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Abstract: Following recent work on heavy-light correlators in higher-dimensional con-
formal field theories (CFTs) with a large central charge CT , we clarify the properties of
stress tensor composite primary operators of minimal twist, [Tm], using arguments in both
CFT and gravity. We provide an efficient proof that the three-point coupling 〈OLOL[Tm]〉,
where OL is any light primary operator, is independent of the purely gravitational action.
Next, we consider corrections to this coupling due to additional interactions in AdS ef-
fective field theory and the corresponding dual CFT. When the CFT contains a non-zero
three-point coupling 〈TTOL〉, the three-point coupling 〈OLOL[T 2]〉 is modified at large
CT if 〈TTOL〉 ∼

√
CT . This scaling is obeyed by the dilaton, by Kaluza-Klein modes of

prototypical supergravity compactifications, and by scalars in stress tensor multiplets of
supersymmetric CFTs. Quartic derivative interactions involving the graviton and the light
probe field dual to OL can also modify the minimal-twist couplings; these local interactions
may be generated by integrating out a spin-` ≥ 2 bulk field at tree level, or any spin ` at
loop level. These results show how the minimal-twist OPE coefficients can depend on the
higher-spin gap scale, even perturbatively.
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1 Introduction

Much of physics is concerned with finding the simplest description possible that never-
theless captures some universal behavior of interest. Ideally, such descriptions can be
systematically improved. Effective field theories, and the emergent universality at low
energies that they describe, provide a robust instance of this approach. Holographic de-
scriptions of strongly coupled physics, through the AdS/CFT correspondence [1–3], may
be cleanly derived as applications of effective field theory in the bulk, provided there exists
a certain separation of scales. Such conditions hold if, for instance, the boundary CFT
admits a parametrically large gap to the lightest spin-` > 2 single-trace primary [4–7] and,
perhaps, a sparse spectrum of “light” primaries. Often, however, CFTs have no such gap,
and one may adopt a simplified bulk gravitational description for the sake of expediency
and tractability.

It is important to try to understand which features of boundary correlators in holo-
graphic theories are relatively insensitive to such simplifying assumptions, and which are
not. One recent result [8] along these lines, in the context of bulk gravity minimally coupled
to a scalar field, is that in a certain lightcone limit, heavy-light correlators 〈OHOHOLOL〉
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— i.e. scattering amplitudes of the light scalar field dual to OL in a background created by
the heavy operator OH — are independent of all higher-curvature terms in the purely grav-
itational effective action at leading order in large central charge CT .1 In CFT language, the
non-trivial statement here pertains to the three-point coupling 〈OLOL[Tm]〉, where [Tm] are
them-trace stress tensor operators of lowest possible twist, τ ≡ ∆−` = m(d−2)+O(C−1

T ).
(We have suppressed the spin index on [Tm].) Form = 2, these “minimal-twist” composites
are symmetric traceless primaries of spin-`, of the schematic form

[TT ]0,` ≈ Tµ1µ2∂µ3 . . . ∂µ`−2Tµ`−1µ` , (1.1)

where the “0” subscript denotes the condition of minimal twist. The claim of [8] is that if
OL is dual to a minimally-coupled bulk scalar, then at large CT , 〈OLOL[TT ]0,`〉 depends
only on the central charge CT and the dimension ∆L, and not on higher-derivative terms
in the purely gravitational bulk action; likewise for the OPE coefficient with the [Tm]
operators. See [9–19] for related recent works.

Understanding when such “minimal-twist universality” holds or fails, or more precisely
what additional data these minimal-twist OPE coefficients might depend on in a wider
class of theories, is the motivation of the present work. From the point of view of bulk
effective field theory, the restriction to the purely gravitational action is not parametrically
controlled in known examples. In canonical instances of AdS/CFT with Einstein gravity
coupled to low-spin matter in the bulk, there is abundant evidence that ∆gap, the dimension
of the lightest single-trace primary operator of spin ` > 2, gives the parametric dependence
for higher-derivative gravitational interactions in AdS [5, 6]. Given that gravity-matter
couplings appear in the derivative expansion at the same order as purely gravitational
terms, one must contend with these couplings. This is what we will do here. We shall
restrict ourselves to an investigation at leading order in large CT , where the bulk description
is classical, but we will not demand that the bulk scalar field is minimally coupled or that
it is the only bulk matter field.

The outcome is that certain bulk fields and interactions can indeed modify the minimal-
twist OPE coefficients without modifying CT ,∆L or ∆H . In addition, we provide an
efficient proof, not requiring explicit computation, that the minimal-twist OPE data is
independent of the purely gravitational action, that is, of n-point graviton self-interactions.

The basic mechanism for the corrections is easy to explain with an example. Let us
phrase this in terms of CFT. To access the minimal-twist OPE coefficient 〈OLOL[TT ]0,`〉,
we can study the four-point function 〈TOLOLT 〉: at leading-order in large CT (i.e. tree-level
in AdS), the [TT ]0,` operators are only exchanged in the t-channel, OLOL → [TT ]0,` → TT .
Suppose that there exists a 〈TTOL〉 coupling. This will contribute in the s-channel, TOL →
T → TOL. By crossing symmetry, its presence will, barring kinematic cancellations,
modify the t-channel exchange of [TT ]0,` [20–22]. The explicit computations herein show
that, indeed, such cancellations do not happen. Therefore, if 〈TTOL〉 has the necessary
scaling with CT to contribute to the leading-order correlator, 〈OLOL[TT ]0,`〉 will pick up a
dependence on that coupling. As may be familiar from tree-level AdS/CFT computations,

1CT is defined as the norm of the stress tensor.
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the “necessary scaling” is
〈TTOL〉 ∼

√
CT , (1.2)

Moreover, as shown in [23, 24], the 〈TTOL〉 coupling (which carries a unique tensor struc-
ture) is, in CFTs with a large higher-spin gap, proportional to ∆−2

gap. Therefore, this
〈TTOL〉 coupling induces a perturbative ∆gap-dependence of the minimal-twist OPE data.

Let us elaborate on this, and our approach from the bulk perspective. The kinds of
additional bulk terms we are interested in can be schematically written as

S ⊃
∫
dDx
√
g
(
Lgrav + LφWm + L∇nφ∇nφ∗Wm + LφWmV

)
(1.3)

with

Lgrav = R+ Λ +
∑
i

αiO(R2) +
∑
j

βjO(R3) + · · · , (1.4)

LφWm =
∑
m

amφW
m, (1.5)

L∇nφ∇nφ∗Wm =
∑
n,m

bn,m(∇nφ∇nφ∗)Wm, (1.6)

LφWmV =
∑
m,`

cm,`φW
mV`. (1.7)

The notation is as follows: W is the Weyl curvature; ∇ is the covariant derivative; the
superscripts indicate powers (not indices); a, b and c are bookkeeping constants; each term
generally stands for multiple different terms where the indices (which have been suppressed
above) may be contracted differently; and the field V` indicates a bulk field with spin ` ≤ 2,
where the bound follows from imposing Einstein gravity at low energies. We will call (1.4)
the purely gravitational part of the action. For each of (1.5)–(1.7), in this work we will
study the effect of one simplest representative interaction; the generalization of our methods
to other operators is straightforward in principle.2 The 〈TTOL〉 coupling described above
is dual to the Weyl-squared coupling,

LφW 2 ∼ φW µνρσWµνρσ. (1.8)

We will demonstrate that the minimal-twist OPE data is independent of Lgrav and
show how each of the other classes of vertices corrects this data. For example, LφWm

interactions can contribute at large CT only if the self-interactions of the probe field φ are
“gravitationally suppressed”, i.e. suppressed by appropriate powers of CT . This form of
large-CT factorization is not known to be required by any first principles argument. On the
other hand, it is obeyed in UV complete constructions of AdS vacua. Some familiar cases
of scalars in large-CT CFTs with this scaling include the dilaton (either in type II string
theory or in more general KK reductions); all known reliable AdS×M compactifications

2We have chosen to write these interactions in terms of the Weyl tensor instead of the Riemann tensor
because Riemann is non-vanishing in pure AdS, and therefore interactions written in terms of Riemann
typically contain some contributions that can be absorbed by shifts in bare parameters for lower-order
couplings.
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of low-energy string or M-theory, which have LM ∼ LAdS; and SCFTs whose stress tensor
multiplet contains a scalar primary (see section 2.2). In what follows we sometimes refer
to this large-CT scaling as “gravitational scaling”.

