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1 Introduction

Since the discovery of D-branes [1, 2] they have played a crucial role in model building as
they contribute non-Abelian gauge groups. In particular, type IIB flux compactification to
four-dimensional space-time generically rely on the presence of space-time filling D3/D7-
branes [3, 4]. In order to cancel the positive charges one is required to introduce O3/O7
orientifold planes in the setup [5, 6]. Due to their back-reaction on the geometry one refers
to these backgrounds as Calabi-Yau orientifolds.

In the recent years F-theory vacua gained a lot of attention [7–10] which in the weak
string coupling limit naturally incorporate the type IIB D7-branes and O7-planes.

Two main challenges remain in the landscape of type IIB flux vacua. Firstly, the prob-
lem of Kähler moduli stabilization. While the Gukov-Vafa-Witten super-potential [11] in
the presence of non-vanishing background fluxes generically allows to stabilize the complex
structure moduli [3, 4], the leading order terms in α′ and gs, do not generate a potential for
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the geometric Kähler deformations which is referred to as the no-scale property. Secondly,
the de Sitter up-lift a commonly used phrase to describe the generation of a potential in a
low energy theory of string theory which admits a global or local de Sitter minimum, see
e.g. [12] for a review.

Historically, the first issue was addressed by incorporating non-perturbative effects
such as instantons to generate a potential for the Kähler moduli, while the de Sitter uplift
mainly relied on exotic objects such as anti D3 branes [13]. Recently, the swampland de
Sitter conjecture [14] has cast doubt on the consistency of those mechanisms. This however,
is an ongoing debate see e.g. [15] for a review.

Instanton effects are exponentially suppressed at large volumes which make them in
general sub-leading to the leading order α′-correction to the scalar potential. The large
volume scenario [16, 17] carefully balances an α′3g2

s -correction to the Kähler potential [18–
20] against instanton effects to the superpotential to achieve moduli stabilization. However,
this relies on having small cycles in the Calabi-Yau orientifold while maintaining an overall
large volume. Lastly, Kähler moduli stabilization may be achieved by the leading order
perturbative corrections [21, 22] and may potentially induce a natural de Sitter uplift [21–
24]. Latter allows for the cycles in the internal space to be of comparable size.

This provides a strong phenomenological motivation for the study of α′-corrections to
the Kähler potential and coordinates of four-dimensional N = 1 supergravity theories. A
series of our previous works [25–27] addressed the study of the leading order α′-corrections
in F-theory and thus weakly coupled IIB vacua. The foundation of those studies is laid
by an extensive analysis of dimensional reduction of higher-derivative terms from eleven
to three dimensions [28–30]. The correction whose potential existence had been elusive
ever since [25] is of order α′2gs and thus leading to the well known Euler characteristic
correction [18, 19].1 Recent developments [27] suggest the existence of another α′2gs-
correction to the Kähler coordinates proportional to the logarithm of the internal volume
which if present breaks the no-scale structure.

This work provides further evidence to the existence of both the correction to the
Kähler coordinates as well as the Kähler potential by the taking the type IIB approach.
We study Calabi-Yau orientifold compactifications with space-time filling D7-branes and O7
planes [32, 33], in particular we focus on the gravitational four-derivative α′2gs-sector of the
DBI effective actions [34], respectively. Let us emphasize that our starting point is identical
to the one in [35]. However, the approach discussed in [35] lacks certain conceptually
required steps to allow conclusions on the Kähler metric and thus the Kähler potential.
Namely, the discussion of the perturbation of the internal metric with respect to Kähler
deformations,2 as well as the discussion of the resulting equations of motions which are
modified when α′2gs-corrections to the DBI actions are present. Thus [35] fails to identify
any α′2gs-correction in the resulting four-dimensional theory.

1The dimensional reduction of the Heterotic string at α′2-order including Kähler deformations was
discussed in [31].

2Note that [35] uses the absence of an α′2gs-correction to the four-dimensional Einstein-Hilbert term to
conclude on the absence of an α′2gs-correction to the Kähler metric. Not only is this implication flawed, but
by discussing the E.O.M’s one indeed concludes that an α′2gs-correction to the four-dimensional Einstein-
Hilbert is present upon dimensional reduction.
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In this work we mainly study the gravitational R2-terms in the DBI action of D7-
branes and O7-planes [34]. But we also briefly discuss α′-corrections from other Dp-branes,
in particular D5-branes and O5-planes and moreover D6-branes and O6-planes in type IIA.
A comprehensive study would as well require the discussion of the F 2

5R-sector. However,
latter to the best of our knowledge has not been discussed in the literature.

This article is structured as follows. In section 2 we set the stage by introducing
the notion of α′2gs-corrections to the four-dimensional Kähler potential and coordinates.
We continue in section 3 by reviewing the starting point of our computation, namely
α′2gs-effects to D7-branes and O7-planes effective actions. The dimensional reduction is
performed for a single Kähler modulus, i.e the overall volume in section 5.3 Finally,
we conclude in section 6.1 on the corrections to the Kähler potential and coordinates by
comparison to the F-theory side. Lastly, in section 6.2 we briefly turn to the discussion
of α′-corrections to the Kähler potential originating from other Dp-branes, in particular
we initiate the study in type IIA. Higher-derivative terms in the DBI action of D5-branes
potentially give rise to a novel α′3gs-correction to the Kähler potential, as well as a potential
novel α′5/2gs-correction from D6-branes in type IIA.

2 The objective: 4d Kähler potential and coordinates

The main objective is to provide further evidence for the presence of the conjectured α′2gs-
correction to the four-dimensionalN = 1 Kähler coordinates [27]. The latter is proportional
to logarithm of the volume of the Calabi-Yau orientifold

∼ Z · log V̂. (2.1)

with V̂ the Einstein frame volume i.e. the volume of the internal manifold V equipped with
an additional dilaton dependence as

V̂ = e−
3φ
2 V, and v̂i = e−

φ
2 vi, (2.2)

and where Z is a topological correction which will be introduced in detail in section 3.3.
Moreover, vi, i = 1, . . . , h1,1

+ are the Kähler moduli fields in dimensionless units of 2πα′,
and φ ≡ φ(x) is the dilaton.4 We present a systematic study of the one-modulus reduction
of the R2-terms in the DBI and ODBI action of D7-branes and O7’s in sections 4 and 5.

To set the stage let us begin by reviewing the Kähler potential and coordinates which
are to be corrected at sub-leading order. The volume V̂ is dimensionless in units of (2πα′)3.
The Kähler potential and coordinates are given by

K = φ− 2 log
(
V̂ + γ1Ziv̂i

)
, (2.3)

3To perform the computations in this work we employ computational techniques, in particular we heavily
rely on the analytic abstract tensor algebra libraries xAct and xTensor [36–38].

4We denote the external and internal space coordinates with xµ and yi, respectively. Note that this is
an abuse of notation of the indices i, j, which we also use to denote the abstract index on the Kähler moduli
space, see e.g. eq. (2.2).
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and
Ti = ρi + i

(
K̂i + γ2Zi log V̂

)
, (2.4)

respectively. The axio-dilaton is
τ = C0 + ie−φ, (2.5)

where ρi are the real scalars arising from the reduction of the Ramond-Ramond type IIB
four-form fields C4, C0 the type IIB axion and γ1, γ2 are real parameters. The quantity K̂i =
K̂ijkv̂j v̂k is defined using the intersection numbers K̂ijk.5 The sub-leading correction Zi are
numbers and thus do not depend on the moduli fields, i.e. those are topological quantities
of the internal space. Let us stress that throughout this work we use dimensionless units

V = V/(2πα′)3, and vi = vi/2πα′, (2.7)

unless specified else-wise. One thus easily infers that the corrections Zi in eq.’s (2.3)
and (2.4) are of order α′2 gs compared to the leading order term. Moreover let us note
that the Kähler coordinates eq. (2.4) in principle may be corrected by other terms at this
order [27] all of which however become constant shifts in the one-modulus case. We thus
omit them for simplicity as we focus on the one-modulus case h1,1 = 1 in the following.
From (2.3) and (2.4) one infers that the Kähler potential becomes

K = φ− 2 log
(
V̂ + γ1Z V̂

1
3
)
, (2.8)

and the Kähler coordinates result in

T = ρ+ i
(
3 V̂

2
3 + γ2Z log V̂

)
, (2.9)

τ = C0 + i e−φ. (2.10)

The kinetic terms of the four-dimensional N = 1 supergravity theory are given by

S = 1
2κ2

4

∫
R ∗ 1− 2GIJ̄dTI ∧ ∗dT̄ J with GIJ̄ = ∂2K(T, T̄ )

∂TI ∂T̄ J
, (2.11)

where TI = (τ, Ti) and GIJ̄ is the Kähler metric. It is convenient to express the Kähler
potential (2.8) in terms of the Kähler coordinates using that V � 1, i.e. as an expansion
to linear order in Z. One finds that (2.8) and (2.9) become

K = − log
(
− i2 (τ − τ̄)

)
−
(

3− 9i γ2Z
T − T̄

)
· log

(
− i6

(
T − T̄

))
− 12i γ1Z

T − T̄
. (2.12)

5The intersection numbers are given by

K̂ijk = 1
6!

∫
Y3

ωi ∧ ωj ∧ ωk. (2.6)

where Y3 is the internal Calabi-Yau manifold, and ωi, i = 1, . . . , h1,1 are the harmonic (1, 1)-forms.
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Thus in the one-modulus case one infers from (2.8), (2.9), (2.10) and (2.12) that

S = 1
2κ2

4

∫
R ∗ 1−1

2dφ ∧ ∗dφ−
1
2 e

2φdC0 ∧ ∗dC0 (2.13)

−
( 2

3 V̂2
− 8γ1 + 3γ2

9 V̂8/3
Z
)
dV̂ ∧ ∗dV̂

−
( 1

6 V̂4/3
− 8γ1 + 9γ2

36 V̂2
Z
)
dρ ∧ ∗dρ.

Where we have again used the fact that Z � V for geometries where the internal volume
is large in units of (2πα′)3. The primary goal is to argue that the obtained correction Z
is indeed of topological nature and moreover agrees with our previous F-theory analysis.
For a definition of Z see eq. (3.17). Secondly, from (2.13) one infers that by fixing the
kinetic terms obtained by dimensional reduction on the internal Calabi-Yau orientifolds
in the presence of D7-branes and O7-planes one can fix γ1 and γ2. In particular, we will
derive the correction for the case of a Calabi-Yau orientifold with a single Kähler modulus
and with eight coinciding D7’s and one O7−. Note that this setup is different compared
to the one studied in [27] where only a single D7-brane is present with the class of the
divisor wrapped being a multiple of the one wrapped by the O7-plane, such that tadpole
cancellation is guaranteed. Lastly, note that in eq. (2.13) the correction to the mixed
kinetic terms of the dilaton and the Einstein frame volume as well as the correction to the
kinetic term of the dilaton is absent.

Scalar Potential. Let us emphasize that the Ansatz for the Kähler potential and Kähler
coordinates breaks the no-scale structure and thus generates a scalar potential for the
Kähler moduli fields for non-vanishing vacuum expectation value of the super-potential
W , given by e.g. the flux-superpotential after stabilizing the complex structure moduli
denoted by W0. The F-term scalar potential is given by

VF = eK
(
GIJ̄D

IWD̄JW̄ − 3|W |2
)
, (2.14)

where DIW = ∂TIW + W∂TIK. By using (2.8) and (2.9) one infers in the one-modulus
case that

VF = 3 γ2 e
φZ

2 V̂8/3
|W0|2. (2.15)

Comments. Let us close this section with some concluding remarks on the Ansatz for
the Kähler potential and coordinates (2.8) and (2.9). In particular let us emphasize that it
is the complete Ansatz at order α′2gs consistent with the functional form of Kähler metric
which will be derived later in this work. Firstly, note that the real part of the Kähler
coordinates (2.9) are protected by shift symmetry of ρ against α′-corrections.6 Analogous

6Note that one may want to write the general Ansatz for an α′2-correction up to constant shifts as

ReT = ρ ·
(

1 + d1 Z
1
V̂2/3

)
+ d2 Z log V̂, (2.16)

with d1, d2 parameters. However, the first correction breaks shift-symmetry and the term proportional to
the logarithm does not constitute a sub-leading term in the limit V̂ → ∞. Thus one concludes that the real
part of T is not to be corrected.
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conclusions hold for the generic modulus case (2.3) and (2.4). Moreover, the imaginary
part of the axio-dilaton eq. (2.10) is not expected to be corrected by α′-corrections. We
proceed in this work without a general proof of this assumption. However, note that in [20]
we have explicitly confirmed that in the case of the α′3g2

s -correction to the Kähler-potential
there is no correction to the axio-dilaton.

