Z` is a lepton-vacuum matrix element of a local SCET operator [12], which appears
as a remnant of collinear factorization after introducing the semi-leptonic amplitude (more
details in section 4.2).

We derive the factorization formulas within the framework of SCET [16–19] in the
following sections. This can be done in a two-step matching procedure QCD×QED →
SCETI → SCETII (see [20] for a review of this approach for QCD factorization of non-
leptonic decays). Along with this we give the operator definitions of all non-perturbative
objects in QCD×QED. Further, we compute the O(αem) contributions to the scattering
kernels T I,II

i .

3 Matching onto SCETI, renormalization and hard-scattering kernels

In the first matching step the current-current operators Qi are matched onto operators
in SCETI by integrating out hard fluctuations at the scale mb. As the effective theory
description is akin to the pure QCD case we mainly follow the conventions of [3], where the
meson M1 moves in the direction of the light-like reference vector nµ− and M2 moves into
the opposite direction nµ+, with n2

+ = n2
− = 0 and n+n− = 2. It is convenient to work in

the B rest frame in which the four-velocity of the B meson is vµ = 1
2(nµ+ +nµ−) = (1, 0, 0, 0).

3.1 SCETI operators

In pure QCD, the SCETI operators consist of an A0- and B1-type heavy-to-light current
for the B → M1 transition [18, 21] multiplied with the unique anti-collinear structure
[χ̄C̄(tn−) /n−2 (1 − γ5)χC̄(0)] related to the leading-twist LCDA φM2 of the emitted meson.
In QCD×QED however, the flavours u and D are distinguishable due to their different
electromagnetic coupling. We thus introduce two copies of the effective operators depending
on the charges of the final state quarks. Generalizing from the pure QCD case [3], the
matching equation then takes the form

Qi(0) =
∫
dt̂ H̃I

i,Q2(t̂)OI
Q2(t)+

∫
dt̂ dŝ

[
H̃IIγ
i,Q2

(t̂, ŝ)OIIγ
Q2

(t, s) + H̃IIg
i,Q2

(t̂, ŝ)OIIg
Q2

(t, s)
]
, (3.1)

2A precise formulation of this schematic replacement is given in (4.19).
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with t̂ = n−q t = mBt, ŝ = n+p
′s = mBs, and p′(q) the momentum of the M1(M2) meson.

The charge-dependent SCETI operators are

OI
0(t) = [χ̄(u)

C̄
(tn−)

/n−
2 (1− γ5)χ(u)

C̄
(0)] χ̄(D)

C (0)/n+(1− γ5)hv(0) ,

OI
−(t) = [χ̄(D)

C̄
(tn−)

/n−
2 (1− γ5)χ(u)

C̄
(0)] χ̄(u)

C (0)/n+(1− γ5)hv(0) ,

OIIγ
0 (t, s) = 1

mb
[χ̄(u)
C̄

(tn−)
/n−
2 (1− γ5)χ(u)

C̄
(0)] χ̄(D)

C (0)
/n+
2
/AC,⊥(sn+)(1 + γ5)hv(0) ,

OIIγ
− (t, s) = 1

mb
[χ̄(D)
C̄

(tn−)
/n−
2 (1− γ5)χ(u)

C̄
(0)] χ̄(u)

C (0)
/n+
2
/AC,⊥(sn+)(1 + γ5)hv(0) , (3.2)

and OIIg
Q2

can be obtained by replacing A → G. Here χ (Aµ, Gµ) are the collinear gauge-
invariant building blocks in SCET for the collinear quark (photon, gluon) fields. Capital
“C” denotes SCETI collinear fields, which can have hard-collinear or collinear virtuality,
while “c” refers exclusively to collinear virtualities (similarly, for the anti-collinear fields).
Gauge-invariance is achieved by dressing fields with the SU(3)c × U(1)em collinear Wil-
son lines

χ
(q)
C = [W (q)

C ]†ξ(q)
C , χ

(q)
C̄

= [W (q)
C̄

]†ξ(q)
C̄
, (3.3)

where

W
(q)
C = exp

{
+iQqe

∫ 0

−∞
ds n+AC(x+ sn+)

}
P exp

{
igs

∫ 0

−∞
ds′ n+GC(x+ s′n+)

}
.

(3.4)

Qq denotes the electric quark charge in units of e =
√

4παem. The SCET building blocks
for the (electrically neutral) photon and gluon fields are

AµC,⊥ = e

[
AµC,⊥ −

i∂µ⊥n+AC
in+∂

]
, GµC,⊥ = W

(0)†
C

[
iD

µ,(0)
C,⊥ W

(0)
C

]
, (3.5)

where W (0)
C denotes the QCD-only part of the Wilson line, and similarly for the covariant

derivative, iDµ
C,⊥ = i∂µ⊥+eAµC,⊥+gsGµC,⊥. For the anti-collinear fields analogous definitions

and conventions apply with the replacements C → C̄, n± → n∓.
At this point, the main difference in the anti-collinear sector of the M2 meson with

respect to pure QCD is that in the product χ̄(D)
C̄

[ . . .]χ(u)
C̄

the QCD Wilson lines combine to
a finite-length Wilson line, but the QED Wilson lines do not for charged mesons due to the
different quark electric charges. We note that — as in pure QCD — the operators OII are
suppressed by one power of ΛQCD/mb with respect to the OI. However, as is well-known,
the form-factor and hard spectator-scattering terms contribute to the decay amplitude at
the same order in the heavy-quark expansion. Hence, both operators are relevant after
integrating out the hard-collinear scale and matching onto SCETII.

At leading power the C and C̄ fields can only interact with soft modes via the ex-
change of eikonal gluons or photons. These interactions can be removed from the SCETI
Lagrangian by redefining the collinear and anti-collinear fields with soft Wilson lines

S(q)
n±(x) = exp

{
−iQqe

∫ ∞
0
ds n±As(x+ sn±)

}
P exp

{
−igs

∫ ∞
0
ds n±Gs(x+ sn±)

}
.

(3.6)
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Figure 2. O(αem) vertex corrections to HI.

q2b

ūq1

Aµ
⊥

q2b

ūq1

Aµ
⊥

q2b

ūq1

Aµ
⊥

q2b

ūq1

Aµ
⊥

Figure 3. O(αem) spectator-scattering corrections to HII.

If χ(q)
C̄

creates an outgoing antiquark with electric charge Qq, the redefinition reads

χ
(q)
C̄

(x)→ S(q)
n+(x+)χ(q)

C̄
(x) , (3.7)

while S† must be used for an outgoing quark. As a consequence the anti-collinear meson
M2 decouples from the B → M1 transition already at the hard scale mb. As we only
consider colour-singlet operators, the QCD part of the soft Wilson lines from the anti-
collinear sector cancels. However, the QED Wilson lines combine to a soft Wilson line
S
†(QM2 )
n+ (x+) that carries the total electric charge of the emitted M2 meson.

3.2 Matching equation and renormalization

We compute the matching coefficients HI
i,Q2

(u) and HIIγ
i,Q2

(u, v) in (3.1) to O(αemα
0
s) by

computing suitable quark-gluon matrix elements. More precisely, we compute the corre-
sponding momentum-space coefficients.3 At this order, this implies one-loop QED match-
ing of the OI operators, and tree-level matching of OIIγ . The diagrams are shown in
figures 2 and 3. The matching coefficients HIIg

i,Q2
start at O(αs) and correspond to the

pure-QCD coefficients at this order.
In analogy to QCD, the ultraviolet (UV) renormalized matrix elements of the Qi can

be written as

〈Qi〉 =
{
A

(0)
i + αem

4π
[
A

(1)
i + Z

(1)
ext A

(0)
i + Z

(1)
ij A

(0)
j

]
+O(α2

em)
}
〈O〉(0) , (3.8)

where the superscript indicates the expansion coefficients in powers of αem(µ)/(4π). Here
A

(0)
i (A(1)

i ) are the bare tree-level (one-loop) on-shell matrix elements of operators Qi. The
3As indicated by the omission of the tilde symbol. The relation reads HI(u) =

∫
dt̂ eiut̂H̃I(t̂) and

HII(u, v) =
∫
dt̂dŝ ei(ut̂+(1−v)ŝ)H̃II(t̂, ŝ).

– 7 –



J
H
E
P
1
1
(
2
0
2
0
)
0
8
1

factor

Z
(1)
ext = −1

2Q
2
d

(
3
[

1
ε

+ ln
(
µ2

m2
B

)]
+ 4

)
, (3.9)

accounts for the one-loop on-shell renormalization of the b-quark field. The sum over j
includes not only the operators Q1,2, but also the two evanescent operators (non-vanishing
only in d 6= 4 space-time dimensions) [7]

E
(1)
1 = ūγµγνγρT a(1− γ5)b D̄γµγνγρT a(1− γ5)u− 16Q1 ,

E
(1)
2 = ūγµγνγρ(1− γ5)b D̄γµγνγρ(1− γ5)u− 16Q2 (3.10)

to close the operator basis under renormalization at the one-loop order. The factor Zij
denotes the one-loop QED operator renormalization constants

Z
(1)
ij = 1

ε

(
6QuQd 0 1

4(Q2
u +Q2

d + 2QuQd) 0
0 6QuQd 0 1

4(Q2
u +Q2

d + 2QuQd)

)
, (3.11)

where the column index j refers to (Q1, Q2, E
(1)
1 , E

(1)
2 ). The evanescent operators contribute

finite terms from Z
(1)
ij A

(0)
j to 〈Qi〉 through the O(ε) terms of A(0)

j . Eq. (3.8) applies to the
matching onto both SCETI operator types, OI and OII, but for the second the equation is
trivial, since we need to consider only tree-level matching.

To obtain the UV finite hard-scattering kernels, we also need the renormalized matrix
elements of the SCET operators. Since the on-shell matrix elements are scaleless and
vanish, only the ultraviolet renormalization kernel Y (1) of the SCETI operator has to be
included. We then find for the hard-scattering kernels

H
(0)
i = A

(0)
i ,

H
(1)
i = A

(1)
i + Z

(1)
ij A

(0)
j +

(
Z

(1)
ext − Y (1)

)
A

(0)
i , (3.12)

where we have omitted the charge (Q2) and SCET operator (I/II) indices for simplicity. For
the wrong insertion, the operators Qi match onto the Fierz-transformed operator Õ (see [7])
which is equivalent to O in d = 4 dimensions. In this case an additional term appears on
the right-hand side of (3.12) from the requirement that the renormalized matrix element
of the evanescent operator Õ − O vanishes when infrared (IR) divergences are regulated
with a non-dimensional regulator. At the one-loop order only the difference between the
SCET renormalization kernels Ỹ (1) − Y (1) enters. However, this can be shown to be O(ε),
hence (3.12) applies to both the right and wrong insertion.

Since the anti-collinear fields are decoupled from the collinear and soft ones, we can
write the SCET renormalization kernel as the sum of two pieces

Y (1)(u, v) = Z
(1)
J δ(u− v) + Z

(1)
C̄

(u, v) , (3.13)

where ZC̄ is the anti-collinear kernel and ZJ the SCET heavy-to-light current renormaliza-
tion constant. These correspond, respectively, to the pole parts of anti-collinear loops and
soft plus collinear loops. In pure QCD, this expresses the factorization of the M2 meson
from the B →M1 transition, and the above SCET renormalization kernel indeed factorizes
into two separately well-defined pieces. In QED, the situation is more involved, since soft
photons connect M2 and the B →M1 transition, when M2 carries electric charge.
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ū
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Figure 4. Diagrams at O(αem) that contribute to the anomalous dimensions of the operator (3.14).