On the other hand, the bulk interactions ∇nφ∇nφ∗Wm do not require a specific large-
CT scaling but they can also affect the minimal-twist sector; this type of correction may
be generated by integrating out a spin-` ≥ 2 bulk matter at tree level, or any spin at loop
level.3

A more detailed accounting of the paper is as follows.
In section 2, we elaborate on the different forms of interactions, how they might scale

at large CT , and the types of AdS/CFT dual pairs for which this scaling holds.
In sections 3 and 4, we compute the corrections to the OPE coefficients of minimal-

twist multi-T operators in two related scenarios.
First, in section 3, we extract 〈OLOL[TT ]0,`〉 from the four-point function 〈TOLOLT 〉,

where the corrections come from spin-two exchange. More specifically, we compute the
correction to the OPE coefficient at `� 1 using the spinning lightcone bootstrap for spin-
two exchange in AdS. This exemplifies the effect of the LφW 2 and LφWV vertices shown
above. This approach also gives an efficient argument for why 〈OO[TT ]0,`〉 (as well as all
the minimal-twist 〈OO[Tm]〉 OPE coefficients) are independent of the purely gravitational
action Lgrav (see section 3.1.1).

Then in section 4, we switch gears and study the effect of quartic bulk interactions,
of the type L∇nφ∇nφ∗W 2 shown above, on the four-point function 〈OHOHOLOL〉. This
is done by solving bulk equations of motion. We fix d = 4 for simplicity. This method
allows us to extract 〈OLOL[Tm]〉 where here, in a slight abuse of notation, [Tm] are the
minimal-twist operators of spin ` = 2m,

[Tm] ≡ Tµ1ν1Tµ2ν2 . . . Tµmνm . (1.9)

We find for the first several values of m that indeed, these minimal-twist OPE coefficients
are modified by L∇nφ∇nφ∗W 2 .

Finally, we conclude in section 5. Appendix A gives further details on the lightcone
bootstrap for spinning operators and appendix B explains how our results are consistent
with earlier work on universality and the inversion formula.

2 Higher-curvature interactions at large CT

In this section, we make some general remarks on the higher-derivative corrections to a
bulk gravitational action, focusing on the large central charge limit. In particular, we shall
point out several bulk coupling terms which were not included in the earlier analysis [8] and
argue that some of these additional couplings can a priori contribute to the lowest-twist
stress tensor sector. We confirm this in detailed computations in later sections.

3The φWmV interactions do not require a specific scaling either, and they can affect the minimal-twist
OPEs when V` has ` = 2.
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2.1 Neutral vs. charged scalar

We begin with the purely gravitational part of the action:

Sgrav ∼ CT
∫
dDx
√
g

R+ Λ +
∑
i

αiO(R2)i +
∑
j

βjO(R3)j +
∑
k

γkO(R4)k + · · ·


(2.1)

where O(Rn) denotes all possible invariants constructed out of n Riemann tensors. The
coefficients αi, βj , . . . in Sgrav are assumed only to be finite in the CT → ∞ limit; in
particular, we make no assumption about these coefficients being suppressed by an EFT
gap scale, such as ∆gap. We also introduce a light bulk scalar field φ.4 At a minimum, its
coupling to gravity includes the standard kinetic term, Skin ∼

∫
dDx
√
ggµν∂µφ∂νφ.

If φ is neutral under all symmetries, then even in the absence of additional fields in
the bulk, the bulk action may contain terms that are linear in φ. The simplest such term
that does not produce a tadpole for φ in the pure AdS background is

LφW 2 ∼ φW µνρσWµνρσ, (2.2)

where Wµνρσ is the Weyl tensor. This bulk interaction reflects the presence of a 〈TTOL〉
three-point function in the boundary CFT. It is a special case of an infinite family of
interactions (1.5). Below, we will consider in detail the effect of (2.2) on the OPE coefficients
〈OLOL[TT ]0,`〉 and comment on more general cases.

By contrast, if φ is charged, (2.2) is forbidden. Instead, we can either form neutral
combinations out of its products or introduce additional charged fields, V , into the theory.
For example, we can consider

L∇2φ∇2φ∗W 2 ∼ ∇µ∇νφ∇ρ∇σφ∗WαµβρWανβσ, (2.3)

or
LφWV ∼ ∇ν∇σφWµνρσV

µρ, (2.4)

where V is a charged symmetric traceless field of spin ` = 2. These are special cases of the
families (1.6) and (1.7), respectively. The exact structure of the index contractions here
is not important for the moment. Note that the two options (2.3) and (2.4) are not so
different: in the limit where the additional charged fields V µρ become heavy, integrating
them out leads to additional local interactions of φ and hµν made from neutral combinations
of the scalar field. The main physical difference between these two cases is, therefore, just
the difference between the effect of local interactions and nonlocal exchange; in practice,
we will use rather different methods to compute their effects on the minimal-twist multi-T
OPE coefficients.

2.2 Large CT and gravitational scaling

In order to determine whether the interactions above contribute to the minimal-twist OPE
coefficients in the CT → ∞ limit, we need to consider how the coefficients of these inter-
actions scale with CT . If they grow too slowly, then the inverse factors of CT ∼ G−1

N from
4By “light”, we mean fields whose masses are finite at CT → ∞, whereas “heavy” will indicate masses

that grow linearly with CT .
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gravitational suppression will cause their effect to vanish. By contrast, if they grow too
quickly, they can destabilize the classical limit of the gravitational description.

Perhaps the simplest way to think about this is to imagine that, as is often the case,
the large CT in the CFT description arises from the large dimension — call it N — of
a symmetry group, with the bulk fields being composite singlets. Then all disconnected
n-point functions of the stress tensor T are naturally proportional to

CT ∼ N , (2.5)

and the large N bulk action automatically has a factor of CT out front as in (2.1), and
a classical limit emerges. Now imagine that the CFT dual O of the light field φ is also a
composite of a large number M of constituents qi, e.g.

O ∼
M∑
i=1

qiqi. (2.6)

If M is large, then φ will also have a weakly-coupled bulk description where the kinetic
term and bulk interactions involving φ are proportional to M .5 If M and N are the same
parametrically, then we can write the action for all the bulk terms involving φ and hµν
with a single factor of CT out front:

S ∼ Sgrav + CT

∫
dDx
√
g
(
(∇φ)2 + aφW 2 + a′(∇∇φ)2W 2 + . . .

)
, (M ∼ N). (2.7)

In this case, the interaction terms involving φ affect the large CT classical gravity equations
of motion. If these interactions affect the minimal-twist multi-T OPE coefficients — which,
as we show in the next section, they do — the effect will therefore survive at CT →∞.

By contrast, if M is parametrically smaller than N , then we expect the coefficient in
front of the part of the action involving φ to be at most M ,

S ∼ Sgrav +M

∫
dDx
√
g
(
(∇φ)2 + aφW 2 + a′(∇∇φ)2W 2 + . . .

)
, (M � N) . (2.8)

Then φ will not affect the classical gravity equations of motion. In terms of the method for
computing these OPE coefficients used in [8], whenM � N we can first solve for the metric
created by the heavy operator while ignoring φ, and then solve for the bulk φ two-point
function in that background. The φ equations of motion take the schematic form

∇2φ ∼ aW 2 + a′∇∇∇∇φW 2 + . . . , (2.9)

The key difference between the case M ∼ N and M � N is as follows. If M � N ,
graviton-graviton-scalar interactions are generally negligible if one of the gravitons is an
internal line: due to the C−1

T ∼ N−1 suppression in the graviton propagator, such terms
will be suppressed by M/N � 1 in this case and therefore subleading.

5Note that there is no meaningful limit where M � N . From the CFT point of view, the stress tensor
couples to all the degrees of freedom in the theory, so N should be at least as large as M . From the bulk
point of view, if one set M � N by hand, φ loops would simply renormalize N back up to be ∼M .
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Figure 1. Generating higher-curvature terms by integrating out φ with a gφ3 interaction. Dashed
lines are φ propagators, and external gravity lines represent insertions of the Weyl tensor.

It is also useful to state these considerations in a convention where we canonically nor-
malize φ→M−1/2φ. In that case, we would write the φ-field bulk action schematically as

S ∼
∫
dDx
√
g

(
(∇φ)2 + aM1/2φW 2 + a′(∇∇φ)2W 2 + φn

M
n−2

2
+ . . .

)
, n ∈ N, n > 2 .

(2.10)
In this language, when M ∼ N ,

all φn with n ≥ 3 interactions must be gravitationally suppressed.

By “gravitationally suppressed” we mean suppressed by powers of CT ∼ N .
One can derive this fact in the opposite direction as well, by putting in a (CT )αφW 2

interaction and a φn interaction without any 1/CT suppression, and seeing that φ loops
generate a gravitational action that does not have the form (2.1), and does not have a
classical limit. In figure 1, we show examples generating g(CT )3αW 6 and g4(CT )4αW 8 in
the presence of a gφ3 interaction. By adding more gφ3 insertions on the φ loop in figure 1,
we can generate gn(CT )nαW 4n for any n. We therefore see that if g does not have any
CT suppression, then any α > 0 leads to terms in the gravitational action that are larger
than that allowed in (2.1). Conversely, if α = 1

2 , as adopted in (2.10), then we must take
g . O

(
1√
CT

)
.