Lastly, let us emphasize that the possibility of a correction to the Kähler coordinates
of a 4d, N = 1 theory proportional to the logarithm of the internal volume has already
been discussed in the literature [39, 40]. To establish a correction of the latter to our
topological coefficient in eq. (2.1) is of great interest.7 Furthermore, it is worth noting
that an analog correction to the Kähler coordinates appears in 3d, N = 2 originating
from higher-derivative terms to eleven-dimensional supergravity i.e. the low energy limit
of M-theory compactified on a Calabi-Yau fourfold [30]. Moreover, there is no symmetry
forbidding such a correction (2.1) and thus one would generically expect it to be present,
see e.g. [41]. Concludingly, the presence of a correction to the Kähler coordinates as in
eq.’s (2.1), (2.4) and (2.9) is thus likely. We support this conclusion by providing more
explicit evidence in this work.

3 α′2gs-effects to D7-branes and O7-planes

In this section we discuss the relevant D7-brane and O7-plane actions. Those are in general
composed of the Dirac-Born-Infeld (DBI) as well as the Wess-Zumino8 action as

SDBI + SWZ . (3.1)

Let us first review the classical contribution to (3.1). One finds the DBI action [1, 2, 42]
for a D7-brane to be

S
(0)
DBI = −µ7

∫
d7Y e−ΦTr

√
−det (i∗(g +B)ij + 2πα′Fij) (3.2)

with brane charge µ7 = ((2π)3 · (2πα′)4)−1, i the embedding map of the D7 into the ten-
dimensional space-time and i∗ its pullback. Moreover, F is the gauge field strength on
the world-volume of the brane [43], B the NS-NS two-form field and Φ the dilaton. The
leading order Wess-Zumino contribution is given by

S
(0)
WZ = µ7

∫
Tr
(
i∗
(
C ∧ eB

)
∧ e2πα′F

)
, (3.3)

where C =
∑
nCn the sum over the various Ramond-Ramond fields. The O7−-plane

contributions are

S
(0)
O−DBI = 8µ7

∫
d7Y e−ΦTr

√
−det (i∗gMN ) and S

(0)
O−WZ = −8µ7

∫
i∗C8. (3.4)

In the following we refer to the O7−-plane simply as O7. At the relevant α′2gs-order
there are R2-terms in the DBI action of the D7 brane and O7 planes, which we review in
section 3.1.

7Note that [40] concludes that the correction is of order gs compared to the leading term.
8Also referred to as Chern-Simons action.
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3.1 R2-terms in the DBI effective actions of D7’s and O7’s

In this section we discuss the gravitational leading order corrections to the DBI action of
D-branes and O-planes. We focus on the case of D7-branes and O7-planes. The Riemann
squared DBI action for D7-branes in the string frame [34, 44–46] is given by

SR
2

DBI = (2πα′)2

192 µ7

∫
D7
e−Φ

[
RT αβγδRT

αβγδ − 2RTαβRT
αβ (3.5)

−RNαβabRNαβab + 2R̄abR̄
ab
]
∗8 1,

with brane charge µ7 = ((2π)3 · (2πα′)4)−1 and with RT αβ = RT αγβ
γ . RT denotes the

Riemann tensor in the tangent directions of the D7-brane and RN is the normal curvature
of the D7-brane. The bold notation in (3.5) refers to the dilaton dependence

RTαβ = RT αβ + ∇̂α∇̂βΦ , R̄ab = R̄ab + ∇̂a∇̂bΦ, (3.6)

found in [47], where Φ = Φ(x, y) is the ten-dimensional dilaton. The object R̄ab seems
not to do admit a natural geometric interpretation on the D7-brane however is defined
in terms of the total Ricci tensor R̂MN of the ten-dimensional space-time and the second
fundamental form Ω as

R̄ab = gαβR̂aαbβ + gαβgγδδacδbd Ωc
αγΩd

βδ, (3.7)

RT αβγδ = R̂αβγδ + δab
(
Ωa

αγΩb
βδ − Ωa

αδΩb
βγ

)
, (3.8)

RNαβ
ab = −R̂ ab

αβ + gγδ
(
Ωa

αγΩb
βδ − Ωb

αγΩa
βδ

)
, (3.9)

where gαβ denotes the metric on the tangent space of the D7 and the R̂ refers to total
space Riemann tensor where the respective tangent and normal indices are pulled back
form the total space. For precise definitions we refer the reader to appendix B. For geodesic
immersions i.e. Ω = 0 of D7-branes and O7-planes it was confirmed [48] that

SR
2

ODBI = 2p−5 SR
2

DBI , (3.10)

for a Dp-brane on the orientifolded background. It is expected that this relation (3.10)
holds for generic immersions i.e. Ω 6= 0.

F 2
5R-sector. Lastly, let us comment on the four-derivative terms which are quadratic in

the Ramond-Ramond four-form field C4, with field strength F5 = dC4. Relevant for our
discussion are terms of schematic form F 2

5R.9 Those can in principle be fixed by six-point
open string disk and projective plane amplitudes, see e.g. [49, 50]. We are not a aware of
a derivation of the terms in the DBI or ODBI effective actions. Their absence will lead
to a free parameter in the reduction result in section 5 which however may be fixed via a
match with the F-theory approach as discussed in section 6.1.

9The (∇F5)2-sector does not contribute in the one-modulus case.
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3.2 R2-terms to the Wess-Zumino effective actions

One finds the R2-contribution to the Wess-Zumino action for a D7 brane [51–53] to be

SWZ−D7 = (2π)4α′2

48 µ7

∫
D7
C4 ∧ (p1(ND7)− p1(TD7))) , (3.11)

where p1(ND7), p1(TD7) are the first Pontryagin class of the tangent and normal bundle,
respectively, and C4 is the Ramond-Ramond four form field strength. We now use the
fact that we consider space-time filling D7-branes, i.e. wrapping a four-cycle in the internal
space. The latter is a complex manifold and one thus may relate the previous expression
to the first and second Chern-classes as

p1 = c2
1 − 2c2. (3.12)

The rank of the normal space is of complex dimension one and thus c2(ND7) = 0. The
discussion for the O7-planes proceeds analogously [54, 55]. One finds

SWZ−O7 = −27−4 · 1
4 · SWZ−D7 = −2 · SWZ−D7, (3.13)

where we used the fact that we are dealing with D7-branes and O7-planes to fix the pre-
factor.

3.3 Embedding of branes in Calabi-Yau orientifolds

The Calabi-Yau orientifold is defined as oY3 = Y3/σ, where σ : Y3 → Y3 in type IIB string
theory is an isometric holomorphic involution [5, 56, 57], i.e. σ2 equals to the identity map.
The involution preserves the complex structure and metric from which one infers the action
on the Kähler form to be

σ∗J = J, (3.14)

where σ∗ denotes the pullback map. For O7-planes one infers that σ∗Ω = −Ω, with
Ω ∈ H(3,0) being the unique holomorphic (3, 0)-form. For the D7-branes to preserve four-
dimensional N = 1 supersymmetry the hyper-surface wrapped by it inside oY3 is to be
minimal, i.e. the representative Dm inside the Homology class which minimizes the vol-
ume [58]. The latter can be shown to be equivalent to the divisor i : Dm ↪−→ oY3 being a
Kähler sub-manifold which morover implies that Ωa

α
α = 0. The scalar curvature of Dm

generically is non vanishing
RT |oY3 6= 0, (3.15)

and by using eq.’s (B.13)–(B.18) may be written as

RT |oY3 = 4π · ∗4
(
c1(Dm) ∧ J̃

)
, (3.16)

where c1(Dm) is the first Chern-form of the divisor and J̃ its Kähler form which is inherited
from the total space J̃ = i∗J . To avoid introducing yet another notation we simply denote
with |oY3 the restriction of object entirely to the internal Calabi-Yau space, see appendix B.2
for details.
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In the one-modulus case we can factorize the volume modulus dependence as J̃ =
V1/3ω. Such that ω does not depend on the Kähler modulus. For later use let us define
the topological quantity

Z :=
∫
Dm

c1(Dm) ∧ ω. (3.17)

4 α′2gs-corrected Calabi-Yau orientifold background solution

In this section we analyize the E.O.M’s resulting from the leading order ten-dimensional
type IIB supergravity and the α′2gs-corrected DBI actions of D7-branes and O7-planes.
The relevant part of the ten-dimensional type IIB leading order supergravity action in the
string frame takes the form10

S0
IIB−S = 1

2κ10

∫
e−2Φ

(
R ∗10 1 + 4 dΦ ∧ ∗dΦ− 1

2 |H3|2
)
− 1

2 |F3|2 −
1
4 |F5|2. (4.1)

where

H3 = dB2, F3 = dC2 − C0dB2 and F5 = dC4 −
1
2C2 ∧ dB2 + 1

2B2 ∧ dC2, (4.2)

are the usual NSNS and RR three-form field strengths and with

F5 = ∗10F5, (4.3)

being self-dual. A Weyl rescaling by

gSMN = eΦ/2gEMN , (4.4)

leads to the ten-dimesnioal Einstein frame action.11

Moreover, we have used gS , gE to denote the string and Einstein-frame metric, re-
spectively and 2κ10 = (2π)7α′4 = µ−1

7 . The basic framework of our discussion are super-
symmetric flux compactifications of type IIB super-string theory on a Calabi-Yau three-
fold [3, 4, 6, 32, 33]. Setting aside higher-derivative corrections to the ten-dimensional
supergravity action [3] the background metric is given by

Φ = φ(0), φ(0) = const., (4.6)
ds2
S = e 2Aηµνdx

µdxν + e−2Agijdy
idyj

where gij denotes the unmodified Calabi-Yau threefold metric. The warp factor A = A(y)
determines the background F5-flux via

F5 = (1 + ∗10) de4A ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx4. (4.7)
10Where we use the notation |H3|2 = 1

p!HMNOH
MNO.

11The Einstein frame action results in

S0
IIB−E ⊃

1
2κ10

∫
R ∗10 1 . . . . (4.5)

where we have used (A.10).
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Moreover, the flux obeys the Bianchi identity

dF5 = H3 ∧ F3 + ρ6, (4.8)

where ρ6 encodes the D3-brane charge density associated with potential localized sources.
Integrating (4.8) one yields the D3-brane tadpole cancellation condition

1
(2πα′)2

∫
Y3
H3 ∧ F3 +ND3 = 0, (4.9)

where ND3 is the total number of D3 branes. In the presence of D7-branes and O7-planes
the D3 tadpole cancellation condition (4.9) gets modified [59, 60] as

1
(2πα′)2

∫
Y3
H3 ∧ F3 +ND3 = NO3

4 +
#D7′s∑

i

N i
D7
χ(DD7

i )
24 +

#O7′s∑
i

χ(DO7
i )

12 (4.10)

where the sum runs over the stacks of D7-branes containing the number of ND7 each. The
Di’s are the four-cycles in the Calabi-Yau orientifold oY3 wrapped by the D7’s and O7’s,
respectively. Moreover χ is the Euler-characteristic of the 4-cycles and NO3 the number of
O3-planes. We have set the background gauge flux of the D7-branes to zero throughout
this work. We do not discuss localized D3 branes and O3 planes in this work. From (4.10)
one infers that non-vanishing H3 and F3 flux are consistent with the absence of D3 branes
as long as the Euler-characteristic of the divisor wrapped by the D7-branes and O7 planes
do not vanish. Moreover, let us note that the D3 and O3 higher-derivative corrections
won’t affect our results as the latter cannot affect the Kähler metric of the moduli space
with the same functional dependence as D7-branes. However, the presence of D3-branes
gives rise to other effects [61]. Lastly, the tadpole cancellation condition of D7-branes [59]
is given by

#D7′s∑
i

N i
D7 ·

(
[DD7

i ] + [DD7′
i]
)

+ 8
#O7′s∑
i

[DO7
i ] = 0, (4.11)

where [·] denotes the class of the four-cycle wrapped by the D7’s and O7’s and the prime
denotes the orientifold image i.e. the action on the background geometry in the presence of
the O7-plane. To accommodate for (4.11) we choose a setup of eight D7-branes and one O7-
plane which wrap the same four-cycle inside the Calabi-Yau fourfold and vanishing gauge
flux. Moreover, the Calabi-Yau orientifold admits only one Kähler modulus h1,1 = 1, i.e. the
overall volume and moreover one finds that h1,1

+ = 1. Although the latter requirement may
seem restrictive it is sufficient to deduce the Kähler-potential and coordinates as those
may be generalized to the generic Kähler moduli case, see e.g. the original derivation of
the Euler characteristic correction to the N = 1 Kähler potential [19]. The generic moduli
case derivation was done rather recently by [20].

To combine (3.5), (3.10) and (4.1) one equips the DBI and ODBI action with δD7,
which is non-vanishing on the world-volume of the D7-branes. The definition of the scalar
quantity δD7 is simply given by12∫

δD7 ∗10 1 =
∫
D7
∗81, and in particular

∫
oY3

δD7 ∗6 1 =
∫
Dm
∗41. (4.12)

12Note that (4.12) may be alternatively expressed via a 2-form ω̂ which is Poincare dual to the cycle
wrapped by the D7-brane. In other words one finds that

∫
oY3

J ∧J ∧ ω̂ =
∫
D7 ∗81 and thus δD7 ∝ ω̂ijg(0)ij .
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Dilaton E.O.M. We proceed by deriving the string frame equation of motion for the
dilaton. One infers from (4.1) and eight-times the DBI action (3.5) plus the ODBI ac-
tion (3.10) for eight coincident D7’s on top of a single O7 to be

R(1) + 4∇(0)
i ∇

(0)iΦ(1) − 1
2 |H3|2 + 2α δD7 e

Φ · ∇(0)α∇(0)βRT αβ |oY3 (4.13)

− 2α δD7 e
Φ · ∇(0)a∇(0)bR̄ab|oY3 + · · · = 0,

where we have used the fact that the leading order solution eq. (4.6) denoted by the
superscript (0) is Minkowski times internal Calabi-Yau, and moreover that the classical
dilaton solution is constant. For notational simplicity we have defined

α = 12 · (2πα′)2

192 . (4.14)

The ellipsis in (4.13) denote O(α2) contributions as well as terms quadratic in the Riemann-
tensor of the internal space.

