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portant for understanding corrections to standard treatments of the LPM effect in QCD),

avoiding soft-emission approximations. Previous work has computed overlap effects for
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1 Introduction

When passing through matter, high energy particles lose energy by showering, via the

splitting processes of hard bremsstrahlung and pair production. At very high energy,

the quantum mechanical duration of each splitting process, known as the formation time,

exceeds the mean free time for collisions with the medium, leading to a significant reduction

in the splitting rate known as the Landau-Pomeranchuk-Migdal (LPM) effect [1–3].1 A

long-standing problem in field theory has been to understand how to implement this effect

in cases where the formation times of two consecutive splittings overlap. The goal of

this paper is to (i) present nearly complete results for the case of two overlapping gluon

splittings (e.g. g → gg → ggg) and (ii) confirm that earlier leading-log results for these

effects [10–12] are reproduced by our more-complete results in the appropriate soft limit.

As a necessary step, we discuss how to combine the effects of overlapping real double

splitting (g → gg → ggg) with corresponding virtual corrections to single splitting (e.g.

g → gg∗ → ggg∗ → gg) to cancel spurious infrared (IR) divergences. In our analysis

of virtual corrections, we will also verify that we reproduce the correct ultraviolet (UV)

renormalization and running of the QCD coupling αs associated with the high-energy vertex

for single splitting.

In this paper, we will present the formulas for the building blocks just discussed, but

we leave application of those formulas to later work. In particular, one of the ultimate

motivations [13] of our study is to eventually investigate whether the size of overlap effects

is small enough to justify a picture of parton showers, inside a quark-gluon plasma, as

composed of individual high-energy partons; or whether the splitting of high-energy par-

tons is so strongly-coupled that high-energy partons lose their individual identity, similar

to gauge-gravity duality studies [14–18] of energy loss. But, as will be discussed in our

conclusion, further work will be needed to answer that question.

As a technical matter, our calculations are organized [19] using Light-Cone Pertur-

bation Theory (LCPT) [20–22].2 As we will explain below, the “nearly” in our claim of

“nearly complete results” refers to the fact that we have not yet calculated, for QCD,

contributions from diagrams that involve “instantaneous” interactions in Light-Cone Per-

turbation Theory. The effects of such diagrams have been numerically small in earlier

studies of overlap effects in QED [19], and they do not contribute to our check that our

results agree with earlier leading-log calculations. For these reasons, and because analysis

of the non-instantaneous diagrams is already complicated, we leave the calculation of in-

stantaneous diagrams for QCD to later work. For similar reasons, we also leave to later

work the effect of diagrams involving 4-gluon vertices, like those computed for real double

gluon splitting in ref. [24].

1The papers of Landau and Pomeranchuk [1, 2] are also available in English translation [4]. The gener-

alization to QCD was originally carried out by Baier, Dokshitzer, Mueller, Peigne, and Schiff [5–7] and by

Zakharov [8, 9] (BDMPS-Z).
2For readers not familiar with time-ordered LCPT who would like the simplest possible example of how it

reassuringly reproduces the results of ordinary Feynman diagram calculations, we recommend section 1.4.1

of Kovchegov and Levin’s monograph [23].
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Figure 1. “Crossed” time-ordered diagrams for the real double gluon splitting rate. Labeling of

diagrams (xyȳx̄, etc.) is as in ref. [25]. All lines in this and other figures represent high-energy

gluons.

xxyy xxyyxyxy

x y xyx

+ conjugates

+ relevant permutations

y

Figure 2. “Sequential” time-ordered diagrams for the real double gluon splitting rate [26].

We make a number of simplifying assumptions also made in the sequence of earlier

papers [19, 25–27] leading up to this work: we take the large-Nc limit, assume that the

medium is thick compared to formation lengths, and use the multiple-scattering (q̂) approx-

imation appropriate to elastic scattering of high-energy partons from the (thick) medium.

All of these simplifications could be relaxed in the context of the underlying formalism

used for calculations,3 but practical calculations would then be quite considerably harder;

so we focus on the simplest situation here.

1.1 The diagrams we compute

Previous work [25–27] has computed overlap effects for real double gluon splitting (g →
gg → ggg) depicted by the interference diagrams of figures 1 and 2. Each diagram is

time-ordered from left to right and has the following interpretation: the blue (upper) part

of the diagram represents a contribution to the amplitude for g → ggg, the red (lower)

part represents a contribution to the conjugate amplitude, and the two together represent

a particular contribution to the rate. Only high-energy particle lines are shown explicitly,

but each such line is implicitly summed over an arbitrary number of interactions with

the medium, and the diagram is averaged over the statistical fluctuations of the medium.

See ref. [25] for details. For real double gluon splitting, we will refer to the longitudinal

3In particular, for a discussion of how one could in principle eliminate the large-Nc approximation, see

refs. [28, 29].
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+ conjugate = + x

Figure 3. Time-ordered diagrams for the leading-order rate for single gluon splitting. [26].

momentum fractions of the three final-state gluons as x, y, and

z ≡ 1− x− y (1.1)

relative to the initial gluon. Also, our nomenclature is that figures 1 and 2 are respectively

called “crossed” and “sequential” diagrams because of the way they are drawn.

For the case of sequential diagrams (figure 2), it is possible for the two consecutive

splittings to be arbitrarily far separated in time, in which case their formation times do

not overlap. The effect of overlapping formation times in this case is then determined by

subtracting from the sequential diagrams the corresponding results one would have gotten

by treating the two splittings as independent splittings. Details are given in ref. [26], along

with discussion of physical interpretation and application.4 Whenever such a subtraction

needs to be made on a double-splitting differential rate dΓ, we will use the symbol ∆ dΓ to

refer to the subtracted version that isolates the effect of overlapping formation times.

In the limit that one of the three final-state gluons — say y — is soft, it was found [26]

that the overlap effect on real double splitting behaves parametrically as5

[
∆

dΓ

dx dy

]
g→ggg

∼ C2
Aα

2
s

xy3/2

(
q̂

E

)1/2

for y � x < z. (1.2)

As we’ll review later, the y−3/2 behavior would lead to power-law infrared divergences in en-

ergy loss calculations. Very crudely analogous to what happens in vacuum bremsstrahlung

in QED, where there are (logarithmic) infrared divergences that cancel in inclusive calcu-

lations between real and virtual emissions, we need to supplement the real double emission

processes (g → ggg) by a calculation of corresponding virtual corrections to the single

emission process (g → gg) of figure 3. The virtual processes that we calculate in this paper

are shown in figure 4 (which we call Class I) and figure 5 (which we call Class II). There

are also cousins of the Class I diagrams generated by swapping the two final state gluons

(x → 1 − x), two examples of which are shown in figure 6. For Class II diagrams, such a

swap does not generate a new diagram.

In total, these sets of virtual diagrams include all one-loop virtual corrections to single

splitting except for processes involving instantaneous interactions or fundamental 4-gluon

vertices. As mentioned previously, we leave the latter for future work. A few exam-

ples are shown in figure 7. The “instantaneous” interactions (indicated by a propagator

crossed by a bar) are instantaneous in light-cone time and correspond to the exchange

4See in particular the discussion of section 1.1 of ref. [26].
5See section 1.4 of ref. [26] for a back-of-the-envelope explanation of why (1.2) is to be expected.
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Figure 4. Class I one-loop virtual corrections to figure 3. As with previous figures, not all possible

time orderings of the diagrams have been shown explicitly but the missing orderings are all included

when one adds in the complex conjugates (“+ conjugates”) of the diagrams explicitly shown above.

Graphically, taking the conjugate flips a diagram about its horizontal axis while swapping the colors

red and blue.

+ conjugates

yxyx

x

yyxx

x

y

yyxx

xy

xyyx

xy
y

Figure 5. Class II one-loop virtual corrections to figure 3.

of a longitudinally-polarized gluon in light-cone gauge. See ref. [19] for examples of such

diagrams evaluated in QED.

We should clarify that, physically, the power-law divergences of (1.2) as y → 0 are

not actually infinite. The scaling (1.2) depends on the q̂ approximation, which breaks

down when the soft gluon energy yE becomes as small as the plasma temperature T .6 In

the high-energy limit, however, the cancellation of such power-law contributions to shower

development, even if only a cancellation of contributions that are parametrically large in

energy rather than truly infinite, will be critical to extracting the relevant physics that

survives after the cancellation. In this paper, we will be able to ignore the far-infrared

physics (meaning scale T � E) that regulates the power-law divergences and can simply

analyze the cancellation of power-law divergences in the context of the q̂ approximation

appropriate for the high-energy behavior.

6This will be discussed again later, in section 3.2.2.
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x1−

xyyx

y

x1−

x

1−xx

x1−

x

y

yxyx

x1−

x

y

Class I Diagrams 1−xxTheir Cousins

1−xx

Figure 6. Two examples of diagrams (right) generated by swapping the two final-state gluons in

Class I diagrams (left) from figure 4. The swap is equivalent to replacing x→ 1− x in the results

for Class I diagrams.

x

y

y

y

x
x

Figure 7. A few examples of diagrams involving either (i) instantaneous interactions via longitudi-

nal gluon exchange or (ii) fundamental 4-gluon vertices. Longitudinal gluon exchange is represented

by a vertical (i.e. instantaneous) line that is crossed by a black bar, following the diagrammatic

notation of Light-Cone Perturbation Theory.

1.2 Infrared divergences

We will later discuss the calculation of the differential rates[
∆

dΓ

dx dy

]
g→ggg

,

[
∆
dΓ

dx

]
virt I

,

[
∆
dΓ

dx

]
virt II

, (1.3)

associated respectively with the real double emission diagrams of figure 1 plus figure 2, the

Class I virtual correction diagrams of figure 4, and the Class II virtual correction diagrams

of figure 5. But here we first preview some results concerning infrared divergences.

In the virtual diagrams of figures 4 and 5, the virtual loop longitudinal momentum

fraction y in the amplitude or conjugate amplitude needs to be integrated over, and it

will be convenient to introduce the notation [dΓ/dx dy]virt I and [dΓ/dx dy]virt II for the

corresponding integrands of that y integration. Our calculations are performed in Light

Cone Perturbation Theory, in which every particle line (virtual as well as real) is restricted

to positive longitudinal momentum fraction. The structure of the Class I diagrams of

figure 4 then forces 0 < y < 1 − x, whereas the structure of the Class II diagrams of

– 6 –
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figure 5 forces 0 < y < 1 instead. So, in our notation,

[
∆
dΓ

dx

]
virt I

=

∫ 1−x

0
dy

[
∆

dΓ

dx dy

]
virt I

and

[
∆
dΓ

dx

]
virt II

=

∫ 1

0
dy

[
∆

dΓ

dx dy

]
virt II

.

(1.4)

We will later give detailed discussion of how infrared divergences appear in various

calculations associated with shower development, but a good starting point is to consider

the net rate [dΓ/dx]net at which all of the processes represented by figures 1–6 produce one

daughter of energy xE (plus any other daughters) from a particle of energy E, for a given

x. That’s given by [
dΓ

dx

]
net

=

[
dΓ

dx

]LO

+

[
dΓ

dx

]NLO

net

(1.5a)

where the first term is the rate of the leading-order (LO) g → gg process of figure 3, and

where the next-to-leading-order (NLO) contribution is7

[
dΓ

dx

]NLO

net

=

[
dΓ

dx

]NLO

g→gg
+

1

2

∫ 1−x

0
dy

[
∆

dΓ

dx dy

]
g→ggg

=

(∫ 1−x

0
dy

[
∆

dΓ

dx dy

]
virt I

)
+ (x→ 1− x)

+

∫ 1

0
dy

[
∆

dΓ

dx dy

]
virt II

+
1

2

∫ 1−x

0
dy

[
∆

dΓ

dx dy

]
g→ggg

. (1.5b)

[See appendix B for more discussion.] The bars above LO and NLO in (1.5) are a technical

distinction that will be discussed later and can be ignored for now.

In the integrals above, some virtual or final particle has zero energy at both the lower

and upper limits of the y integrations, and so both limits are associated with infrared diver-

gences. In order to see how divergences behave, it is convenient to use symmetries and/or

change of integration variables to rewrite the integrals so that the infrared divergences of

[dΓ/dx]NLO
net are associated only with y → 0 (for fixed non-zero x < 1). In particular, (1.5b)

can be rewritten [see appendix B for details] as

[
dΓ

dx

]NLO

net

=

(∫ 1−x

0
dy

{[
∆

dΓ

dx dy

]
virt I

+

[
∆

dΓ

dx dy

]
virt II

})
+ (x→ 1− x)

+
1

2

∫ 1−x

0
dy

[
∆

dΓ

dx dy

]
g→ggg

(1.6)

7Here and throughout, the terms leading-order and next-to-leading-order refer to expansion in the

αs(Q⊥) associated with each splitting vertex for high-energy partons and not to the αs(T ) that controls

whether the quark-gluon plasma is strongly or weakly coupled.

– 7 –
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and thence [appendix B]

[
dΓ

dx

]NLO

net

=

∫ 1/2

0
dy
{[
v(x, y) θ

(
y < 1−x

2

)]
+ [x→ 1− x] + r(x, y) θ

(
y < 1−x

2

)}
=

∫ 1/2

0
dy
{
v(x, y) θ

(
y < 1−x

2

)
+ v(1− x, y) θ

(
y < x

2

)
+ r(x, y) θ

(
y < 1−x

2

)}
,

(1.7)

where contributions from virtual and real double splitting processes appear in the respective

combinations

v(x, y) ≡
([

∆
dΓ

dx dy

]
virt I

+

[
∆

dΓ

dx dy

]
virt II

)
+ (y ↔ z), (1.8a)

r(x, y) ≡
[
∆

dΓ

dx dy

]
g→ggg

. (1.8b)

The θ(· · · ) in (1.7) represent unit step functions [θ(true) = 1 and θ(false) = 0], and they

just implement upper limits on the y integration. The advantage of using the θ functions

is so that we can combine all the integrals: the integrals for the separate terms each

have power-law IR divergences, but whether or not those divergences cancel is now just a

question of the y → 0 behavior of the combined integrand of (1.7).

In the limit y → 0 for fixed x, the integrand of (1.7) approaches

v(x, y) + v(1− x, y) + r(x, y). (1.9)

Using the symmetry of the g → ggg rate (1.8b) under permutations of x, y, and z = 1−x−y,

we have r(x, y) = r(1− x− y, y) ' r(1− x, y) for small y, and so (1.9) approaches

[
v(x, y) + 1

2r(x, y)
]

+ [x→ 1− x]. (1.10)

By (1.2), r(x, y) ∼ y−3/2 for small y, and so the integral of r(x, y) in (1.7) has a power-law

IR divergence proportional to
∫

0 dy/y
3/2. From the full results for rates that we calculate

in this paper, we find that the y−3/2 behavior cancels in the combination v(x, y) + 1
2r(x, y)

appearing in (1.10). We also find that left behind after this cancellation is, at leading

logarithmic order,

v(x, y) + 1
2r(x, y) ≈ −CAαs

8π

[
dΓ

dx

]LO ln y

y
, (1.11)

which generates an IR double log divergence when integrated over y. As we discuss later,

this result, applied to (1.7), exactly matches leading-log results derived earlier in the liter-

ature [10–12] and so provides a crucial check of our calculations.

– 8 –
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Figure 8. Full numerical results (circular data points) for the ratio (1.12) plotted vs. ln y for

the case x = 0.3. The blue straight line shows a line of slope −1 for comparison, showing that our

numerical results confirm the leading-log behavior (1.11).

Though it should be possible to extract (1.11) from our results analytically, so far we

have only checked numerically.8 Figure 8 shows a plot of our full results for

v(x, y) + 1
2r(x, y)

CAαs

8π

[
dΓ
dx

]LO 1
y

(1.12)

vs. ln y for a sample value of x. According to (1.11), the slope of (1.12) vs. ln y should

approach −1 as ln y → −∞, which we show in figure 8 by comparison to the straight line.

We hope in the future to also provide exact analytic results for single-log divergences that

are subleading to the double-log divergence. For now we only have numerical results for

those, which we present later with an examination of how well those numerical results fit

an educated guess for their analytic form.

1.3 Outline

The new diagrams needed for this paper are the virtual diagrams of figures 4 and 5. In the

next section, we discuss how we can avoid calculating any of these diagrams from scratch.

All of the g → gg QCD virtual diagrams can be obtained by either (i) transformation from

known results for the g → ggg QCD diagrams of figures 1 and 2 or (ii) by adapting the

known result for one QED virtual diagram.

8Analytic extraction of double and single IR logs directly from our full rate formulas is complicated

because diagram by diagram the logs are subleading to the power-law IR divergences, and the latter are

already complicated to extract analytically from our results. Interested readers can see a painful example

in appendix E.5.

– 9 –
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In section 3, we go into much more detail about how to organize IR divergences in

calculations related to energy loss. We also show that the double-log behavior (1.11) is

equivalent to earlier leading-log results.

Section 4 presents numerical results for sub-leading single-log divergences and shows

that the numerics fit very well, but not quite perfectly, a form one might guess based on

the physics of double-log divergences.

The formalism and calculations that have led to our results for rates have spanned

many papers, and one can reasonably worry about the possibility of error somewhere along

the way. Section 5 provides a compendium of several non-trivial cross-checks of our results.

Section 6 offers our conclusion and our outlook for what needs to be done in future

work. Appendix A contains a complete summary of all our final formulas for rates. Many

technical issues, derivations, and side investigations are left for the other appendices.