3.2.1 Anti-collinear kernel

We first consider the QED renormalization of the anti-collinear operator

χ̄
(q1)
C̄

(tn−)
/n−
2 (1− γ5)χ(u)

C̄
(0) . (3.14)

To this end we compute the diagrams in figure 4 by calculating its matrix element with
external quark states with a small off-shellness (k2

q1 for the q1-quark and k2
ū for the ū-quark)

to ensure that all poles arise from UV divergences. Including MS external quark-field
renormalization, we find

〈Obare〉1-loop(u) = αem(µ)
4π

2
ε

∫ 1

0
dv V (u, v) 〈Obare〉tree(v) +O(ε0) (3.15)

with

V (u, v) = δ(u− v)
(

(Qq1 −Qu)2
(1
ε

+ 3
4

)
+ (Qq1 −Qu)

(
Qq1 ln µ2

−k2
q1

−Qu ln µ2

−k2
ū

))

+QuQq1

[(
1 + 1

v − u

)
u

v
θ(v − u) +

(
1 + 1

u− v

) 1− u
1− v θ(u− v)

]
+
. (3.16)

The one-loop Z-factor is then given by

Z
(1)
C̄

(u, v) = −2
ε
V (u, v) . (3.17)

The plus-distribution (in the variable u) is defined as∫ 1

0
du
[
. . .
]

+
f(u) ≡

∫ 1

0
du
[
. . .
]
(f(u)− f(v)) . (3.18)

For an electrically neutral meson (q1 = u) the first line in (3.16) vanishes and we recover the
QCD ERBL evolution kernel [22–24] for the LCDA of pseudoscalar mesons upon replacing
αemQ

2
u → αsCF . However, for unequal quark charges, as applicable to an electrically

charged meson, the Z-factor and corresponding anomalous dimension / kernel depend on
the off-shellness of the quarks, that is, the IR regularization. We shall see next that this
dependence is cancelled in the renormalization of the full SCETI operator, but take note
that the above result implies that the anti-collinear operator (3.14) alone is ill-defined for
unequal quark electric charges. We further note that the 1/ε pole in V (u, v) implies that
Z

(1)
C̄

(u, v) contains a double-pole, contrary to the corresponding QCD LCDA kernel, and
hence the anomalous dimension has a cusp logarithm.
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hv ξc

c

hv ξc

s

hv ξc

s

hv ξc

s

Figure 5. Diagrams at O(αem) that contribute to the renormalization of the operator (3.19).
The black dot denotes the Wilson line operator S†(QM2 )

n+ . Field-renormalization diagrams are not
displayed.

3.2.2 Generalized heavy-to-light current

The remaining soft and collinear fields of the OI operators define the generalized heavy-to-
light current

χ̄
(q2)
C (0)/n+(1− γ5)S†(QM2 )

n+ hv(0) . (3.19)

The soft Wilson line Sn+ arises from the soft decoupling of the anti-collinear fields com-
posing (3.14). We emphasize that no soft decoupling field redefinition has been performed
in the collinear sector.4

To calculate the renormalization factor ZJ at the one-loop order, we regularize the IR
divergences non-dimensionally by introducing an off-shellness k2

q2 for the light quark q2. In
addition, we have to modify the integer-charge soft Wilson line propagators as discussed
in appendix A in [12] to be consistent with the off-shell IR regulator used in the anti-
collinear sector. For incoming photon momentum k, the soft Wilson-line propagator must
be modified as

1/[n+k − i0+]→ 1/[n+k − δc̄ − i0+] , (3.20)

where
δc̄ ≡ k2

q1/(n−kq1) = k2
ū/(n−kū) . (3.21)

The last equality imposes a relation between the a priori independent off-shellnesses k2
q1 , k

2
ū

and momentum fractions of the quark and anti-quark of the anti-collinear mesonM2, which
appear in (3.16). This relation is necessary to maintain the identity S†(d)

n+ S
(u)
n+ = S

†(QM2 )
n+

for the regularized Wilson lines, which was used to obtain (3.19) from the soft decoupling
in the anti-collinear sector.

The computation of the one-loop diagrams in figure 5 gives the MS renormalization
factor

Z
(1)
J = −Q2

d

{ 1
ε2

+ 1
ε

[
L+ 5

2

]}
+ 2QM2Qd

{ 1
ε2

+ 1
ε

[
L+ 3

2 + iπ

]}
−Q2

M2

1
ε

[
L+ 3

2 + 2 ln
(−δc̄
µ

)
+ iπ

]
, (3.22)

4Soft Wilson lines without position argument are understood to refer to x = 0.
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where we defined

L ≡ ln
(
µ2

m2
B

)
. (3.23)

For neutral mesons M2, that is for QM2 = 0, this reduces to the QCD result (see e.g. [7])
after replacing the charge factor Q2

d → CF .

3.2.3 SCETI renormalization constants

Combining (3.22) with Z(1)
C̄

from (3.17) gives for the renormalization constant (3.13) of the
SCETI operators OI

Y (1)(u, v) = δ(u− v)
(
−Q2

d

{ 1
ε2

+ 1
ε

[
L+ 5

2

]}
+ 2QM2Qu

{ 1
ε2

+ 1
ε

[
L+ iπ + 3

2

]}
+ 2
ε
QM2

[
Qd ln u−Qu ln (1− u)

] )
(3.24)

− 2
ε
Qu (Qu +QM2)

[(
1 + 1

v−u

)
u

v
θ(v−u) +

(
1 + 1

u−v

) 1−u
1−v θ(u− v)

]
+
.

As required, the full renormalization kernel does not depend on the IR regularization.
However, as mentioned before, in QED the kernel does not factorize into an anti-collinear
part and a soft plus collinear part, which could be employed to renormalize consistently
the corresponding operators, since the separate anomalous dimensions would not be IR
finite. This was already discussed previously [12] for Bq → µ+µ− decays. Factorization
can be restored by performing a rearrangement of soft-overlap terms, as will be discussed
in section 4.

The renormalization constant Y (1) of the SCETI operators OII follow without further
computation. The anti-collinear part is identical to (3.14) above, while the remaining soft
and collinear fields are

1
mb

χ̄
(q2)
C (0)

/n+
2
/AC,⊥(sn+)(1 + γ5)S†(QM2 )

n+ hv(0) . (3.25)

At the one-loop order, the renormalization constant of this operator coincides with (3.22)
for the simpler operator (3.19), since the photon has no self-interactions and the renor-
malization of the χ̄(q2)

C (0) /n+ΓS†(QM2 )
n+ hv(0) operator is independent of the Dirac matrix Γ.

However, as we compute the matching coefficient of the OII operators only at tree level,
we will not need this result.

3.3 Hard-scattering kernels HI
i,Q2

Matching Q1,2 to the SCET operators OI
Q2

(t) at tree-level gives the kernels HI(0)
i,Q2

:

H
I(0)
1,− (u) = 0 , H

I(0)
1,0 (u) = CF

Nc
, (3.26)

H
I(0)
2,− (u) = 1 , H

I(0)
2,0 (u) = 1

Nc
. (3.27)
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We recall that the right (wrong) insertion corresponds to the charge QM2 = −1 (QM2 = 0)
of M2. The tree-level kernels coincide with those of pure QCD. As in QCD the right inser-
tion of the colour-octet operator Q1 cannot match onto the colour-singlet SCET operator
OI
Q2

(t) at tree-level. This remains true in QED to all orders in αem (but leading order in
αs), as does the relative colour factor between HI

1,0(u) and HI
2,0(u), that is

HI
1,−(u) = 0, HI

1,0(u) = CFH
I
2,0(u) (3.28)

to all orders in pure QED.
The hard-scattering kernels at the one-loop order can be extracted from the diagrams

shown in figure 2. We compute the on-shell matrix elements A(1)
i and use the previously

given renormalization factors to obtain HI(1)
i,Q2

using (3.12). In complete generality, we find
for the right-insertion of the operator

[q̄2γ
µ(1− γ5)b][q̄1γµ(1− γ5)u] (3.29)

the hard-scattering function

H
I(1)
2,− (u) =Qq1Qq2

(
L2 − 4Lν + L

(
4 + 2iπ − 2 ln u

)
+ ln2 u− 2iπ ln u− 7π2

6 + 1
)

−QuQq2
(
L2−Lν+L (4+2iπ−2 ln ū)− ln ū

(
3+2iπ−ln ū

)
− 7π2

6 +3iπ+6
)

+QuQd

(1
2L

2−4Lν−2L (−1+ln ū)+2 ln2 ū− 2
u

ln ū+2Li2 (u)+π2

12−3
)

−QdQq1
(1

2L
2−Lν+L(2−2 ln u)+2 ln2 u−3 ln u+ ln u

ū
+2Li2(ū)+π2

12 + 2
)

− 3 (Qq1 +Qu) (Qq2 +Qd)

−Qq2Qd
(1

2L
2 − Lν + 2L+ π2

12 + 4
)
−Q2

d

(1
2Lν + L+ 2

)
− 1

2Q
2
q2 (Lν − L)

− 1
2
(
Q2
q1 +Q2

u − 2QuQq1
)

(Lν − L) , (3.30)

where Qd represents the bottom-quark charge. We use the bar-notation ū ≡ 1 − u and
introduced

Lν ≡ ln
(
ν2

m2
B

)
, (3.31)

where ν refers to the scale of the Wilson coefficients, Ci(ν), which we distinguish from the
scale µ in L. The explicit logarithms of ν cancel the electromagnetic scale dependence of
the Wilson coefficients, whereas the µ dependence cancels with the scale dependence of the
non-perturbative objects on the right-hand side of the factorization formula (2.3) for the
operator matrix elements such that the matrix elements are only ν dependent.

The first four lines of (3.30) correspond to the first four diagrams in figure 2 and
together with the evanescent-operator contribution in the fifth line reproduce the QCD
result [7] for T I

1(u) up to the colour factor CF /(2Nc) when putting all quark electric charges
equal to 1. The second-to-last line accounts for the last diagram in the second row of
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figure 2 and Zext, and — with the same replacement of charge factors — equals the quantity
CFF /CF in QCD as defined in [7].

The wrong insertion of the generalized four-quark operator (3.29) can be obtained from
the right insertion via

H
I(1)
2,0 (u) = 1

Nc
H

I(1)
2,− (u)− 1

Nc
(Qd −Qu) (Qq2 −Qq1) . (3.32)

For general quark charges the operator (3.29) is not gauge-invariant, hence the coefficients
of the different quark charge factors in (3.30) are gauge-dependent. The above result is
given in Feynman gauge. The gauge dependence of course cancels when we specialize to
the physical quark charge assignments as done next. We further note that above and in
the remainder of this paper, we do not distinguish between the pole b-quark mass mb and
the B-meson mass mB, which hence appears in the argument of L.

For the physical case when the meson M2 is charged (q1 = d and q2 = u), we replace
Qq1 = Qd = −1/3 and Qq2 = Qu = 2/3 in (3.30) and obtain

H
I(1)
2,− (u) = −13L2

18 + 4
3Lν − L

(41
18 + 4iπ

3 −
4
3 ln(1− u)− 2

3 ln u
)

−2f(u) + 4f(1− u)
9 − (2− u) ln(u)

3(1− u) + 83π2

108 −
4iπ
3 −

19
9 . (3.33)

Likewise for neutral M2 (q1 = u and q2 = d), we replace Qq1 = Qu = 2/3 and Qq2 = Qd =
−1/3 in (3.32), in which case

H
I(1)
2,0 (u) = − 1

54L
2 + 4

9Lν −
5
54L−

2
27g(u)− π2

324 + 29
27 . (3.34)

We defined

f(u) = Li2(1− u) + 2 ln2 u− (3 + 2iπ) ln u− ln u
1− u (3.35)

and

g(u) = 3
(1− 2u

1− u ln u− iπ
)

+
[
2 Li2(u)− ln2 u+ 2 ln u

1− u − (3 + 2iπ) ln u− (u→ 1− u)
]
. (3.36)

The kernels HI(1)
1,− (u), HI(1)

1,0 (u) of the octet operator Q1 follow from the all-order identi-
ties (3.28).