External Einstein equation. Let us next turn to derive the Einstein equations
from (4.1), (3.5) and (3.10).13 The external Einstein equation is given by

R(1) + 4∇(0)
i ∇

(0)iΦ(1) − 1
2 |H3|2 −

1
2e

2Φ|F3|2 (4.15)

+ 4α δD7 e
Φ · ∇(0)α∇(0)βR

(0)
T αβ |oY3 − 4α δD7 e

Φ · ∇(0)a∇(0)bR̄
(0)
ab |oY3 + · · · = 0.

Internal Einstein equations. The internal Einstein equations split in tangent and
normal directions. The internal normal components are given by

δab

(1
2R

(1) + 2∇(0)
i ∇

(0)iΦ(1) − 1
4 |H3|2 −

1
4e

2Φ|F3|2
)

(4.16)

−R(1)
ab + 3

2 |H3|2ab + 3
2e

2Φ|F3|2ab − 2α δD7 e
Φ · ∇(0)

α ∇(0)αR̄
(0)
ab |oY3 + . . . = 0,

The tangent components are given by14

g
(0)
αβ

(1
2R

(1) + 2∇(0)
i ∇

(0)iΦ(1) − 1
4 |H3|2 −

1
4e

2Φ|F3|2 + 2α δD7 e
Φ · ∇(0)γ∇(0)δR

(0)
T γδ|oY3

−2α δD7 e
Φ · ∇(0)a∇(0)bR̄

(0)
ab |oY3

)
+ α δD7 e

Φ
(
−4∇(0)

γ ∇
(0)
(α RT

(0)
β)γ |oY3 − 4∇(0)γ∇(0)δRT

(0)
αγβδ|oY3 + 2∇(0)

γ ∇(0)γRT
(0)
αβ |oY3

)
−R(1)

αβ + 3
2 |H3|2αβ + 3

2e
2Φ|F3|2αβ + · · · = 0, (4.18)

13Note that there is no contribution from the classical DBI and WZ actions due to tadpole cancellation.
14Where we have used the notation

|H3|2 = 1
3!H3ijkH3

ijk, |H3|2ab = 1
3!H3aijH3b

ij , |H3|2αβ = 1
3!H3αijH3β

ij , (4.17)

and analogously for |F3|2ab and |F3|2αβ .
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Background solution. We next show that the following ansatz for the type IIB back-
ground metric and dilaton

Φ = φ(0) + αφ(1), φ(0) = const., (4.19)

ds2
S = e2αA(1)

ηµνdx
µdxν + e−2αA(1) (

g
(0)
ij + α g

(1)
ij

)
dyidyj , (4.20)

is a solution to (4.13)–(4.18), where g(0)
ij denotes the unmodified Calabi-Yau metric which

constitutes a solution to the classical E.O.M.’s. Moreover g(1)
ij can be expressed in terms

of tangent and normal indices i → (α, a) according to (B.1) and (B.2). Firstly, one infers
from (4.19) and (4.20) that (4.13) may be re-expressed as15

∇(0)α∇(0)β
(
g

(1)
αβ + 2 δD7 e

φ(0) ·RT αβ |oY3

)
+∇(0)a∇(0)b

(
g

(1)
ab − 2 δD7 e

φ(0) · R̄ab|oY3

)
(4.21)

+∇(0)
i ∇

(0)i
(
4φ(1) − g(1)

i
i + 10A(1)

)
− 1

2 |H3|2 + · · · = 0.

We proceed analogously for the Einstein equation (4.15)–(4.18). For details see ap-
pendix B.3. A few comments in order. From comparison of eq.’s (4.13)–(4.15) one infers
that there exists no solution for vanishing background fluxes H3 and F3. To solve for
H3 and F3 explicitly is beyond the scope of this work as it additionally requires to check
consistency with the E.O.M’s of H3, F3 and C4. For our purpose it is sufficient to limit
ourselves to making an Ansatz for the squared contributions

|F3|2αβ , |H3|2αβ ∼ O(α) and |F3|2ab, |H3|2ab ∼ O(α), (4.22)

rather than H3 and F3 itself. We use that

|H3|2 = g(0)αβ |H3|2αβ + δab|H3|2ab, and |F3|2 = g(0)αβ |F3|2αβ + δab|F3|2ab. (4.23)

Details of the flux-background ansatz can be found in the appendix B.3. Let us take a step
back to discuss the factorization of eq.s (4.13)–(4.18) in a total derivative contribution and
a curvature square density. One finds that the E.O.M’s are of the schematic form16

∇∇
(∑

n

Rn

)
︸ ︷︷ ︸

=0

+
∑
m

R2
m︸ ︷︷ ︸

=0

= 0. (4.24)

where Rn is placeholder for objects in the list
{
RT |oY3 , R̄|oY3 , g

(1), φ(1), A(1)
}
and R2

m is our

notation for curvature objects in the list
{
R2
T |oY3 , R

2|oY3 , R̂Ω2|oY3 ,Ω4|oY3

}
. Moreover, the

formal sum in eq. (4.24) allows for various different index contractions as well as different
pre-factors. For simplicity, in this work we only provide a solution to the total-derivative

15Let us emphasize that in this work for simplicity i.e. the one-modulus h1,1 = 1 Calabi-Yau (4.19)
and (4.20) are given for the case where the world-volume of 8 D7’s and O7 coincides. However, note that
the (4.19) and (4.20) can be generalized to account for non-coinciding D7’s and O7’s by simple summing
over the respective contributions.

16Note that by commuting two covariant derivatives the two sector in eq. (4.24) can communicate in
principle. However, this does not affect our analysis at hand.
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contribution which, however suffices to fix (4.19) and (4.20). Note that due to this we
can restrict ourselves to making an Ansatz for (4.22) which only contains total derivative
pieces.

Let us now turn to the discussion of the solution of (4.13)–(4.18) by the Ansatz (4.19)
and (4.20) which is fixed to take the form

g
(1)
αβ = −2 δD7 e

φ(0)
RT αγβ

γ |oY3 + γ̂3 δD7 g
(0)
αβ · e

φ(0)
RT |oY3 , (4.25)

g
(1)
ab = 4 δD7 e

φ(0)
R̄aγb

γ |oY3 + γ̂3 δD7 g
(0)
ab · e

φ(0)
RT |oY3 ,

and moreover the background dilaton and warp factor to be

φ(1) =
(
−6

5 + γ3

)
δD7 e

φ(0)
RT |oY3 , A(1) = γ̄3 e

φ(0)
δD7RT |oY3 , (4.26)

where
γ3 = 6 γ̂3 + 2 γ̄3. (4.27)

Thus note that the Einstein equations and dilaton equation of motion alone do not com-
pletely fix the Ansatz (4.19) and (4.20). More precisely, there remains an ambiguity in
between the warp factor and the correction to the Calabi-Yau metric parametrized by the
γ3
′s. We expect that a complete treatment of the other E.O.M.’s involving the fluxes will

fix the remaining freedom.

Ramond-Ramond C4. It is interesting to discuss the relationship of the warp-
factor (4.26) and the dynamic equations for the NS-NS and R-R fields given by (4.7)
and (4.8). Counting derivatives one infers that

dF5 = d ∗10 de
4A(1)

dx1 . . . dx4 ∼ O (α) , H3 ∼ O
(
α

1
2
)
, F3 ∼ O

(
α

1
2
)
. (4.28)

and thus in particular

F5 ∼ O (α) , thus |F5|2 ∼ O
(
α2
)
∼ O

(
α′4
)
. (4.29)

This is self-consistent with the E.O.M’s (4.13)–(4.18) in which we have omitted |F5|2 due
to the fact of being of higher order in α. Moreover, it implies that the Wess-Zumino
contribution (3.11) can be safely neglected in the next section 5 as it is of higher order
as well. Note that (4.28) is consistent with the well known flux quantization condition [3]
given by

1
2πα′

∫
H3 ∈ 2πZ, 1

2πα′
∫
F3 ∈ 2πZ. (4.30)

Let us close this section by providing an outlook on the next section. Note that a
solution to the equations of motion is a necessary but not a sufficient condition for the
background to preserve the required amount of supersymmetry. As we are not aware
of a discussion of the α′-corrected supersymmetry conditions we limited ourselves to the
discussion of the E.O.M.’s. To gain confidence in the background solution we will provide
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a check employing four dimensional N = 1 supersymmetry.17 We use the simple fact that
the α′2-correction to the kinetic terms must take the form (2.13). In particular, it implies
the vanishing of the α′2-correction to the dilaton kinetic terms as well as the mix terms
with the Einstein frame volume V̂. Employing this technique in section 5 will lead us to
fix γ̂3 and γ̄3.

5 Dimensional reduction one-modulus Calabi-Yau orientifold

In this section we discuss the dimensional reduction of (3.5), (3.10) and (4.1) on the back-
ground solution (4.19) and (4.20). Let us emphasize that all equations are treated to
linear order in α, thus terms of O(α2) are neglected systematically. Let us briefly recall
some well know features of Calabi Yau orientifold compactifications of type IIB to four
dimensions [33, 64]. The isometric involution σ generated by an O7-plane acts on the
fields as

σ∗Φ = Φ, σ∗g = g, and σ∗C4 = C4. (5.1)
The cohomology group Hp,q splits in the even and odd eigen-space of σ∗ as Hp,q = Hp,q

+ ⊕
Hp,q
− . The four-dimensional fields relevant for our discussion arise as18

J = viωi, C4 = ρiω̃i, i = 1 . . . h1,1
+ (oY3). (5.2)

Note that the range of the index in (5.2) is restricted from the upper bound h1,1 in the
Calabi-Yau setting to h1,1

+ when orientifold planes are added. In the one-modulus case
eq. (5.2) becomes

J = V
1
3 ω, C4 = ρ ω̃, (5.3)

where we have used that h1,1 = h1,1
+ = 1.19 As we consider geometric backgrounds with

a single Kähler modulus i.e. the overall volume, the scaling of the Calabi-Yau metric is
given by

g
(0)
ij ∼ V

1
3 , (5.4)

where we abuse our notation as the volume carries dimensions in the background
ansatz (5.4). It will be cast dimensionless when dressing it with the appropriate α′-powers
eq. (2.7) after the dimensional reduction. One is next interested in inferring the scaling
behavior of the corrections to the background (4.25) and (4.26) under eq. (5.4). Using that
the internal space Riemann tensor with downstairs indices scales as V1/3 one concludes
that the higher-derivative corrections to the background (4.25) and (4.26) scale as20

φ(1) ∝ V−
1
3 , A(1) ∝ V−

1
3 , g

(1)
ij ∝ V

0. (5.5)
17This procedure of fixing higher-derivative terms or for our matter at hand a parameter in the higher-

derivative background solution was employed in e.g. our previous work [62]. One may first compactify to
lower dimensions and verify consistency with 4d, N = 1 or N = 2 supersymmetry. The latter led us to
find novel higher-derivative terms in type IIA [62] which were recently confirmed by scattering amplitudes
methods [63].

18Where {ω̃i} is the basis of H2,2(oY3). We abuse the notation i for the real coordinates on the internal
space, however the meaning should be clear form the context.

19In the one-modulus case the single complex hyper-surface is in the same class as the fix-point locus of
the orientifold involution σ(Dm) = Dm and thus in the even cohomology.

20Where we use that ∂αYM ∼ V0 and ξMa ∼ V−1/6.
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Separating the volume modulus dependence in the background ansatz as derived in eq. (5.5)
one finds that

Φ = φ+ αV−1/3eφφ(1), (5.6)

ds2
S = e2αV−1/3eφ A(1)

gµνdx
µdxν + e−2αV−1/3eφ A(1)V1/3

(
g

(0)
ij + αV−1/3eφ g

(1)
ij

)
dyidyj ,

where φ = φ(x), V = V(x) and gµν = gµν(x) the dynamic external metric. There is no
contribution from the classical DBI and WZ actions to the kinetic terms of the discussed
fields [32]. Thus we can omit them from the study at hand. Dimensionally reducing the
DBI and ODBI action of the coincident eight D7’s and the single O7 (3.5) and (3.10) one
finds by using eq. (A.12) that

8SR2
DBI + SR

2
ODBI −→

α

(2π)5α′

∫ ( 4
9 V̂8/3

∫
Dm

RT |oY3 ∗ 1
)
dV̂ ∧ ∗dV̂ (5.7)

+
( 3
V̂2/3

∫
Dm

RT |oY3 ∗ 1
)
dφ ∧ ∗dφ

+
( 8

3 V̂5/3

∫
Dm

RT |oY3 ∗ 1
)
dφ ∧ ∗dV̂ +O(α2),

where we have absorbed (2πα′)3 to render the volume dimensionless V → V/(2πα′)3 which
leads to

α→ 1
16 . (5.8)

Note that the reduction computation to arrive at (5.7) exclusively depends on the zeroth
order Calabi-Yau background as the O(α)-corrections to the background (5.6) lead to α2-
contributions and are thus to be neglected. Moreover, to arrive at (5.7) we made use
of (3.9) in combination with (B.7)–(B.9) which allowed us to connect total space Riemann
curvature components to tangent and normal space curvature expressions.