2 Method for computing diagrams

2.1 Symmetry factor conventions

Before discussing how to find formulas for differential rates, we should clarify some con-

ventions. Note each virtual diagram in figure 5, as well as the second row of figure 4, has

a loop in the amplitude (an all-blue loop) or conjugate amplitude (an all-red loop) that

should be associated with a diagrammatic loop symmetry factor of 1
2 . Our convention in

this paper is that any such diagrammatic symmetry factor associated with an internal loop

is already included in the formula for what we call ∆ dΓ/dx dy in (1.4). Note that the loops

in the first row of figure 4 do not have an associated symmetry factor.

In contrast, we do not include any identical-particle final-state symmetry factors in

our formulas for differential rates. These must be included by hand whenever integrating

over the longitudinal momentum fractions of daughters if the integration region double-

counts final states. For example, the total rate for real double-splitting g → ggg is formally

given by

∆Γg→ggg =
1

3!

∫ 1

0
dx

∫ 1−x

0
dy

[
∆

dΓ

dx dy

]
g→ggg

(2.1)

because the integration region used above covers all 3! permutations of possible momentum

fractions x, y, and z = 1 − x − y for the three daughter gluons. Similarly, for g → gg

processes, formally

ΓLO
g→gg =

1

2!

∫ 1

0
dx

[
dΓ

dx

]LO

g→gg
, ∆ΓNLO

g→gg =
1

2!

∫ 1

0
dx

[
∆
dΓ

dx

]NLO

g→gg
. (2.2)

We use the caveat “formally” because the total splitting rates Γ and ∆Γ above are infrared

divergent, but they provide simple examples for explaining our conventions.

2.2 Relating virtual diagrams to previous work

In the context of (large-Nf) QED, ref. [19] showed how many diagrams needed for vir-

tual corrections to single splitting could be obtained from results for real double splitting

– 10 –



J
H
E
P
1
1
(
2
0
2
0
)
0
5
3

y

x

y

yxxy yxxy xyxy yxyx

xyxy

yx

xxyy xxyy

xyxy

yx

*

xyyx

x y

xyyx

x y

xyxy

xyxy

y

x

xxyyxxyy

x

y y

x y x y

are respectively related to

.

x yyx

yx

*

yx

x x

y

x yx

Figure 9. Relation of all but one Class I virtual diagram (figure 4) to real g → ggg diagrams.

The black arrows indicate moving the latest-time (or earliest-time) vertex using a back-end (or

front-end) transformation [19].

via what were named back-end and front-end transformations. For the current context

of QCD, figures 9 and 10 depict diagrammatically how all but two of the Class I and II

virtual diagrams we need (figures 4 and 5) can be related to known results for crossed and

sequential g → ggg diagrams (figures 1 and 2) using back-end and front-end transforma-

tions, sometimes accompanied by switching the variable names x and y and/or complex

conjugation. Diagrammatically, a back-end transformation corresponds to taking the lat-

est-time splitting vertex in one of our rate diagrams and sliding it around the back end of

the diagram from the amplitude to the conjugate-amplitude or vice versa. Diagrammat-

ically, a front-end transformation corresponds to taking the earliest-time splitting vertex

and sliding it around the front end of the diagram.

In terms of formulas, the only effect of a back-end transformation is to introduce an

overall minus sign in the corresponding formula for dΓ/dx dy [19]. So, for example, figure 9

tells us that [
dΓ

dx dy

]
x̄yxy

= −
[
dΓ

dx dy

]∗
xȳx̄y

(2.3)

and so

2 Re

[
dΓ

dx

]
x̄yxy

= −
∫ 1−x

0
dy 2 Re

[
dΓ

dx dy

]
xȳx̄y

. (2.4)
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are respectively related to

yxyx yyxx

x

yyxx

x

y

xxyy

y

xxyy

x y

.

*

xyxy x y x y x y

xyx

xy y

Figure 10. Relation of all but one Class II virtual diagram (figure 5) to real g → ggg diagrams

via front-end transformations.

Similarly,

2 Re

[
dΓ

dx

]
yxx̄y

= −
∫ 1−x

0
dy

{
Replace x↔ y in formula for 2 Re

[
dΓ

dx dy

]
xyȳx̄

}
. (2.5)

When making a back-end transformation, one may also have to include a loop symmetry

factor if the resulting virtual diagram has one, which the original g → ggg processes do not.

Front-end transformations are more complicated. In the cases where it is an x emission

at the earliest vertex that is being moved between the amplitude and conjugate amplitude,

requiring the longitudinal momentum fractions of the lines of the diagrams to match up

requires replacing

(x, y, E) −→
( −x

1− x ,
y

1− x , (1− x)E
)
, (2.6)

where E is the energy of the initial particle in the real or virtual double-splitting process.

See section 4.2 of ref. [19] for a more detailed discussion. There is also an overall nor-

malization factor associated with the transformation that, for our case here where all the

particles are gluons, amounts to9

dΓ

dx dy

front−end−−−−−−→ −(1− x)−ε
{

dΓ

dx dy
with (x, y, E) −→

( −x
1− x ,

y

1− x , (1− x)E
)}

(2.7)

in 4− ε spacetime dimensions. The overall factor (1−x)−ε will be relevant because we will

use dimensional regularization to handle and renormalize UV divergences in our calculation.

9See appendix H of ref. [19], especially eqs. (H.13) and (H.14) there. In (H.13) of ref. [19] there was

additionally an overall factor of 2NfNe/Nγ that arose because that front-end transformation related a

diagram with an initial electron to one with an initial photon, and the 2NfNe/Nγ reflected the different

factors associated with averaging over initial flavors and helicities. In our case, the initial particle is always

a gluon, so no such adjustment is necessary. Also, eqs. (H.13) and (H.14) of ref. [19] do not have the overall

minus sign of our (2.7) above because they included a back-end transformation in addition to the front-

end transformation. Note that those equations have also implemented x ↔ y in addition to the front-end

transformation (2.7) above.
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xyyx
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xyyx

y

x

*
.

x
y

Figure 11. Relation to each other of the two virtual diagrams of figures 4 and 5 that are not

covered by the relations of figures 9 and 10.

xe

ye

Figure 12. A QED version [19] of the xyyx̄ diagram of figure 4.

We should note that there are a few additional subtleties in practically implementing front-

end transformations, which we leave to appendix D. As an example of (2.7), the relation

depicted by the first case of figure 10 gives

2 Re

[
dΓ

dx

]
ȳxȳx̄

=− 1
2(1− x)−ε

∫ 1

0
dy

(
Replace x↔ y in result of

2 Re

{[
dΓ

dx dy

]
xyx̄ȳ

with substitution (2.7)

})
. (2.8)

The overall factor of 1
2 is included because of the loop symmetry factor associated with the

(red) loop in the ȳxȳx̄ virtual diagram.

The only two virtual diagrams not covered by figures 9 and 10 are xyyx̄ and xȳȳx̄.

But these diagrams are related to each other by combined front-end and back-end trans-

formations, as depicted in figure 11. That means that transformations have given us a

short-cut for determining all virtual diagrams except for one, which we take to be xyyx̄.

Fortunately, the xyyx̄ diagram has the same form as the QED diagram of figure 12 previ-

ously computed in ref. [19], and the QED result can be easily adapted to QCD. One just

needs to include QCD group factors associated with splitting vertices; use QCD instead

of QED Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) splitting functions; correctly

account for identical-particle symmetry factors; and use QCD rather than QED results

for the complex frequencies and normal modes associated with the q̂ approximation to the

propagation of the high-energy particles through the medium. Details of the conversion

are given in appendix D.4.

We give more detail on implementing the above methods in appendix D, and final

results for unrenormalized diagrams are given in appendix A [with σren = 0 and σbare = 1

in section A.3].
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2.3 UV divergences, renormalization, and running of αs

The virtual diagrams of figures 4 and 5 contain UV-divergent loops in the amplitude or

conjugate amplitude. It may seem surprising that most of them can be related via figures 9

and 10 to real double splitting (g → ggg) diagrams that involve only tree-level diagrams

in the amplitude and conjugate amplitude. This is possible because we are working with

time-ordered diagrams: individual time-ordered interferences of tree-level diagrams are UV-

divergent even though the sum of all the different time-orderings is not. See section 4.1 of

ref. [19] for more discussion of this point. In any case, the original calculations [25–27] of

the g → ggg diagrams of figures 1 and 2 discussed the UV divergence of each diagram and

showed that they indeed canceled.

The corresponding divergences of the virtual diagrams, however, will not cancel. In-

deed, they must conspire to produce the known renormalization of αs. Ref. [19] demon-

strated how this worked out for large-Nf QED, but the diagrammatics of renormalization

of the QCD coupling is a little more complicated. We will also encounter a well-known

annoyance of Light Cone Perturbation Theory (LCPT): individual diagrams will contain

mixed UV-IR divergences that only cancel when the diagrams are summed together.10

2.3.1 UV and IR regulators

We use dimensional regularization in 4− ε spacetime dimensions for UV divergences. How-

ever, we use the letter d to refer to the number of transverse spatial dimensions

d ≡ d⊥ = 2− ε. (2.9)

For infrared divergences, we introduce a hard lower cut-off (p+)min on light-cone mo-

mentum components p+. Hard momentum cut-offs complicate gauge invariance, but this

is a fairly standard procedure in LCPT, since LCPT is formulated specifically in light-cone

gauge A+ = 0. Note that p+ is invariant under any residual gauge transformation that pre-

serves light-cone gauge. It would of course be nicer to use a more generally gauge invariant

choice of infrared regulator, but that would lead to more complicated calculations.11

We will write our IR cut-off on longitudinal momenta p+ as

(p+)min = P+δ (2.10)

where P+ is the longitudinal momentum of the initial particle in the double-splitting pro-

cess and δ is an arbitrarily tiny positive number.12 For consistency of IR regularization of

10For an example from calculations that are tangentially related to ours, see Beuf [30, 31] and Hänninen,

Lappi, and Paatelainen [32, 33] on next-to-leading-order deep inelastic scattering (NLO DIS). For a de-

scription of the similarities and differences of our problem and theirs, see appendix B of ref. [19]. For a

very early result on obtaining the correct renormalization of the QCD coupling with LCPT in the context

of vacuum diagrams, see ref. [34].
11In particular, one might imagine using dimensional regularization for the infrared as well as the ultra-

violet. Unfortunately, the dimensionally-regulated expansions in ε that we currently have available [19, 27]

for the types of diagrams we need all made use of the fact that dimensional regularization was only needed

for the ultraviolet.
12A technicality concerning orders of limits: one should take the UV regulator ε → 0 before taking the

IR regulator δ → 0. Taking δ → 0 first would be equivalent to using dimensional regularization for the IR

as well as the UV, which is currently problematic for the reason given in footnote 11.
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the theory, this constraint must be applied to all particles in the process. For instance, in

a g → ggg process where P+ splits into daughters with longitudinal momenta xP+, yP+,

and zP+, we require that the longitudinal momentum fractions x, y, and z all exceed δ.

(This automatically guarantees that internal particle lines in g → ggg diagrams also have

p+ > P+δ.) In a virtual correction to g → gg where P+ splits into xP+ and (1 − x)P+,

we must have x and 1 − x greater than δ, but we must also impose that the momentum

fractions of internal virtual lines are greater than δ as well. We’ll see explicit examples be-

low. With this notation, the annoying mixed UV-IR divergences of LCPT are proportional

to ε−1 ln δ, which is the product of a logarithmic UV divergence ε−1 and a logarithmic IR

divergence ln δ.

2.3.2 Results for UV (including mixed UV-IR) divergences

We can read off the results for 1/ε divergences from the complete results given in ap-

pendix A. However, we will take the opportunity to be a little more concrete here in the

main text by stepping through the calculation for one of the diagrams, but focusing on just

the UV-divergent (1/ε) terms. Then we’ll put the diagrams together to see the cancellation

of mixed UV-IR divergences and the appearance of the QCD beta function coefficient β0.

Consider the first NLO g → gg diagram (yxx̄y) in figure 9, which shows that diagram

related by back-end transformation to the g → ggg diagram xyȳx̄. The 1/ε piece of the

latter can be taken from ref. [27] and is [see appendix B of the current paper for more

detail][
dΓ

dx dy

]
xyȳx̄

≈ C2
Aα

2
s

8π2ε

[
(iΩ sgnM)−1,x,1−x + (iΩ sgnM)−(1−y),x,z

]
× xyz2(1− x)(1− y) [(α+ β)(1− x)(1− y) + (α+ γ)xy] , (2.11)

where

Ωx1,x2,x3 ≡
√
−iq̂A

2E

(
1

x1
+

1

x2
+

1

x3

)
, Mx1,x2,x3 ≡ −x1x2x3E, (2.12)

and (α, β, γ) are functions of x and y that represent various combinations of the helicity-

dependent DGLAP splitting functions associated with the vertices in the diagram.13 In this

section we use ≈ to indicate that we are only keeping 1/ε terms. Back-end transforming

the above expression and swapping x↔y, as indicated in figure 9, gives the corresponding

result for the virtual diagram yxx̄y:

2 Re

[
dΓ

dx

]
yxx̄y

≈− C2
Aα

2
s

4π2ε

∫ 1−x−δ

δ
dy Re(iΩ−1,y,1−y + iΩ−(1−x),y,z)xyz(1− x)(1− y)

× [(α+ β)z(1− x)(1− y) + (α+ γ)xyz] , (2.13a)

where we have taken 2 Re(· · · ) to include the conjugate diagram as well.

13Details of the definition of (α, β, γ) in terms of DGLAP splitting functions are given in sections 4.5

and 4.6 of ref. [25]. In order to make those definitions work with front-end transformations, one must

additionally include absolute value signs as discussed after eq. (A.23) of the current paper.
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Doing similar calculations for the other crossed Class I diagrams (the top line of fig-

ure 9), by using g → ggg results for xȳyx̄ and xȳx̄y from ref. [27] and then transforming

as in figure 9, gives

2 Re

[
dΓ

dx

]
yx̄xy

≈− C2
Aα

2
s

4π2ε

∫ 1−x−δ

δ
dy Re(iΩ−1,y,1−y + iΩ−(1−x),y,z)xyz(1− x)(1− y)

× [−(α+ β)z(1− x)(1− y) + (β + γ)xy(1− x)(1− y)] , (2.13b)

2 Re

[
dΓ

dx

]
x̄yxy

≈− C2
Aα

2
s

4π2ε

∫ 1−x−δ

δ
dy Re(iΩ−1,x,1−x + iΩ−(1−x),y,z)xyz(1− x)(1− y)

× [−(α+ γ)xyz − (β + γ)xy(1− x)(1− y)] , (2.13c)

2 Re

[
dΓ

dx

]
yxyx̄

≈− C2
Aα

2
s

4π2ε

∫ 1−x−δ

δ
dy Re(iΩ−1,y,1−y + iΩ−1,x,1−x)xyz(1− x)(1− y)

× [−(α+ γ)xyz − (β + γ)xy(1− x)(1− y)] . (2.13d)

Eqs. (2.13) sum to[
dΓ

dx

]
virt I crossed

≈C
2
Aα

2
s

2π2ε
Re(iΩ−1,x,1−x)

∫ 1−x−δ

δ
dy x2y2z(1− x)(1− y)

× [(α+ γ)z + (β + γ)(1− x)(1− y)] . (2.14)

Since we are focused here just on the 1/ε pieces above, the integral may be done using

the explicit d = 2 expressions (A.23) for (α, β, γ). But the combination (α + γ)z + (β +

γ)(1 − x)(1 − y) appearing in (2.14) turns out to be dimension-independent in any case!

(See appendix C.)

Remember that for the crossed virtual diagrams, like all the Class I diagrams of figure 4,

taking x → 1 − x generates other distinct diagrams that need to be included as well. So,

do the y integral in (2.14), combine the result with x → 1 − x [as in (1.5b) or (1.9)], and

take the small-δ limit. This gives([
dΓ

dx

]
virt I crossed

)
+ (x→ 1− x) ≈

[
dΓ

dx

]LO CAαs

πε

[
−11

3 + 2 ln
(
x(1− x)

)
− 6 ln δ

]
, (2.15)

where [dΓ/dx]LO is the leading-order single splitting result14[
dΓ

dx

]LO

=
αs

π
P (x) Re(iΩ−1,x,1−x) +O(ε) (2.16)

and P (x) is the DGLAP g → gg splitting function. A non-trivial feature of (2.15) is

that the y integration in (2.14), combined with the addition of x → 1 − x, gave a result

proportional to the P (x) in (2.16). This is what will later make possible the absorption

of 1/ε divergences by renormalizing the αs in the leading-order result. For the time being,

however, note the unwanted mixed UV-IR divergence ε−1 ln δ in (2.15).

14The QCD version of the leading-order rate goes back to BDMPS [5–7] and Zakharov [8, 9]. For a

discussion of how the QED version in our notation matches up with the original QED result of Migdal [3],

see appendix C.4 of ref. [19].
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Now turn to the sequential virtual diagrams. The sum 2 Re[xyx̄ȳ + xx̄yȳ + xx̄ȳy] of

non-virtual sequential g → ggg diagrams shown in figure 2 (together with their conjugates)

represents the sum of all time orderings of a tree-level process and so does not give any net

1/ε divergence.15 So there will also be no divergence in its back-end transformation, which

figure 9 shows is equivalent to the sum 2 Re[xyx̄y+xx̄yy+xx̄ȳȳ] of three Class I sequential

virtual diagrams. Nor will there be any divergence to its front-end transformation followed

by the swap x↔ y, corresponding by figure 10 to the sum 2 Re[ȳxȳx̄+ȳȳxx̄+yyxx̄] of three

Class II sequential diagrams. So none of these groups of diagrams generate a divergence.