Summarizing, in order to affect the minimal-twist OPE coefficients via the coupling
φW 2, the corresponding scalar must have self-interactions suppressed by the powers of
CT just described. As noted earlier, this scaling is not known to be required by any
holographic consistency condition. On the other hand, this CT -dependence is obeyed by
scalars in controlled constructions of AdS vacua. This includes:

1. The dilaton, either in type II string theory or in more general KK reductions, whose
interaction are suppressed by gravity.

2. All known reliable AdS×M compactifications of low-energy string or M-theory which
have LM ∼ LAdS, and hence KK scalars with masses of order the AdS scale. These
solutions also always contain KK towers of massive spin-two operators, descending
from the graviton, and hence can furnish all types of vertices given in the previous
subsection.
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Figure 2. s and t-channel exchange diagrams for 〈TOOT 〉, respectively.

3. Any SCFT whose stress tensor multiplet contains a neutral scalar field. This follows
from the fact that 〈TTT 〉 may be generated from 〈TTO〉 via the action of supersym-
metry. This includes, in particular, 3d N = 4 and 4d N = 2 SCFTs (e.g. [25]), in
which O is the bottom component of the supermultiplet.

We will consider the effect of the interactions obeying gravitational scaling on the minimal-
twist OPE coefficients in the following section.

3 Exchange interactions

We now explicitly compute the corrections to the minimal-twist OPE coefficients
〈OO[TT ]0,`〉 from interactions of the forms (2.2) and (2.4) discussed in the previous section.
Our strategy will be to extract the desired OPE coefficients from the four-point function
〈TOOT 〉. This correlator contains exchange diagrams with massless or massive spin-two
exchange, allowed by the interactions (2.2) and (2.4), and we show that they do indeed
contribute to the minimal-twist OPE coefficients.

This point of view also provides a compact argument, given in subsection 3.1.1, for
why the OPE coefficients 〈OO[Tm]〉 are independent of the purely gravitational sector.

As before, we will denote the boundary scalar by O and its bulk dual by φ. In this
section (except subsection 3.1.1), φ is assumed to be a neutral field with gravitationally-
suppressed interactions.

3.1 Witten diagrams

In order to classify which interactions can affect the coupling 〈OO[TT ]0,`〉 it is simplest to
think in terms of Witten diagrams. We are interested in the leading large CT correction,
so only tree diagrams for 〈TOOT 〉 are relevant since both T and O have ∆� CT . There
are two types of exchange diagrams we have to study, as shown in figure 2.

First, it is straightforward to see that no diagrams in the t-channel, OO → χ → TT ,
can affect the minimal-twist OPE coefficients. This follows from known results. First,
recall that the minimal-twist double-trace stress tensors operators [TT ]0,` start at ` = 4.
Next, it is known [26] that in a direct-channel decomposition, the spin of the double-
trace operators for which OPE data is generated is bounded by the spin of the exchanged
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single-trace operator. In the t-channel, only symmetric traceless fields of spin-` may be
exchanged. Since we are looking at a theory of Einstein gravity + matter in the bulk, all
elementary bulk fields have [6, 27]

` ≤ 2 . (3.1)

This concludes the proof.
Thus, turning to the s-channel, TO → χ→ OT , we must classify which fields χ, dual to

single-trace operators, can be exchanged. One universal set of operators are the symmetric,
traceless operators, i.e. operators that transform in the representation [`] ≡ [`, 0, . . . , 0] of
the Lorentz group. Here [`1, `2, . . . , `n] gives the number of boxes in each row of the Young
tableaux and `1 ≥ `2 ≥ . . . ≥ `n. In d = 3 these are the only operators which can appear.
In d ≥ 4 we can also have the mixed symmetry operators [`, 1] and [`, 2] [28].

The Lorentzian inversion formula tells us that inverting a single operator in one channel
gives corrections to the double-trace operators in the crossed-channel, for all spin and
twist [29]. Therefore, for 〈TOOT 〉 we expect that single-trace exchange in the s-channel
corrects the couplings to the t-channel double-traces, which here are [TT ]n,` and [OO]n,`.
In general dimensions d, the OPE coefficients 〈OO[TT ]0,`〉 should depend on couplings
to the three Lorentz tensor structures, 〈OTχ∆,[`]〉, 〈OTχ∆,[`,1]〉, and 〈OTχ∆,[`,2]〉. It will
be sufficient for our purposes to focus on the symmetric traceless operators. Then to
determine if a bulk Witten diagram is allowed or not, we need to classify the allowed
three-point functions 〈TOχ∆,[`]〉 for ` = 0, 1, 2, and impose conservation.

To perform computations it is simpler to work in a d+2-dimensional embedding space
with signature (1, d+ 1) [30, 31].6 We will write CFT three-point functions in terms of the
d+2-dimensional, null position and polarization vectors, P and Z and choose the following
basis of tensor structures,

kijk = PijZi · Pk − PikZi · Pj√
PijPjkPik

, mij = Zi · Zj −
Zi · PjZj · Pi

Pi · Pj
, (3.2)

where Pij = −2Pi · Pj . The three-point function takes the form

〈TOχ∆,`〉 = 1
P

∆TOχ
12 P

∆OχT
23 P

∆TχO
13

2∑
i=0

λ
(i)
TOχk

2−i
1 k`−i3 mi

13 (3.3)

where k1 = k123, k3 = k312 and ∆123 = ∆1 +∆2−∆3. We next need to impose conservation
for the stress tensor to see which three-point functions are allowed. In embedding space,
the conservation operator is

Di = ∂

∂Pi,M

[(
d

2 − 1 + Z · ∂
∂Z

)
∂

∂ZM
− 1

2ZM
∂2

∂Z · ∂Z

]
. (3.4)

We can impose the condition D1〈TOχ∆,`〉 = 0 directly in embedding space.
The simplest case is when ` = 0, in which case χ∆,`=0 is a scalar. There is a unique

allowed tensor structure and imposing conservation implies ∆ = ∆O. The stress tensor
6Here we are working in d Euclidean dimensions, but later we will Wick rotate to Lorentzian signature.
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Ward identity at coincident points implies we must have χ = O itself and fixes the OPE
coefficient to

λOOT = − ∆Od√
CT (d− 1)Sd−1

(3.5)

where Sd−1 is the area of a d−1 dimensional sphere. In other words, the only scalar which
can appear in the s-channel is O itself and the coupling is fixed to the minimally coupled
answer.

Next, we consider the exchange of an ` = 1 operator, V . Imposing conservation of T
relates the two tensor structures as [23],

λ
(0)
TOV = 1

2λ
(1)
TOV (d(∆O −∆V ) + 2) , ∆O = ∆V ± 1 . (3.6)

If we furthermore impose that V is conserved, ∆V = d− 1, then we must set ∆O = d− 2.
This is a somewhat strange cubic coupling; the conservation implies that it is only allowed if
the dimensions of O and V are correlated. We are not aware of such an allowed interaction
in a holographic CFT and we shall not consider this case any further.7

Finally, we consider the exchange of an ` = 2 operator, M . This could be, for example,
a massive KK mode of a higher-dimensional graviton. Imposing conservation gives a unique
tensor structure, where the three a priori independent structures are related as

λ
(0)
TOM = (d− 2)(d+ ∆O −∆M )(d+ ∆O −∆M + 2)

d ((∆O −∆M )2 − 2)− (∆O −∆M )2 λ
(2)
TOM , (3.7)

λ
(1)
TOM = 2(d+ ∆O −∆M )((d− 1)∆O − d∆M + ∆M − 2)

d ((∆O −∆M )2 − 2)− (∆O −∆M )2 λ
(2)
TOM . (3.8)

The three-point function 〈TOT 〉 is recovered by setting ∆M = d. We see that spin-two
exchange in the s-channel depends on a free parameter; thus, absent kinematic cancella-
tions, one would expect this to correct the minimal-twist universality. The next subsection
confirms this expectation.

3.1.1 Minimal-twist data is independent of Lgrav

Before moving on, we pause to note that the above perspective gives a direct explanation
of why the OPE coefficients 〈OO[TT ]0,`〉 depend on the purely gravitational action, Sgrav,
only through the central charge CT . Higher-curvature terms in the gravitational action only
modify 〈TOOT 〉 at tree-level via the cubic coupling 〈TTT 〉, and 〈TTT 〉 only contributes
to 〈TOOT 〉 in the t-channel, OO → T → TT , as depicted in the upper right diagram of
figure 3. This is the same channel in which the minimal-twist double-traces appear. But as
recalled earlier, a spin-j exchange does not affect direct-channel OPE data for double-trace
operators of spin greater than j. Therefore, T exchange cannot affect the couplings to the
minimal-twist trajectory [TT ]0,`, which starts at ` = 4.