Let us next present the reduction result in the Einstein frame after a Weyl rescaling21

g′µν = Λgµν of the four-dimensional metric by

Λ−1 = e−2φV +
(1

2g
(1)
i

i − 4A(1) − 2φ(1)
)
, (5.9)

where22

g
(1)
i

i ∼ A(1) ∼ φ(1) ∼ e−φV1/3
∫
Dm

RT |oY3 ∗ 1. (5.10)

Note that (5.9) implies that the reduction result before the Weyl-rescaling contains the
gravitational term

1
(2π)4α′

· Λ−1
∫
R ∗4 1. (5.11)

21See eq. (A.8).
22We use that g(0)αβRT αγβ

γ |oY3 = RT |oY3 and moreover that δabR̄aγbγ |oY3 = −RT |oY3 which follows
from eq. (B.11).
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By using eq. (A.12) and eq.’s (B.1)–(B.12) one infers that the reduction of the classical
action (4.1) results in

S0
IIB−S −→

1
(2π)4α′

∫
R ∗4 1 +

(
− 2

3V̂2
−

388
5 α

9 V̂8/3

∫
Dm

1
2πRT |oY3 ∗ 1

)
dV̂ ∧ ∗dV̂

+
(
−1

2 −
3α
V̂2/3

∫
Dm

1
2πRT |oY3 ∗ 1

)
dφ ∧ ∗dφ

+
(
− 8α

3 V̂5/3

∫
Dm

1
2πRT |oY3 ∗ 1

)
dφ ∧ ∗dV̂ +O(α2). (5.12)

To make (5.7) and (5.12) compatible with four-dimensional N = 1 supersymmetry fol-
lowing (2.13) we fixed the two free parameters in the background solution (4.25)–(4.27)
to be

γ̂3 = −71
18 , γ̄3 = 113

15 → γ3 = −43
5 . (5.13)

Note that this relies on the assumption that the imaginary part of the axio-dilaton eq. (2.10)
does not receive corrections, see section 2 for details. Combining (5.7) and (5.12) one thus
infers that

S0
IIB−S + 8SR2

DBI + SR
2

ODBI −→ (5.14)
1

(2π)4α′

∫
R ∗ 1− 1

2dφ ∧ ∗dφ−
(

2
3V̂2

+
368
5 · α

9 V̂8/3

∫
Dm

1
2πRT |oY3 ∗ 1

)
dV̂ ∧ ∗dV̂ ,

where in (5.12) and (5.14) we have neglected the kinetic terms of the fields arising from H3
and F3 since those are irrelevant for our analysis. The contribution from F5 will be discussed
below in the text. Moreover, we have assumed that the R2-action of eight coinciding D7-
branes is simply eight times SR2

DBI . A few comments in order. Firstly, note that the order
α-contributions to (5.12) arise exclusively from the corrected background (4.19) and (4.20).
Secondly, note that N = 1 supersymmetry (2.13) requires the α′2gs-correction of the mix
kinetic terms of the dilaton and the Einstein frame volume as well as the dilaton kinetic
terms to vanish. The caveat to this approach is that turning on gauge flux may alter the
E.O.M’s and thus the background solution. Note that we did not solve all the E.O.M’s of
the system and thus a solution with vanishing D-brane gauge field flux may be inconsistent.
However, note that the integrated condition (4.10) is consistent with vanishing gauge flux.

|F5|2-terms. Let us next turn to the scalar field ρ which arises in the reduction of the
Ramond-Ramond five-form field strength. The C4 four-form field gives rise to a scalar as

C4 = ρ · ω̃ (5.15)

where ρ = ρ(x) and ω̃ is the unique harmonic four-form. The α-contribution to the ρ-
kinetic terms arising from the classical action (4.1) origin solely from the α-correction
to the background metric (5.6). After a Weyl rescaling by (5.9) to the four-dimensional
Einstein frame and by using (5.13) one finds

1
2κ10

∫
−1

4 |F5|2 ∗10 1→ 1
(2π)4α′

∫
−
(

1
6V4/3 +

374
5 · α
36V2

∫
Dm

1
2πRT |oY3 ∗ 1

)
e2φdρ ∧ ∗dρ ,

(5.16)
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where we have used that the divisor is minimal i.e. Kähler for the metric (4.25). Note that
the left hand-side in eq. (5.16) is part of the ten-dimensional type IIB supergravity action
in the string frame. Let us emphasize that the higher-derivative F 2

5R-terms in the DBI
and ODBI action remain elusive. One may next use∫

Dm
RT |oY3 ∗ 1 = 4πZ, (5.17)

to express the total reduction result in terms of manifestly topological quantities. The
complete four-dimensional action is the sum of (5.7), (5.12) and (5.16) and results in

S = 1
2κ2

4

∫
R ∗ 1− 1

2dφ ∧ ∗dφ−
( 2

3 V̂2
+ 2α · 368/5

9V̂8/3
Z
)
dV̂ ∧ ∗dV̂ (5.18)

−
( 1

6 V̂4/3
+ 2α · 374/5 + γ4

36 V̂2
Z
)
dρ ∧ ∗dρ.

With 2κ2
4 = (2π)4α′ and where we have introduced a new parameter which is expected to

obey
γ4 6= 0, (5.19)

to highlight the fact that the DBI and ODBI F 2
5R-terms are currently unknown. However,

the latter are expected to contribute to the ρ-kinetic terms in (5.18).
Finally, we are in a position to draw conclusions on the Kähler potential and coordi-

nates. By comparing eq. (2.13) with eq. (5.18) one fixes the parameters in the Ansatz (2.8)
and (2.9) for the Kähler potential and coordinates as

γ1 = 1
128 · (γ4 − 146) and γ2 = − 1

48 ·
(
γ4 + 6

5

)
. (5.20)

Let us close this section with a few brief comments. Firstly, note that eq. (5.20) implies
that for any value of γ4 either the correction to the Kähler potential or coordinates is
present. For γ4 6= −6/5 one in particular finds that the no-scale structure is broken by the
α′2gs-correction. We will discuss an indirect way to fix γ1 and γ2 in section 6.1.

Comments. Let us close this section with a short discussion on the presence of the
Einstein-Hilbert term in the reduction result eq. (5.11).23 Note that by using eq. (5.11) as
well as eq. (5.17) we find a correction to the Einstein-Hilbert term as

∼ 1
(2π)4α′

∫
R ∗ 1

(
V

1
3 e−φZ

)
, (5.21)

where the volume is dimensionless. Firstly, note that one may easily infer that this is of
order α′2gs relative to the leading order term which in the string frame scales as ∼ V e−2φ.
Secondly, it is absent for four-cycles with vanishing first Chern form thus in particular for
flat backgrounds which follows from eq. (5.21). The R2-sector fixed by the open string
disk and projective plane amplitudes [34] upon reduction does not give rise to an Einstein-
Hilbert term correction to the four-dimensional theory. One thus expects latter to arise

23The one-loop case has been discussed in [65]. I would like to thank Michael Haack for his helpful
comments in particular on this topic.
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by matching effective field theory with the amplitudes of closed string gravitons scattered
off D-branes at disk level. However, such terms have not been identified at the two-point
level [66, 67]. Note that usually the gravitons are scattered off flat D-branes in which case
the correction eq. (5.21) is trivially absent. It is of interest to conduct this study for higher-
point functions, in particular for D-brane world-volumes with non-vanishing intrinsic Ricci
curvature.

6 Discussion of results and conclusions

6.1 Connection to F-theory and the generic moduli case

In this section we focus on two main points. Firstly, we show that the form of the topological
Z-correction (3.17) can be matched with our previous F-theory approach [27], in particular
with the F-theory setting admitting non-Abelian gauge groups [26]. Secondly, note that the
Kähler coordinates during the F-theory uplift are expected to receive one-loop effects [27,
30, 68], which constitutes the main obstacle to performing a conclusive F-theory analysis.
Although the Kähler-potential in the F-theory lift may as well potentially be corrected
at loop-level the “α′2-corrections” to it can formally be up-lifted by using the classical
formalism [10, 26, 27]. One may thus match it with the type IIB approach taken in this
work in particular eq. (2.8). This will allow us to suggest values for γ1 and γ2.

F-theory incorporates the physics of D7-branes and O7-planes in the geometry of an
elliptically fibered Calabi-Yau fourfold Y4 with Kähler base B3 [7–10]. In particular, the
weak-coupling limit of F-theory is equivalent to type IIB compactified on a Calabi-Yau
orientifold oY3, i.e. a Calabi-Yau background Y3 with orientifold planes added. One obtains
the manifold Y3 by taking the double cover of the base B3 branched along the orientifold
locus, i.e. the four-cycle wrapped by the O7-plane. One thus identifies

B3 ≡ oY3. (6.1)

Let us start by giving some generic results relevant for the discussion which follows in this
section. For a single O7-plane with locus Dm ⊂ B3 one finds that24

[c1(B3)] = 1
2[Dm], (6.2)

and by using adjunction that
[c1(Dm)] = −[c1(B3)], (6.3)

where c1(B3) and c1(Dm) are the first Chern forms of the base and the orientifold lo-
cus, respectively. The four-dimensional Kähler potential in the weak coupling limit of
F-theory [26, 27] takes the form25

KF−theory = φ− 2 log
(
V̂ + 1

96 V̂
1
3ZF

)
, (6.4)

24We use the abbreviation [ω] = [PD(ω)], where ω is a (1, 1)-form.
25Where we omit the potential novel corrections [27] to the Kähler potential which are not of the

form (6.4), (6.5) and (6.6) .
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where here we have used that the base manifold admits a single Kähler modulus and that

ZF =
∫
B3

PD(C) ∧ ω, C ⊂ B3. (6.5)

where ω is the (1, 1)-form Poincare dual to the single complex co-dimension one hyper-
surface in B3. The complex curve C and its Poincare dual four-form PD(C) are fixed by
matching it to the corresponding correction in the three-dimensional N = 2 theory. In
particular, the curve C is determined by the F-theory lift of the three-dimensional Kähler
potential. One finds [26, 27] that by shrinking the torus inside the elliptically fibration
T 2 → 0 and by moreover taking the weak coupling limit [57] that the curve C is fixed by
the Calabi-Yau fourfold information as

ZF
!= lim
w. c.
Z3d, with Z3d =

∫
Y4
c3(Y4) ∧ ω. (6.6)

Here c3(Y4) is the third Chern-form of the Calabi-Yau fourfold. In [26] an extended study
of F-theory backgrounds admitting n-stacks with SU(Ni), i = 1, . . . , n gauge groups was
conducted. Leading to a total gauge group of

G =
n∏
i

SU(Ni). (6.7)

This led us to suggest26

C = −[W ] ·
(

[W ]− 1
2[c1]

)
−
∑
σ=±

n∑
i=1

Ni [Sσi ] ·
(

[Sσi ] + 1
2[c1]

)
. (6.8)

Where [W ] is the class of the Whitney umbrella [69, 70], [S±i ] are the hyper-surfaces
wrapped by the ith-brane stack and its orientifold image and

[c1] = [π∗c1(B3)], with π : Y3 → B3, (6.9)

is the first Chern form of the base pulled back by the projection from the double cover Y3
to the base B3. On the type IIB orientifold [5, 6, 43] with eight coincident D7-branes and
one O7−-plane the gauge group is given by

G8D7+O7 = SO(8). (6.10)

Let us next turn to eq. (6.8) in the one-modulus case with a single divisor class [Dm] of
the base and a SU(N) gauge group. One finds by using (6.2) that

C = −1
4[Dm] · [Dm] (3 + 10N) . (6.11)

where we have used that [S±] = [W ] = [Dm], and eq.’s (6.8)–(6.10). The relations (6.2)
and (6.3) hold both expressed as classes in the base i.e. in oY3 as well as for the double

26We use the notation [D1] · [D2] to denote the intersection product between two sub-varieties [D1]
and [D2].
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cover Y3. Thus for notational simplicity we omit a distinction in this section. Finally, by
using adjunction one finds eq. (6.3) and thus from eq. (6.2) that

[c1(Dm)] = −1
2[Dm], (6.12)

which leads us to arrive at27

ZF ∼ Z = −1
2 [Dm] · [Dm] · [ω]. (6.13)

As the study performed in [26] and thus relation (6.8) does not incorporate for SO(8) gauge
groups eq. (6.13) constitutes a heuristic argument. However, with that caveat in mind we
conclude that the correction ZF derived in F-theory and the Z-correction of the type IIB
approach are of the same topological form. It would be interesting to study eq. (6.5) in
F-theory setups which admit SO(8) gauge groups. Alternatively, one may turn on gauge
flux in the type IIB setting which will lead to different gauge groups such as

G6D7+D7+D7′+O7 = SO(6)×U(1), G4D7+2D7+2D7′+O7 = SO(4)×U(2),
G2D7+3D7+3D7′+O7 = SO(2)×U(3), G4D7+4D7′+O7 = U(4) , (6.14)

where the bold notation refers to the type IIB seven branes which are shifted slightly
away from the O7-plane due to the gauge flux.28 On the F-theory side [26] one finds
that for U(1)-restricted models for simple non-Abelian gauge groups such as SU(N) the
relation (6.8) results in

C =
∑
σ=±

(
−[W σ] ·

(
[W σ]− 1

2[c1]
)
−

n∑
i=1

Ni [Sσi ] ·
(

[Sσi ] + 1
2[c1]

))
, (6.15)

where the Whitney umbrella is shifted away from the orientifold locus such that it addi-
tionally contributes its image thus W±. Let us next establish a connection to the DBI
type IIB side. Under the assumption that a non-vanishing gauge flux does not alter the
type IIB discussion of the Kähler metric one may now match the Kähler potential on the
F-theory side with the one derived from the DBI actions. Note that since

SU(4) ' SO(6), (6.16)

the type IIB setup eq. (6.14) with seven D7’s and one O7 can be matched with our for-
mula (6.15) for U(1) restricted models in F-theory. In that case one encounters

C = −23
2 [Dm] · [Dm]. (6.17)

Moreover, note that on the type IIB side we need to change the number of D7-branes and
thus our DBI action pre-factor becomes

α→ 11
192 . (6.18)

27Note that [ω] = [Dm]. We chose to express (6.13) with explicit appearance of ω as it is closer to the
schematic form of the correction in the generic moduli case.