What remains of figures 4 and 5 is the Class I virtual diagram xyyx̄ and the Class II

virtual diagram xȳȳx̄, which are related to each other via figure 11. As mentioned earlier,

the result for 2 Re[xyyx̄] can be converted from the known result [19] for the similar QED

diagram of figure 12. The UV-divergent 1/ε piece of that QED result was16

2 Re

[
dΓ

dxe

]
xyyx̄

≈ −Nfα
2
EM

π2ε
Pe→e(xe) Re(iΩQED sgnM)−1,xe,1−xe

∫ 1−x

0

dye
1−xe

Pγ→e

(
ye

1−xe

)
.

(2.17)

The translation from a QED diagram to a QCD diagram is explained in our appendix D.4

and gives

2 Re

[
dΓ

dx

]
xyyx̄

≈ − α2
s

2π2ε
P (x) Re(iΩ sgnM)−1,x,1−x

∫ 1−x−δ

δ

dy

1− x P
(

y

1− x

)
= −

[
dΓ

dx

]LO αs

2πε

∫ 1−x−δ

δ

dy

1− x P
(

y

1− x

)
. (2.18)

Our IR cut-off δ must now be included with the integration limits because, unlike QED,

LPM splitting rates are (non-integrably) infrared divergent in QCD. The sgnM factors are

included above because, even though M−1,x,1−x is positive for the xyyx̄ diagram, this more

general form is consistent with the front-end transformation we are about to perform.

Since xyyx̄ above is a Class I diagram, we need to also add in the other diagram that

is generated by x → 1 − x. Finally, the transformation of figure 11 gives the remaining

(Class II) diagram xȳȳx̄.17 The sum of all three is[
dΓ

dx

]
other virt

≈ −
[
dΓ

dx

]LO αs

2πε

[∫ 1−x−δ

δ

dy

1−x P
(

y

1−x

)
+

∫ x−δ

δ

dy

x
P

(
y

x

)
+

∫ 1−δ

δ
dy P (y)

]
≈
[
dΓ

dx

]LO CAαs

πε

[
11
2 − 2 ln

(
x(1− x)

)
+ 6 ln δ

]
. (2.19)

Adding (2.15) and (2.19) gives the total UV divergence from virtual corrections to

single splitting: [
∆
dΓ

dx

]NLO

g→gg
≈ −

[
dΓ

dx

]LO β0αs

ε
(2.20)

15This is shown explicitly by summing the individually divergent time-order diagrams in eq. (5.20) of [27].
16This can be obtained by expanding eq. (F.42) of ref. [19] in ε and replacing ye there by its definition

ye ≡ ye/(1− xe). There was an overall sign error in eq. (F.42) of the original published version of ref. [19],

which is treated correctly in the version above.
17As discussed after eq. (A.5), one must include an absolute value sign in the definition of P (x) in order

to make it work with front-end transformations using our conventions.
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with

β0 = −11CA

6π
. (2.21)

The β0 above is the same coefficient that appears in the one-loop beta function for αs =

g2/4π:
dαs

d(lnµ)
= −(11CA − 2Nf)

6π
α2

s , (2.22)

where Nf is the number of quark flavors. The Nf term does not appear in (2.21) because

we have not included quarks in our calculations, consistent with our choice to work in the

large-Nc limit (for Nf fixed).

Note that the UV-IR mixed divergences have canceled between (2.15) and (2.19), as

well as the ln
(
x(1 − x)

)
terms. These cancellations had to occur in order for the total

divergence of the virtual diagrams to be absorbed by usual QCD renormalization, as we’ll

now see.18

2.3.3 Renormalization

Following ref. [19],19 we find it simplest to implement renormalization in this calculation by

imagining that all diagrams have been calculated using the bare (unrenormalized) coupling

and then rewriting (αs)bare in terms of (αs)ren. For the MS-renormalization scheme, that’s

αbare
s = αren

s +
β0

2
(αren

s )2

(
2

ε
− γE + ln(4π)

)
+O(α3

s ). (2.23)

When expressed in terms of renormalized αs, the 1/ε divergences should then cancel in the

combination20 [
∆
dΓ

dx

]LO+NLO

g→gg
≡
[
dΓ

dx

]LO,bare

+

[
∆
dΓ

dx

]NLO,bare

g→gg
(2.24)

through order α2
s . Since the leading-order [dΓ/dx]bare is proportional to αbare

s , (2.23) gives[
dΓ

dx

]LO,bare

=

[
dΓ

dx

]LO,ren

+
β0α

ren
s

2

[
dΓ

dx

]LO,ren

d=2−ε

(
2

ε
− γE + ln(4π)

)
+O(α3

s ). (2.25)

18There is something sloppy one might have tried in the preceding calculations that would have failed to

produce the correct UV divergences, which we mention here as a caution to others because we unthinkingly

tried it on our first attempt at this calculation. Suppose that we had set δ to zero in all the integration

limits so that each IR-divergent integral we’ve done was divergent and ill-defined. Then suppose that in each

integral we scaled the integration variable y so that each integral was now from 0 to 1, e.g.
∫ 1−x

0
dy f(y)→

(1−x)
∫ 1

0
dyf

(
(1−x)y

)
and similarly for x→ 1−x. Now that the integration limits are the same, one could

add together all the integrands for all the diagrams. The combined integral would be convergent but does

not give the correct result (2.20). That’s because one can get any incorrect answer by manipulating sums of

ill-defined integrals. To properly regularize a theory, one must first independently define the cut-off on the

theory (in this case the IR cutoff on longitudinal momenta) and only then add up all diagrams calculated

with that cut-off.
19Specifically section 4.3.4 and footnote 26 of that reference. Our β0 here corresponds to 2NfαEM/3π in

QED.
20Though the [∆ dΓ/dx]LO+NLO

g→gg defined in (2.24) is UV finite, it is power-law IR divergent. Only in

combination of the g → gg rates with g → ggg rates, such as (1.5), are power-law IR divergences eliminated,

leaving double-log IR divergences.
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Note that, because it is multiplied by 2/ε, we will need to use a d = 2 − ε formula for

[dΓ/dx]LO in the last term above, as indicated by the subscript. We can now use (2.25) to

regroup terms in (2.24) to write the LO+NLO g → gg rate in terms of MS renormalized

quantities as [
∆
dΓ

dx

]LO+NLO

g→gg
=

[
dΓ

dx

]LO,ren

+

[
∆
dΓ

dx

]NLO,ren

g→gg
(2.26)

with [
∆
dΓ

dx

]NLO,ren

g→gg
=

[
∆
dΓ

dx

]NLO,bare

g→gg
+
β0α

ren
s

2

[
dΓ

dx

]LO,ren

d=2−ε

(
2

ε
− γE + ln(4π)

)
. (2.27)

One can see from (2.20) that the 1/ε poles indeed cancel in this renormalized [∆dΓ/dx]NLO.

There are many equivalent ways to introduce the MS renormalization scale into the

renormalization procedure outlined above. Following ref. [19],21 we will introduce it by

writing the dimensionful bare g2/4π in 4− ε spacetime dimensions as µεαbare
s , where αbare

s

is the usual dimensionless coupling for 4 spacetime dimensions. As a result, every power

of αs in our unrenormalized calculations comes with a power of µε which, if multiplied by

a 1/ε UV divergence and expanded in ε, will generate the correct logarithms ln µ of the

renormalization scale in our results, as we detail next.

2.3.4 Organization of renormalized results

Formulas for the NLO g → gg rate are given in appendix A.3. Because of the fact that

multiple diagrams contribute to cancellation of 1/ε poles in ways that are not particularly

simple diagram by diagram, we have organized our renormalized result for [dΓ/dx]NLO,ren
g→gg

slightly differently than the QED case of ref. [19], in a way that we will explain here.

Also, we would like to write renormalized formulas in appendix A.3 in a way that

makes transparent the dependence on explicit renormalization scale logarithms ln µ. The

running (2.22) of αs, plus the fact that the leading-order rate is proportional to αs, implies

that the renormalized NLO rate must have explicit µ dependence[
∆
dΓ

dx

]NLO,ren

g→gg
= −

[
dΓ

dx

]LO

β0αs lnµ+ · · · (2.28)

in order to cancel the implicit µ dependence dαs/d(lnµ) = β0α
2
s of αs(µ) from the LO

rate. In contrast, the NLO bare rate [∆ dΓ/dx]NLO,bare
g→gg is proportional to (µεαs)

2, and so

its divergence (2.20) generates[
∆
dΓ

dx

]NLO,bare

g→gg
= −µ2ε

[
dΓ

dx

]LO

d=2

β0αs

ε
+ · · · = −

[
dΓ

dx

]LO

d=2

β0αs

ε
− 2

[
dΓ

dx

]LO

β0αs lnµ+ · · · .

(2.29)

The difference between the lnµ terms of (2.28) and (2.29) is made up by the last term of

the renormalization (2.27), as we’ll now make explicit while also keeping track of all O(ε0)

pieces of the conversion.

21See in particular the discussion of eq. (F.31) of ref. [19].
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To start, we need the d = 2− ε dimensional result for the leading-order single splitting

process, which appears in (2.27). We’ll find it convenient to write this as[
dΓ

dx

]LO

d=2−ε
= 2 Re

[
dΓ

dx

]
xx̄
d=2−ε

, (2.30a)

where complex-valued [dΓ/dx]xx̄ is the result for the xx̄ diagram of figure 3:22[
dΓ

dx

]
xx̄
d=2−ε

= −µ
εαsd

8π
P (x) B

(
1
2 + d

4 ,−d
4

) ( 2π

M0Ω0

)ε/2
iΩ0

=
αs

2π
P (x) iΩ0

[
1 +

ε

2
ln

(
πµ2

M0Ω0

)
+O(ε2)

]
. (2.30b)

Here B(x, y) ≡ Γ(x) Γ(y)/Γ(x + y) is the Euler Beta function; we use the short-hand

notations Ω0 and M0 for

Ω0 ≡ Ω−1,x,1−x =

√
−iq̂A

2E

(
−1 +

1

x
+

1

1− x

)
=

√
−i(1− x+ x2)q̂A

2x(1− x)E
, (2.31)

M0 ≡M−1,x,1−x = x(1− x)E ; (2.32)

and the DGLAP g → gg splitting function P (x), given by (A.5), is independent of dimen-

sion (see appendix C). Using (2.30), we rewrite the renormalized rate (2.27) as[
∆
dΓ

dx

]NLO,ren

g→gg
=

[
dΓ

dx

]
ren log

+

[
∆
dΓ

dx

]NLO

g→gg
(2.33)

with [
dΓ

dx

]
ren log

≡ −β0αs Re

([
dΓ

dx

]
xx̄
d=2

[
ln

(
µ2

Ω0E

)
+ ln

(
x(1− x)

4

)
+ γE

])
(2.34)

and [
∆
dΓ

dx

]NLO

g→gg
≡
[
∆
dΓ

dx

]NLO,bare

g→gg
+ 2β0αs Re

([
dΓ

dx

]
xx̄
d=2

[
1

ε
+ ln

(
πµ2

Ω0E

)])
. (2.35)

The first term [dΓ/dx]ren log of (2.33) contains the correct explicit ln µ dependence of (2.28).

The second term [dΓ/dx]NLO has, by virtue of (2.29), no net divergence 1/ε and no net

explicit dependence on lnµ. In appendix A.3, we implement this combination (2.35) by

grouping all 1/ε pieces of our unrenormalized calculations into the form

σbare

(
1

ε
+ ln

(
πµ2

Ω0E

))
. (2.36)

Setting σbare = 1 displays unrenormalized formulas for [dΓ/dx]NLO. Setting σbare = 0 in-

stead implements the combination [dΓ/dx]NLO of (2.35) once all diagrams are summed over.

22Specifically, eqs. (3.1), (3.2) and (3.7) of ref. [27] give (2.30) above, except one needs to include the

factor of µε discussed previously. See also the QED version in eq. (F.44) of ref. [19].
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In this way, appendix A.3 simultaneously presents both bare and renormalized expressions

for NLO g → gg.

For later convenience, we find it useful to also define[
dΓ

dx

]LO

g→gg
≡
[
dΓ

dx

]LO,ren

g→gg
+

[
dΓ

dx

]
ren log

(2.37)

so that we can rewrite (2.26) as[
∆
dΓ

dx

]LO+NLO

g→gg
=

[
dΓ

dx

]LO

+

[
∆
dΓ

dx

]NLO

g→gg
. (2.38)

This is the meaning behind the notation we used back in (1.5). The notation is convenient

because, for our final renormalized g → gg results listed in appendix A, the notation distin-

guishes the parts [∆ dΓ/dx]NLO of our results that are expressed in terms of y integrals,23

like in (1.6), from the parts [dΓ/dx]LO above that are not.

3 IR divergences in energy loss calculations

We now discuss in detail how the IR behavior of various measures of the development of

in-medium high-energy QCD parton showers depends only on the combination

v(x, y) + 1
2r(x, y) ≈ −CAαs

8π

[
dΓ

dx

]LO ln y

y
(3.1)

of virtual and real diagrams introduced in (1.11), for which power-law IR divergences

cancel. In this section, ≈ indicates an equality that is valid at leading-log order.

3.1 General shower evolution

We start by looking generally at the evolution of the distribution of partons in such a

shower. This will generalize, to NLO, similar methods that have been applied by Blaizot

et al. at leading order [35, 36].24

In what follows, let E0 be the energy of the initial parton that starts the entire shower.

We will let ζE0 refer to the energy of some parton in the shower as the shower develops, and

we will refer to the distribution of shower partons in ζ at time t as N(ζ, E0, t). Formally,

the total number of partons remaining in the shower at time t is then
∫ 1

0 dζ N(ζ, E0, t),

but this particular integral is IR divergent, not least because some fraction of the energy

of the shower will have come to a stop in the medium (ζ = 0) and thermalized by time

t. However, one may also use N(ζ, E0, t) to calculate IR-safe characteristics of the shower,

including N(ζ, E0, t) itself for fixed ζ > 0.25

23Specifically, [∆ dΓ/dx]NLO is given by (A.52) and the formulas following it with σbare = 0.
24See also earlier leading-order work by Jeon and Moore [37], which avoided the q̂ approximation and

treated the quark-gluon plasma as weakly coupled.
25See the leading-order analysis of N(ζ, E0, t) in refs. [35, 36]. (Be aware that their analytic results depend

on approximating [dΓ/dx]LO by something more tractable.) For a next-to-leading-order example, see the

related discussion of charge stopping distance and other moments of the charge stopping distribution for

large-Nf QED in appendix C of ref. [13].
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3.1.1 Basic evolution equation

The basic evolution equation to start with is (see appendix B for some more detail)26

∂

∂t
N(ζ, E0, t) = −Γ(ζE0)N(ζ, E0, t) +

∫ 1

ζ

dx

x

[
dΓ

dx

(
x, ζE0

x

)]
net

N
(
ζ
x , E0, t

)
, (3.2)

where [
dΓ

dx
(x,E)

]
net

(3.3)

refers to the net rate (1.5) to produce one daughter of energy xE (plus any other daughters)

via single splitting or overlapping double splitting from a parton of energy E. The total

splitting rate Γ in the loss term is

Γ(E) =
1

2!

∫ 1

0
dx

{[
dΓ

dx

]LO

+

[
∆
dΓ

dx

]NLO

g→gg

}
+

1

3!

∫ 1

0
dx

∫ 1−x

0
dy

[
∆

dΓ

dx dy

]
g→ggg

, (3.4)

where the 1/2! and 1/3! are the final-state identical particle factors for g → gg and g → ggg.

The first and second terms in (3.2) are respectively loss and gain terms for N(ζ, E0, t).

The gain term corresponds to the rate for any higher-energy particle in the shower (energy

ζE0/x) to split and produce a daughter whose energy is ζE0. To keep formulas simple here

and throughout this discussion, we will not explicitly write the IR cut-off δ in integration

limits.

By comparing (3.4) to (1.5), note that

Γ(E) 6=
∫ 1

0
dx

[
dΓ

dx
(x,E)

]
net

(3.5)

because of the different combinatoric factors involved in how [dΓ/dx]net is defined. This is

related to the fact that (3.2) should not conserve the total number of partons: each g → gg

should add a parton, and each g → ggg should add two partons.27

The various pieces that go into the calculation of the right-hand side of the evolution

equation (3.2) have various power-law IR divergences which cancel in the combination

of all the terms. We now focus on identifying those divergences and showing how to

reorganize (3.2) into an equivalent form where power-law IR divergences are eliminated

from the integrals that must be done.