This conclusion also gives a concise way to characterize the OPE coefficients
〈OO[TT ]0,`〉: they are determined solely by the crossing transformation of the TO →

7This coupling can be non-zero in a free field theory [32].
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Figure 3. Examples of tree-level diagrams for the 〈OO[Tm]〉 OPE coefficients in the case of a
minimally-coupled scalar. The left two diagrams contribute to the minimal-twist [Tm] OPE data,
whereas the right two diagrams do not.

O → TO exchange. This exchange is fixed by the conformal Ward identity as discussed
above (3.5). Applying crossing to this exchange generates a 6j symbol [22, 33, 34] whose
residue at ∆ = 2d+ ` is the product 〈OO[TT ]0,`〉〈TT [TT ]0,`〉, and the factor 〈TT [TT ]0,`〉
is determined by stress tensor mean field theory (MFT).8 In this way, 〈OO[TT ]0,`〉 is
determined by conformal kinematics alone.

Moreover, it easily generalizes to the case of minimal-twist operators [Tm] with any
m. To see this for m = 3, note that the tree-level diagrams for the 〈OO[T 3]〉 OPE
coefficient are either of the form of the lower left diagram in figure 3, where no graviton
self-interaction n-point vertices are present, or of the form of the lower right diagram,
where such vertices are present. The former case clearly is insensitive to cubic and higher
graviton couplings. The latter case does depend on such couplings, but does not affect the
minimal-twist OPE coefficients for the following reason: the minimal-twist [Tm] operators
are also minimal twist when looking only at any subset of T s in the composite, so by
looking at the subdiagram with two external T s connected by a TTT vertex (equivalent to
the upper right diagram), we see that the OPE coefficient vanishes by the same argument
just given for the minimal-twist [T 2] OPE coefficients.

We can make one further generalization. Suppose that we add any finite number of
(possibly massive) scalar and spin-one bulk fields to the theory. Assume that O is charged

8Techniques for computing stress tensor MFT OPE coefficients and explicit expressions in d = 3 are
given in [35].
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under some symmetry, under which these new fields are neutral, so that the O line is
unbroken in any bulk diagram. Then all new allowed tree-level diagrams that correct the
〈OO[Tm]〉 OPE coefficients can be obtained by diagrams such as those shown in figure 3,
with some internal graviton lines replaced by scalar or gauge field lines. Since the new
fields have strictly lower spin than T , the previous proof goes through as before, and the
minimal-twist 〈OO[Tm]〉 OPE coefficients are unmodified.

3.2 Lightcone bootstrap

With the results of section 3.1 in place, we now show explicitly that the minimal-twist OPE
coefficients depend on the coupling λTOM where M is a generic, non-conserved spin-two
operator. We will use the lightcone bootstrap to extract the large-spin asymptotics for the
spinning OPE data [20, 21, 36, 37], showing that it is nonzero. This will be sufficient to
prove that universality is violated by the exchange of spin-two fields.9

Our goal is to solve the crossing equation:

W(s)
M (xi) =

∞∑
`=0

λTT [TT ]n,`λOO[TT ]n,`g
OOTT
[TT ]n,`(xi) +

(
[TT ]n,` → [OO]n,`

)
. (3.9)

where W(s)
M (xi) is the s-channel exchange diagram for M discussed in section 3.1, and

g∆,`(xi) are the conformal blocks. Here the superscripts on the block denote the channel,
e.g. gOOTT[TT ]n,`(xi) corresponds to the exchange OO → [TT ]n,`TT . Expanding the left-hand
side of (3.9) in s-channel conformal blocks, one finds blocks for the single-trace operator M
and the double-traces [TO]n,`. These double-trace operators do not affect the large spin
asymptotics on the right-hand side of (3.9), so we can drop them.10 Therefore, we are left
with the crossing equation:

gTOOTM (xi) ≈
∞∑
`=0

λTT [TT ]n,`λOO[TT ]n,`g
OOTT
[TT ]n,`(xi) +

(
[TT ]n,` → [OO]n,`

)
. (3.10)

The ≈ is to emphasize that we will only be solving this equation in the lightcone limit and
determining the large-spin asymptotics of the right-hand side.

We will work with the d-dimensional metric,

ds2 = dx+dx− + δijdx
idxi, x± = x1 ± x0, (3.11)

and choose the conformal frame where the operators lie in the (x+, x−) plane,

x1 = (0, 0), x2 = (z, z), x3 = (1, 1), x4 =∞, (3.12)

where (z, z) are the usual conformal cross-ratios (defined in (A.9)). For the conformal blocks
we also typically pull out a kinematic prefactor when working in a generic configuration to

9To obtain the OPE coefficients at finite spin, one option would be to directly use the inversion formula
for spinning operators, which can be derived through weight-shifting operators [38, 39].

10In the language of the inversion formula, they have a vanishing double-discontinuity [29] or equivalently
in the lightcone bootstrap, are Casimir-regular [40].
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find a function of the cross-ratios:

g∆i
∆,`(xi) = 1

x∆1+∆2
12 x∆3+∆4

34

(
x24
x14

)∆1−∆2 (x14
x13

)∆3−∆4

g∆i
∆,`(z, z). (3.13)

The lightcone limit then corresponds to taking

z � 1− z � 1 .

To compute the spinning conformal block we can act with differential operators on the
scalar block [31] and then take the lightcone limit. Although the blocks are not known
in a simple closed form in general dimensions, they can be found in the lightcone limit
using the Casimir equation [40, 41]. The construction of the spinning blocks is technical,
but straightforward, so we will leave the details for appendix A. The final result for the
correlator in the lightcone limit due to massive spin-two exchange is

gTOOTM (z � 1− z � 1) ≈ −(λ(2)
TOM )2 z

1
2 (∆M−2−d−∆O)

(1− z)∆O−d+2

× π(d− 2)2 (d−∆M + ∆O)2(d−∆M + ∆O + 2)2 Γ(∆M + 2) csc(π(d−∆O))
((∆M −∆O)2 − d ((∆M −∆O)2 − 2))2 Γ(d−∆O − 1)Γ2

(
1
2(−d+ ∆M + ∆O + 4)

) .
(3.14)

This gives the left-hand side of (3.10). We remind the reader that we have dropped the
ingredients necessary for extracting the [OO]n,` double-trace operators in the t-channel. As
we see in a moment, once the kinematic prefactors are taken into account, this equation has
exactly the right z dependence to contribute to the [TT ]0,` double-traces in the t-channel.

To solve the bootstrap equation (3.10), we now analyze the right-hand side. To do so
we need the conformal blocks gOOTT[TT ]n,`(xi). One way to do this is to act with the differential
operators on a seed scalar block, make an Ansatz for the large spin OPE coefficients,
and then perform the sum over spin at fixed twist. Here we will take a different route
and instead decompose the d-dimensional spinning blocks in terms of the global d = 2
conformal group, SL(2,R) × SL(2,R). The d = 2 spinning blocks are simply a product
of 2F1 hypergeometrics [42]. Physically, the SL(2,R) group comes from transformations
which preserves the light-ray separating two light-like operators. Since we are just keeping
the leading dependence as z → 1, we can also work to leading order in the d = 2 block
expansion.

In d = 2, we label the blocks by their holomorphic and anti-holomorphic weights (h, h).
These are related to the dimension and spin of the d = 2 operators as

∆2d = h+ h, `2d = h− h. (3.15)

To avoid confusion with the d-dimensional conformal dimension and spin we label all d = 2
blocks by the weights (h, h). Then, working in the same conformal frame as before, the
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d = 2, t-channel expansion takes the form

〈O1O2O3O4〉 = 1
(1− z)h2+h3(1− z)h2+h3

∑
χ
h,h

λ23χ
h,h
λ14χ

h,h
g

(d=2)
h,h

(1− z, 1− z), (3.16)

g
(d=2)
h,h

(z, z) = kh21,h34
h (z)kh21,h34

h
(z) , ka,bh (z) ≡ zh2F1(h+ a, h+ b, 2h, z), (3.17)

where hij = hi − hj . To specialize to our case we set O1 = O4 = T−− and O2 = O3 = O.
Using (3.14), we now have to solve a bootstrap equation of the form

z
1
2 (∆M−2−d−∆O)

(1− z)∆O−d+2 ∼
1

((1− z)(1− z))∆O

∑
O
λOOχ

h,h
λT−−T−−χ

h,h
g

(d=2)
h,h

(1− z, 1− z) .