28The branes D7 and D7 lie in the same Homology class.
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We are now in a position to identify the Kähler potential obtained via F-theory eq. (6.4)
to the one obtained from the DBI actions of seven D7-branes and a single O7-plane. By
using eq. (6.4) one can fix the Kähler potential eq. (2.8) on the type IIB side to

γ1 = 23
96 ⇒ γ2 = −69

20 , (6.19)

which allows us to derive the Kähler coordinate correction γ2.
Concludingly, the comparison to F-theory suggests that the no-scale structure is broken

due to the α′2gs-correction to the Kähler-coordinate (2.9) and (6.19). Note that the sign
of γ2 agrees with our F-theory discussion in setups without non-Abelian gauge groups [27].
In the presence of a non-vanishing flux-superpotential in the vacuum one may use this
correction to stabilize the Kähler moduli, in AdS, Minkowski as well as potentially de
Sitter vacua as discussed in [22].

Let us close this section with some remarks on the generic Kähler moduli case of the
Calabi-Yau orientifold. While the dimensional reduction of the α′2-corrected DBI action
of the D7-branes and O7-planes is performed in the one-modulus case one may use the
F-theory side of the derivation to gain confidence in eq.’s (2.3) and (2.4). In particular,
eq.’s (6.5) and (6.13) suggest that

Zi ∼
∫
oY3
C ∧ ωi, (6.20)

where i = 1, . . . , h1,1
+ of the Calabi-Yau orientifold and ωi the harmonic (1, 1)-forms and

the curve C in (6.8) and (6.15), respectively.

D3 brane instantons. Let us close this section by discussing the α′2gs-correction to
the Kähler coordinates (2.9). As the Kähler coordinates linearize the Euclidean D3-brane
action the Z log(V)-correction admits an interpretation as a loop effect. Potentially origi-
nating from the one-loop determinant. Moreover, the study of its relation to the conformal
anomaly of a 4d, N = 1 SCFT is of interest [71, 72]. This may also suggest a connection
to the correction derived in [40]. In latter the authors suggest a correction of the Kähler
coordinates in the low-energy limit as

T = 3V̂
2
3 + β

12π log V̂ (6.21)

where β is the beta-function underlying the running of the gauge coupling. This discussion
originated from the study of threshold corrections to the gauge couplings of branes at
orientifold singularities in local models [39]. Firstly, let us note that both the corrections
in eq. (2.9) as well as in eq. (6.21) are of order α′2gs. Moreover, β as well as Z only
depend on characteristics of the gauge group. Based on this heuristic comparison one may
suggest that

β ∼
∫
oY3
C ∧ ω, (6.22)

where ω is the (1, 1)-form Poincare dual to the hyper-surface wrapped by the D-branes
and C is the curve given in eq. (6.8) and eq. (6.15), respectively. It would be of great
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interest to study this potential alternative origin of our α′2gs-correction eq. (2.9) to gain a
better physical understanding. Lastly, let us emphasize that an analogous discussion may
be carried out related to our previous result in 3d, N = 2 supergravity [30], where the
Kähler coordinates resemble the linearized M5-brane action.

6.2 On α′-corrections from Dp-branes

The main part of this work studied higher-derivative corrections stemming from D7-branes
and O7-planes. One may analogously study the effects of other space-time filling D-branes
and O-planes in type IIB — and type IIA — to the Kähler potential of the 4d, N = 1
theories. Dp-branes and Op-planes admit the leading order correction to the DBI action
eq. (3.5) and eq. (3.10) but with brane tension

µp = (2π)−p α′−
p+1

2 , (6.23)

and with p-dimensional brane world-volume.

α′3gs-corrections from D5-branes. Let us start by analyzing space-time filling D3-
branes and O3-planes which are localized as points in the internal geometry and thus
the leading order corrections to the DBI action do not contribute to the kinetic terms
upon dimensional reduction. Space-time filling D9-branes and O9-planes in principle may
generate corrections to the kinetic term of the volume modulus proportional to the Ricci-
scalar of the tangent directions of the brane in the internal space. However, the latter is
vanishing for Calabi-Yau backgrounds.

Let us next turn to a more detailed discussion of space-time filling D5-branes and
O5-planes. Those wrap a holomorphic 2-cycle Cm inside the Calabi-Yau orientifold i.e. the
minimal 2-cycle inside the Homology class. We refrain from discussing tadpole constraints
and deriving the E.O.M.’s for this system here, but instead focus on the dimensional reduc-
tion of the action (3.5) with p = 5 in eq. (6.23) on the one-modulus Calabi-Yau background
of the form

ds2
S = gµνdx

µdxν + V1/3g
(0)
ij dy

idyj , (6.24)

where g(0)
ij is the Calabi-Yau metric, gµν = gµν(x) the external metric and V = V(x) the

overall volume modulus. Thus with µ5 = ((2π)2 · (2πα′)3)−1 and by using eq. (A.12) one
infers that the leading order correction to the D5-brane DBI action results in

SR
2

DBI −→
α̃

(2π)4α′

∫ ( 4
9 V̂3

e−
φ
2X
)
dV̂ ∧ ∗dV̂ +

( 3
V̂
e−

φ
2X
)
dφ ∧ ∗dφ (6.25)

+
( 8

3 V̂2
e−

φ
2X
)
dφ ∧ ∗dV̂ +O(α2),

where we have defined the topological quantity

X =
∫
Cm

RT |oY3 ∗2 1 = −4π
∫
Cm

c1(Cm), (6.26)

with α̃ = 1/192 for a single D5-brane, and with V̂ the Einstein frame volume given in
eq. (2.2). The reduction result (6.25) was subject to a Weyl rescaling of the form gµν →
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e2φ V−1 gµν . Let us emphasize that (6.25) does not constitute the full reduction result as
one needs to discuss corrections to the background fields induced by the higher-derivate
DBI terms. With that in mind let us note that the corrections to the kinetic terms in (6.25)
may originate from a novel α′3gs-correction to the Kähler potential of the form

K = φ− 2 log
(
V̂ + γ5 e

−φ2X
)
, (6.27)

where γ5 is a real number which we do not attempt to fix in this work. A complete study
would require the derivation of the ρ-kinetic terms from the F 2

5R-sector to determine if a
α′3gs-correction to the Kähler coordinates is present. Note that (6.27) is leading order in
gs compared to the well-known Euler characteristic correction [18, 19] and as well breaks
the no-scale condition as

3 + γ5
3

2V̂
e−

φ
2X . (6.28)

While usually one considers D5-branes and O5-planes simultaneously one may also satisfy
the tadpole constraint of a D7/O7 system with additional D5-branes [59]. In latter sce-
nario the D5-branes preserve supersymmetry only in special points in the moduli space.
However, as such a setup is conceivable in principle one may benefit from the potential
correction (6.27). For instance when stabilizing moduli purely perturbatively where the
mechanism relies on the explicit topological numbers of the background [22]. Thus the
presence of the correction (6.27) modifies the overall scalar potential and weakens the
dependence on the contribution resulting from the Euler-characteristic correction to the
Kähler potential.

D6-branes in type IIA. The intention of this subsection is to initiate the study of
α′-corrections to the 4d, N = 1 stemming from D6-branes and O6-planes in type IIA.
A comprehensive study — as perfomed for the D7-branes in type IIB in the majority of
this work — would involve solving the background equations which is beyond the scope of
our discussion here. We will simply discuss the dimensional reduction the analog of (3.5)
and (3.10) for D6-branes and O6-planes on the background solution (6.24) for no back-
ground fluxes. As the leading order background solution (6.24) is same for type IIA and
IIB we refrain from rewriting the equation here. In other words the integral in eq. (3.5) is
instead to be taken to be over the world-volume of a D6-brane and moreover with brane
tension µ6 = ((2π)3 ·(2πα′)3 ·α′1/2)−1. The Calabi-Yau orientifold is defined as oY3 = Y3/σ,
where σ : Y3 → Y3 in type IIA string theory is an isometric and anti-holomorphic involu-
tion [5, 56, 57]. I.e. σ2 = id while preserving the complex structure and metric on infers
the action on the Kähler form to be

σ∗J = J, (6.29)

where σ∗ denotes the pullback map. For O6-planes on infers that σ∗Ω = −eiθΩ, with
Ω ∈ H(3,0) being the unique holomorphic (3, 0)-form and θ a phase angle. The fix point
locus of the involution σ is a special Lagrangian three-cycle wrapped by the O6-plane. The
three cycle Dm inside oY3 being special Lagrangian is equivalent is to it being minimal,
i.e. the representative inside the Homology class which minimizes the volume [58]. The
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D6-branes need to be calibrated w.r.t. the same angle θ as the O6 plane. The isometric
involution σ generated by an O6-plane acts on the fields as

σ∗Φ = Φ, σ∗g = g, and σ∗B2 = −B2. (6.30)

The cohomology group Hp,g splits in the even and odd eigen-space of σ∗ as Hp,q = Hp,q
+ ⊕

Hp,q
− . We have that h1,1 = h1,1

+ = 1. Moreover, the setup-needs to satisfy the tadpole
condition

#D6′s∑
i

N i
D6 ·

(
[DD6

i ] + [DD6
i
′]
)

+ 4
#O6′s∑
i

[DO6
i ] = 0, (6.31)

where [·] denotes the class of the four-cycle wrapped by the D6’s and O6’s and the prime
denotes the orientifold image i.e. the action on the background geometry in the presence
of the O6 plane, see e.g. [59]. By dimensionally reducing the DBI and ODBI action of
four coincident D6’s and on top of a single O6 (3.5) and (3.10) and by a Weyl rescaling by
gµν → e2φ V−1 gµν to the four-dimensional Einstein frame one infers

4SR2
DBI + SR

2
ODBI −→⊃

ᾱ

(2π)4
√

2πα′

∫ ( 2
3V17/6 e

φ
∫
Dm

RT |oY3 ∗3 1
)
dV ∧ ∗dV (6.32)

+
( 4

3V11/6 e
φ
∫
Dm

RT |oY3 ∗3 1
)
dφ ∧ ∗dV

where we have absorbed (2πα′)3 in the volume V/(2πα′)3 → V to render it dimensionless
and with ᾱ = 1

32 accounting for the respective contributions from the four D6-branes
and single O6-plane. Let us emphasize that in particular in eq. (6.32) no correction to the
Einstein-Hilbert term in the four-dimensional theory is induced. Thus the four-dimensional
dilaton is un-modified. Moreover we omit terms which carry external derivatives of the
dilaton in (5.7). Note that for vanishing background Ramond-Ramnod fluxes the Wess-
Zumino action of D6-branes does not contribute. Let us next turn to the discussion of the
H2R-sector and (∇H)2-sector. The B-field gives rise to real a scalar field b = b(x) as

B = b ω (6.33)

where as noted before ω is the unique harmonic (1, 1)-form on oY3. The results for theH2R-
sector and (∇H)2-sector [53, 73] only hold for totally geodesic embeddings i.e. for vanishing
second fundamental form Ω = 0. However, a completion of the latter for generic embeddings
would be required to perform the reduction relevant for our study. Nevertheless, one may
infer the functional form of the α′5/2gs-correction to the Kähler potential and coordinates
from eq. (6.32). In the one-modulus case the Kähler potential is given by

K = φ− log
(
V + κ1 Y eφ V

1
6
)
, (6.34)

and the complexified Kähler coordinates by

T = b+ i
(
V

1
3 + κ2 Y eφ V−

1
2
)
, where Y = 1√

2π

∫
Dm

RT |oY3 ∗3 1, (6.35)
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and with κ1, κ2 real parameters.29 The classical form of eq. (6.34) and eq. (6.35) are well
known [64, 74]. Intriguingly, both the correction to the Kähler potential and the Kähler
coordinates eq. (6.34) and eq. (6.35) independently break the no-scale condition as

3 + 15(κ1 − 3κ2)
4V5/6 eφ Y (6.36)

Let us close this section with a couple of remarks. Firstly note that although we expect Y
to be a topological quantity such as the analog expressions on the four-cycle and two-cycle
eq. (3.17) and eq. (6.26), respectively, a proof of that proposition eludes us. Secondly, a
comprehensive study of the corrections of the b-scalar kinetic terms as well as the discussion
of the corrected E.O.M.’s are required to fix the Kähler potential and coordinates. Only
then one may infer if the no-scale condition (6.36) is broken at order α′5/2gs. It would
is of interest to analyze the impact of the α′-correction in eq. (6.34) on Kähler moduli
stabilization in type IIA [75–77].