26This equation is only meant to be valid for particle energies ζE large compared to the temperature T of

the plasma. In the high-energy and infinite-medium limit that we are working in, the evolution of particles

in the shower whose energy has degraded to ∼ T has a negligible (i.e. suppressed by a power of T/E) effect

on questions about in-medium shower development and calculations of where the shower deposits its energy

into the plasma. See, for example, the discussions in refs. [38] and [35]. For discussion of some of the theory

issues that would be involved in going beyond this high-energy approximation for single-splitting processes,

see, as two examples, refs. [37] and [39].
27One way to see this clearly is to over-simplify the problem by pretending that splitting rates did not

depend on energy E, then integrate both sides of (3.2) over ζ, and rewrite
∫ 1

0
dζ
∫ 1

ζ
dx/x =

∫ 1

0
dx
∫ 1

0
dζ̄

with ζ̄ ≡ ζ/x. Formally, this would give ∂N/∂t = +(Γg→gg + 2 ∆Γg→ggg)N , where N is the total number

of partons in the shower and Γg→gg ≡ ΓLO + ∆ΓNLO
g→gg. From the coefficients +1 and +2 of Γg→gg and

∆Γg→ggg in this expression, one can see explicitly the number of partons added by each type of process.
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3.1.2 x→ 0 or 1 divergences at leading order

To start, let’s ignore NLO corrections for a moment and look at the leading-order version

of (3.2):

∂

∂t
N(ζ, E0, t) ' −ΓLO(ζE0)N(ζ, E0, t) +

∫ 1

ζ

dx

x

[
dΓ

dx

(
x, ζE0

x

)]LO

N
(
ζ
x , E0, t

)
(3.6)

with

ΓLO(E) =
1

2!

∫ 1

0
dx

[
dΓ

dx

]LO

. (3.7)

The leading-order rate [dΓ/dx]LO diverges as[
dΓ

dx

]LO

∼ 1

[x(1− x)]3/2
as x→ 0 or 1 (3.8)

[see eq. (2.16) with ε = 0]. Up to logarithmic factors, this divergence is the same for

[dΓ/dx]LO (2.37) as well. This means that the integral (3.7) that gives the total rate ΓLO

generates power-law IR divergences from both the x→ 0 and x→ 1 parts of the integration

region. In contrast, the integral for the gain term in (3.6) runs from ζ>0 to 1 and so only

generates a divergence from the x → 1 behavior. That means that we cannot get rid of

the IR divergences simply by directly combining the integrands. However, if we first use

the identical final-particle symmetry x↔ 1− x of [dΓ/dx]LO to rewrite (3.7) as

ΓLO(E) =

∫ 1

1/2
dx

[
dΓ

dx

]LO

, (3.9)

then we can combine the loss and gain terms in (3.6) into

∂

∂t
N(ζ, E0, t) '

∫ 1

0
dx

{
−
[
dΓ

dx

(
x, ζE0

)]LO

N
(
ζ, E0, t

)
θ
(
x > 1

2

)
+

[
dΓ

dx

(
x, ζE0

x

)]LO

N
(
ζ
x , E0, t

) θ(x > ζ)

x

}
. (3.10)

Similar to (1.7), we have implemented the actual limits of integration here using step

functions θ(· · · ) so that we may combine the integrands. Because of the θ functions, the

integrand has no support for x→ 0 and so no divergence associated with x→ 0. Because

we have combined the integrands, however, one can see that the integrand behaves like

1/(1 − x)1/2 instead of 1/(1 − x)3/2 (3.8) as x → 1 because of cancellation in that limit

between the loss and gain contributions. So the form (3.10) has the advantage that the

integral is completely convergent, and there are no IR divergences in this equation for any

given ζ > 0.

3.1.3 y → 0 divergences at NLO

As discussed in section 1.2, g → ggg and NLO g → gg processes generate power-law IR di-

vergences as the energy of the softest real or virtual gluon (whose longitudinal momentum
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Figure 13. The integration regions (shaded) for the various terms in (3.11) corresponding to

(a) Class I virtual diagrams, (b) their x → 1 − x cousins, (c) Class II virtual diagrams, and (d)

g → ggg diagrams. The colored lines correspond to limits of the integration regions, which generate

IR divergences. See the caption of figure 15 for the distinction between the red vs. blue lines here.

fraction we often arrange to correspond to the letter y) goes to zero. We have already dis-

cussed how those power-law IR divergences cancel in the combination [∆ dΓ/dx]NLO
net (1.7),

which is the combination that appears in the NLO contribution to the gain term in the

evolution equation (3.2). But the loss term involves a different combination Γ (3.4) of real

and virtual diagrams, and so we must check that a similar cancellation occurs there.

Recalling that our NLO g → gg diagrams consist of our Class I diagrams (figure 4),

their x→ 1− x cousins, and our class II diagrams (figure 5), the NLO contribution to the

total rate (3.4) is, in more detail,

∆ΓNLO(E) =
1

2!

∫ 1

0
dx

{(∫ 1−x

0
dy

[
∆

dΓ

dx dy

]
virt I

)
+ (x→ 1− x) +

∫ 1

0
dy

[
∆

dΓ

dx dy

]
virt II

}
+

1

3!

∫ 1

0
dx

∫ 1−x

0
dy

[
∆

dΓ

dx dy

]
g→ggg

. (3.11)

[Compare and contrast to (1.5b).] Figure 13 shows the various integration regions corre-

sponding to the different terms above and the limits of integration producing IR divergences

(which is all of them).

We will now align the location of the IR divergences so that we can eventually combine

the different integrals and eliminate power-law divergences. First, note by change x→ 1−x
of integration variables, the “(x→ 1−x)” term in (3.11) gives the same result as the “virt I”

term. Second, simultaneously use the x → 1 − x and y → 1 − y symmetries of Class II

diagrams to divide the integration region of figure 13c in half diagonally, giving

∆ΓNLO(E) =

∫ 1

0
dx

∫ 1−x

0
dy

{[
∆

dΓ

dx dy

]
virt I

+

[
∆

dΓ

dx dy

]
virt II

}
+

1

3!

∫ 1

0
dx

∫ 1−x

0
dy

[
∆

dΓ

dx dy

]
g→ggg

. (3.12)

For the NLO g → gg contributions, we now divide the integration region into (i) 0 < y <

(1−x)/2 and (ii) (1−x)/2 < y < 1−x and change integration variables y → z = 1−x−y
in the latter, similar to the manipulations used earlier to obtain (1.7). For the g → ggg

contributions, note that permutation symmetry for the three final daughters (x, y, z) implies

the integral over each of the six regions shown in figure 14 is the same. We can therefore

replace the integral over all six regions by three times the integral over the bottom two,

– 24 –



J
H
E
P
1
1
(
2
0
2
0
)
0
5
3

=
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z

<
y

z
<
x

<
y

z
<
y

<
x

y<z <x

Figure 14. Equivalent integration regions for g → ggg corresponding to permutations of the

daughters (x, y, z). The common vertex of these regions is at (x, y, z) =
(
1
3 ,

1
3 ,

1
3

)
.

x

y

1

0
0 1

(a,b,c)

x

y

(d)

Figure 15. The integration regions in (3.14). The labels (a,b,c) and (d) correspond to the original

origin of these terms in figure 13. Colored lines again denote limits of integration associated with IR

divergences. Power-law divergences associated with the red lines above cancel each other in (3.14).

Blue line divergences only cancel when loss and gain terms are combined in (3.16c). The origins of

the red vs. blue divergences here are depicted by the red vs. blue lines in figure 13.

depicted by the shaded region of figure 15d. [We will see later the advantage of integrating

over these two regions instead of reducing the integral to just one region.] Eq. (3.12) can

then be written as

∆ΓNLO(E) =

∫ 1

0
dx

∫ 1/2

0
dy

{
v(x, y) θ

(
y < 1−x

2

)
+ 1

2r(x, y) θ(y < x) θ
(
y < 1−x

2

)}
,

(3.13)

with v and r defined as in (1.8). We will find it convenient to change integration variable

x→ 1− x in the first term and rewrite the equation as

∆ΓNLO(E) =

∫ 1

0
dx

∫ 1/2

0
dy

{
v(1 − x, y) θ

(
y < x

2

)
+ 1

2r(x, y) θ(y < x) θ
(
y < 1−x

2

)}
.

(3.14)

The integration regions corresponding to the two terms in (3.14) are shown in figure 15,

where the only IR divergences correspond to y → 0 or x→ 1.

The rationale for the last change was to convert x → 0 divergences into x → 1 di-

vergences (the blue line in figure 15), which we will later see then cancel similar x → 1
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divergences in the gain term of the evolution equation. For the moment, however, we focus

only on the y → 0 divergences of (3.14), depicted by the red lines in figure 15. In the limit

y → 0 (for fixed x), the integrand in (3.14) approaches

v(1− x, y) + 1
2r(x, y) = v(1− x, y) + 1

2r(z, y) ' v(1− x, y) + 1
2r(1− x, y), (3.15)

where the first equality follows because g → ggg is symmetric under permutations of

(x, y, z). The right-hand side of (3.15) is the same combination as (1.11) but with x →
1 − x. In figure 8, we verified numerically that y−3/2 divergences (which generate power-

law IR divergences when integrated) indeed cancel in this combination, leaving behind the

double-log divergence shown in (1.11) [which happens to be symmetric under x→ 1− x].

Interested readers can find non-numerical information on how the y−3/2 divergences cancel

in appendix E.

One can now see why we did not replace the integral of r(x, y) over the two sub-regions

shown in figure 15 by, for example, twice the integral of just the left-hand sub-region

(x < y < z). If we had done the latter, there would be no r term for x > 1/2 and so

nothing would cancel the y−3/2 divergence of v(1− x, y) for x > 1/2. We had to be careful

how we organized things to achieve our goal that the y integral in (3.14) not generate a

power-law IR divergence for any value of x.

Next, we turn to our final goal for this section of showing that the integrals in the evo-

lution equation for N(ζ, E0, t) can be arranged to directly avoid power-law IR divergences

for the entire integration over both x and y.

3.1.4 x→ 0 or 1 divergences at NLO

By using (1.7), (3.10), and (3.14) in the shower evolution equation (3.2), we can now

combine integrals to avoid all power-law divergences:

∂

∂t
N(ζ, E0, t) = SLO + SNLO (3.16a)

where

SLO =

∫ 1

0
dx

{
−
[
dΓ

dx

(
x, ζE0

)]LO

N (ζ, E0, t) θ
(
x > 1

2

)
+

[
dΓ

dx

(
x, ζE0

x

)]LO

N
(
ζ
x , E0, t

) θ(x > ζ)

x

}
(3.16b)

and

SNLO =

∫ 1

0
dx

∫ 1/2

0
dy

{
−
[
v(1−x, y) θ

(
y< x

2

)
+ 1

2r(x, y) θ(y<x) θ
(
y < 1−x

2

) ]
N
(
ζ, E0, t

)
+

[
v(x, y) θ

(
y< 1−x

2

)
+ v(1−x, y) θ

(
y< x

2

)
+ r(x, y) θ

(
y< 1−x

2

) ]
N
(
ζ
x , E0, t

) θ(x>ζ)

x

}
.

(3.16c)

We’ve previously seen that the LO piece SLO is free of divergences. And we’ve seen that

the loss and gain terms of the NLO piece SNLO are each free of power-law divergences
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associated with y → 0 (with fixed x). Now consider divergences of SNLO associated with

the behavior of x. The integrand in (3.16c) has no support as x → 0 (fixed y). And for

x → 1 (fixed y), there is a cancellation between the loss and gain terms. So there is no

divergence of SNLO associated with x→ 0 or x→ 1.28

In summary, the only IR divergences coming from SNLO are the uncanceled double-log

divergences associated with y → 0.

3.2 Absorbing double logs into q̂ and comparison with known results

Refs. [10–12] have previously performed leading-log calculations of overlap corrections and

shown that the double-log IR divergences can be absorbed into the medium parameter q̂.

We will now verify that the double-log piece of our results produces the same modifica-

tion [40] of q̂.

3.2.1 Double-log correction for [dΓ/dx]net

Let’s start with the relatively simple situation of the [dΓ/dx]net introduced in section 1.2.

From the discussion of (1.7) through (1.11), the double-log divergence of the NLO contri-

bution to [dΓ/dx]net is given by29[
dΓ

dx

]NLO

net

≈ −CAαs

4π

[
dΓ

dx

]LO ∫ 1/2

δ
dy

ln y

y
≈ CAαs

8π
ln2 δ, (3.17)

where we have re-introduced our sharp IR cut-off δ. Combining (3.17) with [dΓ/dx]net =

[dΓ/dx]LO + [dΓ/dx]NLO
net gives[

dΓ

dx

]
net

'
[
1 +

CAαs

8π
ln2 δ

] [
dΓ

dx

]LO

. (3.18)

Since [dΓ/dx]LO ∝
√
q̂/E [see (2.12) and (2.16)], the double-log correction above can be

absorbed at this order by replacing q̂ by

q̂eff =

[
1 +

CAαs

4π
ln2 δ

]
q̂. (3.19)

The corresponding leading-log modification of q̂ from earlier literature [10–12, 40] is

usually expressed in the final form

q̂eff(L) =

[
1 +

CAαs

2π
ln2

(
L

τ0

)]
q̂, (3.20)

where L is the thickness of the medium and τ0 is taken to be of order the mean free path

for elastic scattering in the medium. In order to compare (3.19) and (3.20), we need to

translate.
28This statement relies on the observation that the various NLO g → gg differential rates making up

v(x, y) diverge no faster than s−3/2 as some parton with longitudinal momentum fraction s becomes soft,

e.g. (1− x)−3/2 as x→ 1. The cancellation between the gain and loss terms in (3.16c) reduces that by one

power, to (1− x)−1/2, which is an integrable singularity and so generates no divergence for (3.16c).
29Note that (2.34) has no IR double log contribution, so the distinction between (LO,NLO) and (LO,NLO)

can be ignored for this discussion.
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∆
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∆t∼ τ0
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∆
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(c)

y
∼
δ

Figure 16. The region of integration (3.23) giving rise to a double log in the q̂ approximation

with (a) no cut off, (b) the cut off ∆t ∼ τ0 used in earlier literature, and (c) the IR regulator y ∼ δ
used in our calculations. See text for discussion.

First, for simplicity, we have been working in the infinite-medium approximation, which

assumes that the size of the medium is large compared to all relevant formation lengths.

Eq. (3.20) instead focuses on the phenomenologically often-relevant case where the width

L of the medium is . the formation time tform(x) associated with the harder splitting x.

One may convert at leading-log level by considering the boundary case where

L ∼ tform(x). (3.21)

Parametric substitutions like this inside the arguments of logarithms are adequate for a

leading-log analysis.

What remains is to translate between the use of two different types of cut-offs in (3.19)

and (3.20): δ and τ0. To understand the effect of the cut-offs, it is useful to review where

double logs come from in the q̂ approximation, at first ignoring the cut-offs altogether.

Parametrically, the IR double log arises from an integral of the form∫∫
dy

y

d(∆t)

∆t
(3.22)

over the integration region shown in figure 16a, given by30

yE

q̂L
� ∆t� tform(y) . (3.23a)

Using tform(y) ∼
√
yE/q̂ for small y, these inequalities can be equivalently expressed as a

range on y:
q̂(∆t)2

E
� y � q̂L∆t

E
. (3.23b)

30Using (3.21) and tform(ξ) ∼
√
ξE/q̂ for small ξ, (3.23a) can be put in the form y

√
E/xq̂ � ∆t�

√
yE/q̂

presented in eq. (9.3) of ref. [25] for y � x ≤ z. The equivalence, in turn, with notation used in some of

the original work on double logs in the NLO LPM effect is discussed in appendix F.1 of ref. [25].
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Now consider two different ways to evaluate the double logarithm (3.22). The first

method is to add a lower cut-off τ0 on ∆t, as in figure 16b. Using (3.23b), that’s

≈
∫ L

τ0

d(∆t)

∆t

∫ q̂L∆t/E

q̂(∆t)2/E

dy

y
=

∫ L

τ0

d(∆t)

∆t
ln

(
L

∆t

)
= 1

2 ln2

(
L

τ0

)
. (3.24)

Alternatively, adding a lower cut-off δ on y as in figure 16c, using (3.21), and assuming

x ≤ 1
2 so that parametrically tform(x) ∼

√
xE/q̂, the double log (3.22) is regulated to

≈
∫ x

δ

dy

y

∫ tform(y)

yE/q̂L

d(∆t)

∆t
=

∫ x

δ

dy

y
ln

(
q̂L tform(y)

yE

)
≈
∫ x

δ

dy

y
ln

(√
x

y

)
= 1

4 ln2

(
δ

x

)
.

(3.25)

When we extract just the double log dependence ln2 δ on the parameter δ, there is no

difference (for fixed x) at leading-log order between ln2(δ/x) and ln2 δ. At that level,

comparison of (3.24) and (3.25) gives the leading-log translation

ln2

(
L

τ0

)
−→ 1

2 ln2 δ (3.26)

between IR-regularization with τ0 and δ. Applied to the standard double log result (3.20),

this translation exactly reproduces the double log behavior (3.19) of our own results.

We will return to the x dependence of (3.25) when we later examine sub-leading single-

log corrections in section 4.

Our δ is simply a formal IR regulator. In contrast, there is a plausible physical reason

for using the elastic mean free path τ0 as an IR regulator at the double log level: the q̂

approximation used throughout our discussion and earlier literature is a multiple-scattering

approximation that requires long time periods compared to the mean free time between

collisions. However, beyond leading-log order, the use of a τ0 cut-off would be problematic

for full NLO calculations. In our calculations, a τ0 cut-off would interfere with the correct

UV-renormalization of αs, which comes from ∆t → 0 (and small enough time scales that

even q̂-approximation propagators faithfully reproduce vacuum propagators). So in this

paper we have just chosen the formal IR regulator, δ, that seemed most convenient for our

calculations.