3.4 Hard-scattering kernels HIIγ
i,Q2

The logic of the matching calculation for the spectator-scattering contribution follows [4].
Here the full two-step matching QCD×QED→ SCETI→ SCETII needs to be performed to
factorize the kernel into its hard and hard-collinear components. The matching coefficients
HIIγ
i,Q2

(u, v) in momentum space, which account for the hard contribution can be extracted
from the on-shell five-point b→ [q1ū] q2γ amplitude

〈q1(q1)ū(q2)q2(p′1)γ(p′2)|Qi|b(p)〉 (3.37)
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and the corresponding SCETI matrix elements of the right-hand side of (3.1). For the
right insertion, q1 = d, q2 = u (vice versa for the wrong insertion). It is convenient to
choose the polarization of the external collinear photon state to be transverse to nµ±. With
one exception, we can set the small transverse components of the external momenta to
0, since the operator OIIγ

Q2
does not contain transverse derivatives for the photon with

transverse polarization. The momenta in the anti-collinear direction are then q1 = umB
n+
2 ,

q2 = ūmB
n+
2 , those of the collinear quark and photon are p′1 = vmB

n−
2 , p′2 = v̄mB

n−
2 , and

for the heavy quark momentum pµ = mBv
µ. For such external momenta the SCET and

HQET spinors coincide with the QCD ones.
The leading O(αem) contributions to theHIIγ

i,Q2
(u, v) kernels require only the calculation

of the tree-level diagrams in figure 3. Denoting by the angle bracket the matrix element in
the external state specified above, the matching relation (3.1) for Q2 amounts to

〈Q2〉 =
4∑
i=1

Si = H
Iγ,(tree)
2,Q2

⊗ 〈OI
Q2〉

(tree) +H
IIγ,(tree)
2,Q2

⊗ 〈OIIγ
Q2
〉(tree) , (3.38)

where ⊗ denotes the convolution in momentum fractions, and Si the contribution from
the four diagrams in figure 3 ordered as shown. The exception to setting the transverse
momentum components to 0 applies to diagram 4, since the q2-quark propagator with
momentum p′ = p′1 + p′2 becomes singular. These non-local, long-distance contributions
exactly cancel in the matching relation against time-ordered products of OI

Q2
and the SCET

interaction Lagrangian [25]. The local, short-distance contribution S4|SD to the matching
coefficient can be extracted via the substitution [4]

i/p′

p′2
→ i

n+p′
/n+
2 . (3.39)

We then find, for the right insertion of Q2,

S1 = 0 ,

S2 = 2eQu
ūmb

〈
/n−
2 〉C̄ ξ̄

(u)
C γµ⊥(1 + γ5)hvε∗µ ,

S3 = 2eQd
mb
〈
/n−
2 〉C̄ ξ̄

(u)
C γµ⊥(1 + γ5)hvε∗µ ,

S4|SD = 0 , (3.40)

with abbreviation
〈
/n−
2 〉C̄ ≡

[
ξ̄

(q1)
C̄

/n−
2 (1− γ5)ξ(u)

C̄

]
. (3.41)

External spinors are denoted by their corresponding fields. The advantage of choosing
a transversely polarized external photon is that with n± · ε = 0, the tree-level SCET
matrix element 〈OI

Q2
〉 becomes simple. Since the collinear photon is decoupled from the

anti-collinear and heavy-quark fields, the external photon can attach only to Wilson lines,
which gives zero due to n− ·ε = 0, or to the outgoing collinear quark q2. However, the SCET
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diagram corresponding to the fourth diagram S4 in figure 3 reproduces the long-distance
contribution to S4, that was already removed when the substitution (3.39) was made.

Hence we set the first term on the right-hand side of (3.38) to zero. Noticing further
that the field products in (3.40), (3.41) match the structure of OIIγ

Q2
, we find for the hard-

scattering kernels
HIIγ

2,−(u, v) = NcH
IIγ
2,0 (u, v) = 2

ū
Qu + 2Qd , (3.42)

which correspond to the “right” and “wrong” insertion of operator Q2. The scattering
kernels for Q1 relate to those of Q2 in the same way as for HI

2,Q2
:

HIIγ
1,0 (u, v) = CFH

IIγ
2,0 , HIIγ

1,−(u, v) = 0 . (3.43)

We do not compute QED corrections to the coefficients HIIg of the gluon operators, which
contribute first at O(αemαs).

We conclude this section with an important remark. In QCD, only the non-factorizable
diagrams S1 + S2 contribute to the scattering kernels T II. In this sum, the longitudinally
polarized gluons cancel and hence it is not necessary to assume the transverse polarization
for the matching. This is different in QED. When computing these diagrams naively by
projecting them on the LCDAs of the mesons one encounters endpoint divergences that
would indicate a breakdown of factorization. These arise only from longitudinally polarized
photons. Consistency of the SCET analysis above requires that these terms are contained in
the matrix element 〈OI

Q2
〉 of the first operator in the factorization formula, and hence they

are actually part of the generalized heavy-to-light SCETI form factor, which we define
below. We demonstrate this explicitly in appendix A by repeating the calculation for
general photon polarization.

4 SCETI factorization

In (3.2) of the previous section we identified the SCETI operators relevant to the non-
radiative amplitude at leading power, discussed their renormalization, and derived finite
matching coefficients (scattering kernels) at O(αem). The decoupling of soft photons from
the anti-collinear sector, which describes the M2 meson, suggests that the anti-collinear
part (3.14) of these operators and the collinear plus soft part (3.19) (and the corresponding
operators with an additional hard-collinear photon, see (3.2)), should be treated as separate
entities that renormalize independently. However, as already mentioned at the end of
section 3.2.1, for the case of an electrically charged meson M2, this soft decoupling from
M2 does not happen, leaving an IR divergent anomalous dimension in conflict with the naive
SCET factorization. Following [12], we will now see that factorization can be restored by a
“soft rearrangement” that moves a soft overlap contribution between the soft to the (anti-)
collinear sector.

4.1 Soft rearrangement

For charged M2, the UV poles (3.16), (3.17) of the purely anti-collinear operator (3.14)
depend on the IR regulator, in our case the small off-shellness of the external partonic
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momenta. The critical terms originate from the soft limit of the anti-collinear propaga-
tors in the diagrams in figure 4. To deal with this soft overlap contribution and make
the anti-collinear part of the full SCETI operator well-defined on its own, we define the
rearrangement factors Rc and Rc̄ through∣∣∣∣〈0|[S†(QM2 )

n+ S
(QM2 )
n−

]
(0) |0〉

∣∣∣∣ ≡ R(QM2 )
c̄ R

(QM2 )
c (4.1)

in close analogy to [12]. Taking the absolute value ensures that we do not introduce soft
rescattering phases into the collinear sector. We emphasize that the dimensionally regulated
on-shell vacuum matrix element equals unity to all orders in αem, since the soft Wilson
lines give rise only to scaleless integrals. However, to consistently define the renormalized
anti-collinear matrix element, we must compute (4.1) with the same dimensional UV and
off-shell IR regularization that was used to obtain (3.16), (3.17). We define the split of
the vacuum matrix element (4.1) into the two factors on the right in such a way that the
divergent part of R(QM2 )

c̄ depends only on the off-shell regulator δc̄ in the anti-collinear
sector defined in (3.20), while R(QM2 )

c depends only on an accordingly defined δc with
n− ↔ n+. Also the finite terms of these factors, which are of no concern in the following,
are defined such that R(QM2 )

c̄ follows from R
(QM2 )
c through the interchange n− ↔ n+.5 We

then find
R

(QM2 )
c̄ = 1− αem

4π Q 2
M2

[ 1
ε2

+ 2
ε

ln µ

−δc̄
+O(ε0)

]
, (4.2)

at O(αem). A corresponding expression for R(QM2 )
c holds by replacing δc̄ → δc. We assume

δc̄ < 0 to not introduce spurious imaginary parts from the definition of the IR regulator.
The rearrangement affects the definition of the QED-generalized LCDA for charged

light mesons as well as the generalized SCETI form factors. We redefine the anti-collinear
operator (3.14) by multiplication with R(QM2 )

c̄ , and the QED-generalized LCDA and decay
constant of the light meson M2 by

〈M2(p)|R(QM2 )
c̄ χ̄

(q)
c̄ (tn−)

/n−
2 (1− γ5)χ(u)

c̄ (0)|0〉 = in−p

2

∫ 1

0
du eiu(n−p)tFM2ΦM2(u) , (4.3)

with q = u or d and QM2 = Qq−Qu. One can check using (3.16), (3.21) that (4.2) removes
the dependence on the IR regulator, which allows to renormalize (4.3) consistently. The
renormalization group evolution of this LCDA will not be needed in the following, and we
defer a detailed discussion to [13]. When the light mesonM2 is neutral, the above definition
coincides with the standard definition in QCD, since R(0)

c̄ = 1 trivially by definition.
Since the full SCETI operator OI

Q2
(t) should not be modified, multiplying its anti-

collinear part with R
(QM2 )
c̄ requires that we divide the soft and collinear part by this

5The notation differs from [12], where the nµ− direction is defined as the direction of flight of the negatively
charged `−. In addition, in [12] the full vacuum matrix element instead of its absolute value was employed
in the definition, and the split into the two factors was made such that both had the same dependence on
δc and δc̄.
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factor, which defines the generalized SCETI B →M1 form factors as follows:

〈M1(p′)| 1

R
(QM2 )
c̄

χ̄
(q)
C (0)/n+(1− γ5)S†(QM2 )

n+ hv(0)|B̄〉

= 4EM1ζ
BM1
Q2

(EM1) , (4.4)

〈M1(p′)| 1

R
(QM2 )
c̄

1
mb

χ̄
(q)
C (0)

/n+
2
/AC,⊥(sn+)(1 + γ5)S†(QM2 )

n+ hv(0)|B̄〉

= −2EM1

∫ 1

0
dτeiτ(n+p′)s ΥBM1

Q2
(EM1 , τ) , (4.5)

where EM1 = n+p
′/2 = (m2

B − q2)/(2mB) is the energy of meson M1 in the B-meson
rest frame for vanishing light-meson mass mM1 = 0. For the matrix element of the gluonic
operator OIIg

Q2
we replace A → G and ΥBM1

Q2
(EM1 , τ)→ ΣBM1

Q2
(EM1 , τ). Since the full SCETI

operator and the anti-collinear operator after the soft rearrangement are well-defined, so
are the generalized form factors. Note that they carry information about the meson M2,
but only of its charge QM2 and direction of flight nµ+ through the additional Wilson line
S
†(QM2 )
n+ and soft rearrangement, as expected from the universality of soft interactions.

The definitions above are such that in the pure-QCD limit αem → 0 the form factors (ζ,Σ)
reduce to (ξ,Ξ) in the notation of [3], and Υ→ 0.

With these preparations, taking matrix elements of (3.1), the SCETI factorization
formula reads〈

M1M2
∣∣Qi∣∣B̄〉 = im2

B

{
ζBM1
Q2

∫ 1

0
duHI

i,Q2(u)FM2ΦM2(u)

− 1
2

∫ 1

0
du dz

[
HIIγ
i,Q2

(u, z) ΥBM1
Q2

(1− z)

+HIIg
i,Q2

(u, z) ΣBM1
Q2

(1− z)
]
FM2ΦM2(u)

}
, (4.6)

where we have dropped the energy argument of the form factors, which is EM1 =
mB/2 here.

4.2 The soft form factor and the semi-leptonic amplitude

In the first line of (4.6) we recognize the first line of the previously stated QED factorization
formula (2.3), if we identify

FBM1
Q2

(q2 = 0)→ ζBM1
Q2

(EM1 = mB/2), T I
i,Q2(u)→ HI

i,Q2(u) . (4.7)

In pure QCD, at this point one replaces the cooresponding SCETI form factor ξBM1(E)
by the full QCD form factor, using a similar factorization formula for the form factor [26],
since it is the full QCD form factors which are calculated with light-cone QCD sum rules
or lattice QCD. The factorization formula (4.6) including QED effects contains the QED-
generalized light-meson LCDA and the generalized SCETI form factor ζBM1

Q2
(E). If M2 is

neutral, the latter can again be replaced by the full QCD×QED theory matrix element
of the local heavy-to-light current operator, which corresponds to the usual form factor,
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but including QED effects. However, for charged M2, the generalized form factor ζBM1
Q2

(E)
contains a Wilson line that knows aboutM2, which cannot be written as the matrix element
of a local operator. The physical quantity in the full theory with the same IR physics is
now the non-radiative amplitude of the semileptonic decay B̄ → M1`

−ν̄` in the kinematic
point q2 = 0 and E` = mB/2. We therefore consider eliminating ζBM1

Q2
(E) in favour of

this semi-leptonic amplitude by making use of the QED generalization of the factorization
theorem for heavy-to-light form factors, discussed in generality in [27].