(3.18)

Comparing the (1 − z) dependence, we see the blocks on the right-hand side must have
h → d − 2 as h → ∞.11 We can identify these as the minimal-twist, stress tensor double-
trace operators, T++∂+ . . . ∂+T++. This is the claim advertised earlier: a 〈TTO〉 coupling
in the dual CFT contributes, by way of solving crossing for 〈TOOT 〉, to the OPE coefficient
〈OO[TT ]0,`〉.

We may also read off the explicit form of the large-spin OPE coefficients:

λOO[T++T++]λT−−T−−[T++T++] ∼ (λ(2)
TOM )2S 1

2 (∆M−2−d−∆O)(h) (3.19)

× (d− 2)2(d−∆M + ∆O + 2)2(d−∆M + ∆O)2

((∆M −∆O)2 − d ((∆M −∆O)2 − 2))2
Γ(∆M + 2)Γ(∆O − d+ 2)

Γ2
(

1
2(−d+ ∆M + ∆O + 4)

) ,
where we have defined [40],

Sa(h) = Γ2(h)Γ(h− a− 1)
Γ2(−a)Γ(2h− 1)Γ(h+ a+ 1) . (3.20)

As we are working at tree-level in 1/CT , the OPE coefficient λT−−T−−[T++T++] is fixed to its
MFT value. Moreover, the three-point function 〈OO[TT ]n,`〉 is fixed up to a single number
and thus we do not lose any information by fixing the polarizations. The ∼ in (3.19) is a
reminder this gives the asymptotic OPE coefficients in the limit h ∼ |`| � 1.12 To recover
the case where we have bulk graviton exchange we can simply set ∆M = d.

4 Local interactions

In this section, we will explicitly compute the corrections to the minimal-twist OPE coeffi-
cients 〈OO[TT ]0,`〉 from interactions of the form (2.3). This section returns to the approach
of [8], by extracting these OPE coefficients from the heavy-light correlator 〈OHOHOLOL〉,
which we compute in the bulk. For concreteness we work in d = 4.

11As shown in [20, 21] the sum over h must be unbounded to match the power of z on the left-hand side.
12Since we are working with the chiral d = 2 blocks, the spin can be negative.
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4.1 Preliminaries

We will compute 〈OHOHOLOL〉 by solving the equations of motion for φL in order to
obtain its bulk-to-boundary propagator, Φ, in a fixed background created by the heavy
state. For concreteness we refer to this background as a black hole, even though there exist
backreacted geometries that are not thermal. The bulk light field φL is dual to the probe
operator OL. Some basic relations are

(−∇2 +m2)Φ = 0 , m2 = ∆L(∆L − d) , (4.1)
Φ(r, x1, x2) = 〈OL(x1)φL(r, x2)〉Black hole , (4.2)

lim
r→∞

r∆LΦ(r, x1, x2) = 〈OH(0)OL(x1)OL(x2)OH(∞)〉 . (4.3)

We denote ∆ = ∆L and φL = φ in the following.
Solving the bulk field equation (4.1) analytically is hard in general. Even in the

Schwarzschild black hole background, no analytic solution is available. It is, however,
possible to systematically obtain analytic solutions in a near-boundary expansion, which
is all we need to study the conformal block decomposition of the boundary correlator. In
particular, it was shown in [8] that the lowest-twist, lowest-spin multi-T operators

[Tm] ≡ Tµ1ν1Tµ2ν2 . . . Tµmνm , (4.4)

i.e. the minimal-twist operators made from products of T with no derivatives, are controlled
by the leading large r term Q(w, u) in a solution for Φ of the form13

Φ(r, w, u) = ΦAdS

(
Q(w, u) +O

(1
r

))
, (4.5)

where the variable w can be defined via the pure AdS bulk-to-boundary propagator

ΦAdS =
(
r

w2

)∆
. (4.6)

In the planar black hole case with coordinates (t, r, x1, x2, x3), u = r−1
√∑3

i=1 x
2
i . In the

large r limit, (4.5) is a solution to

∇2Φ = ∆(∆− 4)Φ. (4.7)

We can compute the corrections to the OPE coefficients in the same way, but including
the additional interaction terms in the equation for φ.

First, let us discuss why interactions of the form (2.3) are the simplest quartic terms
that might lead to corrections to the minimal-twist multi-T OPE coefficients. The reason
we need at least four derivatives is that if we have only two derivatives, then their indices
can only be contracted with gµν or Rµν . But Rµν ∝ gµν up to terms suppressed by 1/r6

in a large r expansion (since this is the first order where we see that the metric is not
13This solution was considered for a planar black hole; see [9] for the spherical black hole case.
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AdS-Schwarzschild). Moreover, the solution φ0 for φ in the absence of the new interaction
terms satisfies

∇2φ0
φ0

∼ O(r0), ∇µ∇νφ0
φ0

∼ O(r4) (4.8)

at large r. Hence, the O(1/r6) and higher terms in Rµν are negligible at infinite r:

lim
r→∞

Rµν∇µ∇νφ0 ∝ ∇2φ0 = ∆(∆− 4)φ0, (4.9)

and thus including such a term is equivalent to shifting the mass of φ, δm2 ∝ ∆(∆ − 4),
as far as the minimal-twist multi-T OPE coefficients are concerned.

Note that by this type of argument, one can also easily see that φW 2 evaluated on
the fixed heavy-state background has no effect through its contribution to the equations of
motion for φ, since W 2 vanishes at infinite r.

Therefore, the first candidate term for a correction term quadratic in φ has four deriva-
tives, and two Weyl tensors; a single Weyl tensor contributes to the equations of motion
through Wµνρσ∇µ∇ν∇ρ∇σφ, which vanishes due to symmetry/anti-symmetry of the in-
dices. A basis for such operators, introduced in [43], is

ID1 = ∇m∇nφ∇p∇qφW imjpWinjq, (4.10)
ID2 = ∇m∇nφ∇p∇qφW imjnWipjq, (4.11)
ID3 = ∇m∇nφ∇p∇qφWmpijWijnq, (4.12)
ID4 = ∇m∇iφ∇i∇nφWmjklWnjkl, (4.13)
ID5 = ∇i∇jφ∇i∇jφW klmnWklmn. (4.14)

We have replaced the Riemann tensor in [43] with the Weyl tensor in order to get rid of
contributions that begin lower than O(h2) in an expansion in hµν (since lower orders can
be absorbed into the mass and normalization of φ by using the equations of motion). The
authors of [43] found that in type IIB supergravity, only ID1 is generated, and its coefficient
in the Lagrangian is

α′3

2κ2 ζ(3), (4.15)

where κ2 = 8πGN .
To get some sense of which of the IDn we might expect to affect the minimal-twist OPE

coefficients, we may look at their contribution to the S-matrix for φh → φh scattering.
Since the [TT ]0,` trajectory starts at ` = 4, we only need to consider amplitudes contribut-
ing as ` ≥ 4 in the s-channel, φφ → hh. Computing the tree-level 2-to-2 amplitudes for
the IDn interactions is straightforward. The linear approximation of the Riemann tensor is

Rµνρσ → −
1
2 (pρpνεµσ + pσpµενρ − pσpνεµρ − pρpµενσ) , (4.16)

where p is the graviton momentum and εµν is its polarization. Now label the two φmomenta
p1 and p2, and the two graviton momenta and polarizations p3, p4 and ε3, ε4, respectively.
The ingredients for the S-matrix are

s = −(p1 + p2)2, t = −(p1 + p3)2, ε3 · ε4, εi · pj . (4.17)
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Here we are writing the graviton polarization tensors as εµνi = εµi ε
ν
i where ε is null and we

can set εi · pi = 0. In terms of Mandelstam invariants, only terms containing (ε3 · ε4)2t4

can affect spin-4 operators, so lower powers of t can be discarded for our purposes.14

Substituting the linearized approximation of the Riemann tensor into the IDn interactions
and keeping only (ε3 · ε4)2t4 terms, it is easy to obtain

ID1
∼=

1
26 t

4(ε3 · ε4)2 , ID2
∼=

1
26 t

4(ε3 · ε4)2 , ID3
∼= 0 , ID4

∼= 0 , ID5
∼= 0 . (4.18)

Based on (4.18), we expect that IDi should affect the [TT ]0,` OPE coefficients for
i = 1, 2 but not for i = 3, 4, 5.