In order to use IR-regulated results for NLO splitting rates, one must either compute

quantities that are IR-safe in the q̂ approximation or else make an appropriate matching

calculation for soft emission that takes into account how the QCD LPM effect turns off for

formation lengths . τ0.

3.2.2 Physics scales: what if you wanted to take δ more seriously?

Though we are simply taking δ as a formal IR cut-off for calculations involving the q̂

approximation, we should mention what the physics scales are where our q̂-based analysis

would break down if one used our results for calculations that were sensitive to the value

of δ. The situation is complicated because there are potentially two scales to consider,

indicated in figure 17. We have given parametric formulas for those scales for the case of a

weakly-coupled quark-gluon plasma. One may translate to a strongly-coupled quark-gluon

plasma, in both the figure and the discussion below, simply by erasing the factors of g.
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T
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Figure 17. Parametric scales associated with various features of figure 16b. The expressions in

terms of τ0, q̂ and L match those of the original work [40] on double log corrections to q̂.

Parametrically, the mean free time between (small-angle) elastic collisions with the

medium is τ0 ∼ 1/g2T , and q̂ is ∼ g4T 3. Using the limits (3.23b) on y, as well as (3.21)

and tform(x) ∼
√
xE/q̂, one then finds for ∆t ∼ τ0 the corresponding soft gluon energies

yE indicated in the figure.

Our formalism breaks down for yE smaller than the lower limit yE ∼ T because gluons

of energy T cannot be treated as high-energy compared to the plasma. Note that if one

correspondingly chose δ ∼ T/E without also constraining ∆t, then the resulting double log

region would be larger than has been conventionally assumed in the literature. In contrast,

if one chose δ ∼
√
xT/E, corresponding to the other red line in figure 17, then one would

guarantee that ∆t & τ0 but the resulting double log region would be smaller than the one

used in the literature. There is no choice of δ alone that corresponds to the traditional

shaded region of figure 17.

3.2.3 Double-log correction for shower evolution equation

The gain term of the shower evolution equation (3.2) depends only on the combination

[dΓ/dx]net of rates, and so the same redefinition (3.19) will absorb the double logarithmic

divergence. One expects that this must also work for the loss term in (3.2), which depends

on the combination Γ, but we should make sure. Since we found that only y → 0 ultimately

contributes to the double logarithm in our later version (3.16) of the evolution equation,

we can focus on the y → 0 behavior of the NLO loss term for fixed x, which corresponds

to the y → 0 behavior of the integrand of (3.14) for ∆ΓNLO. Using (3.15) and (1.11), the

double log generated by the y integration in (3.14) is

∆ΓNLO ≈ −CAαs

8π

∫ 1

0
dx

[
dΓ

dx

]LO ∫ 1/2

δ
dy

ln y

y
≈ CAαs

16π

∫ 1

0
dx

[
dΓ

dx

]LO

ln2 δ. (3.27)
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Figure 18. An example of an interference between two different amplitudes for double splitting

g → gg → ggg. The numbers show the energy fractions of gluons relative to the first gluon that

initiated the double-splitting process. The red follows the highest-energy daughter of each individual

g → gg process

When combined with the leading-order rate ΓLO given by (3.7), we have

Γ ≈ 1

2!

∫ 1

0
dx

[
1 +

CAαs

8π
ln2 δ

] [
dΓ

dx

]LO

, (3.28)

which indeed involves the same correction to [dΓ/dx]LO, and so to q̂, as (3.18).

3.3 Why not talk about dE/dL?

In the literature, it is common to discuss energy loss per unit length (dE/dL) for a high-

energy particle. This makes sense only if one can unambiguously identify the original

particle after a process that has degraded its energy. For many applications of the LPM

effect, the energy loss occurs by radiation that is soft compared to the initial particle energy

E, and so one can identify the particle afterwards as the only one that still has very high

energy. In this paper, however, we have been focused on the case of a very thick medium

(thick compared to formation lengths). In that case, hard bremsstrahlung is an important

aspect of energy loss. If the two daughters of a splitting have comparable energies, it

becomes more difficult to say which is the successor of the original. For a double-splitting

process beginning with a quark, one can unambiguously (for large Nc) choose to follow the

original quark. But, for processes that begin with g → gg, the distinction is less clear.

One possibility might be to formally define dE/dL for g→ gg processes by always

following after each splitting the daughter gluon that has the highest energy of the two

daughters. Unfortunately, this procedure is ill-defined when analyzing the effect of overlap-

ping formation times on successive splittings. Consider the interference shown in figure 18

of two different amplitudes for double splitting g → gg → ggg. For each amplitude, the

red gluon line shows which gluon we would follow by choosing the highest-energy daughter

of each individual g → gg splitting. The two amplitudes do not agree on which of the final

three gluons is the successor of the original gluon. That’s not a problem if the individual

splittings are well enough separated that the interference can be ignored, i.e. if formation

lengths for the individual splittings do not overlap. But since we are interested specifically

in calculating such interference, we have no natural way of defining which gluon to fol-

low. This is why we have avoided dE/dL and focused on more general measures of shower

evolution.

The above argument generalizes to g → ggg points made in ref. [13] about e→ γe→
ēee, q → gq → q̄qq and q → gq → ggq. However, in those cases, ref. [13] noted that
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dE/dL was nonetheless well-defined in the large Nf or Nc limits respectively. In contrast,

the g → ggg interference shown in figure 18 is unsuppressed in the large-Nc limit.

3.4 Similar power-law IR cancellations

LPM splitting rates and overlap corrections scale with energy like
√
q̂/E, up to logarithms.

For situations where rates are proportional to a power E−ν of energy, ref. [13] discusses

how to derive relatively simple formulas for the stopping distance of a shower, and more

generally formulas for various moments of the distribution of where the energy of the shower

is deposited. Those formulas can also be adapted to the case where the rates also have

single-logarithmic dependence E−ν lnE. This is adequate for analyzing stopping distances

for QED showers [13], but the application to QCD, which has double logs, is unclear. But

even for QCD, one can use those stopping length formulas as yet another context in which

to explore the cancellation of power-law IR divergences. See appendix F for that analysis.

4 IR single logarithms

4.1 Numerics

In (1.11) and section 3.2.1, we extracted the known IR double logarithm from the slope of

a straight-line fit to the small-y behavior of our full numerical results when plotted as

v(x, y) + 1
2r(x, y)

CAαs

8π

[
dΓ
dx

]LO 1
y

(4.1)

vs. ln y, as in figure 8. The sub-leading single-log behavior can be similarly found, for each

value of x, from the intercept of that straight-line fit. Specifically, refine (1.11) to include

single-log effects by writing

v(x, y) + 1
2r(x, y) ' −CAαs

8π

[
dΓ

dx

]LO
(
ln y + s(x)

)
y

. (4.2)

Here, the y−1 ln y term generates the known double-log behavior ∝ ln2 δ after integration

over y, and the new s(x) y−1 term allows for additional single-log behavior ∝ ln δ. Then

the combination (4.1) behaves at small y like

v(x, y) + 1
2r(x, y)

CAαs

8π

[
dΓ
dx

]LO 1
y

' −
(
ln y + s(x)

)
. (4.3)

The right-hand side represents the straight line fit of figure 8, and the intercept of that fit at

ln y = 0 gives −s(x). Our numerical results for s(x) are shown by circles in figure 19. Note

that s(x) is not symmetric under x → 1 − x. That’s because we defined v(x, y) in (1.8a)

to contain Class I virtual diagrams but not their x→ 1− x cousins.

We do not have anything interesting to say about the precise shape of s(x) itself. But

we can get to something interesting if we note that our original discussion (1.11) of the
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Figure 19. The single-log coefficients s (circles) and s̄ (diamonds) as a function of x. The

left-most and right-most data points are for x = 0.01 and x = 0.99, while all other data points are

evenly spaced at x = 0.05, 0.10, 0.15, ..., 0.85, 0.90, 0.95. For comparison, the dashed blue curve

shows the anticipated small-x behavior (4.9) with constant c fit by (4.10), and the solid blue curve

shows the educated guess (4.12) for the full x dependence.

small-y behavior of v(x, y) + 1
2r(x, y) was in the context of [dΓ/dx]net, where v(x, y) +

1
2r(x, y) appeared in the x↔ 1− x symmetric combination[

v(x, y) + 1
2r(x, y)

]
+
[
x→ 1− x

]
(4.4)

of (1.10). For this combination, the single log piece corresponds to twice the average

s̄(x) ≡ s(x) + s(1− x)

2
(4.5)

of s(x) over x ↔ 1 − x. This s̄(x) is depicted by the diamonds in figure 19. And even

though we currently have only numerical results for s̄(x), we will be able to make some

interesting observations about its form by comparing our numerics to an educated guess

that we will discuss in a moment.

[dΓ/dx]net, and thus s̄(x), also appears in our other discussions of IR behavior, such as

the gain term in the evolution equation (3.2) for the gluon distribution N(ζ, E0, t). The loss

term of that equation depends on the total rate Γ, which treats the two identical daughters

of g → gg processes x and 1 − x on an equal footing.31 So s̄(x) is the relevant function

for single log divergences, regardless of the fact that we found it convenient to rewrite Γ

31As was true for [dΓ/dx dy]net, the r(x, y) contribution representing g → ggg is symmetric in x ↔ z ≡
1 − x − y rather than x ↔ 1 − x, but the difference is unimportant in the y → 0 limit we are using to

extract IR divergences. More specifically, the difference between r(x, y) = r(1 − x − y, y) and r(1 − x, y)

is parametrically smaller as y → 0 than the 1/y terms responsible for the single-log IR divergence under

discussion.
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in (3.16) in a way that obscured the x↔ 1−x symmetry of g → gg so that we could make

more explicit the cancellation of power-law IR divergences.32

4.2 Educated guess for form of s̄(x)

Let’s now return to the issue of x dependence in the translation of the standard double

log result ln2(L/τ0) in (3.24) to the ln2 δ of our calculations in (3.25). Previously, when we

compared the two, we ignored the x dependence of the ln2(δ/x) in (3.25). Now keeping

track of that x dependence, the translation (3.26) becomes

ln2

(
L

τ0

)
−→ 1

2 ln2

(
δ

x

)
. (4.6)

Here we assume x < 1−x, and the arguments of the double logarithms are only parametric

estimates. Rewrite the right-hand side of (4.6) as ln2 ∆ with ∆ ∼ δ/x. For x � 1, this

parametric relation suggests that ∆ ' #δ/x for some proportionality constant #. So (4.6)

suggests that a more precise substitution for x� 1 would be

ln2

(
L

τ0

)
−→ 1

2 ln2

(
#
δ

x

)
= 1

2 ln2 δ +

[
ln

(
1

x

)
+ ln #

]
ln δ + (IR convergent). (4.7)

Eq. (4.7) contains information about the small-x dependence of the coefficient of the sub-

leading, single IR-logarithm ln δ.

In a moment, we will attempt to generalize to a guess of the behavior for all values of

x, but first let’s see how (4.6) compares to our numerics. Consider the logarithms arising

from a symmetrized s̄ version of (4.2), whose integral over y would be proportional to

−
∫
δ
dy

(
ln y + s̄(x)

)
y

= 1
2 ln2 δ + s̄(x) ln δ + (IR convergent). (4.8)

Comparison of (4.7) with (4.8) suggests that

s̄(x) ' ln

(
1

x

)
+ c (y � x� 1), (4.9)

where c = ln # is a constant that is not determined by this argument and must be fit to

our numerics. The dashed blue curve in figure 19 shows (4.9) with

c = 9.0 (4.10)

on the graph of our full numerical results. The form (4.9) works well for small x.

To make an educated guess for the full x dependence of s̄(x), we need to replace (4.9)

by something symmetric in x↔ 1−x. The formation time tform(x), related to the harmonic

oscillator frequency Ω0 of (2.31) by

1

[tform(x)]2
∼ |Ω0|2 =

∣∣∣∣−iq̂A

2E

(
− 1 +

1

x
+

1

1− x

)∣∣∣∣ , (4.11)

32If desired, one could achieve both goals by replacing the integrand in (3.16) by its average over x↔ 1−x.
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Figure 20. Extraction via (4.13) of the x-dependence of the “constant” c in the form (4.12)

for s̄(x).

is symmetric in x ↔ 1 − x and plays a major role in the LPM effect. So, even though

our arguments about double logs have only been parametric, let us see what happens if

we guess that the 1/x in (4.9) is arising from the small x behavior of (4.11), and so we

replace (4.9) by

s̄(x) = ln

(
− 1 +

1

x
+

1

1− x

)
+ c. (4.12)

This guess is shown by the solid blue curve in figure 19.

4.3 How well does the educated guess work?

As the figure shows, (4.12) captures the x dependence of the single log coefficient s̄(x) very

well. However, it is not quite perfect. To see the discrepancies, one may use (4.2) together

with (4.12) to extract from our numerical results for v(x, y) + 1
2r(x, y) the best choice c(x)

of c for each individual value of x:

c(x) ≡ lim
y→0

 1
2

(
[v(x, y) + 1

2r(x, y)] + [x↔ 1− x]
)

−CAαs

8π

[
dΓ
dx

]LO 1
y

−
[
ln y + ln

(
− 1 +

1

x
+

1

1− x

)] .

(4.13)

If the guess (4.12) for the form of s̄(x) were exactly right, then c(x) would be an x-

independent constant. But figure 20 shows a small variation of our c(x) with x. Our

educated guess is a good approximation but appears not to be the entire story for under-

standing IR single logs. The variation of c(x) in figure 20 is the reason that we have not

bothered to determine the small-x value of c in (4.9) to better precision than (4.10).

We should note that the value of c will be IR-regularization scheme dependent. If

we had regulated the IR with a smooth cut-off at p+ ∼ P+δ instead of a hard cut off, a

different value of c would be needed to keep the physics the same on the right-hand side

of (4.8) with the different meaning of δ.
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5 Theorist error

The results presented in appendix A for overlap effects on double splitting calculations

represent the culmination of a very long series of calculations [19, 25–27] that required

addressing many subtle technical issues as well as many involved arguments computing

expansions in ε for novel dimensionally-regulated quantities. In the absence of calculations

by an independent group using independent methods, a natural worry must be whether

somewhere our group might have made a mistake that would noticeably affect our final

results. We refer to this possibility as “theorist error,” in contrast to “theoretical error”

estimates of uncertainty arising from the approximations used.

Though we cannot absolutely guarantee the absence of theorist error, we think it useful

to list a number of cross-checks and features of our calculations. Some of these check our

treatment of technical subtleties of the calculation.

1. The power-law IR divergences computed for real and virtual diagrams in the q̂ approx-

imation cancel each other, as discussed in this paper. Sub-leading IR divergences,

which do not cancel, correctly reproduce the IR double log [40] known from pre-

vious, independent calculations [10–12] that analyzed overlap effects in leading-log

approximation.

2. Our calculation generates the correct 1/ε UV divergences for the known renormaliza-

tion of αs. This includes the cancellation of mixed UV-IR divergences, which is one

of the subtleties of Light-Cone Perturbation Theory.

3. In the soft limit y � x � 1 of g → ggg, crossed [25] and sequential [26] diagrams

give contributions to ∆Γ/dx dy that behave like ln(x/y)/xy3/2. But the logarithmic

enhancement of these 1/xy3/2 contributions cancels when all g → ggg processes are

added together, reassuringly consistent with the Gunion-Bertsch picture presented in

appendix B of ref. [26]. When our formalism is applied instead to large-Nf QED [19],

the analogous logarithm does not cancel. In that case, its coefficient reassuringly

matches what one would expect from DGLAP-like arguments, as explained in sec-

tion 2.2.3 of ref. [19].

4. One of the technical subtleties of our methods has to do with identifying the cor-

rect branch to take for logarithms lnC of complex or negative numbers, which may

arise in dimensional regularization, for example, from the expansion of a Cε. See

section 4.6 and appendix H of ref. [27], as well as appendix H.1 of ref. [19], for ex-

amples where the determination of the appropriate branch requires care. Making a

mistake of ±2πi in the evaluation of a logarithm would generally have a significant

effect on our results. But we do have some consistency checks on such “π terms”

that result from the logarithm of the phases of complex numbers in our calculation.

One check is illustrated by appendix E, where π terms associated with individual

diagrams must all cancel as one part of the cancellation of IR power-law divergences.

A different, somewhat indirect cancellation test of π terms generated by dimensional

regularization is given in appendix D of ref. [27].
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5. Here is another test of an O(ε0) term in the expansion of dimensional regularization

of a UV-divergent diagram. Recall that both g → ggg and NLO g → gg processes

have power-law IR divergences of the form
∫
δ dy/y

3/2 ∼ δ−1/2, where the power law

y−3/2 matches a physical argument given in section I.D of ref. [26]. In the calculation

of divergent diagrams, the UV-sensitive piece of the calculation is isolated into what

are called “pole” pieces in refs. [19, 25–27] and in appendix A. These pole pieces

are evaluated analytically with dimensional regularization and yield 1/ε divergences

plus finite O(ε0) contributions. The remaining UV-insensitive contributions to the

diagrams are evaluated with numerical integration. For some of the crossed virtual

diagrams (top line of figure 4), both the O(ε0) pole piece and the UV-insensitive

numerical integral33 turn out to have spurious IR divergences that are more IR di-

vergent than the power-law divergences we have discussed. However, they also turn

out to exactly cancel each other. For example, in appendix E.4, we show how the

integral associated with 2 Re(xyȳx̄) has an unwanted
∫
dy/y2 ∼ δ−1 divergence from

y → 0 that is canceled by the O(ε0) piece of the UV-divergent pole term.34

6 Conclusion

The results of this paper (combined with those of earlier papers) are the complete formulas

in appendix A for the effects of overlapping formation times associated with the various

g → ggg and g → gg processes of figures 1–5. But there are still missing pieces we need

before we can answer the qualitative question which motivates this work: are overlap effects

small enough that an in-medium shower can be treated as a collection of individual high-

energy partons, assuming one first absorbs potentially large double logarithms into the

effective value of q̂?