4.2.1 Semi-leptonic QED factorization

The Hamiltonian for the b→ u`−ν̄` transition is

Hsl = GF√
2
VubCslQsl , (4.8)

with
Qsl = ūγµ(1− γ5)b ¯̀γµ(1− γ5)ν . (4.9)

Unlike in pure QCD, where Csl = 1 to all orders in the strong coupling, the semi-leptonic
b → u`−ν̄` transition receives short-distance QED and electroweak corrections from the
scale O(mW ). The Wilson coefficient Csl = Csl(ν) evolves under the renormalization group
frommW to the scale ν ∼ O(mb), which sums large logarithms αnem lnm(mW /mb) (m ≤ n).6

The product CslQsl is independent of the scale ν. In essence, as far as electroweak and
QED effects are concerned, Qsl is not very different from the four-quark operators. The
one-loop expression for the Wilson coefficient is known from [28], see also (7.11) below.
The non-radiative semi-leptonic amplitude is given by

Asl,M1
non-rad = GF√

2
VubCsl

〈
M1`

−ν̄`
∣∣Qsl

∣∣B̄〉
≡ GF√

2
Vub 4EM1

[
ū(p`)

/n−
2 (1− γ5)vν`(pν)

]
Asl,M1

red . (4.10)

The second line defines the ν-independent reduced amplitude Asl,M1
red , which is the analogue

of the standard form factor for the case of the electrically neutral M2.
A completely analogous analysis of QCD×QED → SCETI matching for the semi-

leptonic operator Qsl instead of the hadronic operators Q1,2 results in

〈
M1`

−ν̄`
∣∣Qsl

∣∣B〉 = 4EM1

[
ū(p`)

/n−
2 (1− γ5)vν`(pν)

]
Z`

{
HI

sl(E`) ζ
BM1
− (EM1)

− 1
2

∫ 1

0
dz
[
HIIγ

sl (E`, z) ΥBM1
− (EM1 , 1− z)

+HIIg
sl (E`, z)ΣBM1

− (EM1 , 1− z)
]}
, (4.11)

which can be compared to (4.6) for Q2 = −, where the same generalized form factors
appear. That the lepton `− is point-like entails some simplifications. Instead of the LCDA

6The Fermi constant GF , defined as the short-distance µ− → e−νµν̄e decay amplitude (that is, excepting
low-energy QED corrections), is not renormalized.
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ofM2 defined through the matrix element of (3.14), we need the matrix element of the anti-
collinear point-like lepton field χ(`)

C̄
= [W (`)

C̄
]†ξ(`)

C̄
[12], which defines the factor Z` in (4.11),

and there is no integral over u.
The UV renormalization of Z` follows the same line of reasoning as for the light-meson

LCDA, but is technically simpler. The dimensionally UV and off-shell IR regulated matrix
element of the dressed lepton field operator is

〈
`−(p`)

∣∣χ̄(`)
C̄

(0)
∣∣0〉 = ū(p`)

/n−/n+
4

{
1 + αem

4π Q2
`

[ 2
ε2

+ 3
2ε + 2

ε
log µ2

−p2
`

+O(ε0)
]}

. (4.12)

The UV pole depends on the IR regulator p2
` , as was to be expected, since we must multiply

with the soft rearrangement factor

R
(Q`)
c̄ = 1− αem

4π Q2
`

[ 1
ε2

+ 2
ε

ln µ

−δc̄
+O(ε0)

]
= R

(QM2 )
c̄ , (4.13)

which was divided out in defining the generalized form factors appearing in (4.11). Con-
sistency requires that the same δc̄ appears here, so that the second equality holds, that
is, p2

` must be chosen such that p2
`/n−p` = δc̄ with n−p` = 2E`. Similar to (4.3) for the

soft-rearranged LCDA for the light meson, we now define Z` for the point-like lepton via

〈
`−(p`)

∣∣R(Q`)
c̄ χ̄

(`)
C̄

(0)
∣∣0〉 ≡ Z`ū(p`)

/n−/n+
4 , (4.14)

and obtain
Zbare
` = 1 + αem

4π Q2
`

[ 1
ε2

+ 3
2ε + 2

ε
ln
(

µ

n−p`

)
+O(ε0)

]
. (4.15)

The given pole part determines the UV renormalization constant, which is the analogue
of (3.17), but for the case of a point-like charged particle. The quantity Z` that en-
ters (4.11) above is the UV renormalized on-shell matrix element

〈
`−(p`)

∣∣R(Q`)
c̄ χ̄

(`)
C̄

(0)
∣∣0〉,

see (5.8) below.
The matching coefficients HI

sl(E`) and HII
sl (E`, z) in (4.11) can be obtained from the

general expression (3.30) for HI(u) and (3.42) for HII by replacing Qq1 → Q`, Qu → 0 and
u→ 2E`/mB. Setting now E` = mB/2 (for this value we drop the lepton-energy argument
of the matching coefficients), we find HI(0)

sl = 1 and

H
I(1)
sl = Q`Qu

(
L2 − 3Lν + (3 + 2iπ)L− 7π2

6 − 2
)

−Q2
d

(1
2L

2 + 5
2L+ π2

12 + 6
)
, (4.16)

HIIγ
sl (z) = 2Qd . (4.17)

4.2.2 Introducing Asl,M1
red

For charged M2, we now use the factorization formula for the reduced semi-leptonic am-
plitude Asl,M1

red implied by (4.11) to eliminate the SCET1 form factor ζBM1
− . For neutral
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M2, we follow the standard QCD procedure [29] and replace ζBM1
0 by the full QCD×QED

B →M1 transition form factor. This gives the factorization formula〈
M1M2|Qi|B̄

〉
= im2

B

{
FBM1
Q2

(0)
∫ 1

0
duT I

i,Q2(u) FM2ΦM2(u)

− 1
2

∫ 1

0
du dz

[
ĤIIγ
i,Q2

(u, z)ΥBM1
Q2

(1− z)

+ĤIIg
i,Q2

(u, z)ΣBM1
Q2

(1− z)
]
FM2ΦM2(u)

}
, (4.18)

where now

FBM1
− (0) ≡ A

sl,M1
red
CslZ`

(4.19)

in the form-factor term in the first line is expressed in terms of the reduced semi-leptonic
amplitude at q2 = 0, while FBM1

0 (0) are the full QCD×QED B → M1 transition form
factors as in pure QCD. The hard-scattering kernels also change and are now given by

T I
i,−(u;E`) ≡

HI
i,−(u)

HI
sl(E`)

, T I
i,0(u) ≡

HI
i,0(u)
HI
f

, (4.20)

and

ĤIIγ
2,−(u, z;E`) = HIIγ

2,−(u, z)− T I
2,−(u;E`)HIIγ

sl (z) = 2
ū
Qu , (4.21)

ĤIIγ
1,0 (u, z) = CF Ĥ

IIγ
2,0 (u, z) = HIIγ

1,0 (u, z)− T I
1,0(u)HIIγ

f (z) = 2CF
Ncū

Qu , (4.22)

while ĤIIγ
1,−(u, z) remains zero. HI(1)

f in (4.20) and HIIγ
f (z) are the matching coefficients in

the SCETI factorization formula of the full QCD×QED transition form factor.7 They can
be obtained from the semi-leptonic coefficients (4.16), (4.17) by putting Q` = 0:

H
I(1)
f = −Q2

d

[1
2L

2 + 5
2L+ π2

12 + 6
]
, (4.23)

H
IIγ(0)
f (z) = 2Qd . (4.24)

We remark that the normalization to the semi-leptonic amplitude requires only q2 = 0,
but any value of the lepton energy E` can be used as long as it is O(mB/2). Then, the
scattering kernels T I

i,−(u;E`) and ĤIIγ
2,−(u, z;E`) acquire a dependence on E` as indicated

by their additional argument. We dropped this argument in (4.18). For simplicity, we give
here the results for the kernels for E` = mB/2, as the general result can be easily obtained
from the above results. We find

T
I(1)
1,− (u) = 0 ,

T
I(1)
2,− (u) = −2

3Lν + 2
3L (2 ln(1− u) + ln u)

−2f(u) + 4f(1− u)
9 − (2− u) ln(u)

3(1− u) − 4iπ
3 −

25
9 ,

T
I(1)
1,0 (u) = CFT

I(1)
2,0 (u) = 16

27Lν −
8
81g(u) + 140

81 , (4.25)

7This definition differs from the factorization formula in [29] by a factor of − 1
2 for the spectator-scattering

terms, therefore, in the QCD case (Qd → 1) our coefficient HIIγ
f → −2C(B1)

f+
, where the latter is the QCD

coefficient defined in [29].
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with f(u), g(u) defined in (3.35), (3.36), respectively. At tree level, there is no change, and
T

I(0)
i,Q2

(u) = H
I(0)
i,Q2

(u). We note that the double-logarithmic L2 terms present in HI(1)
i,Q2

have
disappeared after introducing the semi-leptonic amplitude or full-theory form factors. The
Lν terms are related to the renormalization of the operators Qi, Qsl, and the dependence on
the scale ν cancels with the ν dependence of Ci(ν) and Csl(ν). The left-over single logarithm
of L in T I(1)

2,− (u) appears, because unlike the light-meson decay constant in QCD, the QED-
generalized decay constant FM2 of a charged meson is scale-dependent. The µ dependence
of the one-loop kernel is related to the UV divergence of the one-loop bare hadronic matrix
element convoluted with the tree-level kernels. From (3.16), (4.2) and (4.15) (which enters
through (4.19)), we obtain

R
(QM2 )(1)
c̄ + 2

ε

∫ 1

0
dv V (u, v)|Qq1=Qd − Z

(1)
` = −2

ε
QM2 [Qd ln u−Qu ln(1− u)] , (4.26)

in agreement with the coefficient of L in (4.25). In general, the µ-scale dependence of
T

I(1)
2,− (u) cancels against FM2ΦM2(u)/Z` under the convolution in (4.18).

5 SCETII factorization

In the case of pure QCD, the SCETI operators of the OIIg
Q2

type are further matched to
four-fermion operators in SCETII, and the corresponding generalized B →M1 form factor
ΣBM1
Q2

(EM1 , 1 − z) is expressed in terms of the convolution of a hard-collinear matching
coefficient with the B-meson and light-meson LCDAs. This results in the standard form of
the spectator-scattering term in the QCD factorization formula for non-leptonic B decays.
This can be done, because it can be shown [21] that these convolutions are convergent to
all orders in perturbation theory, which has been confirmed explicitly by one-loop calcula-
tions [3, 29].

5.1 Generalized B-meson LCDA

The same matching applies to OIIγ
Q2

and OIIg
Q2

with QED included, but the LCDAs have to
be appropriately generalized. The definition of the LCDA of M1 is analogous to that of
M2 in (4.3) with obvious replacements of anti-collinear and collinear, and n− by n+, as
well as Rc̄ → Rc to rearrange the soft overlap between the collinear and the soft sector.
As concerns the B-meson LCDA, in QCD×QED we must distinguish between the charged
B̄u = B− and neutral B̄0

d , B̄0
s mesons. Since the B-meson LCDA is the soft function of

the process, which inherits the soft Wilson lines from the decoupling of the anti-collinear
and collinear sector,8 the electric charges of the emitted mesons M1 and M2 also matter,
leading to a total of four different B LCDAs, defined as

imB

∫ ∞
−∞

dω e−iωtFB,⊗ΦB,⊗(ω)

= 1

R
(QM1 )
c R

(QM2 )
c̄

〈
0
∣∣q̄(q)
s (tn−)[tn−, 0](q) /n−γ5hv(0)S†(QM2 )

n+ S
†,(QM1 )
n−

∣∣B̄〉 . (5.1)

8While in the first factorization step, we performed the decoupling only from the anti-collinear sector,
in the present matching to SCETII, we must finally also perform the soft-decoupling field redefinition of
the collinear fields.
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The matrix element is divided by the Rc, Rc̄ factors to compensate their multiplication
of the M1, M2 LCDA, and hence depend on the meson charges QM1 , QM2 . While the
definition looks familiar to pure QCD definition with respect to the finite-distance Wilson
line [tn−, 0](q), the addition of the Wilson line S†(QM2 )

n+ in the anti-collinear direction leads to
fundamentally different properties. For example, this B-meson LCDA includes the physics
of soft rescattering, including phases. It might be more useful to think of it as the soft
function for the B → M1M2 process rather than a LCDA. A technical manifestation of
this difference is that, for charged M2, the “LCDA” FB,⊗ΦB,⊗(ω) has support not only
for ω > 0 but also for negative ω as indicated by the lower limit of the integral. We discuss
this and the renormalization of these new objects in [13].