6.3 Conclusions

In this work we have dimensionally reduced the next to leading order gravitational α′2gs-
corrections to the DBI actions of space-time filling D7-branes and a O7-plane on Calabi
orientifold backgrounds with a single Kähler modulus. We found that the background
solution of the dilaton, the warp-factor as well as the internal metric receive corrections. By
studying the Kähler metric of the volume modulus we found that either the Kähler potential
or the Kähler coordinates or both receive an α′2gs-correction which is of topological nature.
Namely, carrying the first Chern-form of the divisor wrapped by the D7’s and O7. To draw
definite conclusions one is required to take into account the F 2

5R and (∇F5)2-terms to the
DBI action which however remain elusive. The latter could in principle be fixed by six-point
open string disk and projective plane amplitudes.

Finally we established a connection of the results obtained from the DBI actions in this
work to our previous F-theory results and found that the form of the respective topological
corrections is in agreement. The matching of the Kähler potential obtained in F-theory and
the one from the DBI actions suggests that the no-scale structure is broken by the α′2gs-
correction. Concludingly, we have obtained further evidence for the potential existence of
the logV-correction to the Kähler coordinates. The search for an alternative interpretation
as a loop effect to the D3-brane instanton action is of great interest.

Moreover we have initiated the study of higher-derivative corrections to the DBI action
of space-time filling D5-branes and D6-branes — the latter in type IIA — on Calabi-Yau
orientifold backgrounds with a single Kähler modulus and concluded that those poten-
tially give rise to a novel α′3gs and α′5/2gs-correction to the Kähler potential, respectively.
However, a more extensive analysis is required to decide upon their ultimate fate.

To conclude, let us emphasize that the ongoing quest to determine the leading order
α′-corrections to the Kähler potential and coordinates of 4dN = 1 low energy theories in

29The scalar curvature of Dm generically is non-vanishing i.e.RT |oY3 6= 0. Moreover, note that we
have factorized out the volume one-modulus dependence in (6.24). Thus RT |oY3 in the definition of Y is
independent of the volume modulus.
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string theory is of great interest both for phenomenological as well as conceptual reasons,
such as their potential to generate the leading order perturbative scalar potential.
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A Conventions, definitions, and identities

In this work we denote the ten-dimensional space indices by capital Latin letters M,N =
0, . . . , 10 and the external ones by µ, ν = 0, 1, 2, 3 and internal ones i, j = 1, . . . , 6. Fur-
thermore, the components in the tangent direction of the D7-branes by α, β = 0, . . . , 7
and the normal components by a, b = 1, 2. The metric signature of the eleven-dimensional
space is (−,+, . . . ,+). Furthermore, the convention for the totally anti-symmetric tensor in
Lorentzian space in an orthonormal frame is ε012...10 = ε012 = +1. We adopt the following
conventions for the Christoffel symbols and Riemann tensor

ΓRMN = 1
2g

RS(∂MgNS + ∂NgMS − ∂SgMN ) , RMN = RRMRN ,

RMNRS = ∂RΓMSN − ∂SΓMRN + ΓMRTΓT SN − ΓMSTΓTRN , R = RMNg
MN ,

(A.1)

with equivalent definitions on the internal and external spaces. Written in components,
the first and second Bianchi identity are

ROPMN +ROMNP +RONPM = 0
∇LROPMN +∇MROPNL +∇NROPLM = 0. (A.2)

Differential p-forms are expanded in a basis of differential one-forms as

Λ = 1
p!ΛM1...Mpdx

M1 ∧ . . . ∧ dxMp . (A.3)

The wedge product between a p-form Λ(p) and a q-form Λ(q) is given by

(Λ(p) ∧ Λ(q))M1...Mp+q = (p+ q)!
p!q! Λ(p)

[M1...Mp
Λ(q)
M1...Mq ]. (A.4)

Furthermore, the exterior derivative on a p-form Λ results in

(dΛ)NM1...Mp = (p+ 1)∂[NΛM1...Mp], (A.5)
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while the Hodge star of p-form Λ in d real coordinates is given by

(∗dΛ)N1...Nd−p = 1
p!Λ

M1...MpεM1...MpN1...Nd−p . (A.6)

Moreover,
Λ(1) ∧ ∗Λ(2) = 1

p!Λ
(1)
M1...Mp

Λ(2)M1...Mp∗1, (A.7)

which holds for two arbitrary p-forms Λ(1) and Λ(2).
Lastly, note that a Weyl rescaling of the four-dimensional metric

g′µν = Λgµν , (A.8)

leads to a shift of the Ricci scalar and the volume element as

R′ = 1
ΛR−

3
Λ2∇

µ∇µΛ + 3
2Λ3∇

µΛ∇µΛ, ∗′4 1 = Λ2 ∗4 1. (A.9)

And furthermore that a rescaling of the ten-dimensional Lorentzian metric such as g′MN =
Ω gMN results in a shift of the Ricci scalar as

R′ = 1
ΩR−

9
Ω2∇

M∇MΩ− 9
Ω3∇

MΩ∇MΩ. (A.10)

Let us next turn to discuss the Riemann tensor of the metric

ds2 = geµνdx
µdxν + V1/3(x)gijdyidyj , (A.11)

where gij and geµν are the internal Calabi-Yau metric and external space metric, respectively.
The components of the total space Riemann tensor are given by

Rijkl = R(g)ijklV1/3 + 1
36V4/3 (gilgjk − gjlgik)∇µV ∇µV (A.12)

Rµiνj = 5
36V5/3 gij∇µV ∇νV −

1
6V2/3 gij ∇ν∇µV, Rµρνσ = R(ge)µρνσ

where R(g) and R(ge) denote the Riemann tensor w.r.t. the Calabi-Yau metric and external
metric, respectively. Moreover, ∇µ is the Levi-Civita connection of the external space
metric. All other index combinations excpet for symmetries of the terms in (A.12) vanish.

B Immersions of D7-branes

B.1 Geometry of sub-manifolds

In this section we closely follow [78, 79]. The embedding map of the D7-brane into the
ambient space is denoted by YM . A local frame of tangent vectors is given by ∂αYM and
an orthogonal frame for the normal bundle by ξMa which obey per definition

GMN∂αY
M∂βY

N = gαβ , GMNξ
M
a ξ

N
b = δab, and GMN∂αY

MξNa = 0, (B.1)

where gαβ is the world-volume metric of the brane and GMN is the total space metric with
its inverse given by

GMN = ∂αY
M∂βY

Ngαβ + ξMa ξ
N
b δ

ab. (B.2)
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Note that B.1 and B.2 imply that the metric is in the tangent and normal indices is of
product form. Note that the tangent and normal frames are used to pull back indices form
the total space e.g.

R̂αβγδ = R̂MNOP ∂αY
M∂β Y

N∂γ Y
O∂δY

P or R̂αβab = R̂MNOP ∂αY
M∂β Y

N ξOa ξ
P
b .

(B.3)
The second fundamental form is defined as

ΩM
αβ = ΩM

βα = ∂α∂βY
M − ΓT γαβ∂γY

M + ΓMNO∂αY N∂βY
O. (B.4)

One may show that the tangent space projection Ωγ
αβ = 0 vanishes and thus the normals

space projection
Ωa

αβ , (B.5)

carries the entire information. For a minimal embedding one finds [78–80] that

Ωa
αβg

αβ = 0. (B.6)

One may also infer using the Ricci flatness of the Calabi-Yau orientifold and in particu-
lar (B.2) that

R̂αcβ
c = −R̂αγβγ , (B.7)

R̂acb
c = −R̂aγbγ , (B.8)

R̂acβ
c = −R̂aγβγ , (B.9)

B.2 Minimal immersions in Calabi-Yau manifolds

In the following we consider space-time filling BPS D7-branes which are wrapped holo-
morphic four-cycles of the internal Calabi-Yau space Y3. Those four-cycles minimize the
volume of the divisor Dm in the Homology class i.e. the embedding map ϕ : Dm ↪→ Y3 is a
minimal immersion [58]. The same statement holds for the orientifolded Calabi-Yau oY3.
To avoid introducing yet other notation for indices we denote with |oY3 the restriction of
object entirely to the Calabi-Yau space i.e. the index α, β = 1, . . . , 4 and M = 1, . . . , 6 on
objects dressed with |oY3 . One infers that an isometric immersion is minimal if and only if
the second fundamental form obeys

Ωa
αβg

αβ |oY3 = 0, ΩM
αβg

αβ |oY3 = 0, (B.10)

see e.g. [80]. Also note that for an isometric immersion ϕ into a Ricci flat space such as Y3
of zero Ricci tensors and Ricci curvature one infers that

R̂acβ
c|oY3 = −R̂aγβγ |oY3 = 0. (B.11)

Let us next discuss the second fundamental form under the variation of the background
metric w.r.t. the internal volume (A.11). As we consider four-cycles in the Calabi-Yau
geometry the only non-vanishing component is

Ωa
αβ = Ωa

αβ |oY3 , (B.12)
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where the l.h.s. describes the components of the eight-dimensional metric of the D7-brane
world-volume while the r.h.s. is our notation for the second fundamental form of the four-
cycle embedding in the Calabi-Yau space. Note that in particular no derivatives terms of
the Calabi-Yau volume are present. Where we have used that ∂αYM ∼ V0 and ξMa ∼ V−1/6.

Note that as in particular the minimal four-cycle is a complex Kähler manifold one
may use the properties of its Kähler metric. Such as that when expressed in complex
coordinates zα, z̄ᾱ, with α, β = 1, 2 and ᾱ, β̄ = 1, 2 the metric is block-diagonal

gαβ̄ = gβ̄α, gαβ = 0 = gᾱβ̄ , (B.13)

and that the components of the Kähler-form are given by

J̃αβ̄ = −i gαβ̄ . (B.14)

Moreover, the non-vanishing Riemann-tensor components are

RT αᾱββ̄ |oY3 , (B.15)

where the Bianchi identity becomes manifest i.e. the symmetric exchange of the holomor-
phic and anti-holomorphic indices, respectively. One defines the curvature two-form for
Hermitian manifolds to be

Rαβ = RT
α
βγγ̄
|oY3dz

γ ∧ dz̄γ̄ , (B.16)

and

TrR = RT
α
αγγ̄ |oY3dz

γ ∧ dz̄γ̄ . (B.17)

The first Chern form can be expressed in terms of the curvature two-form as

c1 = i

2πTrR. (B.18)

B.3 Flux-background solution

This appendix contains details of the flux-background. We refer the reader to section 4 for
the comprehensive discussion. We give the solution to

|F3|2αβ , |H3|2αβ ∼ O(α) and |F3|2ab, |H3|2ab ∼ O(α), (B.19)

rather than H3 and F3. Note that many potential total derivative contributions are not
fixed by the consistency with the Einstein equations and dilaton equation of motion. We
use this freedom to chose a particular representation of the flux components such that

|H3|2ab = |F3|2ab = Fab, (B.20)

|H3|2αβ = Fαβ + 6 g(0)
αβ ∇

(0)a∇(0)b R̄ab|oY3 ,

|F3|2αβ = e−2φ0
(
Fαβ − 6 g(0)

αβ ∇
(0)a∇(0)b R̄ab|oY3

)
,
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with

Fab = 6
5 ∇

(0)
a∇(0)

bRT + 4∇(0)c∇(0)
(a R̄b)c − 4∇(0)c∇(0)

c R̄ab (B.21)

− γ3 δab∇(0)c∇(0)
cRT − 4 δab∇(0)c∇(0)d R̄cd

+ (4− γ3) δab∇(0)α∇(0)β RT αβ ,

and

Fαβ = 2∇(0)
a∇(0)aRT αβ − γ3 g

(0)
αβ ∇

(0)
a∇(0)aRT − 6∇(0)a∇(0)b R̄ab (B.22)

+ 6
5 ∇

(0)
α∇(0)

β RT + 8∇(0)γ∇(0)δRT αγβδ + 4∇(0)γ∇(0)
(αRT β)γ

− 2∇(0)
γ∇(0)γRT αβ − γ3 g

(0)
αβ ∇

(0)γ∇(0)δRT γδ.