First, for a complete calculation, we will also need processes involving longitudinal

gluon exchange and direct 4-gluon vertices, such as in figure 7. The methods for computing

those diagrams are known, and so it should only take an investment of care and time to

include them.

More importantly, our results as given are double-log IR divergent. The known double-

log IR divergence can easily be subtracted away from our results and absorbed into the

effective value of q̂ reviewed in section 3.2.1. However, this potentially leaves behind a

sub-leading single-log IR divergence. We’ve seen from numerics that much of those single-

log divergences can also be absorbed into q̂eff by accounting for the x dependence of the

natural choice of scale for the double-log contribution to q̂eff , but there remains a smaller

part of the single-log IR divergences that is not yet understood. In order to make progress

and understand the structure of the single logarithms, we hope in the future to extract

33In formulas, the pole piece of the crossed virtual diagrams corresponds to eq. (A.58) for Apole
virt Ic. whereas

the UV-insensitive piece is the integral shown in (A.55). For more details on exactly how the pole piece is

defined, see appendix D.
34This is unrelated (as far as we know) to a different class of cases, where individual diagrams have

unwanted IR divergences that are only canceled by similar divergences of another diagram. See the two

pairs of
∫
dz/z5/2 divergences in table 1 in appendix E.
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analytic (as opposed to numerical) results for them from our full diagrammatic results.

We have also not yet determined whether diagrams involving longitudinal gluon exchange,

which have so far been left out, contribute to IR single logarithms.

It would be extremely helpful, both conceptually and as a check of our own work, if

someone can figure out a way to directly and independently compute the sub-leading single-

log IR divergences without going through the entire complicated and drawn-out process

that we have used to compute our full results.
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A Summary of rate formulas

In this appendix, we collect final results for the elements contributing to the leading-order

g → gg rate, its NLO corrections, and the g → ggg rate:[
dΓ

dx

]LO

,

[
∆
dΓ

dx

]NLO

g→gg
,

[
∆

dΓ

dx dy

]
g→ggg

. (A.1)

Throughout this appendix, we define

z ≡ 1− x− y (A.2)

as in the main text.

We remind readers that in this paper we have not included diagrams involving 4-gluon

vertices or instantaneous interactions via longitudinal gauge boson exchange, such as the

examples of figure 7.

A.1 Leading-order splitting rate

A.1.1 d = 2 transverse spatial dimensions

In our notation, the leading-order g → gg rate is[
dΓ

dx

]LO

=
αs

π
P (x) Re(iΩ0) (A.3)

with

Ω0 =

√
−iq̂A

2E

(
−1 +

1

x
+

1

1− x

)
=

√
−i(1− x+ x2)q̂A

2x(1− x)E
(A.4)
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and the g → g DGLAP splitting function

P (x) = CA

∣∣∣∣1 + x4 + (1− x)4

x(1− x)

∣∣∣∣ = CA

∣∣∣∣2(1− x+ x2)2

x(1− x)

∣∣∣∣ . (A.5)

Here and throughout this paper, our P (x) is just the function above and does not include

the pieces of the usual DGLAP splitting function used to include the effect of virtual

diagrams. In particular, the 1/(1 − x) above is just the ordinary function 1/(1 − x) and

not the distribution 1/(1 − x)+, and our P (x) above does not contain a δ-function term

δ(1−x). When we need to deal with virtual diagrams in this paper, we will do so explicitly.

The absolute value signs in (A.5) may seem redundant since the absolute value is

taken of a quantity that is manifestly positive for 0 < x < 1. They are included so that our

definition of P (x) works with front-end transformations, for the same reasons described

after (A.23) below.

For the sake of later formulas for virtual corrections, it will be helpful to also express

the above result in terms of the xx̄ diagram of figure 3 as[
dΓ

dx

]LO

= 2 Re

[
dΓ

dx

]
xx̄

(A.6)

with [
dΓ

dx

]
xx̄

=
αs

2π
P (x) iΩ0. (A.7)

A.1.2 d = 2− ε transverse spatial dimensions

Equations (A.3) and (A.6) are all we need for the leading-order result for renormalized

calculations. However, for comparison with intermediate, unrenormalized results, the d =

2− ε version is given in (2.30).

A.1.3 LO rate

For some applications, we have found it convenient to group together the LO rate with the

NLO renormalization logarithm as[
∆
dΓ

dx

]LO

≡
[
∆
dΓ

dx

]LO

+

[
dΓ

dx

]
ren log

, (A.8)

where [dΓ/dx]ren log is given by (A.50).

A.2 g → ggg rate

For the diagrams considered in this paper, we have[
∆

dΓ

dx dy

]
g→ggg

=

[
dΓ

dx dy

]
crossed

+

[
∆

dΓ

dx dy

]
seq

, (A.9)

where the first term represents the crossed diagrams of figure 1 and the second term the

sequential diagrams of figure 2. A summary of the formulas for these rates appears in

appendix A of ref. [24]. We will also present them here (i) for convenient reference in this
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paper, especially since many of the new formulas we need are related, (ii) because some

minor modifications are needed [to (A.23) and (A.46) below] to make the formulas work

in a simple way with front-end transformations, (iii) because we’ve rewritten some old

formulas [such as (A.15)] in a way that makes clearer their relation to some new formulas

[such as (A.58)], and (iv) to include some notational definitions [such as (A.20) and (A.44)]

that were omitted from the summary in ref. [24].

A.2.1 Crossed diagrams

Here we collect the result for the crossed diagrams [25] as corrected by ref. [27]. A brief

summary of the interpretation of each piece below can be found in section VIII of ref. [25].[
dΓ

dx dy

]
crossed

= A(x, y) +A(z, y) +A(x, z) (A.10)

A(x, y) = Apole(x, y) +

∫ ∞
0

d(∆t) 2 Re
[
B(x, y,∆t) +B(y, x,∆t)

]
(A.11)

B(x, y,∆t) = C({x̂i}, α, β, γ,∆t) + C({x′i}, β, α, γ,∆t) + C({x̃i}, γ, α, β,∆t)
= C(−1, y, z, x, α, β, γ,∆t) + C

(
−(1− y),−y, 1− x, x, β, α, γ,∆t

)
+ C

(
−y,−(1− y), x, 1− x, γ, α, β,∆t

)
(A.12)

C = D − lim
q̂→0

D (A.13)

D(x1, x2, x3, x4, α, β, γ,∆t) =

C2
Aα

2
sMiMf

32π4E2
(−x1x2x3x4)Ω+Ω− csc(Ω+∆t) csc(Ω−∆t)

×
{

(βYyYȳ + αY yȳYyȳ)I0 + (α+ β + 2γ)ZyȳI1

+
[
(α+ γ)YyYȳ + (β + γ)Y yȳYyȳ

]
I2 − (α+ β + γ)(Y yȳYȳI3 + YyYyȳI4)

}
(A.14)

Apole(x, y) =
C2

Aα
2
s

8π2
xyz(1− x)(1− y)

× Re
(
− i
(
Ω−1,1−x,x + Ω−(1−y),z,x + Ω−1,1−y,y + Ω−(1−x),z,y

)
×
{(

(α+ β)z(1− x)(1− y) + (α+ γ)xyz
) [

ln
(

z
(1−x)(1−y)

)
− iπ

]
+ 2(α+ β + γ)xyz

})
(A.15)

I0 =
4π2

(XyXȳ −X2
yȳ)

(A.16a)

I1 = − 2π2

Xyȳ
ln

(
1−

X2
yȳ

XyXȳ

)
(A.16b)

I2 =
2π2

X2
yȳ

ln

(
1−

X2
yȳ

XyXȳ

)
+

4π2

(XyXȳ −X2
yȳ)

(A.16c)
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I3 =
4π2Xyȳ

Xȳ(XyXȳ −X2
yȳ)

(A.16d)

I4 =
4π2Xyȳ

Xy(XyXȳ −X2
yȳ)

(A.16e)

(
Xy Yy

Yy Zy

)
≡
(
|Mi|Ωi 0

0 0

)
− ia−1>

y Ω cot(Ω ∆t) a−1
y (A.17a)(

Xȳ Yȳ

Yȳ Zȳ

)
≡
(
|Mf |Ωf 0

0 0

)
− ia−1>

ȳ Ω cot(Ω ∆t) a−1
ȳ (A.17b)(

Xyȳ Yyȳ

Y yȳ Zyȳ

)
≡ −ia−1>

y Ω csc(Ω ∆t) a−1
ȳ (A.17c)

Ω ≡
(

Ω+

Ω−

)
(A.18)

Mi = x1x4(x1 + x4)E, Mf = x3x4(x3 + x4)E (A.19a)

Ωi =

√
− iq̂A

2E

(
1

x1
+

1

x4
− 1

x1 + x4

)
, Ωf =

√
− iq̂A

2E

(
1

x3
+

1

x4
− 1

x3 + x4

)
(A.19b)

Ωξ1,ξ2,ξ3 =

√
− iq̂A

2E

(
1

ξ1
+

1

ξ2
+

1

ξ3

)
(A.20)

aȳ =

(
C+

34 C
−
34

C+
12 C

−
12

)
(A.21)

ay =
1

(x1 + x4)

(
−x3 −x2

x4 x1

)
aȳ (A.22)αβ

γ

 =

−+
+

[∣∣∣∣ x

y3z(1− x)3(1− y)3

∣∣∣∣+

∣∣∣∣ y

x3z(1− x)3(1− y)3

∣∣∣∣
+

∣∣∣∣ 1− x
x3y3z(1− y)3

∣∣∣∣+

∣∣∣∣ 1− y
x3y3z(1− x)3

∣∣∣∣
]

+

+
−
+

[∣∣∣∣ x

y3z3(1− x)(1− y)

∣∣∣∣+

∣∣∣∣ y

x3z3(1− x)(1− y)

∣∣∣∣
+

∣∣∣∣ z

x3y3(1− x)(1− y)

∣∣∣∣+

∣∣∣∣ 1

x3y3z3(1− x)(1− y)

∣∣∣∣
]

+

+
+
−

[∣∣∣∣ 1− x
xyz3(1− y)3

∣∣∣∣+

∣∣∣∣ 1− y
xyz3(1− x)3

∣∣∣∣
+

∣∣∣∣ z

xy(1− x)3(1− y)3

∣∣∣∣+

∣∣∣∣ 1

xyz3(1− x)3(1− y)3

∣∣∣∣
]

(A.23)
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Note that the (α, β, γ) used in the definition (A.12) of B are implicitly functions (A.46) of

the arguments x and y of B(x, y,∆t) [with z ≡ 1 − x − y]. This is important in formulas

such as (A.11), where in some terms those local arguments are replaced by other variables.

Eq. (A.23) gives (α, β, γ) for d = 2. However, as explained in appendix C (which gives

the more general formulas for d = 2 − ε), the d = 2 formulas for (α, β, γ) are all that is

needed here in appendix A.

The absolute value signs in (A.23) may seem unnecessary since g → ggg processes

have parton longitudinal momentum fractions x, y, z, 1 − x, 1 − y all positive. The

advantage of including an absolute value sign around every such parton momentum fraction

[which is equivalent to the use of absolute value signs in (A.23)] is that they make front-

end transformations like (2.7) work in a simple way, despite the fact that the front-end

transformation replaces x by a negative number.35

The q̂ → 0 limit for the vacuum piece in (A.13) corresponds to taking all Ω’s to zero

and so making the replacements

Ωi → 0, Ωf → 0, Ω cot(Ω ∆t)→ (∆t)−11, Ω csc(Ω ∆t)→ (∆t)−11, (A.24)

Ω± csc(Ω±∆t)→ (∆t)−1, (A.25)

where 1 is the identity matrix. For numerical evaluation, one must take care that the

above takes Xyȳ → 0 and so

I1 → 0, I2 →
2π2

XyXȳ
. (A.26)

A.2.2 4-particle frequencies and normal modes

Here we collect formulas for the large-Nc frequencies and normal modes associated with

4-particle propagation (section V.B of ref. [25]).

Ω± =

[
− iq̂A

4E

(
1

x1
+

1

x2
+

1

x3
+

1

x4
±
√

∆

)]1/2

(A.27)

∆ =
1

x2
1

+
1

x2
2

+
1

x2
3

+
1

x2
4

+
(x3 + x4)2 + (x1 + x4)2

x1x2x3x4
(A.28)

C±34 =
x2

x3 + x4

√
x1x3

2N±E

[
1

x3
− 1

x1
+

1

x4
+

x1

x3x2
±
√

∆

]
(A.29a)

C±12 = − x4

x1 + x2

√
x1x3

2N±E

[
1

x1
− 1

x3
+

1

x2
+

x3

x1x4
±
√

∆

]
(A.29b)

N± ≡ −x1x2x3x4(x1 + x3)∆± (x1x4 + x2x3)(x1x2 + x3x4)
√

∆ (A.30)
35They are the QCD version of the absolute value signs used in eq. (A22) of ref. [19], which are discussed

in footnote 38 of ref. [19]. One could alternatively dispense with the absolute value signs in the QCD

case (A.23) above by noting that negating x in that formula would, without absolute value signs, simply

introduces a common overall minus sign in the values of (α,β,γ), which could be accounted for by modifying

the sign of the front-end transformation formula (2.7). We’ve chosen to introduce the absolute value signs,

however, so that our overall sign convention for front-end transformations will be the same as it was in the

QED case of ref. [19].
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A.2.3 Sequential diagrams

Here we collect the result for the sequential diagrams [26]. A brief summary of the inter-

pretation of each piece below can be found in section III of ref. [26]. Symbols such as Ω±
or ay, which are written in the exact same notation as symbols defined above, are given by

their definitions above.[
∆

dΓ

dx dy

]
sequential

=Aseq(x, y) +Aseq(z, y) +Aseq(x, z)

+Aseq(y, x) +Aseq(y, z) +Aseq(z, x) (A.31)

Aseq(x, y) =Apole
seq (x, y) +

∫ ∞
0
d(∆t)

[
2 Re

(
Bseq(x, y,∆t)

)
+ Fseq(x, y,∆t)

]
(A.32)

Bseq(x, y,∆t) =Cseq({x̂i}, ᾱ, β̄, γ̄,∆t) = Cseq(−1, y, z, x, ᾱ, β̄, γ̄,∆t) (A.33)

Cseq =Dseq − lim
q̂→0

Dseq (A.34)

Dseq(x1, x2, x3, x4, ᾱ, β̄, γ̄,∆t) =

C2
Aα

2
sMiM

seq
f

32π4E2
(−x1x2x3x4)Ω+Ω− csc(Ω+∆t) csc(Ω−∆t)

×
{

(β̄Y seq
y Y seq

x̄ + ᾱY
seq
yx̄ Y

seq
yx̄ )Iseq

0 + (ᾱ+ β̄ + 2γ̄)Zseq
yx̄ I

seq
1

+
[
(ᾱ+ γ̄)Y seq

y Y seq
x̄ + (β̄ + γ̄)Y

seq
yx̄ Y

seq
yx̄

]
Iseq

2

− (ᾱ+ β̄ + γ̄)(Y
seq
yx̄ Y

seq
x̄ Iseq

3 + Y seq
y Y seq

yx̄ Iseq
4 )
}

(A.35)

Fseq(x, y,∆t) =
α2

sP (x)P (y)

4π2(1− x)

[
Re
(
i(Ω sgnM)E,x

)
Re
(
∆tΩ2

(1−x)E,y csc2(Ω(1−x)E,y ∆t)
)

+ Re
(
i(Ω sgnM)(1−x)E,y

)
Re
(
∆tΩ2

E,x csc2(ΩE,x ∆t)
)]

(A.36)

Apole
seq (x, y) =− α2

s P (x)P (y)

4π2(1− x)
Re
[(
i(Ω sgnM)E,x + i(Ω sgnM)(1−x)E,y

)(
1+ iπ

2

)]
(A.37)

y ≡ y

1− x (A.38)

Iseq
0 =

4π2

[Xseq
y Xseq

x̄ − (Xseq
yx̄ )2]

(A.39a)

Iseq
1 = − 2π2

Xseq
yx̄

ln

(
1− (Xseq

yx̄ )2

Xseq
y Xseq

x̄

)
(A.39b)

Iseq
2 =

2π2

(Xseq
yx̄ )2

ln

(
1− (Xseq

yx̄ )2

Xseq
y Xseq

x̄

)
+

4π2

[Xseq
y Xseq

x̄ − (Xseq
yx̄ )2]

, (A.39c)

Iseq
3 =

4π2Xseq
yx̄

Xseq
x̄ [Xseq

y Xseq
x̄ − (Xseq

yx̄ )2]
(A.39d)

Iseq
4 =

4π2Xseq
yx̄

Xseq
y [Xseq

y Xseq
x̄ − (Xseq

yx̄ )2]
(A.39e)
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(
Xseq

y Y seq
y

Y seq
y Zseq

y

)
≡
(
|Mi|Ωi 0

0 0

)
− ia−1>

y Ω cot(Ω ∆t) a−1
y =

(
Xy Yy

Yy Zy

)
, (A.40a)(

Xseq
x̄ Y seq

x̄

Y seq
x̄ Zseq

x̄

)
≡
(
|M seq

f |Ω
seq
f 0

0 0

)
− i(aseq

x̄ )−1>Ω cot(Ω ∆t) (aseq
x̄ )−1, (A.40b)(

Xseq
yx̄ Y seq

yx̄

Y
seq
yx̄ Zseq

yx̄

)
≡ −ia−1>

y Ω csc(Ω ∆t) (aseq
x̄ )−1 (A.40c)

M seq
f = x2x3(x2 + x3)E (A.41)

Ωseq
f =

√
− iq̂A

2E

(
1

x2
+

1

x3
− 1

x2 + x3

)
(A.42)

ME,x = x(1− x)E (A.43)

ΩE,x =

√
− iq̂A

2E

(
1

x
+

1

1− x − 1

)
(A.44)

aseq
x̄ ≡

(
0 1

1 0

)
ay (A.45)

ᾱβ̄
γ̄


xȳx̄y

=

−+
+

∣∣∣∣ 4

xyz(1−x)6

∣∣∣∣
+

+

−
+

[∣∣∣∣ 1

x3y3z3(1−x)2

∣∣∣∣+

∣∣∣∣ z

x3y3(1−x)2

∣∣∣∣+

∣∣∣∣ x

y3z3(1−x)2

∣∣∣∣+

∣∣∣∣ y

x3z3(1−x)2

∣∣∣∣
]

+

+

+

−

[∣∣∣∣(1− x)2

x3y3z3

∣∣∣∣+

∣∣∣∣ z

x3y3(1− x)6

∣∣∣∣+

∣∣∣∣ xz

y3(1− x)6

∣∣∣∣
+

∣∣∣∣ y

x3z3(1− x)6

∣∣∣∣+

∣∣∣∣ xy

z3(1− x)6

∣∣∣∣
]

(A.46)

A comment similar to the one following (A.23) applies here to the dependence of (ᾱ, β̄, γ̄)

on the arguments x and y of Aseq.