5.2 Spectator scattering and complete factorization

The matching equation from SCETI → SCETII is [3, 29]

ΥBM1
Q2

(1− z) = 1
4

∫ ∞
−∞

dω

∫ 1

0
dv J⊗(1− z; v, ω)FB,⊗ΦB,⊗(ω)FM1ΦM1(v) , (5.2)

which defines the hard-collinear matching coefficient (“jet” function) J⊗(z; v, ω).
Tree-level matching gives

J⊗(z̄; v, ω) = −4παemQsp
Nc

1
mBωv̄

δ(z̄ − v̄) , (5.3)

with Qsp = Qd −QM1 −QM2 the charge of the spectator-quark q in the B̄q meson. Insert-
ing (5.2) into (4.18) gives9

〈
M1M2|Qi|B̄

〉
= im2

B

{
FBM1
Q2

(0)
∫ 1

0
duT I

i,Q2(u)FM2ΦM2(u) (5.4)

+
∫ ∞
−∞
dω

∫ 1

0
du dv T II

i,⊗(u, v, ω)FM1ΦM1(v)FM2ΦM2(u)FB,⊗ΦB,⊗(ω)
}
,

which is (2.3). In the spectator-scattering term in the second line, the SCETI hard-
scattering kernel HIIγ

i,Q2
is convoluted with the jet function J⊗, defining

T II
i,⊗(ω, u, v) = −1

8

∫ 1

0
dz ĤII

i,Q2(u, z)J⊗(1− z; v, ω) . (5.5)

Combining (4.21), (4.22) with (5.3) gives

T II
2,(Q1,−)(ω, u, v) = NcT

II
2,(Q1,0) = Nc

CF
T II

1,(Q1,0) = παemQspQu
Nc

1
mBωūv̄

(5.6)

and T II
1,(Q1,−)(ω, u, v) = 0 at O(αem). This completes the factorization of QED effects for

the matrix elements
〈
M1M2|Qi|B̄

〉
.

At this point it is worth recalling that the factorization discussed so far refers to the
non-radiative amplitude, i.e. the purely virtual corrections. Such non-radiative amplitudes

9Since we focus on QED effects, we omit the spectator-scattering contribution ΣBM1
Q2

(1 − z) from the
gluonic operator OIIg

Q2
. QED corrections to this term are O(αemαs), beyond the accuracy of the present work.
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are IR divergent for all decays that involve charged mesons. Real emission of soft photons
must be added to obtain an observable, as will be done in the following section. The
theoretical approach developed here applies when the energy of the real photons is much
smaller than ΛQCD, such that the hard and hard-collinear propagators are not affected and
the corresponding coefficient functions are from virtual corrections only.

After integrating out the hard and hard-collinear scales, the IR singularities of the
non-radiative amplitude are hidden in the hadronic matrix elements (soft form factors,
heavy and light meson LCDAs) of SCET operators, which are all defined as non-radiative
quantities. The concept of non-perturbative but IR divergent LCDAs appears counter-
intuitive. However, the hadronic scale ΛQCD does not necessarily act as a regulator for soft
IR singularities in QED. These hadronic matrix elements should themselves be considered
as short-distance matching coefficients, when SCETII is matched to a very low-energy the-
ory of point-like mesons coupled to photons with energy below ΛQCD. In this matching the
IR divergence of the hadronic matrix elements is removed, but leaves a dependence on the
IR factorization scale µIR, where this matching is performed. This must be distinguished
from their UV renormalization scale (µ) dependence, which was computed above, that
follows from the UV poles in dimensional regularization, when the corresponding partonic
matrix elements are computed with an off-shell IR regulator. While the µ dependence can
be calculated perturbatively, the IR matching of SCETII to the theory of point-like mesons
must be done non-perturbatively at a scale a few times smaller than ΛQCD.

We illustrate these points with the help of the UV renormalized leptonic collinear
matrix element defined in (4.14), which can reliably be computed in perturbation theory,
since QCD does not enter (modulo photon vacuum polarization etc. in higher orders).
In fact, Z` is the weakly-interacting point-particle analogue of the LCDA for a strongly
interacting composite hadron. At O(αem) we compute the single contributing on-shell
one-loop diagram, add the on-shell renormalization factor (3.9) (replacing mB → m` and
Qd → Q`) and the UV counterterm given by minus the divergent part of (4.15), and obtain
for the UV renormalized on-shell matrix element

Z
(1)
` = − 1

εIR

(
1 + ln m2

`

m2
B

)
+ 1

2 ln µ2

m2
`

+ 1
2 ln2 µ

2

m2
`

+ 2 + π2

12 (5.7)

= −
(

1
εIR

+ ln µ
2
IR
m2
`

)(
1 + ln m2

`

m2
B

)
+ 3

2 ln µ
2
UV
m2
`

+ 1
2 ln2 µ

2
UV
m2
B

− 1
2 ln2 m

2
`

m2
B

+ 2 + π2

12 .

Here m` is the lepton mass, which must be kept at the collinear scale, and provides a
physical cut-off of the collinear singularities. Since we subtracted the UV poles, the 1/ε
pole must be an IR singularity. It is cancelled after matching onto the theory of point-
like objects (here the lepton itself), where the large logarithm in the ratio m`/mB arises
from the large relative boost between the rest frames of the external particles. In the
second line we use µUV = µIR = µ to separate the UV and the IR scale dependence. The
UV scale dependence is dictated by the UV poles of (4.15), and is cancelled against the
scale dependence of the hard-scattering kernel and the light-meson LCDA, see discussion
around (4.26). On the other hand, the µIR dependence is associated with the ultrasoft
function as will be seen in the next section.
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6 Ultrasoft photons and decay rates

So far we studied the non-radiative amplitude for the purely exclusive process B →M1M2.
Any IR finite observable must account for final states with photons of arbitrarily small
energy, once M1M2 contains electrically charged mesons.10 A physically meaningful ob-
servable is the soft-photon-inclusive decay rate

Γ[B̄ →M1M2](∆E) ≡ Γ[B̄ →M1M2 +Xs]
∣∣
EXs≤∆E , (6.1)

where the final state Xs consists of photons and possibly also electron-positron pairs with
total energy less than ∆E in the B-meson rest frame. In the following we assume that
∆E � mMi ∼ ΛQCD and refer to the scale ∆E as “ultrasoft” to distinguish it from the
soft scale ΛQCD relevant to the generalized B-meson LCDA.

The B →M1M2 +Xs amplitude factorizes into the non-radiative amplitude discussed
before and an ultrasoft matrix element. Up to corrections of O(∆E/ΛQCD),

A(B̄ →M1M2 +Xs) = A(B̄ →M1M2) 〈Xs|(S̄(QB)
v S

†(QM1 )
v1 S

†(QM2 )
v2 )(0)|0〉 , (6.2)

where the S(QMi )
vi are outgoing time-like Wilson lines, defined in analogy to (3.6), but with

velocity labels vi of meson Mi, satisfying v2
i = 1. Following the conventions in [12],

S̄(QB)
v (x) = exp

{
+ieQB

∫ 0

−∞
ds v ·Aus(x+ sv)

}
(6.3)

denotes the time-like Wilson line for the incoming B̄ meson with four-velocity vµ and
charge QB. Charge conservation implies QB = QM1 +QM2 in (6.2), required to ensure the
gauge invariance of the Wilson line product. The notation is general: for neutral mesons
the corresponding Wilson line is simply unity.

This factorization can be shown by matching SCETII non-perturbatively at the scale
ΛQCD to an effective theory of point-like mesons, which is, however, not the focus of this
work. Nevertheless, the scale dependence of the non-radiative amplitude must match the
scale dependence of the perturbative ultrasoft function. The logarithmic dependence on
the radiated energy ∆E can be resummed rigorously in the limit ∆E → 0. Matching
corrections at the scale of order ΛQCD, however, cannot be determined with perturba-
tive methods.

The soft-photon-inclusive decay width is then given by

Γ[B̄ →M1M2](∆E) = |A(B̄ →M1M2)|2 S⊗({vi},∆E) . (6.4)

The ultrasoft function

S⊗({vi},∆E) =
∑
Xs

|〈Xs|(S̄(QB)
v S

†(QM1 )
v1 S

†(QM2 )
v2 )(0)|0〉|2 θ(∆E − EXs) (6.5)

10The non-radiative amplitude was computed setting the light-meson masses to zero, which is justified
for the computation of the hard and hard-collinear matching coefficents, which involve scales far above the
meson masses. In the ultrasoft theory discussed in this section the light-meson masses must be kept, hence
there are no collinear singularities.
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accounts for the emission of an arbitrary number of ultrasoft photons (and electron-positron
pairs) from the charged mesons with total energy EXs ≤ ∆E. At O(αem), and expanded
to leading power in mMi � mB, we find

S(1)
(+,−) = 8

(
1
2 + 1

2 ln
m2
M1

m2
B

)
ln µ

2∆E −
(

2 + ln
m2
M1

m2
B

)
ln
m2
M1

m2
B

− 2
3π

2

+ (mM1 → mM2) (6.6)

S(1)
(−,0) = 8

(
1 + 1

2 ln
m2
M1

m2
B

)
ln µ

2∆E −
(

2 + ln
m2
M1

m2
B

)
ln
m2
M1

m2
B

+ 4− 2
3π

2 , (6.7)

and similarly for S(1)
(0,−) with mM1 → mM2 . Obviously, S(1)

(0,0) = 0. The expression for S(1)
(+,−)

is also given, e.g., in [30].
Although in this paper we provided the anomalous dimensions of the SCET operators,

we leave the resummation of structure-dependent QED logarithms between the scales mB

and ΛQCD for future work. Since the scale ratio ΛQCD/mb is not extremely small, we
do not expect the resummation of (αem ln2mb/ΛQCD)n terms to be important, and the
fixed-order O(αem) expression should provide a very good approximation. An exception
are the logarithms in the ratio of the radiation energy cut ∆E � mMi and mB, which
can modify the rate at the level of a few percent. These logarithms are universal in the
sense that they can be extracted from the ultrasoft EFT with point-like mesons, or al-
ternatively [31] from scalar QED for point-like scalar mesons. When factorizing ultrasoft
effects, the logarithms of µ/∆E, which appear in (6.6), must be related to IR (µIR) scale
dependence of the IR subtracted non-radiative amplitude (alternatively, the IR singulari-
ties of the unsubtracted on-shell amplitude). This dependence is contained in the (anti-)
collinear and soft matrix elements, which define the QED-generalized LCDAs and form
factors. Renormalization-group evolution from the hard scale µb to the collinear scale µc
gives the universal Sudakov factors

eSMi (µb,µc) = exp
{
−αem

2π Q 2
Mi

ln2 µc
µb

}
(6.8)

and a remainder, which defines the split of the leading double logarithms into this and
the structure-dependent piece [12]. This separation is useful, because as shown below the
above factor converts the scale µ in the exponentiated version of (6.6) into mB, while the
structure-dependent logarithms, which can depend on the charges of the constituents of
the mesons rather than the mesons themselves, turn out to be small, at least for the case
of Bq → µ+µ− considered in [12]. Here and below we work in the double-logarithmic
approximation, except for logarithms in ∆E. For the latter we include the full dependence
as given in (6.6). At the level of the decay rate, the µc dependence of the factorized virtual
B → M1M2 amplitude cancels after taking into account ultrasoft emissions below ∆E.
Indeed, combining (6.8) with the exponentiated ultrasoft function evaluated at µ = µc,
we find ∣∣∣eSM1 (µb,µc)+SM2 (µb,µc)

∣∣∣2 eS(1)
⊗ = exp

{
αem
π

(
Q2
B +Q2

M1

[
1 + ln

m2
M1

m2
B

]

+Q2
M2

[
1 + ln

m2
M2

m2
B

])
ln mB

2∆E

}
(6.9)
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to the above mentioned accuracy. These results allow us to write the soft-photon-inclusive
width with the large logarithmic dependence on the energy cut ∆E resummed to all orders
in the standard form

Γ[B̄ →M1M2](∆E) = Γ(0)[B̄ →M1M2] U(M1M2) , (6.10)

where

U(M1M2) =
(2∆E
mB

)−αem
π

(
Q2
B+Q2

M1

[
1+ln

m2
M1
m2
B

]
+Q2

M2

[
1+ln

m2
M2
m2
B

])
. (6.11)

Here Γ(0) is the square of the factorized virtual B →M1M2 amplitude discussed in earlier
sections of this paper, with the universal Sudakov factors (6.8) divided out. There is an
ambiguity in what one calls the “non-radiative” amplitude or decay width, but it is this ex-
pression that most naturally deserves this name, given the universality and factorization-
scale independence of the ∆E dependent radiation factors (6.11). By definition, all large
logarithms between the scale mB and mMi ∼ ΛQCD still contained in Γ(0) are structure-
dependent logarithms whose resummation is not considered here.