4.2 Explicit OPE coefficients of T 2

Having set our expectations for what we should find, we next present the results and
some of the details of the actual computation for the calculation of OPE coefficients of T 2

operators coming from the addition of the local operators IDn . We add to the Lagrangian

δL = 1
2
∑
i

aiI
D
i , (4.19)

and consider their contribution to the equations of motion:(
−∇2 +m2

)
φ+ ∂δS

∂φ
= 0, (4.20)

where m2 = ∆(∆− 4). The background metric created by the heavy state is

ds2 =
(
1 + r2f(r)

)
dt2 + dr2

1 + r2h(r) + r2dΩ2
3 , (4.21)

with
f(r) = 1− f0

r4 −
f4
r8 + . . . , h(r) = 1− h0

r4 −
h4
r8 + . . . , (4.22)

where. . . indicate higher-order terms in 1/r and we have set the AdS radius to unity.
Conformal invariance requires h0 = f0 [8], while the h4 and f4 terms parameterize further
departures from global AdS.15 In terms of the quantum numbers ∆H and CT ,

f0 = 160
3

∆H

CT
. (4.23)

Here we consider a spherical black hole and will adopt the planar limit for a simpler
all-order analysis later. We take an Ansatz for the bulk-to-boundary propagator Φ of
the form

Φ = ΦAdS ×
(

1 +
∞∑
n=1

g2n(r sinh t, r sin θ)
r2+2n(1 + r2(sinh2 t+ sin2 θ))n

)
(4.24)

14As shown in [6], terms with other dot products, like εi · pj are subleading in the Regge limit and can
be ignored (see the discussion around (B.2) there).

15As these IDi interactions do not affect the line element at large CT , they are unseen in the geodesic.
Note, however, the coeffcients of higher-curvature terms f4, h4 etc. can affect the geodesic; see [8] for detailed
expressions.
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where g2n is an even, degree (2n + 2) polynomial in its arguments.16 We have used the
rotational symmetry to remove dependence on two angular coordinates. The equations
of motion can be solved order-by-order in a large r expansion, with r sinh t and r sin θ
held fixed. Note that the [Tm] conformal blocks are insensitive to the horizon boundary
condition as observed in [8]. Moreover, we restrict to non-integer ∆ to avoid mixing with
double-trace operators made from two probe operators; the mixing with double-trace modes
will be indicated by poles at integer ∆ in the OPE coefficients below.

The new terms δL do not affect the equations for g2 and g4, and instead contribute first
at g6. Once we have the bulk-to-boundary propagator, we obtain the boundary heavy-light
correlator by taking r →∞ with t, θ fixed,

〈OHOHOLOL〉 = lim
r→∞

r−∆Φ(t, θ, r). (4.25)

To obtain the OPE coefficients, we perform a conformal block decomposition. To use the
standard form of the conformal blocks, we change to z, z coordinates,

z = et+iθ, z = et−iθ, (4.26)

and decompose the correlator as

〈OHOHOLOL〉 =
∑
∆,`

p∆,`g∆,`(1− z, 1− z), (4.27)

where
p∆,` ≡ λOHOHO∆,`λOLOLO∆,` . (4.28)

The single-stress tensor exchange contribution is

p4,2 = f0
∆

120 . (4.29)

We are interested in the OPE coefficient λOLOLO8,4 for the minimal-twist composite
operator O8,4 ≡ [TT ]0,4 = TµνTρσ, appearing in the product

p8,4 = λOHOHO8,4λOLOLO8,4 . (4.30)

Following this procedure, we have found that p8,4 is corrected by an (a1 + a2) piece:

p8,4 = f2
0

∆− 2

(
∆(7∆2 + 6∆ + 4)

201600 − (a1 + a2) ∆(∆ + 1)(∆ + 2)(∆ + 3)
462

)
. (4.31)

As we expect based on (4.18), only the terms IDi for i = 1, 2 correct p8,4. The desired
OPE coefficient λOLOLO8,4 may be read off from the above and contains the interesting

16The most efficient way we have found to solve for the g2ns is to use Ansatzes that are meromorphic
functions of ∆ of the following form:

g2n(x, y) =
n+1∑
j=1

rn,j(x, y)
∆− j +

bn−1
2 c∑
i=0

pn,i(x, y)∆i .

For more details, see [8].
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functional dependence, since the heavy “half” of p8,4 simply contributes the f2
0 times an

overall constant — that is, λOHOHO8,4 is (obviously) ∆-independent, and is proportional
to ∆2

H/CT = f2
0CT .17 We observe that the correction term ∼ (a1 + a2) dominates at large

∆; and that the IiD corrections vanish at ∆ = −1,−2,−3.
As an aside, note that the OPE coefficients for higher-twist multi-traces become more

sensitive to model-dependent parameters.18 The full p8,0 and p8,2 can also depend on the
coefficients of higher-derivative terms (∼ f4, h4) in the bulk action; see [8] for explicit
expressions.

Let us also comment on the case of 4d N = 4 super-Yang-Mills (SYM). The fact that
the minimal-twist OPE data is corrected by the structure ID1 implies that for N = 4 SYM,
for which the AdS5 effective action contains such a term [43], the correction from the terms
considered herein is nonzero. This is perhaps suggestive that even in very special CFTs,
minimal-twist OPE data receives perturbative corrections in 1/∆gap, i.e. `s ∼ λ−1/4 in the
N = 4 SYM case.

4.3 An all-order analysis via a planar black hole

In this subsection, we now study the effect of the interactions IDn given in (4.10)–(4.14) on
the minimal-twist OPE coefficients for the [Tm] operators defined in (4.4). By developing
an algorithm for computing these, we prove that only ID1 and ID2 contribute, and that they
never generate fi>0-or hi>0-dependence. We give several lowest-twist OPE coefficients
explicitly and observe certain patterns. To keep the analysis simple, we here focus on the
planar (i.e. high-temperature) black hole limit, which is sufficient to extract lowest-twist
data, and identify patterns.

Consider a planar black hole with the metric

ds2 = r2f(r)dt2 + dr2

r2h(r) + r2
3∑
i=1

dx2
i , (4.32)

where black-hole solutions f(r) and h(r) depend on the details of a theory. Near the bound-
ary, f(r) and h(r) are parameterized as in (4.22). The additional bulk couplings (4.10)–

17One can see this via Witten diagrams as in section 3.1: extracting this from 〈TOHOHT 〉, the exchange
TOH → OH → TOH is proportional to ∆2

H by the Ward identity (3.5) and survives at ∆H � 1.
18The sub-leading- and sub-sub-leading-corrections, δp8,2 and δp8,0, due to IiD are given by

δp8,2 = −f2
0 ∆(∆+1)(∆+2) (13a1+13a2+44a4) (∆2−4∆)−53a1−141a2+1672a3−792a4

6930(∆−3)(∆−2) ,

δp8,0 = − f2
0 ∆(∆+1)

13860(∆−4)(∆−3)(∆−2)
[
3 (23a1+23a2+110a4+594a5) (∆4−8∆3)

+(1753a1−2581a2+4686a3−6952a4−35640a5) ∆2−44 (167a1−443a2+426a3−1220a4−5832a5) ∆

−24 (491a1−1973a2+1848a3−7601a4−23760a5)] .
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(4.14) lead to a modified equation of motion:(
∇2 −m2 − a1∇n∇m∇p∇qφW imjpWinjq

− a2∇n∇m∇p∇qφW imjnWipjq

− a3∇n∇m∇p∇qφWmpijWijnq

− a4∇i∇m∇i∇nφWmjklWnjkl

− a5∇j∇i∇i∇jφW klmnWklmn

)
φ = 0 . (4.33)

After performing integration by parts in varying the action, we have dropped covariant
derivatives of Weyl curvatures as they are subleading in a large r expansion. Following [8],
we adopt the form (4.5). With fixed w, u, the lowest-twist sector can be isolated in a large
r limit. We find the following reduced bulk field equation that captures the lowest-twist
sector of the dual CFT:

u−2(1−w2)−1∂w
(
w1−2∆(1−w2)2∂wQ

)
+u−1k−∂w

(
w−2∆k+∂uQ

)
(4.34)

−w1−2∆u∂u
(
u−1∂uQ

)
+f0∂w

(
w−1∂w(w−2∆Q)

)
= −24

(
a1+a2

)
f2

0u
2w−7−2∆

4∑
j=0

αj∂
(j)
w Q

where

k± =
(
2w2 − 4

) 1
2±

∆
2 , (4.35)

α0 = 16∆
(
∆ + 1

)(
∆ + 2

)(
∆ + 3

)
, (4.36)

α1 = −w
(
5 + 4∆

)(
3 + 4∆(5 + 2∆)

)
, (4.37)

α2 = 3w2
(
5 + 8∆(2 + ∆)

)
, (4.38)

α3 = −2w3(3 + 4∆
)
, (4.39)

α4 = w4 . (4.40)

The result (4.34) implies that, to all orders in the power of f0, neither a3, a4, a5 nor higher-
curvature corrections fi>0, hi>0 enter into the lowest-twist sector of the Tm operators.