A.3 NLO g → gg rate

With regard to renormalization, we are going to make our summary formulas in this sub-

section do double duty by introducing a variable

σren ≡
{

1, for renormalized results;

0, for unrenormalized results,
(A.47)
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and its complement

σbare ≡ 1− σren. (A.48)

In the renormalized case (σren = 1, σbare = 0), the αs in the leading-order splitting

rate (A.3) is MS-bar renormalized αs with renormalization scale µ, and we have chosen to

group all of the µ-dependence of the NLO diagrams into the term shown explicitly in (A.50)

below, as discussed in section 2.3.4. In the unrenormalized case (σren = 0, σbare = 1), the

αs in the leading-order splitting rate (A.3) is instead the bare αs, and we show the 1/ε and

lnµ dependence of the NLO diagrams individually for each diagram.

Along the lines discussed in section 2.3.4, we write[
∆
dΓ

dx

]NLO

g→gg
=

[
∆
dΓ

dx

]NLO

g→gg
+ σren

[
dΓ

dx

]
ren log

(A.49)

with [
dΓ

dx

]
ren log

≡ −β0αs Re

([
dΓ

dx

]
xx̄
d=2

[
ln
( µ2

Ω0E

)
+ ln

(x(1− x)

4

)
+ γE

])
, (A.50)

β0 = −11CA

6π
, (A.51)

and[
∆
dΓ

dx

]NLO

g→gg
=

([
∆
dΓ

dx

]
virt I

)
+ (x→ 1− x) +

[
∆
dΓ

dx

]
virt II

=

(∫ 1−x

0
dy

[
∆

dΓ

dx dy

]
virt I

)
+ (x→ 1− x) +

∫ 1

0
dy

[
∆

dΓ

dx dy

]
virt II

. (A.52)

In what follows, we will further subdivide Class I diagrams into what we call (Class

Ic) crossed virtual diagrams, given by the first row of figure 9 plus conjugates; (Class Is)

back-end sequential virtual diagrams, given by the remaining three diagrams of figure 9

plus conjugates; and 2 Re(xyyx̄), given by the last diagram of figure 4 plus conjugate:[
∆

dΓ

dx dy

]
virt I

=

[
dΓ

dx dy

]
virt Ic

+

[
∆

dΓ

dx dy

]
virt Is

+ 2 Re

[
dΓ

dx dy

]
xyyx̄

. (A.53)

Similarly, we subdivide Class II diagrams into (Class IIs) front-end sequential virtual dia-

grams, given by the three diagrams of figure 10 plus conjugates; and 2 Re(xȳȳx̄), given by

the last diagram of figure 5 plus conjugate:[
∆

dΓ

dx dy

]
virt II

=

[
∆

dΓ

dx dy

]
virt IIs

+ 2 Re

[
dΓ

dx dy

]
xȳȳx̄

. (A.54)

A.3.1 Crossed virtual diagrams[
∆

dΓ

dx dy

]
virt Ic

= Apole
virt Ic(x, y) +

∫ ∞
0
d(∆t)

[
2 Re

(
Bvirt Ic(x, y,∆t)

)
− (D2)virt Ic(x, y,∆t)

]
(A.55)

Bvirt Ic(x, y,∆t) = −C(−1, x, z, y, α, β, γ,∆t)− C
(
−(1− x),−x, 1− y, y, β, α, γ,∆t

)
− C

(
−y,−(1− y), x, 1− x, γ, α, β,∆t

)
− C

(
x, z, y,−1, γ, β, α,∆t

)
(A.56)
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Above, C and (α, β, γ) are the same as (A.13) and (A.23) for g → ggg crossed diagrams.

(D2)virt Ic(∆t) =
C2

Aα
2
s

4π2
Re
[
iΩ3

0 ∆t csc2(Ω0 ∆t)
]
x2y2z(1− x)(1− y)

×
[
(α+ γ)z + (β + γ)(1− x)(1− y)

]
(A.57)

Apole
virt Ic(x, y) =

C2
Aα

2
s

8π2
xyz(1− x)(1− y) Re

{
iΩ−1,y,1−y

[(
(α+ β)z(1− x)(1− y)

− (β + γ)xy(1− x)(1− y)
) [

ln
(

z
(1−x)(1−y)

)
− iπ

]
+ 2(α+ β + γ)xy(1− x)(1− y)

]
+ iΩ−(1−x),y,z

[(
(α+β)z(1−x)(1−y) + (α+γ)xyz

)[
ln
(

z
(1−x)(1−y)

)
− iπ

]
+ 2(α+ β + γ)xyz

]
+ iΩ−1,x,1−x

[(
(α+ γ)xyz + (β + γ)xy(1− x)(1− y)

)
×
[
4σbare

(
1
ε + ln

( πµ2

Ω0E

))
+ 4− ln

(
x2y2z(1− x)(1− y)

)
− iπ

]
− 2(α− β + γ)xyz − 2(−α+ β + γ)xy(1− x)(1− y)

]}
(A.58)

Note: the shorthand notation Ω0 (A.4) used above is the same as the Ω−1,x,1−x (A.20) also

appearing above, but we have used the latter to make explicit the similar structures of the

three terms in (A.58).

A.3.2 Sequential virtual diagrams

[
∆

dΓ

dx dy

]
virt Is

= −1
2

[
Aseq(x, y) +Aseq(x, z)

]
(A.59)[

∆
dΓ

dx dy

]
virt IIs

= −1
2(1− y)−1/2

[
Aseq

(
−y
1−y ,

x
1−y

)
+Aseq

(
−y
1−y ,

1−x
1−y

)]
(A.60)

Above, Aseq is the same as (A.32) for sequential g → ggg diagrams. See appendix D.3 for

alternative ways to write (A.60) and for comments concerning the physical meaning of the

∆t integration variable of (A.32) in the context of (A.60).

A.3.3 2 Re(xyyx̄)

2 Re

[
dΓ

dx dy

]
xyyx̄

= 1
2

[
Anew(x, y) +Anew(x, z)

]
(A.61)

Anew(x, y) = Apole
new(x, y) +

∫ ∞
0

d(∆t) 2 Re
[
Bnew(x, y,∆t)

]
(A.62)

Bnew(x, y,∆t) = Dnew(−1, y, z, x, ᾱ, β̄, γ̄,∆t) (A.63)
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Above, (ᾱ, β̄, γ̄) are the same as (A.46).

Dnew(x1, x2, x3, x4, ᾱ, β̄, γ̄,∆t) =

− C2
Aα

2
sM

2
i

32π4E2
(−x1x2x3x4)

{
Ω+Ω− csc(Ω+∆t) csc(Ω−∆t)

×
[
(β̄Y new

y Y new
y + γ̄Y

new
yy′ Y

new
yy′ )Inew

0 + (2ᾱ+ β̄ + γ̄)Znew
yy′ I

new
1

+
[
(ᾱ+ γ̄)Y new

y Y new
y + (ᾱ+ β̄)Y

new
yy′ Y

new
yy′

]
Inew

2

− (ᾱ+ β̄ + γ̄)(Y
new
yy′ Y

new
y Inew

3 + Y new
y Y new

yy′ I
new
4 )

]
− (2ᾱ+ β̄ + γ̄)x2x3

x1x4
D(I)

2 (Ωi sgnMi,∆t)

}
(A.64)

D(I)
2 (Ω,∆t) = 2π2

[
ln(2iΩ ∆t)

(∆t)2
− iΩ3 ∆t csc2(Ω ∆t)

]
(A.65)

Apole
new(x, y)=

α2
s

2π2

P (x)P
( y

1−x
)

1− x Re

{
(iΩ0 sgnM0)

[
−σbare

(
1
ε +ln

(
πµ2

EΩ0 sgnM0

))
+ 1

2 ln(xyz)
]}

(A.66)

Here the Inew
n are the same as the Iseq

n of (A.39) except that the (X,Y, Z)seq there are

replaced by(
Xnew

y Y new
y

Y new
y Znew

y

)
=

(
Xnew

y′ Y new
y′

Y new
y′ Znew

y′

)
≡
(
|Mi|Ωi 0

0 0

)
− ia−1>

y Ω cot(Ω ∆t) a−1
y , (A.67a)(

Xnew
yy′ Y new

yy′

Y
new
yy′ Znew

yy′

)
≡− ia−1>

y Ω csc(Ω ∆t) a−1
y . (A.67b)

The M ’s, Ω’s and a’s are as in section A.2.1 with (x1, x2, x3, x4) set to (x̂1, x̂2, x̂3, x̂4) =

(−1, y, z, x), and (Ω,M)0 ≡ (Ω,M)−1,x,1−x. The only reason that the factors of sgnM

in (A.64) and (A.66) are necessary is to accommodate the transformation to 2 Re(xȳȳx̄)

below.

A.3.4 2 Re(xȳȳx̄)

2 Re

[
dΓ

dx dy

]
xȳȳx̄

= 1
2

[
Ānew(x, y) + Ānew(1− x, y)

]
(A.68)

Ānew(x, y) = Āpole
new(x, y) +

∫ ∞
0

d(∆̃t)

(1− x)1/2
2 Re

[
Bnew

(
−x
1−x ,

y
1−x , ∆̃t

)]
(A.69)

Āpole
new(x, y) =

α2
s

2π2
P (x)P (y) (A.70)

× Re

{
iΩ−1,x,1−x

[
−σbare

(
1
ε + ln

( πµ2

Ω0E

))
+ 1

2 ln
(
xy(1−x)(1−y)

)
+ iπ

2

]}
See appendix D.5 for alternative ways to write (A.69) and for comments concerning the

physical meaning of the ∆̃t integration variable.
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B More details on some formulas

Eq. (1.5b). As discussed in section 2.1, our differential rates do not contain final state

symmetry factors, which must then be included when integrating. The factor of 1/2 in

the last term of (1.5b) is an identical final-state particle factor for two (y, z) of the three

daughters (x, y, z). The factor is 1/2 instead of 1/3! because the question that defines our

[dΓ/dx]net (what is the rate for g → ggg where any one of the daughters has energy xE)

distinguishes the role of x, which is not integrated over, from the roles of y and z.

Eq. (1.6). To obtain this equation from (1.5b), split the integration region 0 < y < 1 for

[∆Γ/dx dy]virt II into (i) 0 < y < 1 − x and (ii) 1 − x < y < 1. Then use the symmetry of

Class II diagrams under y → 1− y (see figure 5) to change the latter to 0 < y < x.

Eq. (1.7). To obtain this equation from (1.6), split the integration region 0 < y < 1− x
into (i) 0 < y < (1 − x)/2 and (ii) (1 − x)/2 < y < 1 − x, and then make the change of

integration variable y → z ≡ 1− x− y for the latter. Finally, note that [dΓ/dx dy]g→ggg is

symmetric under permutations of the three daughters, and so in particular under y ↔ z.

By the way, given the constraints of the θ functions, any upper limit ≥ 1/2 could be used

for the integral signs in (1.7): we’ve chosen 1/2 just because that is the largest y for which

the integrand can be non-zero if one considers all possible values of x.

Eq. (2.11). Eqs. (4.36–37) of ref. [27] give that the 1/ε piece of xyȳx̄ is[
dΓ

dx dy

]
xyȳx̄

' C2
Aα

2
s

8π2ε

[
(iΩi sgnMi)

d/2 + (iΩf sgnMf)
d/2
]

× x̂2
1x̂2x̂

2
3x̂4(x̂1 + x̂4)2(x̂3 + x̂4)2

[
(α+ β)− (α+ γ)x̂2x̂4

(x̂1 + x̂4)(x̂3 + x̂4)

]
, (B.1)

where (x̂1, x̂2, x̂3, x̂4) ≡ (−1, y, z, x) and (M,Ω)i = (M,Ω)−1,x,1−x and (M,Ω)f =

(M,Ω)−(1−y),x,z. Then expand (B.1) in ε for d = 2− ε.

Eq. (3.2). The type of convolution integral shown in the gain term is standard for any

type of splitting process. But to make our discussion self-contained, we note that its form

can be understood by initially writing the gain term as∫ 1

ζ
dζ ′
∫ 1

0
dx δ(ζ − xζ ′)

[
dΓ

dx
(x, ζ ′E0)

]
net

N(ζ ′, E0, t), (B.2)

where ζ ′E0 > ζE0 is the energy of a particle in the shower that decays into a daughter

carrying fraction x of the parent’s energy. The δ function requires that the daughter’s

energy xζ ′E0 match the energy ζE0 we are looking for, and all possibilities for ζ ′ and x are

integrated over. Using the δ function to do the ζ ′ integral gives the gain term in (3.2).

Eq. (E.18). The desired integral is convergent, but it will be useful to integrate the two

terms separately. We must introduce a regulator to split up the integration because the

integral of each term by itself is divergent. So consider the more general convergent integral

f(ε) ≡
∫ ∞

0
dτ τ ε

(
1

τ2
− 1

sh2 τ

)
ln(aτ) (B.3)
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and follow logic similar to dimensional regularization. By scaling arguments, similar to

dimensional regularization, the integral of any power must be zero. For example,∫ ∞
0

dτ

τ2−ε −→ 0, (B.4)

and then differentiating this result with respect to ε gives∫ ∞
0

dτ

τ2−ε ln τ −→ 0. (B.5)

Writing ln(aτ) = ln a+ ln τ , (B.4) and (B.5) then give∫ ∞
0

dτ

τ2−ε ln(aτ) −→ 0, (B.6)

and so the first term in (B.3) integrates to zero with this regularization. We are left with

f(ε) = −
∫ ∞

0
dτ

τ ε ln(aτ)

sh2 τ
. (B.7)

Consider ε > 1 (for which this integral is convergent), and then later analytically continue

to ε = 0. We can rewrite (B.7) as

f(ε) = f0(ε) ln a+
df0(ε)

dε
(B.8)

with

f0(ε) ≡ −
∫ ∞

0
dτ

τ ε

sh2 τ
. (B.9)

From eq. (3.527.1) of Gradshteyn and Ryzhik [41],36

f0(ε) = −21−ε Γ(1 + ε) ζ(ε) = 1 + (ln π − γE)ε+O(ε2), (B.10)

where ζ is the Riemann zeta function. Eq. (B.8) then gives the desired result for our

original integral by taking the limit ε = 0. To calm any doubts about this derivation, one

may simply check the answer numerically.

Eq. (E.28). Following the technique used above, consider the final integral in (E.28) as

a special case of

g(ε) ≡
∫ ∞

0
dτ τ ε

[
1

τ2
ln

(
1− e−2τ

2τ

)
+

τ

sinh2 τ

]
. (B.11)

Writing ln
(
(1 − e−2τ )/2τ

)
= ln

(
1 − e−2τ ) − ln(2τ), the integral of τ ε−2 ln(2τ) vanishes as

in (B.6). Expanding ln(1− e−2τ ) in powers of e−2τ and integrating term by term,∫ ∞
0

dτ τ ε−2 ln(1− e−2τ ) = −21−ε Γ(ε− 1) ζ(ε) = −1

ε
− lnπ + γE − 1 +O(ε). (B.12)

36One may obtain this result by hand by integrating once by parts to turn τ ε/ sh2(τ) into ετ ε−1 cth τ .