We close this section with a comparison of the treatment of soft-photon radiation in
this section to the approach of [31]. The authors express the soft-photon-inclusive decay
width as the product of the non-radiative width and an energy-dependent correction factor
G12(E), similar to (6.4). The precise definition of the non-radiative width is not specified,
and G12(E) is computed from the virtual and real corrections in an effective theory that
treats the B meson and light mesons as point particles. Eq. (5) in [31] for G12(E) agrees
with (6.6), if we put µ = mB in (6.6) and drop the virtual contributions H12 and N12(µ) to
G12(E) in [31], as well as power-suppressed terms in mMi/mB. Also, (6.11) is in agreement
with [31] in the appropriate limit mMi � mB.

There is nevertheless an important conceptual difference. Setting µ = mB in (6.6)
cannot be justified from the EFT of point-like mesons, since its UV scale of validity is
at most ΛQCD. The treatment within SCET provided earlier in this paper is necessary
to justify the neglect of structure-dependent logarithms such that one obtains (6.11) with
the approximation (6.8). Conceptually, the main difference between the ultrasoft correc-
tion (6.6) and the function G12(E) in [31] is, however, that the latter is defined in a theory
with point-like light mesons, which are still dynamical degrees of freedom, whereas in our
set-up, for photon energies much below ΛQCD, the light mesons are static and have only
ultrasoft fluctuations, similar to heavy quarks in heavy-quark effective theory. The loga-
rithms of m2

Mi
/m2

B in the ultrasoft theory arise from the large boost of the rest frame of
the light mesons relative to the B-meson rest frame. The ultrasoft function defined above
receives no virtual correction in the one-loop approximation, because the integrals are scale-
less, whereas the virtual corrections H12 and N12(µ) that enter G12(E) in the theory with
dynamical point-like meson are non-zero, but not really meaningful. The reason is that
keeping the mesons that have internal structure at distances of order 1/ΛQCD and masses
of O(ΛQCD) dynamical in a point-like description is inconsistent as the internal structure
leads to higher-order multipole couplings that would give unsuppressed corrections to the
virtual contributions when the internal loop momenta are of order ΛQCD, as is the case
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in [31]. Fortunately, the virtual corrections are not needed to obtain the dependence of
the ultrasoft radiation factors (6.11) on the resolution energy ∆E, as was also recognized
in [31], and hence the virtual correction there may be regarded as a contribution to the
unspecified non-radiative amplitude in that framework.

7 Estimates for πK observables

Having set up the factorization, we present numerical estimates of the QED effects. At this
stage, we neither attempt an error analysis nor perform an analysis of all B →M1M2 decays
but rather restrict ourselves to a first quantitative understanding of the QED effects for
various B → πK decay observables that are often employed as diagnostics of New Physics.
We distinguish three types of effects arising at different scales:

• Electroweak scale to mB: QED corrections to the Wilson coefficients

• mB to µc: QED corrections to the hard-scattering kernels, form factors and decay
constants

• below ΛQCD: ultrasoft QED effects

The ultrasoft corrections only contribute at the level of the decay rate and will be discussed
in more detail below. The QED corrections arising between the electroweak scale and µc
can be interpreted as corrections to the colour-allowed tree-amplitude α1(M1M2) and the
colour-suppressed tree-amplitude α2(M1M2), with an important caveat. In QCD, these
amplitudes were introduced to factor out the hard-scattering kernels from the product of
the universal form factors and decay constants defined by [15]

AM1M2 ≡ i
GF√

2
m2
BF

BM1
0 (0)fM2 , (7.1)

where FBM1
0 and fM2 are the standard QCD form factor and decay constant, respectively.

Including QED effects requires the QCD×QED generalized form of AM1M2 , which now
depends on the charges QM1 and QM2 :

A(M1M2) ≡ iGF√
2
m2
BF

BM1
Q2

(0)FM2 . (7.2)

In QED, both factors, A(M1M2) and α1,2(M1M2), depend on the charges QM1 and QM2

and their separation is no longer compelling. Nevertheless, to stay as close as possible to
the familiar notation, we can factor out the universal AM1M2 , and write

A(M1M2)αi(M1M2) = AM1M2

(
αQCD
i (M1M2) + δαi(M1M2)

)
, (7.3)

which puts all QED modifications into δαi(M1M2). The O(αem) QED correction δαi is
then a combination of different effects:

δαi(M1M2) ≡ δαWC
i (M1M2) + δαK

i (M1M2) + δαF,V
i (M1M2) + δαF,sp

i (M1M2) . (7.4)
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The four terms stem from QED corrections to the Wilson coefficients (WC), hard and
hard-collinear scattering kernels (K), and form factors and decay constants of the vertex
(F,V) and spectator (F,sp) terms, respectively. The latter two also contain the QED
corrections to the LCDAs. When estimating the QED corrections numerically below, we
restrict ourselves to O(αem) only. Since spectator scattering first occurs at O(αem, αs),
δαF,sp is O(αemαs) and will thus be dropped. We also neglect the vertex correction δαF,V,
since the QED effects on the form factors and decay constants are not (yet) known. For
charged M2 decays, the situation is a bit more involved. Recall that in that case, we
replace FBM1

− with the semi-leptonic amplitude according to (4.19), which introduces the
semi-leptonic Wilson coefficient Csl and the leptonic factor Z`, which contribute to δαWC

and δαF,V, respectively. Since we neglect the latter, we must also set Z` = 1. However,
since we do include the QED effects in the Wilson coefficients, we have to account for Csl
in decays to charged M2 mesons.

7.1 Electroweak corrections to the Wilson coefficients

To obtain the QED correction to the Wilson coefficients, we follow [32] (see also [33]), where
QCD logarithms are summed but QED logarithms are not. Including the summation
of QED logarithms would be technically more challenging while their effect is small. A
consequence of not summing the QED logarithms is that we obtain an expansion in αs
and κ ≡ αem/αs. The expansion in κ instead of αem itself arises from the fact that all
powers of cs = αsL, where L is a large logarithm, are summed. Explicitly, this entails that
all logarithmically enhanced QED terms αemL = csαem/αs get replaced by f(cs)αem/αs,
where f(cs) is found by solving the renormalization-group equation (RGE) [32]. Therefore,
κ is the natural expansion parameter.

Since we are interested in the leading QED corrections, we only consider corrections
of O(κ, καs). We note however that also the O(κα2

s) terms are available [32]. The QED
correction to the Wilson coefficients C1 and C2 are obtained at NLL, that is, by including
the αem corrections to the Ci(µ0), the O(κ, καs) corrections to the anomalous dimension,
and the three- and four-loop pure QCD contributions to the running of αs and αem. The
RGE is then solved perturbatively in terms of

λ ≡ βem
0 αem(µ0)
βs0αs(µ0) , ω ≡ 2βs0

αs(µ0)
4π , (7.5)

where βs0 = 23
3 and βem

0 = 80
9 at nf = 5. The Wilson coefficients can then be written as

Ci(ν) = CQCD
i (ν) + δCi(ν) , (7.6)

where the δCi contain the αem corrections. The pure QCD NNLL Wilson coefficients and
the coupling constants αs and αem, for which we use the MS scheme and initial conditions
at mZ , are listed in table 1. The couplings for nf = 5 at ν = 4.8GeV are also specified
there. We find

δC1(ν) = −1.66αem(ν)
4π = −1.00 · 10−3 , (7.7)

δC2(ν) = 5.68αem(ν)
4π = 3.42 · 10−3 . (7.8)
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We can now compute the QED effect on the tree amplitude coefficients from the Wilson
coefficients, which gives

δαWC
1 (M1M2) = δC2 = 5.68αem(ν)

4π = 3.42 · 10−3 , (7.9)

δαWC
2 (M1M2) = 4

9δC1 + 1
3δC2 = 1.16αem(ν)

4π = 0.695 · 10−3 . (7.10)

There is still one subtle point. For charged M2, the replacement of the form factor by
the semi-leptonic amplitude introduces the Wilson coefficient Csl. Its one-loop fixed-order
expression is [28]

δCsl(ν) = αem(ν)
π

ln mZ

ν
= 11.78αem(ν)

4π = 7.09 · 10−3 . (7.11)

As we will show, for B → πK decays, the charged M2 decays only have contributions from
α1. Therefore, in fact, we must use

δαWC
1 (M1M2) = δC2 − δCsl C

tree
2 = −3.88 · 10−3 , (7.12)

where for consistency we neglect O(αsαem) terms and use Ctree
2 (ν) = 1.03. Interestingly, the

normalization to the semi-leptonic amplitude changes the sign of δαWC
1 , but its magnitude

remains similar.

7.2 QED contributions from the hard-scattering kernels

The QED contribution to the colour-allowed and colour-suppressed coefficients α1, α2 are

δαK
i (M1M2) = αem(µ)

4π
∑
j=1,2

CQCD
j (ν)

[
V

(1)
j (M2) +Hem

j,Q2(M1M2)
]
. (7.13)

The convolution of the LCDA of M2 with the hard-scattering kernel T I
i,Q2

is defined by

Vi(M2) =
∫ 1

0
du T I

i,Q2(u)φM2(u) . (7.14)

For φM2 we use the standard Gegenbauer expansion, recalling that we neglect all QED
corrections to non-perturbative objects such as the LCDA and approximate them by their
QCD values. For neutral M2, keeping only the first two Gegenbauer coefficients, we find

V
(1)

2 (M0
2 ) = − 2

27

[
−6Lν − 18− 3iπ +

(11
2 − 3iπ

)
aM2

1 − 21
20a

M2
2

]
(7.15)

and V
(1)

1 (M0
2 ) = CFV

(1)
2 (M0

2 ). While for charged M2, we find

V
(1)

2 (M−2 ) =
[
− 5

3L−
2Lν

3 − 97
18 −

22iπ
9 − π2

9

−
(1

2L+ 133
72 + iπ

3

)
aM2

1 −
(3

5L+ 184
75 + 2iπ

5

)
aM2

2

]
, (7.16)
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and V
(1)

1 (M−2 ) = 0. We note that we reduced the QED correction by introducing the
semi-leptonic amplitude, which cancelled some of the double logarithms present in the
hard-scattering kernels HI

i,−(u) in (3.33). As discussed previously, the ν dependence from
Lν gets cancelled by the Wilson coefficients (including Csl), while the µ dependence cancels
against the QED scale dependence of FM2ΦM2/Z`. However, as we do not take QED
corrections to this quantity into account in our numerical estimates, the µ dependence
from V

(1)
2 (M2) remains. For the spectator-scattering terms, we obtain

Hem
2,−(M1M2) = 4π2QspQu

Nc

rsp(M1)
9

∫ 1

0
du dv

φM2(u)φM1(v)
ūv̄

= 4π2QspQursp(M1)
Nc

∑
i,j

aM1
i aM2

j , (7.17)

where aMi
j is the jth Gegenbauer moment for the meson Mi (with aMi

0 ≡ 1 in QCD) and

rsp(M1) ≡ 9fBfM1

mBλBF
BM1
0 (0)

. (7.18)

The other charge combinations are related to Hem
2,−(M1M2), similar to the relations between

the T II
i,(Q1,Q2) in (5.6), by

Hem
1,−(M1M2) = 0 , Hem

1,0 (M1M2) = CFH
em
2,0 (M1M2) = CF

Nc
Hem

2,−(M1M2) . (7.19)

We note that the Wilson coefficients are evaluated at the scale ν, while V
(1)
i (M2)

depends on both scales ν and µ. As we sum QCD, but not QED logarithms, the question
arises what scale should be taken for αem and for the QCD parameters (i.e. the Gegenbauer
coefficients of the light mesons and λB). In principle, several choices could be justified. In
the following analysis, we take µ = 1GeV at the collinear scale. To obtain αem(µ = 1 GeV),
we use the one-loop RG evolution, include the quark flavour thresholds at 4.8 GeV (nf =
4), 1.2 GeV (nf = 3), and the decoupling of the τ lepton at µτ = 1.78GeV. Values are given
in table 1.