We can solve the lowest-twist bulk field equation (4.34) order-by-order in twist. The
solution has the following structure:

Q(w, u) = 1 +
2∑

k=−2
qk,2w

ku2 +
4∑

k=−6
qk,4w

ku4 +
6∑

k=−8
qk,6w

ku6 + · · · (4.41)

where k increases by 2. The relation between qk,k and the lowest-twist OPE coefficients
p∆,J reads

qk,k = (−4)
k
2 p2k,k. (4.42)

where we remind the reader that p2k,k is the product of OPE coefficients

p2k,k ≡ λOHOH
[
T
k
2
]λ
OLOL

[
T
k
2
] , (4.43)
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where
[
T
k
2
]
were defined in (4.4). We obtain these by computing coefficients qk,2, qk,4,

qk,6, . . . , and then extracting the lowest-twist members p2k,k by taking the boundary limit.
The results p4,2 and p8,4 were given in (4.29) and (4.31), respectively. The equa-

tion (4.34) allows one to compute the lowest-twist OPE coefficients efficiently. At the next
order,

p12,6 = ∆f3
0

(∆− 2)(∆− 3)

(
1001∆4 + 3575∆3 + 7310∆2 + 7500∆ + 3024

10378368000

− (a1 + a2)(∆ + 1)(∆ + 2)(∆ + 3)84 + ∆(53 + 13∆)
720720

)
. (4.44)

It is straightforward to compute higher-order coefficients.19 As explained below (4.31),
here and for general k, the interesting dependence comes from the λ

OLOL
[
T
k
2
] half of the

product of OPE coefficients, while λ
OHOH

[
T
k
2
] simply contributes the factor f

k
2

0 , which is
visible in (4.44).

Let us close with a few observations. Again, the correction term dominates at large ∆,
and the corrections vanish at ∆ = −1,−2,−3. We have explicitly checked that this form
persists to much higher orders. We do not have a complete intepretation for these special
values of ∆ that enhance the universality, but a possibility is that they may correspond to
certain null states in this class of theories.20

5 Discussion

In this work, we have generalized the previous analysis [8] of stress-tensor composite dy-
namics in d > 2 conformal theories at large CT . By incorporating a larger set of possible
terms in the OPE, we have shown that the minimal-twist multi-stress tensor sector can
depend on the gap scale of AdS effective field theory. This result likewise implies that the
heavy-light correlators in general can depend on the gap scale.21 In the process, we ex-
plained why the minimal-twist OPE coefficients are independent of the purely gravitational
action.

It may be interesting to develop CFT methods to systematically include the additional
data the minimal-twist OPE coefficients depend on. Relatedly, it would be interesting

19For instance,

p16,8 = f4
0 ∆∆(∆(∆(17∆(1001∆(7∆+57)+246150)+10867340)+16958856)+14428176)+5009760

592812380160000(∆−4)(∆−3)(∆−2)

+(a1+a2)2f4
0 ∆(∆+1)(∆+2)(∆+3) ∆(∆(∆(∆(4199∆+80683)+698029)+3253937)+7918932)+7893900

1792502712(∆−4)(∆−3)(∆−2)

−(a1+a2)f4
0 ∆(∆+1)(∆+2)(∆+3) ∆(∆(323∆(91∆+911)+1368692)+3215632)+3145800

391091500800(∆−4)(∆−3)(∆−2) .

20Note also that α0 does not dictate the lowest-twist OPE coefficients in the boundary limit although the
bulk coefficient α0 in (4.36) vanishes at ∆ = −1,−2,−3. Namely, the universal factor

(
∆+1

)(
∆+2

)(
∆+3

)
would still appear in the lowest-twist OPE coefficients if one sets α0 = 0.

21Our heavy-light discussion focuses on d = 4 but we expect similar corrections in other dimensions d > 2.
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to understand how to extend the near-lightcone Ansatz of [12, 16, 19] for heavy-light
correlators in d > 2; the results here suggest that the Ansatz must be generalized when
moving away from CFTs at strictly infinite gap. It may be also potentially useful to ask,
for certain special CFTs, whether there exists an algebraic structure that governs near-
lightcone dynamics in d > 2, and if it is possible to incorporate additional parameters for
more general cases (see [18] for a recent discussion).

Obtaining closed forms of minimal-twist OPE coefficients at finite spin due to a φW 2

bulk term could be useful. A method for doing this using spinning conformal blocks was
described in section 3. In the bulk approach, one has to solve for a new black-hole solution,
taking the backreaction of φ into account. Both methods present technical challenges but
it could be interesting to study these OPE coefficients in more detail. We would also like
to understand more precisely the behavior of OPE coefficients at certain negative integer
values of the scaling dimension observed in section 4 and find implications of these zeros.

There are other extensions to consider: for example, higher-order expansion in the
lightcone limit, or the couplings to minimal-twist [Tm] composites with m > 2 and spin
` > 2m. It may be also worth extending the computation to include a shockwave and find
corrections to the OPE coefficients in the Regge limit; the analysis in the absence of bulk
matter fields was considered recently in [9]. Finally, the discussion in section 4.2 and [43]
imply that one should find a gap-scale dependence in the lightcone correlators of d = 4,
N = 4 SYM. A more careful look at this question is warranted.
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A Spinning blocks

In this appendix we fill in the details to find the exchange Tφ→M → φT in the lightcone
limit. We will follow the procedure given in [30, 31]. To start, we recall the three-point
function takes the form

〈TOχ∆,`〉 = 1
P

∆TOχ
12 P

∆OχT
23 P

∆TχO
13

2∑
i=0

λ
(i)
TOχk

2−i
1 k`−i3 mi

13. (A.1)
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To construct the spinning block, we want to rewrite this as a differential operator acting
on a seed scalar structure, 〈O1O2χ∆,`〉. The basic differential operators we need are22

D11 = (P1 · P2)
(
Z1 ·

∂

∂P2

)
− (Z1 · P2)

(
P1 ·

∂

∂P2

)
, (A.2)

D12 = (P1 · P2)
(
Z1 ·

∂

∂P1

)
− (Z1 · P2)

(
P1 ·

∂

∂P1

)
+ (Z1 · P2)

(
Z1 ·

∂

∂Z1

)
. (A.3)

If we define the dimension shifting operator Σij which acts as (∆1,∆2)→ (∆1 + i,∆2 + j)
then the differential basis is given by

〈TOχ∆,`〉 =
∑

d
(i)
TOχD

i
11D

2−i
12 Σi,2−i 1

P
∆OTOχ
12 P

∆OχOT
23 P

∆OT χO
13

. (A.4)

Here OT is a fictitious scalar operator with dimension ∆OT = d. The change of basis
between the standard and differential basis is

d
(i)
TOM =

2∑
j=0

Rijλ
(j)
TOM , (A.5)

R =


1

(∆M−1)∆M

−d+∆O+∆M+2
2∆M (1−∆M )

(−d+∆O+∆M )(−d+∆O+∆M+2)
2(∆M−1)∆M

2
(∆M−1)∆M

−d+∆O+2
∆M (1−∆M )

(−d+∆O−∆M+2)(−d+∆O+∆M )
(∆M−1)∆M

1
(∆M−1)∆M

d−∆O+∆M−2
2(∆M−1)∆M

(d−∆O+∆M−2)(d−∆O+∆M )
2(∆M−1)∆M

 . (A.6)

To keep the notation compact, we define

DL =
∑

d
(i)
TOχD

i
11D

2−i
12 (A.7)

where we use the change of basis (A.6) and the conservation constraints (3.8). The subscript
L is to remind us this acts on the points (x1, x2). We can define DTOR,V by letting 1 → 4
and 2→ 3. These operators naturally act on the conformal block as a function of all four
positions, but as before it is simplest to pull out an overall kinematic prefactor

g∆i
∆,`(xi) = 1

x∆1+∆2
12 x∆3+∆4

34

(
x24
x14

)∆1−∆2 (x14
x13

)∆3−∆4

g∆i
∆,`(z, z) (A.8)

where (z, z) are defined as usual by

zz = x2
12x

2
34

x2
13x

2
24
, (1− z)(1− z) = x2

14x
2
23

x2
13x

2
24
. (A.9)

Then the spinning conformal block for the exchange TO →M → OT is

gTOOTM (xi) = DLDRgOTOOOTM (xi). (A.10)

22In D11 we dropped terms which vanish when acting on 〈TOχ∆,`〉.
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To find the spinning block in the lightcone limit, it is sufficient to know the seed scalar
block in the same limit. Taking the limit z � 1 we have

gO1...O4
∆,` (z, z) ≈ z

∆−`
2 ka,b∆+J

2
(z), a = ∆21

2 , b = ∆34
2 . (A.11)

We can then expand the SL(2,R) block around z = 1 and we see powers of (1−z)n and (1−
z)−a−b+n with n integer. After taking into account the prefactors in (A.8) these are matched
in the t-channel by the double-twist operators [O2O3]n,` and [O1O4]n,`, respectively. It is
then straightforward to act with the differential operators on (A.11) to find the spinning
block in the lightcone limit. Although the computations are carried out in embedding
space, we find the final answer is simplest when we go to the conformal frame (3.12) and
use null, d-dimensional polarization vectors εi. Then in the lightcone limit z � 1− z � 1
the spinning block is given by

gTOOTM (xi) ≈ (λ(2)
TOM )2 z

1
2 (∆M−2−d−∆O)

(1− z)∆O−d+2 (ε+1 ε
+
2 )2 (d− 2)2Γ(∆M + 2)

((∆M −∆O)2 − d ((∆M −∆O)2 − 2))2

(d−∆M + ∆O)2(d−∆M + ∆O + 2)2Γ(∆O − d+ 2)
Γ2
(

1
2(−d+ ∆M + ∆O + 4)

) + . . . (A.12)

where as a reminder this is the full conformal block without the kinematic prefactor in (A.8)
pulled out and we have dropped terms which are mapped to [OO]n,` in the t-channel. More
precisely, this is the leading lightcone contribution of M to the correlator 〈T−−OOT−−〉.