Let us emphasize that (B.20) constitutes a particular choice where we have fixed the free
undetermined parameters. Thus eq.’s (B.21) and (B.22) remain to depend only on the
parameter γ3.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] J. Polchinski, Dirichlet Branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995)
4724 [hep-th/9510017] [INSPIRE].

[2] J. Polchinski, String Theory Volume 2. Superstring Theory and Beyond, Cambridge
Monographs on Mathematical Physics 2 (1998).

[3] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string
compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

[4] K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski and S. Pokorski, Stability of flux
compactifications and the pattern of supersymmetry breaking, JHEP 11 (2004) 076
[hep-th/0411066] [INSPIRE].

[5] I. Brunner and K. Hori, Orientifolds and mirror symmetry, JHEP 11 (2004) 005
[hep-th/0303135] [INSPIRE].

[6] R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String
Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1
[hep-th/0610327] [INSPIRE].

[7] C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].

[8] T. Weigand, F-theory, PoS TASI2017 (2018) 016 [arXiv:1806.01854] [INSPIRE].

[9] R. Donagi and M. Wijnholt, Model Building with F-theory, Adv. Theor. Math. Phys. 15
(2011) 1237 [arXiv:0802.2969] [INSPIRE].

[10] T.W. Grimm, The N = 1 effective action of F-theory compactifications, Nucl. Phys. B 845
(2011) 48 [arXiv:1008.4133] [INSPIRE].

– 30 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.75.4724
https://doi.org/10.1103/PhysRevLett.75.4724
https://arxiv.org/abs/hep-th/9510017
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C75%2C4724%22
https://doi.org/10.1103/PhysRevD.66.106006
https://arxiv.org/abs/hep-th/0105097
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0105097
https://doi.org/10.1088/1126-6708/2004/11/076
https://arxiv.org/abs/hep-th/0411066
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0411066
https://doi.org/10.1088/1126-6708/2004/11/005
https://arxiv.org/abs/hep-th/0303135
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0303135
https://doi.org/10.1016/j.physrep.2007.04.003
https://arxiv.org/abs/hep-th/0610327
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0610327
https://doi.org/10.1016/0550-3213(96)00172-1
https://arxiv.org/abs/hep-th/9602022
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9602022
DOI: https://doi.org/10.22323/1.305.0016
https://arxiv.org/abs/1806.01854
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.01854
https://doi.org/10.4310/ATMP.2011.v15.n5.a2
https://doi.org/10.4310/ATMP.2011.v15.n5.a2
https://arxiv.org/abs/0802.2969
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.2969
https://doi.org/10.1016/j.nuclphysb.2010.11.018
https://doi.org/10.1016/j.nuclphysb.2010.11.018
https://arxiv.org/abs/1008.4133
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.4133


J
H
E
P
1
1
(
2
0
2
0
)
0
7
6

[11] S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys. B 584
(2000) 69 [Erratum ibid. 608 (2001) 477] [hep-th/9906070] [INSPIRE].

[12] M. Cicoli, S. De Alwis, A. Maharana, F. Muia and F. Quevedo, de Sitter vs Quintessence in
String Theory, Fortsch. Phys. 67 (2019) 1800079 [arXiv:1808.08967] [INSPIRE].

[13] S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys.
Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

[14] G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland,
arXiv:1806.08362 [INSPIRE].

[15] E. Palti, The Swampland: Introduction and Review, Fortsch. Phys. 67 (2019) 1900037
[arXiv:1903.06239] [INSPIRE].

[16] V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli
stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058]
[INSPIRE].

[17] J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli
spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076]
[INSPIRE].

[18] I. Antoniadis, S. Ferrara, R. Minasian and K.S. Narain, R4 couplings in M and type-II
theories on Calabi-Yau spaces, Nucl. Phys. B 507 (1997) 571 [hep-th/9707013] [INSPIRE].

[19] K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and α′ corrections to
flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].

[20] F. Bonetti and M. Weissenbacher, The Euler characteristic correction to the Kähler potential
— revisited, JHEP 01 (2017) 003 [arXiv:1608.01300] [INSPIRE].

[21] D. Ciupke, J. Louis and A. Westphal, Higher-Derivative Supergravity and Moduli
Stabilization, JHEP 10 (2015) 094 [arXiv:1505.03092] [INSPIRE].

[22] M. Weissenbacher, α′-Corrections and de Sitter vacua — A mirage?, Phys. Lett. B 792
(2019) 269 [arXiv:1901.09626] [INSPIRE].

[23] V. Balasubramanian and P. Berglund, Stringy corrections to Kähler potentials, SUSY
breaking, and the cosmological constant problem, JHEP 11 (2004) 085 [hep-th/0408054]
[INSPIRE].

[24] A. Westphal, de Sitter string vacua from Kähler uplifting, JHEP 03 (2007) 102
[hep-th/0611332] [INSPIRE].

[25] T.W. Grimm, R. Savelli and M. Weissenbacher, On α′ corrections in N = 1 F-theory
compactifications, Phys. Lett. B 725 (2013) 431 [arXiv:1303.3317] [INSPIRE].

[26] T.W. Grimm, J. Keitel, R. Savelli and M. Weissenbacher, From M-theory higher curvature
terms to α′ corrections in F-theory, Nucl. Phys. B 903 (2016) 325 [arXiv:1312.1376]
[INSPIRE].

[27] M. Weissenbacher, F-theory vacua and α′-corrections, JHEP 04 (2020) 032
[arXiv:1901.04758] [INSPIRE].

[28] T.W. Grimm, T.G. Pugh and M. Weissenbacher, On M-theory fourfold vacua with higher
curvature terms, Phys. Lett. B 743 (2015) 284 [arXiv:1408.5136] [INSPIRE].

– 31 –

https://doi.org/10.1016/S0550-3213(00)00373-4
https://doi.org/10.1016/S0550-3213(00)00373-4
https://arxiv.org/abs/hep-th/9906070
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9906070
https://doi.org/10.1002/prop.201800079
https://arxiv.org/abs/1808.08967
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.08967
https://doi.org/10.1103/PhysRevD.68.046005
https://doi.org/10.1103/PhysRevD.68.046005
https://arxiv.org/abs/hep-th/0301240
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0301240
https://arxiv.org/abs/1806.08362
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.08362
https://doi.org/10.1002/prop.201900037
https://arxiv.org/abs/1903.06239
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.06239
https://doi.org/10.1088/1126-6708/2005/03/007
https://arxiv.org/abs/hep-th/0502058
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0502058
https://doi.org/10.1088/1126-6708/2005/08/007
https://arxiv.org/abs/hep-th/0505076
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0505076
https://doi.org/10.1016/S0550-3213(97)00572-5
https://arxiv.org/abs/hep-th/9707013
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB507%2C571%22
https://doi.org/10.1088/1126-6708/2002/06/060
https://arxiv.org/abs/hep-th/0204254
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0204254
https://doi.org/10.1007/JHEP01(2017)003
https://arxiv.org/abs/1608.01300
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.01300
https://doi.org/10.1007/JHEP10(2015)094
https://arxiv.org/abs/1505.03092
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.03092
https://doi.org/10.1016/j.physletb.2019.03.044
https://doi.org/10.1016/j.physletb.2019.03.044
https://arxiv.org/abs/1901.09626
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.09626
https://doi.org/10.1088/1126-6708/2004/11/085
https://arxiv.org/abs/hep-th/0408054
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0408054
https://doi.org/10.1088/1126-6708/2007/03/102
https://arxiv.org/abs/hep-th/0611332
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0611332
https://doi.org/10.1016/j.physletb.2013.07.024
https://arxiv.org/abs/1303.3317
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.3317
https://doi.org/10.1016/j.nuclphysb.2015.12.011
https://arxiv.org/abs/1312.1376
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.1376
https://doi.org/10.1007/JHEP04(2020)032
https://arxiv.org/abs/1901.04758
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.04758
https://doi.org/10.1016/j.physletb.2015.02.047
https://arxiv.org/abs/1408.5136
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.5136


J
H
E
P
1
1
(
2
0
2
0
)
0
7
6

[29] T.W. Grimm, T.G. Pugh and M. Weissenbacher, The effective action of warped M-theory
reductions with higher derivative terms — part I, JHEP 01 (2016) 142 [arXiv:1412.5073]
[INSPIRE].

[30] T.W. Grimm, K. Mayer and M. Weissenbacher, One-modulus Calabi-Yau fourfold reductions
with higher-derivative terms, JHEP 04 (2018) 021 [arXiv:1712.07074] [INSPIRE].

[31] P. Candelas, X. de la Ossa and J. McOrist, A Metric for Heterotic Moduli, Commun. Math.
Phys. 356 (2017) 567 [arXiv:1605.05256] [INSPIRE].

[32] H. Jockers and J. Louis, The Effective action of D7-branes in N = 1 Calabi-Yau orientifolds,
Nucl. Phys. B 705 (2005) 167 [hep-th/0409098] [INSPIRE].

[33] T.W. Grimm and J. Louis, The Effective action of N = 1 Calabi-Yau orientifolds, Nucl.
Phys. B 699 (2004) 387 [hep-th/0403067] [INSPIRE].

[34] C.P. Bachas, P. Bain and M.B. Green, Curvature terms in D-brane actions and their
M-theory origin, JHEP 05 (1999) 011 [hep-th/9903210] [INSPIRE].

[35] D. Junghans and G. Shiu, Brane curvature corrections to the N = 1 type-II/F-theory
effective action, JHEP 03 (2015) 107 [arXiv:1407.0019] [INSPIRE].

[36] J.M. Martín-García, xAct: Efficient tensor computer algebra for Mathematica,
http://www.xact.es/.

[37] J.M. Martín-García, xTensor: Fast abstract tensor computer algebra,
http://xact.es/xTensor/.

[38] J.M. Martín-García, xPerm: fast index canonicalization for tensor computer algebra,
Comput. Phys. Commun. 179 (2008) 597.

[39] J.P. Conlon and E. Palti, Gauge Threshold Corrections for Local Orientifolds, JHEP 09
(2009) 019 [arXiv:0906.1920] [INSPIRE].

[40] J.P. Conlon and F.G. Pedro, Moduli Redefinitions and Moduli Stabilisation, JHEP 06 (2010)
082 [arXiv:1003.0388] [INSPIRE].

[41] E. Palti, C. Vafa and T. Weigand, Supersymmetric Protection and the Swampland, JHEP 06
(2020) 168 [arXiv:2003.10452] [INSPIRE].

[42] E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335
[hep-th/9510135] [INSPIRE].

[43] F. Denef, Les Houches Lectures on Constructing String Vacua, Les Houches 87 (2008) 483
[arXiv:0803.1194] [INSPIRE].

[44] A. Fotopoulos, On α′2 corrections to the D-brane action for nongeodesic world volume
embeddings, JHEP 09 (2001) 005 [hep-th/0104146] [INSPIRE].

[45] N. Wyllard, Derivative corrections to the D-brane Born-Infeld action: Nongeodesic
embeddings and the Seiberg-Witten map, JHEP 08 (2001) 027 [hep-th/0107185] [INSPIRE].

[46] A. Fotopoulos and A.A. Tseytlin, On gravitational couplings in D-brane action, JHEP 12
(2002) 001 [hep-th/0211101] [INSPIRE].

[47] A. Jalali and M.R. Garousi, D-brane action at order α2, Phys. Rev. D 92 (2015) 106004
[arXiv:1506.02130] [INSPIRE].

– 32 –

https://doi.org/10.1007/JHEP01(2016)142
https://arxiv.org/abs/1412.5073
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.5073
https://doi.org/10.1007/JHEP04(2018)021
https://arxiv.org/abs/1712.07074
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.07074
https://doi.org/10.1007/s00220-017-2978-7
https://doi.org/10.1007/s00220-017-2978-7
https://arxiv.org/abs/1605.05256
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.05256
https://doi.org/10.1016/j.nuclphysb.2004.11.009
https://arxiv.org/abs/hep-th/0409098
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0409098
https://doi.org/10.1016/j.nuclphysb.2004.08.005
https://doi.org/10.1016/j.nuclphysb.2004.08.005
https://arxiv.org/abs/hep-th/0403067
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0403067
https://doi.org/10.1088/1126-6708/1999/05/011
https://arxiv.org/abs/hep-th/9903210
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9903210
https://doi.org/10.1007/JHEP03(2015)107
https://arxiv.org/abs/1407.0019
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.0019
http://www.xact.es/
http://xact.es/xTensor/
https://doi.org/10.1016/j.cpc.2008.05.009
https://doi.org/10.1088/1126-6708/2009/09/019
https://doi.org/10.1088/1126-6708/2009/09/019
https://arxiv.org/abs/0906.1920
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0906.1920
https://doi.org/10.1007/JHEP06(2010)082
https://doi.org/10.1007/JHEP06(2010)082
https://arxiv.org/abs/1003.0388
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1003.0388
https://doi.org/10.1007/JHEP06(2020)168
https://doi.org/10.1007/JHEP06(2020)168
https://arxiv.org/abs/2003.10452
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.10452
https://doi.org/10.1016/0550-3213(95)00610-9
https://arxiv.org/abs/hep-th/9510135
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9510135
https://arxiv.org/abs/0803.1194
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0803.1194
https://doi.org/10.1088/1126-6708/2001/09/005
https://arxiv.org/abs/hep-th/0104146
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0104146
https://doi.org/10.1088/1126-6708/2001/08/027
https://arxiv.org/abs/hep-th/0107185
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0107185
https://doi.org/10.1088/1126-6708/2002/12/001
https://doi.org/10.1088/1126-6708/2002/12/001
https://arxiv.org/abs/hep-th/0211101
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0211101
https://doi.org/10.1103/PhysRevD.92.106004
https://arxiv.org/abs/1506.02130
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.02130


J
H
E
P
1
1
(
2
0
2
0
)
0
7
6

[48] H.J. Schnitzer and N. Wyllard, An Orientifold of AdS5 × T 11 with D7-branes, the associated
α′2 corrections and their role in the dual N = 1Sp(2N + 2M)× Sp(2N) gauge theory, JHEP
08 (2002) 012 [hep-th/0206071] [INSPIRE].