7.2.1 Penguin-dominated B → πK decays

The B → πK decay amplitudes are given by [15]

AB−→π−K̄0 = AπK α̂
p
4 ,

√
2AB−→π0K− = AπK [δpuα1 + α̂p4] +AKπ

[
δpuα2 + δpc

3
2α

c
3,EW

]
,

AB̄0→π+K− = AπK [δpuα1 + α̂p4] ,
√

2AB̄0→π0K̄0 = AπK [−α̂p4] +AKπ

[
δpuα2 + δpc

3
2α

c
3,EW

]
,

where the αi carry the argument (M1M2). Here, α̂4 and αc3,EW are QCD (electroweak)
penguin coefficients as defined in [15]. In addition, each term is multiplied with the CKM
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Coupling constants and masses [GeV]

αem(mZ) = 1/127.96 αs(mZ) = 0.118 mB = 5.297 mZ = 91.19

Decay constants [MeV] and form factors

fπ = 130 fK = 160 fB = 190 FBπ0 = 0.25 FBK0 = 0.34

CKM parameters and RπK
|λu/λc| ≡ |VusV ∗ub/VcbV ∗cs| = 0.0206 RπK = fπF

BK
0 /fKF

Bπ
0 = 1.11

Wilson coefficients and coupling constants at ν = 4.8GeV

CQCD
1 = −0.26 CQCD

2 = 1.01 αem = 1/132.24 αs = 0.216

Parameters of distributions amplitudes at µ = 1GeV

aπ2 = 0.138 aK̄1 = 0.061 aK̄2 = 0.124 λB = 250MeV

Coupling constants and α̂c4 at µ = 1GeV

αem = 1/134.05 α̂c4 = −0.104− 0.015i

Table 1. Inputs for the estimate of the QED effects. The Gegenbauer coefficients are taken
from [34] and evolved to 1GeV with LL accuracy. The pure QCD Wilson coefficients are evaluted
at the NNLL order.

factor VpbV ∗ps and summed over p = u, c. Due to the unique association of the right and
wrong insertion with the charge factors and α1,2, we find

δαK
1 (π+K−) = αem(µ)

4π CQCD
2

[
V2(K−) +Hem

2,−(π+K−)
]
, (7.20)

δαK
1 (π0K−) = δαK

1 (π+K−) + αem(µ)
4π ∆K

1 , (7.21)

δαK
2 (K̄0π0) = αem(µ)

4π (CFCQCD
1 + CQCD

2 )
[
V2(π0) +Hem

2,0 (K̄0π0)
]
, (7.22)

δαK
2 (K−π0) = δαK

2 (K̄0π0) + αem(µ)
4π ∆K

2 . (7.23)

Since the vertex corrections Vi do not depend on the charge ofM1, only spectator scattering
contributes to the difference between the two charge configurations of δα1,2, defined by

∆K
1 = CQCD

2 (ν)
(
Hem

2,−(π0K−)−Hem
2,−(π+K−)

)
= 8.03 rsp(π)

0.674 , (7.24)

∆K
2 =

(
CFC

QCD
1 (ν) + CQCD

2 (ν)
) (
Hem

2,0 (K−π0)−Hem
2,0 (K̄0π0)

)
= 1.59 rsp(K)

0.610 . (7.25)

Finally, the hard-scattering kernel contributions to δαK
i are

δαK
1 (π+K−) = αem(µ)

4π

[
−0.89− 7.96i− 2.68 rsp(π)

0.674

]
= (−2.12− 4.73i) · 10−3 , (7.26)

δαK
1 (π0K−) = αem(µ)

4π

[
−0.89− 7.96i+ 5.36 rsp(π)

0.674

]
= (2.65− 4.73i) · 10−3 , (7.27)

δαK
2 (K̄0π0) = αem(µ)

4π

[
0.83 + 0.46i− 0.53 rsp(K)

0.610

]
= (0.18 + 0.27i) · 10−3 , (7.28)

δαK
2 (K−π0) = αem(µ)

4π

[
0.83 + 0.46i+ 1.06 rsp(K)

0.610

]
= (1.12 + 0.27i) · 10−3 . (7.29)
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The numerical values are at the per mille level. As discussed previously, there is a loga-
rithmic µ dependence in δαi, which should be cancelled by that of FM2ΦM2/Z`, but is not
in our approximation of neglecting QED effects on the hadronic quantities. Changing the
collinear scale to µ = 1.5GeV, changes the real part of the form-factor term (first number
in the square bracket) by O(1). We will show below, however, that this ambiguity drops
out when considering ratios of branching fractions or direct CP asymmetries.

7.3 Ultrasoft factors

When considering branching ratios also ultrasoft effects should be taken into account. This
is done simply by multiplying the rate with U(M1M2) defined in (6.11). Here ∆E is the
window of the πK invariant mass around mB. For our theory to be valid, we require
∆E � ΛQCD. Similar as in the Bq → µ+µ− analysis [12], we adopt ∆E = 60MeV, which
defines the signal window. In recent experimental analyses, such a signal window is not
used (only a cut on the invariant mass of 5GeV is employed) and the mass spectrum is
modelled using PHOTOS to account for the photon radiation (see e.g. [35, 36]). In order
to compare theory with experiment, it is beneficial to perform the experimental analysis
within a signal window as above, such that no extrapolations are necessary. Numerically,
the ultrasoft factors are relatively important:

U(π+K−) = 0.914 ,
U(π0K−) = U(K−π0) = 0.976 ,
U(π−K̄0) = 0.954 ,
U(K̄0π0) = 1 . (7.30)

For decays to charged M2, the situation is again more involved due to the replacement of
the generalized form factor by the non-radiative semi-leptonic amplitude, such that

Br(π+K−) ∝
∣∣Asl,M1

non−rad α1(π+K−)
∣∣2 U(π+K−) , (7.31)

and similar for Br(π0K−). The non-radiative semi-leptonic rate is itself obtained from the
branching ratio

Br(M1`
−) = U(M1`

−) |Asl,M1
non−rad|

2 , (7.32)

where the ultrasoft function differs from U(M1K
−) only due to the mass difference be-

tween `− and K−. In the following, we assume that the ultrasoft correction in (7.32) was
applied to the semi-leptonic rate such that Asl,M1

non−rad was determined and employed in the
calculation of the non-radiative non-leptonic amplitude.

7.4 Ratios, isospin sum rule, and CP asymmetries

Adding the three sources of QED effects discussed above, gives sub-percent corrections
to the branching fractions from the hard-scattering kernels and Wilson coefficients, and
potentially larger ultrasoft radiation effects for final states with charged particles. There-
fore, it is more interesting to study ratios of decay rates in which QCD corrections are
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suppressed. To this extent, we first consider

RL = 2 Br(π0K̄0) + 2 Br(π0K−)
Br(π−K̄0) + Br(π+K−)

= RQCD
L + δRL . (7.33)

The QCD part is given by

RQCD
L = 1 + |rEW|2 − cos γ Re (rTr

∗
EW) + . . . ,

where rEW (rT) are ratios of electroweak penguin coefficients α3,EW (tree coefficient α1) over
the dominant QCD penguin coefficient α̂c4, which are typically O(0.1) [15]. Therefore, RQCD

L

was expanded in these small ratios, and the dots represent higher-order or negligible terms
in this expansion. We observe that the QCD corrections to unity enter only quadratically
in these small ratios. QED effects, however, enter linearly:

δRL = cos γ Re (δE) + δU . (7.34)

The QED correction δE comes from the hard-scattering kernels and the Wilson coeffi-
cients. We already mentioned that only the spectator-scattering contribution depends on
the charge of the M1 meson. Therefore, in the ratio RL only the difference between the
spectator-scattering terms, denoted by ∆K

i , contributes at leading order. For this reason,
δE is µ independent at O(αem) and does not suffer from the uncancelled µ dependence
discussed previously. In fact, as the correction to the Wilson coefficients does not depend
on the charge of M1 either, it also does not contribute at this order, and we find

δE = αem(µ)
4π

∣∣∣∣λuλc
∣∣∣∣ ∆K

1 + ∆K
2 RπK

α̂c4(πK) = (−1.89 + 0.27i) αem(µ)
4π = (−1.12 + 0.16i) · 10−3 ,

(7.35)
where we used the CKM ratio λu/λc, form-factor ratio RπK and α̂c4 given in table 1. The
contribution from the hard-scattering kernels to δRL is seen to be at the per mille level,
and gets suppressed by the cosine of the CKM angle γ. The ultrasoft factors give the O(r0)
correction

δU ≡
1 + U(π0K−)

U(π−K̄0) + U(π+K−)
− 1 = 5.8% (7.36)

in the expansion in small amplitude ratios. Contrary to the kernel correction, the ultrasoft
correction depends on ∆E, which in turn depends on how the measurement is performed.
Finally, combining both terms and using γ = 70◦, we find

δRL = 5.7% , (7.37)

which is dominated by the ultrasoft effect. This should be compared to the smaller QCD
correction [15] RQCD

L − 1 = 0.01± 0.02.
Besides ratios of branching fractions, also CP asymmetries form interesting observables.

Using isospin relations, a sum rule

∆(πK) ≡ACP(π+K−) + Γ(π−K̄0)
Γ(π+K−)ACP(π−K̄0)− 2Γ(π0K−)

Γ(π+K−) ACP(π0K−)

− 2Γ(π0K̄0)
Γ(π+K−)ACP(π0K̄0) ≡ ∆(πK)QCD + δ∆(πK) (7.38)
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between the CP asymmetries of the different πK decays was identified that should exhibit
only small deviations from zero [37, 38]. Indeed, the pure QCD part is

∆(πK)QCD = 2 sin γ [Im (rT r∗EW) + 2 Im (rCr∗EW)] + . . . , (7.39)

where we have again expanded in the small amplitude ratios and the dots represent higher-
order or negligible terms. The phase of αc3,EW approximately equals that of α1, such
that the first term is suppressed. Therefore, the QCD contribution is dominated by the
interference between the colour-suppressed tree amplitude rC and the electroweak penguin
contribution rEW, resulting in ∆(πK)QCD = (0.5± 1.1)% [9]. The QED correction enters
linearly and can be expressed in terms of the ultrasoft contribution δ∆U and the same δE
from (7.35), but this time only the imaginary part enters:

δ∆(πK) = −2 sin γ Im (δE) + δ∆U . (7.40)

As the ∆K
i are real (we only consider tree-level spectator scattering at O(αem)), the imagi-

nary part of α̂c4 drives this contribution, which turns out to be negligible. There is no O(r0)
ultrasoft contribution to the sum rule, since at this order all CP asymmetries vanish. The
first non-vanishing term in the expansion in small amplitude ratios is

δ∆U = 2 sin γ
[

Im (rP − rT ) + Im (rP ) U(π−K̄0)
U(π+K−)

+ Im (rT + rC − rP ) U(π0K−)
U(π+K−) −

Im (rP + rC)
U(π+K−)

]
= −0.39%, (7.41)

where we used rC = 0.06 − 0.016i, rP = 0.018 + 0.0038i and rT = 0.18 − 0.030i defined
as in [15]. This factor is sensitive to the imaginary parts of QCD parameters, which are
difficult to determine with high precision, hence δ∆U may suffer from a relatively large
uncertainty. The combined QED effect is

δ∆(πK) = −0.42% , (7.42)

which is similar in size to the QCD correction, so that the isospin CP asymmetry sum rule
is not only robust against QCD contributions, but also free from sizeable QED contami-
nations. To conclude this discussion, we also give the QED corrections to the individual
CP asymmetries. In first order in the small amplitude ratios, the QED effect is a linear
shift δACP of the QCD-only result. The ultrasoft factors always cancel in individual CP
asymmetries as they are the same for the decay rate and its CP conjugate. We then find

δACP(π+K−) = 2 sin γ
∣∣∣∣λuλc

∣∣∣∣ Im δα1(π+K−)
α̂c4(πK) = 0.14% ,

δACP(π−K̄0) = 0 , (7.43)

δACP(π0K̄0) = −2 sin γ
∣∣∣∣λuλc

∣∣∣∣RπK Im δα2(K̄0π0)
α̂c4(πK) = 0.01% ,

δACP(π0K−) = 2 sin γ
( ∣∣∣∣λuλc

∣∣∣∣ Im
[
δα1(π+K−) +RπKδα2(K̄0π0)

α̂c4(πK)

]
+ Im δE

)
= 0.16% ,
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where δα1,2 now contain both δαK and δαWC. Finally, we can consider the difference

δ(πK) ≡ ACP(π0K−)−ACP(π+K−) (7.44)

between the two CP asymmetries with a charged final-state kaon, which receives the tiny
QED correction

2 sin γ
(∣∣∣∣λuλc

∣∣∣∣RπKIm δα2(K̄0π0)
α̂c4(πK) + Im δE

)
= 0.02% . (7.45)

All of these QED corrections are much smaller than the QCD uncertainties.