B Comments on loops

We can ask how the results we found in this work, where we see corrections to minimal-twist
universality via the lightcone bootstrap, are consistent with previous work [13, 16], where
universality was sought via the inversion formula. The two methods must agree when we
study OPE data for operators of asymptotically large spin. In this appendix, we will show
how the model-dependence of minimal twist OPE data can also be found by studying the
inversion formula for 〈OOOO〉.

To determine the coupling 〈OO[TT ]n,`〉 from the four-point function 〈OOOO〉 we
need to find a Witten diagram which has a two-graviton cut [44–46]. This first happens at
one-loop and one universal contribution is given in figure 4a.

The loop diagram on the left appears in every gravitational theory since the coupling
〈OOT 〉 is fixed and non-zero by CFT Ward identities. Since the diagram has an internal, s-
channel, two graviton cut, this implies [TT ]n,` is exchanged in this channel [44, 46–48]. On
the other hand, if we cut the internal φ lines, i.e. perform a t-channel cut, we get a product
of tree-level Witten diagrams for 〈OOOO〉. Therefore, this diagram can be bootstrapped
purely from the scalar correlator, which we will review in more detail momentarily.

Once we allow for non-minimal couplings between the scalar and the graviton, we see
there are new diagrams with two-graviton cuts. For example, if the 〈TTO〉 coupling is non-
zero at tree-level in 1/CT , we can have a box diagram involving just internal gravitons,
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Figure 4.

as shown in figure 4b. There is no way to cut this diagram such that it factorizes into
two-scalar, four-point diagrams. Therefore, this loop cannot be determined purely from
〈OOOO〉 at tree-level but instead we are forced to study 〈OOTT 〉.23

To explain how this works in more detail we review some basic facts about the inversion
formula. For the correlator 〈OOOO〉 we can write the OPE function ct(∆, J) as an integral
of the correlator [29]:

ct(∆, J) = κ∆+J
4

1∫
0

dzdz

∣∣∣∣z − zzz

∣∣∣∣d−2 1
(zz)2 gJ+d−1,∆+1−d(z, z)dDisct[G(z, z)]. (B.1)

κβ =
Γ
(
β
2

)4

2π2Γ(β − 1)Γ(β) , (B.2)

Here the reduced correlator G and t-channel double-discontinuity are defined by

〈OOOO〉 = 1
(zz)2∆O

G(z, z) , dDisct[G(z, z)] = G(z, z)− 1
2
(
G	(z, z) + G�(z, z)

)
, (B.3)

where we are working in the conformal frame (3.12) and the arrows indicate how we an-
alytically continue z around the branch cut at z = 1. The relation to the physical OPE
data is

λ2
OOχ = − Res

∆=∆χ

c(t)(∆, Jχ)(1 + (−1)Jχ). (B.4)

To compute dDisct of the box diagram in figure 4a we need to cut the internal φ lines,
which here give a product of graviton exchange diagrams [46]. Equivalently, at the level
of the OPE we can compute the same double-discontinuity by expanding G(z, z) in (B.1)
in conformal blocks and keeping only the double-trace operators [OO]. In particular, we
should only include their anomalous dimensions due to tree-level graviton exchange. To
see this, we should recall that taking dDisct of G(z, z) simply weights each t-channel block

23We can be more general: in figure 4b we can also replace two gravitons, e.g. the two horizontal lines,
with a generic, massive, spin-two particle and get another allowed box diagram with a two-graviton cut.
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by a sin2 factor:

dDisct[G(z, z)] =
(

zz

(1− z)(1− z)

)∆O∑
∆,J

2 sin2
(
π

2 (∆− 2∆O)
)
λ2

∆,Jg∆,J(1− z, 1− z).

(B.5)

The dimensions of the double-trace operators [OO]n,` take the form 2∆O + 2n + ` + γn,`,
where γn,` is their anomalous dimensions, so they first start contributing to the dDisct
at one-loop, or 1/C2

T , and are proportional to their squared anomalous dimensions. In
the bulk, the exchange of the double-traces [OO] comes from Witten diagrams with a
two-particle φ cut. Here, the relevant anomalous dimensions come from decomposing an
s-channel graviton exchange diagram W(s)

T , see figure 5, in terms of t-channel blocks. This
is of course the diagram which appears when performing a t-channel cut of figure 4a.

Studying this tree-level Witten diagram gives the crossing equation

W(s)
T (xi) =

∑
n,`

(
2λ(0)

n,`λ
(1)
n,` + (λ(0)

n,`)
2γ

(1)
n,`∂∆

)
gn,`(xi), (B.6)

where we have expanded the OPE coefficients and anomalous dimensions γn,` for the
double-trace operators [OO]n,` at large CT

λn,` = λ
(0)
n,` +

λ
(1)
n,`

CT
+ . . . , γn,` =

γ
(1)
n,`

CT
+ . . . (B.7)

Finally, if we take these anomalous dimensions, from expanding just the s-channel graviton
exchange diagram into t-channel blocks, and plug it into the double-discontinuity (B.5),
we recover the corresponding discontinuity of the loop diagram in figure 4a.24 From the
inversion formula, we can use this to reconstruct the full loop diagram, and in particular its
s-channel two graviton cuts, up to some contact term ambiguities. Of course, at tree-level
we also have t- and u- channel exchange diagrams which can also be used to construct box
diagrams.

24The exact mapping between the CFT OPE data and the bulk loop expansion can be found in [46].
There internal scalar lines were considered, but it generalizes straightforwardly to spinning fields up to
possible contact-term ambiguities in the spinning bulk propagators.
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Figure 7.

The generalization to the new graph in figure 4b is now clear. Here if we perform a
t-channel cut we are left with two graviton exchange diagrams for 〈TOOT 〉. Since we are
cutting two graviton lines, at the level of the OPE we should be looking for double-traces
composed of T . Specifically we have the following contribution:

dDisct[G(z, z)] ⊃
(

zz

(1−z)(1−z)

)∆O∑
n,`

2 sin2 (π(d−∆O))λ2
OO[TT ]n,`g[TT ]n,`(1−z, 1−z).

(B.8)

Here we have set the dimension of [TT ]n,` to its value at CT →∞ since the sin term does
not vanish. This is still a one-loop contribution because the individual OPE coefficients,
λOO[TT ]n,` , scale like 1/CT . Of course, here we need to be careful about what we mean
by “λOO[TT ]n,`” since as discussed in section 3, by studying 〈TOOT 〉 directly, these OPE
coefficients get contributions from multiple possible sources. By cutting figure 4b, we
should project onto the contribution of the s-channel graviton exchange, shown in figure 6,
to λOO[TT ]n,` .

This discussion generalizes straightforwardly when we have quartic interactions, which
give rise to bubble and triangle diagrams that also have a two-graviton cut, as shown in
figure 7.

It is important to emphasize that the existence of a two-graviton cut in these loop
diagrams does not necessarily imply that when we perform a conformal block decomposition
we find a new contribution to 〈OO[TT ]0,`〉. One can imagine there are special cancellations
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for the minimal-twist OPE data. However, the analysis in this work makes it clear that
non-minimal cubic and quartic couplings between the scalar and the graviton can affect
the tree-level OPE coefficients 〈OO[TT ]0,`〉 and therefore by unitarity the internal cuts
of these loop diagrams. In the language of the bootstrap, we first need to know all tree-
level correlators 〈OOO1O2〉 for arbitrary O1,2 before we can fully determine 〈OOOO〉 at
one-loop.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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