[49] S. Stieberger, Open & Closed vs. Pure Open String Disk Amplitudes, arXiv:0907.2211
[INSPIRE].

[50] C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-Point Superstring Disk Amplitude
I. Pure Spinor Computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].

[51] C.P. Bachas, Lectures on D-branes, (1998), hep-th/9806199.

[52] Y.-K.E. Cheung and Z. Yin, Anomalies, branes, and currents, Nucl. Phys. B 517 (1998) 69
[hep-th/9710206] [INSPIRE].

[53] D. Robbins and Z. Wang, Higher Derivative Corrections to O-plane Actions: NS-NS Sector,
JHEP 05 (2014) 072 [arXiv:1401.4180] [INSPIRE].

[54] J.F. Morales, C.A. Scrucca and M. Serone, Anomalous couplings for D-branes and O-planes,
Nucl. Phys. B 552 (1999) 291 [hep-th/9812071] [INSPIRE].

[55] B. Stefański Jr., Gravitational couplings of D-branes and O-planes, Nucl. Phys. B 548 (1999)
275 [hep-th/9812088] [INSPIRE].

[56] B.S. Acharya, M. Aganagic, K. Hori and C. Vafa, Orientifolds, mirror symmetry and
superpotentials, hep-th/0202208 [INSPIRE].

[57] A. Sen, F theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150] [INSPIRE].

[58] K. Becker, M. Becker and A. Strominger, Five-branes, membranes and nonperturbative string
theory, Nucl. Phys. B 456 (1995) 130 [hep-th/9507158] [INSPIRE].

[59] E. Plauschinn, The Generalized Green-Schwarz Mechanism for Type IIB Orientifolds with
D3- and D7-branes, JHEP 05 (2009) 062 [arXiv:0811.2804] [INSPIRE].

[60] R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUTs in Type IIB Orientifold
Compactifications, Nucl. Phys. B 815 (2009) 1 [arXiv:0811.2936] [INSPIRE].

[61] O. DeWolfe and S.B. Giddings, Scales and hierarchies in warped compactifications and brane
worlds, Phys. Rev. D 67 (2003) 066008 [hep-th/0208123] [INSPIRE].

[62] T.W. Grimm, K. Mayer and M. Weissenbacher, Higher derivatives in Type II and M-theory
on Calabi-Yau threefolds, JHEP 02 (2018) 127 [arXiv:1702.08404] [INSPIRE].

[63] J.T. Liu and R. Minasian, Higher-derivative couplings in string theory: five-point contact
terms, arXiv:1912.10974 [INSPIRE].

[64] T.W. Grimm, The Effective action of type-II Calabi-Yau orientifolds, Fortsch. Phys. 53
(2005) 1179 [hep-th/0507153] [INSPIRE].

[65] M. Haack and J.U. Kang, One-loop Einstein-Hilbert term in minimally supersymmetric type
IIB orientifolds, JHEP 02 (2016) 160 [arXiv:1511.03957] [INSPIRE].

[66] M.R. Garousi and R.C. Myers, Superstring scattering from D-branes, Nucl. Phys. B 475
(1996) 193 [hep-th/9603194] [INSPIRE].

[67] A. Hashimoto and I.R. Klebanov, Scattering of strings from D-branes, Nucl. Phys. B Proc.
Suppl. 55 (1997) 118 [hep-th/9611214] [INSPIRE].

[68] D. Tong and C. Turner, Quantum dynamics of supergravity on R3× S1, JHEP 12 (2014) 142
[arXiv:1408.3418] [INSPIRE].

– 33 –

https://doi.org/10.1088/1126-6708/2002/08/012
https://doi.org/10.1088/1126-6708/2002/08/012
https://arxiv.org/abs/hep-th/0206071
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0206071
https://arxiv.org/abs/0907.2211
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0907.2211
https://doi.org/10.1016/j.nuclphysb.2013.04.023
https://arxiv.org/abs/1106.2645
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.2645
https://arxiv.org/abs/hep-th/9806199
https://doi.org/10.1016/S0550-3213(98)00115-1
https://arxiv.org/abs/hep-th/9710206
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9710206
https://doi.org/10.1007/JHEP05(2014)072
https://arxiv.org/abs/1401.4180
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.4180
https://doi.org/10.1016/S0550-3213(99)00217-5
https://arxiv.org/abs/hep-th/9812071
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9812071
https://doi.org/10.1016/S0550-3213(99)00147-9
https://doi.org/10.1016/S0550-3213(99)00147-9
https://arxiv.org/abs/hep-th/9812088
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9812088
https://arxiv.org/abs/hep-th/0202208
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0202208
https://doi.org/10.1016/0550-3213(96)00347-1
https://arxiv.org/abs/hep-th/9605150
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9605150
https://doi.org/10.1016/0550-3213(95)00487-1
https://arxiv.org/abs/hep-th/9507158
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9507158
https://doi.org/10.1088/1126-6708/2009/05/062
https://arxiv.org/abs/0811.2804
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0811.2804
https://doi.org/10.1016/j.nuclphysb.2009.02.011
https://arxiv.org/abs/0811.2936
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0811.2936
https://doi.org/10.1103/PhysRevD.67.066008
https://arxiv.org/abs/hep-th/0208123
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0208123
https://doi.org/10.1007/JHEP02(2018)127
https://arxiv.org/abs/1702.08404
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.08404
https://arxiv.org/abs/1912.10974
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.10974
https://doi.org/10.1002/prop.200510253
https://doi.org/10.1002/prop.200510253
https://arxiv.org/abs/hep-th/0507153
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0507153
https://doi.org/10.1007/JHEP02(2016)160
https://arxiv.org/abs/1511.03957
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.03957
https://doi.org/10.1016/0550-3213(96)00316-1
https://doi.org/10.1016/0550-3213(96)00316-1
https://arxiv.org/abs/hep-th/9603194
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9603194
https://doi.org/10.1016/S0920-5632(97)00074-1
https://doi.org/10.1016/S0920-5632(97)00074-1
https://arxiv.org/abs/hep-th/9611214
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9611214
https://doi.org/10.1007/JHEP12(2014)142
https://arxiv.org/abs/1408.3418
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.3418


J
H
E
P
1
1
(
2
0
2
0
)
0
7
6

[69] A.P. Braun, A. Hebecker and H. Triendl, D7-Brane Motion from M-theory Cycles and
Obstructions in the Weak Coupling Limit, Nucl. Phys. B 800 (2008) 298 [arXiv:0801.2163]
[INSPIRE].

[70] A. Collinucci, F. Denef and M. Esole, D-brane Deconstructions in IIB Orientifolds, JHEP 02
(2009) 005 [arXiv:0805.1573] [INSPIRE].

[71] N. Arkani-Hamed and H. Murayama, Holomorphy, rescaling anomalies and exact β-functions
in supersymmetric gauge theories, JHEP 06 (2000) 030 [hep-th/9707133] [INSPIRE].

[72] N. Bobev, H. Elvang and T.M. Olson, Dilaton effective action with N = 1 supersymmetry,
JHEP 04 (2014) 157 [arXiv:1312.2925] [INSPIRE].

[73] M.R. Garousi, Duality constraints on effective actions, Phys. Rept. 702 (2017) 1
[arXiv:1702.00191] [INSPIRE].

[74] T.W. Grimm and J. Louis, The Effective action of type IIA Calabi-Yau orientifolds, Nucl.
Phys. B 718 (2005) 153 [hep-th/0412277] [INSPIRE].

[75] E. Palti, G. Tasinato and J. Ward, WEAKLY-coupled IIA Flux Compactifications, JHEP 06
(2008) 084 [arXiv:0804.1248] [INSPIRE].

[76] J. McOrist and S. Sethi, M-theory and Type IIA Flux Compactifications, JHEP 12 (2012)
122 [arXiv:1208.0261] [INSPIRE].

[77] D. Escobar, F. Marchesano and W. Staessens, Type IIA flux vacua and α′-corrections, JHEP
06 (2019) 129 [arXiv:1812.08735] [INSPIRE].

[78] L.P. Eisenhart, Riemannian geometry, Princeton University Press, reprinted edition (1997),
https://press.princeton.edu/books/paperback/9780691023533/riemannian-geometry.

[79] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Wiley (2009),
https://www.wiley.com/en-
us/Foundations+of+Differential+Geometry%2C+2+Volume+Set-p-9780470555583.

[80] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966)
380.

[81] F. Bastianelli, S. Frolov and A.A. Tseytlin, Conformal anomaly of (2,0) tensor multiplet in
six-dimensions and AdS/CFT correspondence, JHEP 02 (2000) 013 [hep-th/0001041]
[INSPIRE].

[82] K. Fujii, H. Oike and T. Suzuki, More on the isomorphism SU(2)× SU(2) ∼= SO(4), Int. J.
Geom. Meth. Mod. Phys. 4 (2007) 471 [quant-ph/0608186] [INSPIRE].

– 34 –

https://doi.org/10.1016/j.nuclphysb.2008.03.021
https://arxiv.org/abs/0801.2163
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0801.2163
https://doi.org/10.1088/1126-6708/2009/02/005
https://doi.org/10.1088/1126-6708/2009/02/005
https://arxiv.org/abs/0805.1573
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.1573
https://doi.org/10.1088/1126-6708/2000/06/030
https://arxiv.org/abs/hep-th/9707133
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9707133
https://doi.org/10.1007/JHEP04(2014)157
https://arxiv.org/abs/1312.2925
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.2925
https://doi.org/10.1016/j.physrep.2017.07.009
https://arxiv.org/abs/1702.00191
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.00191
https://doi.org/10.1016/j.nuclphysb.2005.04.007
https://doi.org/10.1016/j.nuclphysb.2005.04.007
https://arxiv.org/abs/hep-th/0412277
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0412277
https://doi.org/10.1088/1126-6708/2008/06/084
https://doi.org/10.1088/1126-6708/2008/06/084
https://arxiv.org/abs/0804.1248
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0804.1248
https://doi.org/10.1007/JHEP12(2012)122
https://doi.org/10.1007/JHEP12(2012)122
https://arxiv.org/abs/1208.0261
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1208.0261
https://doi.org/10.1007/JHEP06(2019)129
https://doi.org/10.1007/JHEP06(2019)129
https://arxiv.org/abs/1812.08735
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.08735
https://press.princeton.edu/books/paperback/9780691023533/riemannian-geometry
https://www.wiley.com/en-us/Foundations+of+Differential+Geometry%2C+2+Volume+Set-p-9780470555583
https://www.wiley.com/en-us/Foundations+of+Differential+Geometry%2C+2+Volume+Set-p-9780470555583
https://doi.org/10.2969/jmsj/01840380
https://doi.org/10.2969/jmsj/01840380
https://doi.org/10.1088/1126-6708/2000/02/013
https://arxiv.org/abs/hep-th/0001041
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0001041
https://doi.org/10.1142/S0219887807002120
https://doi.org/10.1142/S0219887807002120
https://arxiv.org/abs/quant-ph/0608186
https://inspirehep.net/search?p=find+doi%20%2210.1142%2FS0219887807002120%22

	Introduction
	The objective: 4d Kähler potential and coordinates 
	alpha' **2 g(s)-effects to D7-branes and O7-planes
	R**2-terms in the DBI effective actions of D7's and O7's
	R**2-terms to the Wess-Zumino effective actions
	Embedding of branes in Calabi-Yau orientifolds

	alpha' **2 g(s)-corrected Calabi-Yau orientifold background solution 
	Dimensional reduction one-modulus Calabi-Yau orientifold
	Discussion of results and conclusions
	Connection to F-theory and the generic moduli case
	On alpha'-corrections from Dp-branes
	Conclusions

	Conventions, definitions, and identities
	Immersions of D7-branes
	Geometry of sub-manifolds
	Minimal immersions in Calabi-Yau manifolds
	Flux-background solution