8 Conclusion

The question whether QCD factorization of non-leptonic charmless two-body decays can be
extended to include QED effects has been investigated here for the first time. Any attempt
to include QED effects mandates the precise definition of an observable that includes soft
photon radiation, since in general the final-state mesons can be electrically charged. We
considered the soft-inclusive decay rates Γ[B̄ → M1M2 + Xs]

∣∣
EXs≤∆E , where the final

state Xs consists of photons and possibly also electron-positron pairs with total energy less
than ∆E � ΛQCD in the B-meson rest frame. Factorization then refers to purely virtual
electromagnetic effects on scales from mB to a few times ΛQCD. Electromagnetic effects
above mB can be conceptually trivially included in the Wilson coefficients of the effective
weak interactions, those below a few times ΛQCD in hadronic matrix elements, suitably
generalized for QED effects.

Our first main result consists in the statement that the non-leptonic two-body decay
amplitudes can indeed be factorized in a way such that the QCD factorization formula (1.1)
retains its original form, but the hard and hard-collinear scattering kernels now receive
QCD and QED corrections, which can be computed in perturbation theory. Despite this
similarity in form, the physics contained in the short-distance kernels is nevertheless more
involved than in QCD alone, since the second mesonM2 does not decouple completely from
the B → M1 transition. When M2 is electrically charged, soft virtual photon exchange
leads to a dependence of the generalized hadronic matrix elements on light-like Wilson lines
that “remember” the directions of flight and charges of the particles. To our knowledge, we
provide the first definition of light-meson LCDAs including QED effects. The interpretation
of these is subtle. The generalized B-meson LCDA in turn should rather be considered
as the soft function for the process, which by its definition contains the soft rescattering
physics of the process. Calculating these hadronic matrix elements with non-perturbative
methods appears challenging for the time being, but at least the precise definitions of the
required matrix elements can now be given.

Second, we computed the QED short-distance coefficients at leading order in the elec-
tromagnetic coupling. Their IR finiteness checks the validity of the factorization formula
at this order. We then provided first quantitative estimates of QED corrections to the πK
final states, for which QCD-insensitive ratios of branching fractions and CP asymmetry
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sum rules are prime targets for precision measurements in high-luminosity B physics ex-
periments. In these estimates we include on top of the QED corrections from the kernels,
which were the focus of this work, the effect from the Wilson coefficients and ultrasoft ra-
diation. The latter depend on the experimental set-up and might reach a few percent, but
the former two were found to be at the sub-percent to per mille level. To a certain extent
this is fortunate, since, as noted above, a consistent treatment of all QED effects should
also include the presently unknown effects in the generalized hadronic matrix elements.

We point out that there remains a gap in our understanding of QED effects at the
hadronic scale, which is related to the interpretation of the QED-generalized decay con-
stants, form factors and LCDAs, which are all “non-radiative” objects. As defined here
they are technically IR divergent — their IR divergences cancel with the IR divergences in
ultrasoft real emission, which can be computed in a theory of point-like hadrons. A proper
interpretation of the QED-generalized decay constants, form factors and LCDAs can be
given as matching coefficients to the ultrasoft theory, where fluctuations at the ΛQCD scale
have been integrated out. However, this matching will have to be defined and computed
non-perturbatively. Similar problems are presently addressed in lattice QCD/QED for
electromagnetic corrections to leptonic and semi-leptonic decays of light mesons [39–42].
Nevertheless, the present problem appears to be a formidable challenge for lattice calcula-
tions, as the operators to be computed involve light-like Wilson lines.
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A Photon polarization and B̄0
q →M+

1 M
−
2 spectator scattering

In section 3.4 we stated that the tree-level scattering kernels HIIγ
i,− are fully determined by

the first three diagrams in figure 3 with a transversely polarized external photon. Here we
provide more details on this important fact, as it guarantees that the spectator-scattering
term in the factorization formula is free from endpoint divergences even when the meson
M2 is electrically charged. In particular, we show that the spectator scattering through
longitudinally polarized photons as well as the full contribution from the last diagram
in figure 3, which would both be endpoint divergent, are exactly recovered by certain
time-ordered products of the operator OI

−. Hence both are correctly included in the non-
perturbative QED-generalized form factors.

For this purpose, it is instructive to compute the spectator-scattering diagrams (a)–
(d) shown in figure 6 in the full theory, as well as the SCETI diagrams (i)–(iii), with the
LCDA projector method as in the original QCD factorization works [1, 2]. In this method,
we relate the partonic amplitudes to hadronic matrix elements defining the heavy- and
light-meson LCDAs by replacing the on-shell spinors with certain projectors. For the case
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q2b

ūq1

q̄s q̄s

(a)

q2b

ūq1

q̄s q̄s

(b)

q2b

ūq1

q̄s q̄s

(c)

q2b

ūq1

q̄s q̄s

(d)

OI
−

q2b

ūq1

q̄s q̄s

‖

(i)

OI
−

q2b

ūq1

q̄s q̄s

‖ / ⊥

(ii)

OIIγ
−

q2b

ūq1

q̄s q̄s

⊥

(iii)

Figure 6. Tree-level spectator-scattering in the full theory and in SCETI.

of spectator scattering, this amounts to integrating out hard and hard-collinear modes
simultaneously, matching directly to SCETII. Including QCD contributions up to twist-3,
but applying the so-called Wandzura-Wilczek approximation, which neglects three-particle
LCDAs at twist-3, the projector for the B-meson operating on a partonic amplitude with
spinors stripped off and spinor (colour) indices βα (ba) is given by [26]

MB
αβ = − ifBmB

4
δab
Nc

[1 + /v

2

{
φB+(ω) /n+ + φB−(ω) /n−

−
∫ ω

0
dη
(
φB−(η)− φB+(η)

)
γµ

∂

∂lµ⊥

}
γ5

]
αβ

. (A.1)

Following the notation of [15], we have for light pseudoscalar mesons

MP
αβ = ifP

4
δab
Nc

[
/p γ5 φP (x)−µMγ5

(
φp(x)−iσµν

pµ p̄ν

p · p̄
φ′σ(x)

6 + iσµν p
µ φσ(x)

6
∂

∂k⊥ν

)]
αβ

,

(A.2)
where p is the momentum of the meson, p̄ is a light-like vector, whose three-components
point in the opposite direction of p, and the transverse derivatives act on the quark mo-
menta in the partonic amplitude. For the present purposes it is sufficient to identify the
LCDAs with those in QCD alone, but the projector method would also work for the QED-
generalized LCDAs. Although we work to leading power, it is instructive to keep the twist-3
two-particle LCDAs for the following reason. The subleading twist-3 LCDAs φB−, φp and
φσ enter the heavy-to-light form factors at leading power [26] with endpoint-divergent con-
volutions, which is the reason why the matrix element of the SCETI operator OI is not
matched to SCETII. It is therefore important to understand the twist-3 terms as well for
the QED spectator-scattering effects in the non-leptonic factorization formula.

To disentangle the polarization components of the internal photon line in figure 6, we
decompose the metric tensor into its longitudinal and transverse parts, gµν = (nµ+nν− +
nµ−n

ν
+)/2 + gµν⊥ . The leading-power full-theory results for the individual diagrams (a)–(d)
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and polarization state in Feynman gauge are

〈Q2〉a)
‖ = −QdQsp

〈
v̄−2

〉
M1

〈
ω−1

〉
−
, 〈Q2〉a)

⊥ = 0 ,

〈Q2〉b)‖ = QuQsp
〈
v̄−2

〉
M1

〈
ω−1

〉
−
, 〈Q2〉b)⊥ =QuQsp

〈
v̄−1

〉
M1

〈
ū−1

〉
M2

〈
ω−1

〉
+
,

〈Q2〉c)‖ = QdQsp
〈
v̄−2

〉
M1

〈
ω−1

〉
−
, 〈Q2〉c)⊥ =QdQsp

〈
v̄−1

〉
M1

〈
ω−1

〉
+
,

〈Q2〉d)
‖ = QuQsp

µM1

3
〈
v̄−2

〉
σ1

〈
ω−2

〉
+
,

〈Q2〉d)
⊥ = QuQsp

〈
v̄−1

〉
M1

〈
ω−1

〉
−

+QuQsp
µM1

3
〈
v−1v̄−1

〉
σ1

〈
ω−2

〉
+
, (A.3)

where we set Qq1 = Qd, Qq2 = Qu for B̄0
q → M+

1 M
−
2 decays, and Qsp is the charge of the

spectator quark qs. We factored out the overall normalization N ≡ iπαfM1fM2fBmB/Nc,
and defined

〈vn〉X ≡
∫ 1

0
dv vnφX(v) , 〈ωn〉± ≡

∫ ∞
0

dω ωnφB±(ω) . (A.4)

The sum of all terms constitutes the matrix element of the left-hand side of the matching
relation (3.1).

The endpoint behaviour of the various LCDAs implies that
〈
v̄−2〉

M ,
〈
v̄−2〉

σ,
〈
ω−2〉

+,〈
ω−1〉

− are ill-defined (divergent). Hence we observe that diagrams (a) – (c) result in
divergent convolutions but only if the exchanged photon is longitudinally polarized, while
in diagram (d) also the transverse photon polarization leads to ill-defined convolutions.
In the QCD-alone treatment of spectator scattering, the corresponding gluon exchanges
in diagrams (c) and (d) are absorbed into the B → M1 transition form factor and never
considered explicitly, whereas the gluon attachments (a), (b) to the emitted meson M2 sum
up to zero. For photon exchange the situation is different. Diagrams (a) and (b) sum up
to a divergent contribution that is proportional to the total charge of the M2 meson from
which one might conclude that for chargedM2 the second term in the factorization theorem
is ill-defined, leading to a breakdown of factorization. Fortunately, as already discussed in
the main text, this is not the case since the longitudinal photon contributions arise from
the hard-collinear Wilson line in the operator OI

− and are thus also associated with the
“form-factor term”, which is never matched to SCETII.

To demonstrate this explicitly, we compute the SCETI matrix elements of OI
− (dia-

grams (i) and (ii) in figure 6) and OIIγ
− (diagram (iii) in figure 6) on the right-hand side

of the matching relation (3.1), projecting onto the same meson LCDAs as the full-theory
diagrams. We obtain for matrix elements of the momentum-space operators

〈ÕI
−(u)〉 ≡

∫
dt̂

2π e
−iut̂ 〈OI

−(t)〉 (A.5)

= NQuQsp φM2(u)
[ 〈
ω−1

〉
−

〈
v̄−2 + v̄−1

〉
M1

+ µM1

3
〈
v−1v̄−2

〉
σ1

〈
ω−2

〉
+

]
,

and

〈ÕIIγ
− (u, v)〉 ≡

∫
dŝ

2π
dt̂

2π e
−i(ut̂+(1−v)ŝ) 〈OIIγ

− (t, s)〉 = N Qsp
2

φM1(v)
v̄

φM2(u)
〈
ω−1

〉
+
.(A.6)
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Comparing to the full-theory result (A.3), and given that HI
2,−(u) = 1 + O(αs, αem) has

already been determined from the matching of the OI
− operator in four-quark matrix el-

ements, we indeed find that all endpoint-divergent moments are contained in the matrix
element of OI

−, i.e. in the generalized soft form factor ζBM1
Q2

. Further, we can read off the
matching coefficient

HIIγ
2,−(u, v) = 2Qu

ū
+ 2Qd , (A.7)

in agreement with (3.42) from the direct matching of the operator with a transverse photon
field only. For completeness, we give the relations between the full-theory diagrams and
individual SCET diagrams:

〈Q2〉a)+b)+c)
‖ =

∫ 1

0
du HI

2,−(u)〈ÕI
−(u)〉i) ,

〈Q2〉d)
‖ + 〈Q2〉d)

⊥ =
∫ 1

0
du HI

2,−(u)〈ÕI
−(u)〉ii) ,

〈Q2〉a)+b)+c)
⊥ =

∫ 1

0
dvdu H IIγ

2,−(u, v)〈ÕIIγ
− (u, v)〉iii) . (A.8)

These results show once more that only transverse photons from the first three QED
diagrams contribute to HIIγ

2,−(u, v).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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