Then expand cth τ = (eτ + e−τ )/(eτ − e−τ ) = 1 + 2e−2τ + 2e−4τ + · · · and integrate term by term, treating

the first term
∫∞

0
τ ε−1 as zero (similar to dimensional regularization). [Alternatively, one could put in a

large-τ cut-off τmax, and then
∫ τmax

0
τ ε−1 would cancel the previously-ignored boundary terms from the

integration by parts in the limit τmax →∞.]
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Adapting (B.10),∫ ∞
0

dτ
τ1+ε

sh2 τ
= 2−ε Γ(2 + ε) ζ(1 + ε) =

1

ε
− ln 2 + 1 +O(ε). (B.13)

Putting everything together and then setting ε = 0 gives∫ ∞
0

dτ

[
1

τ2
ln

(
1− e−2τ

2τ

)
+

τ

sinh2 τ

]
= −

[
ln(2π)− γE

]
, (B.14)

as used in (E.28).

C (α, β, γ) in d = 2− ε dimensions

Eqs. (A.23) and (A.46) present d = 2 results from refs. [25] and [26] for (α, β, γ) and

(ᾱ, β̄, γ̄), which are various combinations of helicity-dependent DGLAP splitting functions

that arise in calculations of g → ggg diagrams. However, in this paper, we use these same

quantities in the calculation of virtual diagrams for g → gg, which are UV-divergent. So

one might expect that when an α or β or γ is multiplied by a divergent 1/ε, then we need to

know the O(ε) corrections to (α, β, γ) in order to calculate the finite pieces of our g → gg

virtual diagrams, similar to what happens for QED in ref. [19].37 In this appendix, we

present d = 2− ε results for (α, β, γ) and (ᾱ, β̄, γ̄). However, we will see that, in the final

results of appendix A, (α, β, γ) and (ᾱ, β̄, γ̄) only appear in combinations where the O(ε)

pieces cancel, and so the original d = 2 results are all that are actually needed there.

The first important fact is that the helicity-averaged g → gg DGLAP splitting function

P (x) given in (A.5) does not depend at all on dimension and so has no O(ε) correction.

[See, for example, eq. (17) of ref. [42], which one may verify independently.] This lack

of dependence on dimension is special to helicity-averaged g → gg splitting. Splittings

involving quarks do depend on dimension, but we do not consider those in the large-Nc

limit of gluon-initiated showers considered in this paper.

For the particular combinations of helicity-dependent splitting functions that we need,

we found it easiest to do the calculation from scratch. The helicity basis is unwieldy in

general dimensions since there are no longer simply two helicities ±, and we find it simpler

to do the calculation in a basis of linear polarizations. Other than that, we will follow the

same notation and normalization conventions and derivations that were used for the d = 2

case in sections 4.5 and 4.6 of ref. [25]. (See also appendix C of ref. [25].)

Following ref. [25], we write our splitting vertex matrix elements in the form

〈pj ,pk|δH|pi〉 = gT i→jk · Pjk ≡
gT color

i→jkP i→jk
2E3/2

· Pjk, (C.1)

where

Pjk ≡ xkpj − xjpk (C.2)

and the p’s represent transverse momentum, with pi = pj + pk. The T i→jk factor above

implicitly depends on the polarization, longitudinal momentum fractions, and color states

37Specifically, see the discussion at the end of appendix F.3 of ref. [19].

– 50 –



J
H
E
P
1
1
(
2
0
2
0
)
0
5
3

of the parent i and daughters j, k. The color factor is the T color
i→jk above, which is −ifabc for

g → gg.

One may then extract the splitting functions P i→jk from the corresponding matrix

elements in the nearly-collinear limit, and it’s easiest to do this by temporarily choosing

the axes so that the parent has transverse momentum zero: pi = 0 above. Then define

q ≡ pj = −pk. One can calculate that the matrix elementM for the three-gluon interaction

is given by

iMrel = 2gfabc
[
qKδIJ
ξk

− qIδJK +
qJδKI
ξj

]
= 2gfabcxi

[
qKδIJ
xk

− qIδJK
xi

+
qJδKI
xj

]
. (C.3)

Here, capital roman letters I, J,K run over 1, 2, · · · , d = 2−ε and index a basis for the (lin-

ear) transverse polarization states of the particles i, j, k. ξj = xj/xi and ξk = xk/xi are the

longitudinal momentum fractions of the two daughters relative to their immediate parent

in g → gg. The x’s are longitudinal momentum fractions of the various particles in this one

particular g → gg splitting relative to the original particle that initiated the entire double

splitting process. In the nearly-collinear limit relevant to high-energy bremsstrahlung, the

energies of the particles in this g → gg splitting are then (Ei, Ej , Ek) = (xi, xj , xk)E, where

E is the energy of the original particle that initiated the double-splitting process. We bring

this up in order to match conventions with the analysis in ref. [25]. That analysis used

non-relativistic normalization of states, and so the desired matrix element is related to the

more conventional Mrel above by

〈pj ,pk|δH|pi〉 =
Mrel

(2Ei)1/2(2Ej)1/2(2Ek)1/2
=

Mrel

(xixjxk)1/2(2E)3/2

=
−igfabc

(2xi)1/2(xjxkE)3/2
[xixjqKδIJ − xjxkqIδJK + xkxiqJδKI ] . (C.4)

With our temporary convention that pi = 0, we have Pjk = (xk + xj)q = xiq. Then

comparison of (C.1) with (C.4) gives the components of P i→jk to be

Pni→jk =

√
2

(xixjxk)3/2
[xixjδIJδnK − xjxkδJKδnI + xkxiδKIδnJ ] . (C.5)

In this appendix, we will assume that all the (xi, xj , xk) are positive and will not bother

with the absolute value signs that were included in (A.23) to be consistent with front-end

transformations.

We can now use (C.5) in the definition of the combinations (α, β, γ) in eqs. (4.37–38)

of ref. [25], which is

α(x, y) δn̄nδm̄m + β(x, y) δn̄m̄δnm + γ(x, y) δn̄mδnm̄

≡ 1

d

∑
Ii

∑
Ix,Iy,Iz

[∑
Ī

P n̄Ī→Iz,Ix
(
1− y → z, x

)
Pm̄Ii→Ī,Iy

(
1→ 1− y, y

)]∗
×
[∑
I

PnI→Iz,Iy
(
1− x→ z, y

)
PmIi→I,Ix

(
1→ 1− x, x

)]
. (C.6)
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[Here, we’ve indexed the possible linear polarization states using the letter I, whereas in

ref. [25] the helicity basis was used, indicated by the letter h there.] Plugging (C.5) into the

right-hand side of (C.6) and doing all the sums over polarization indices for d transverse

dimensions, we can then extract from (C.6) the results for (α, β, γ). For d = 2, the results

are given in (A.23) here and were originally presented in ref. [25]. For general d, we find

α = αd=2 −
16(d− 2)

dx2y2z(1− x)2(1− y)2
, (C.7a)

β = βd=2 +
16(d− 2)

dx2y2z2(1− x)(1− y)
, (C.7b)

γ = γd=2 −
16(d− 2)

dxyz2(1− x)2(1− y)2
. (C.7c)

The (d− 2)/d terms above cancel in the combination

(α+ γ)z + (β + γ)(1− x)(1− y), (C.8)

which is the only combination that appears multiplying a UV-divergent 1/ε in our results

summarized in appendix A [see (A.58)]. For that reason, there is no problem with just

using the d = 2 values (A.23) in appendix A.

A similar procedure determines (ᾱ, β̄, γ̄), which are defined by eqs. (E.2,E.3) of ref. [26]

as

ᾱ(x, y) δn̄nδm̄m + β̄(x, y) δn̄m̄δnm + γ̄(x, y) δn̄mδnm̄

≡ 1

d

∑
Ii

∑
Ix,Iy,Iz

[∑
Ī

P n̄Ī→Iz,Iy
(
1− x→ z, y

)
Pm̄Ii→Ī,Ix

(
1→ 1− x, x

)]∗
×
[∑
I

PnI→Iz,Iy
(
1− x→ z, y

)
PmIi→I,Ix

(
1→ 1− x, x

)]
. (C.9)

This gives

ᾱ = ᾱd=2 , (C.10a)

β̄ =
4d

xyz(1− x)6
− γ̄ (C.10b)

γ̄ =
8(x− yz)

x2y2z2(1− x)4
+

32

dx2y2z2(1− x)2
, (C.10c)

One can check that these results satisfy the QCD version of the identity of eq. (F32) of

ref. [19]:38

ᾱ+ 1
d β̄ + 1

d γ̄ =
P (d)(x)P (d)

( y
1−x
)

C2
Ax

2y2z2(1− x)3
, (C.11)

remembering that for the case of g → gg, the polarization-averaged splitting functions

P (d)(x) do not in fact depend on dimension d.

38This identity was first given in the earlier paper ref. [27] eq. (5.17) but had to be corrected as discussed

in ref. [19] appendix F.3.
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In our summary of results in appendix A, (ᾱ, β̄, γ̄) either appear in formulas where

there are no UV-divergent 1/ε factors, or else only appear implicitly in d-independent

combinations like P (x)P (· · · ) in (A.66) and (A.70). So the general-d formulas (C.10) are

not necessary for our results.

D Details on transforming previous work to NLO g → gg diagrams

In this appendix, we give more detail about computing NLO g → gg diagrams. Since many

of those diagrams are transformations of g → ggg diagrams, we start with the latter.

D.1 Prelude: g → ggg crossed diagrams

Though previous work [25, 27] has calculated g → ggg processes with dimensional regu-

larization, those calculations were complete only for sums of crossed diagrams for which

UV divergences 1/ε canceled (as they must for tree-level processes). The transformations

to virtual crossed diagrams in figure 9 do not involve such UV-canceling collections of

g → ggg diagrams, and so we now need complete results for individual g → ggg crossed

diagrams. Consistently combining calculations of UV divergences with finite numerical in-

tegrals requires going slightly beyond what was done in ref. [27], and here we will organize

the calculation using the methods developed in ref. [19].

In our calculations, UV divergences arise as ∆t → 0 divergences of single integrals∫∞
0 d(∆t) F (∆t) of some function F (∆t). The full integrals are complicated enough that

we do not know how to do them analytically. As explained in section 4.3.2 of ref. [19], our

method for isolating the UV divergences and combining them with numerical integration

is to rewrite∫ ∞
0

d(∆t) Fd(∆t) = lim
“a→0”

[∫ a

0
d(∆t) Fd(∆t) +

∫ ∞
a

d(∆t)D2(∆t)

]

+

∫ ∞
0

d(∆t)
[
F2(∆t)−D2(∆t)

]
+O(ε), (D.1)

where Fd(∆t) is the integrand in dimensional regularization for d = 2− ε transverse spatial

dimensions. Above, D2(∆t) is any convenient function that

• matches the divergence of F2(∆t) as ∆t→ 0;

• falls off fast enough as ∆t→∞ so that
∫∞
a d(∆t)D2(∆t) will converge for non-zero a;

• is simple enough that
∫∞
a d(∆t)D2(∆t) can be performed analytically.

The last integral in (D.1) is convergent and can be performed numerically. The first term

can be found analytically by simplifying the otherwise complicated integrand Fd(∆t) by

expanding it in small ∆t. The scare quotes around the limit “a→0” in (D.1) mean that

a→ 0 should be taken after the ε→ 0 limit. The exact choice of D2 does not matter: the

total (D.1) will be the same.
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Let’s focus on the xyȳx̄ diagram in figure 1. The d = 2 integrand for 2 Re(xyȳx̄),

corresponding to F2(∆t) above, can be taken from ref. [25] and corresponds to a piece of

our eqs. (A.11)–(A.12):

F2(∆t) = 2 ReC(−1, y, z, x, α, β, γ,∆t), (D.2)

with C given by (A.13)–(A.14). The small ∆t behavior of this result is given by eq. (5.46)

of ref. [25] as

F2(∆t) ' 2 Re

{
iC2

Aα
2
s

16π2 ∆t

(
Ωi sgnMi + Ωf sgnMf

)
× x̂2

1x̂2x̂
2
3x̂4(x̂1 + x̂4)2(x̂3 + x̂4)2

[
(α+ β)− (α+ γ)x̂2x̂4

(x̂1 + x̂4)(x̂3 + x̂4)

]}
, (D.3)

where

(x̂1, x̂2, x̂3, x̂4) = (−1, y, z, x). (D.4)

Following similar choices made in ref. [19], we could now take D2(∆t) to be, for example,

the right-hand side of (D.3) with the replacements39

Ω

∆t
−→ Ω3 ∆t csc2(Ω ∆t), (D.5)

which has the same small-∆t behavior but falls off faster as ∆t → ∞. However, for the

presentation in this paper, it will be less cumbersome to just wait until we have assembled

all the other elements for the sum of crossed virtual diagrams and then choose a single

overall D2 appropriate to that sum.

The information about 2 Re(xyȳx̄) we will keep track of for now is (i) the d = 2

formula (D.2) for its integrand and (ii) the first integral in (D.1), which integrates over

small times. The latter, dimensionally-regulated integral is given by ref. [27]:40

2 Re

[
dΓ

dx dy

](∆t<a)

xyȳx̄

= 2 Re

[
dΓ

dx dy

](∆t<a)[1]

xyȳx̄

+ 2 Re

[
dΓ

dx dy

](∆t<a)[2]

xyȳx̄

(D.6)

39This is what we do to obtain the diagram-by-diagram numerical results that were used to determine

the non-boldface entries of table 1.
40Specifically, see eqs. (4.36) and (4.37) of ref. [27], except that the latter must be multiplied by (µ/E)2ε,

as discussed in appendix F.3 of ref. [19].
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with[
dΓ

dx dy

](∆t<a)[1]

xyȳx̄

=
C2

Aα
2
s

16π2

[
2

ε
+ ln

(
µ4a

E2

)
+ c1

] [
(iΩi sgnMi)

d/2 + (iΩf sgnMf)
d/2
]

× x̂2
1x̂2x̂

2
3x̂4(x̂1 + x̂4)2(x̂3 + x̂4)2

[
(α+ β)− (α+ γ)x̂2x̂4

(x̂1 + x̂4)(x̂3 + x̂4)

]
,

(D.7)[
dΓ

dx dy

](∆t<a)[2]

xyȳx̄

= − iC
2
Aα

2
s

16π2

[
Ωi sgnMi + Ωf sgnMf

]
x̂2

1x̂2x̂
2
3x̂4(x̂1 + x̂4)2(x̂3 + x̂4)2

×
{[

(α+ β)− (α+ γ)x̂2x̂4

(x̂1 + x̂4)(x̂3 + x̂4)

]
ln(x̂1x̂2x̂3x̂4)− 2γ

− 2(α+ γ)x̂2x̂4

(x̂1 + x̂4)(x̂3 + x̂4)

}
(D.8)

(up to terms that vanish as ε→ 0), and

c1 ≡ 1 + ln(2π2). (D.9)

As discussed in section 6 of ref. [25], the other crossed g → ggg diagrams can be

obtained by various substitutions:

xyȳx̄→ xȳyx̄ : (x̂1, x̂2, x̂3, x̂4)→
(
−(1− y),−y, 1− x, x

)
and α↔ β, (D.10a)

xyȳx̄→ xȳx̄y : (x̂1, x̂2, x̂3, x̂4)→
(
−y,−(1− y), x, 1− x

)
and (α, β, γ)↔ (γ, α, β),

(D.10b)

where the changes to (x̂1, x̂2, x̂3, x̂4) are also applied to our formulas (A.19) defining (Ω,M)i

and (Ω,M)f .

D.2 Crossed virtual diagrams

We now obtain results for the crossed virtual diagrams from the preceding expressions by

using the transformations of figure 9.

D.2.1 (∆t < a)[1] terms

Let’s first focus on the “(∆t < a)[1]” terms, which trace back to (D.7), using (D.10) when

relevant. We find

2 Re

[
dΓ

dx dy

]∆t<a[1]

virt Ic

=

− C2
Aα

2
s

8π2
xyz(1− x)(1− y) Re

{[
2

ε
+ ln

(
µ4a

E2

)
+ c1

]
(Hyxx̄y +Hyx̄xy +Hx̄yxy +Hyxyx̄)

− 4Hyxyx̄ ln(1− y)

}
, (D.11)
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where the contributions from individual diagrams (in some cases complex conjugated) are

Hyxx̄y =
[
(iΩ−1,y,1−y)

d/2 + (iΩ−(1−x),y,z)
d/2
][

(α+ β)z(1− x)(1− y) + (α+ γ)xyz
]
,

(D.12a)

Hyx̄xy =
[
(iΩ−1,y,1−y)

d/2 + (iΩ−(1−x),y,z)
d/2
]

×
[
−(α+ β)z(1− x)(1− y) + (β + γ)xy(1− x)(1− y)

]
, (D.12b)

Hx̄yxy =
[
(iΩ−1,x,1−x)d/2 + (iΩ−(1−x),y,z)

d/2
][
−(α+ γ)xyz − (β + γ)xy(1− x)(1− y)

]
,

(D.12c)

Hyxyx̄ =
[
(iΩ−1,y,1−y)

d/2 + (iΩ−1,x,1−x)d/2
][
−(α+ γ)xyz − (β + γ)xy(1− x)(1− y)

]
.

(D.12d)

The 1/ε pieces of these formulas are the divergences (2.13) presented in the main text. The

subscript “virt Ic” in (D.11) stands for “virtual crossed diagrams” (which are all a type of

Class I diagram), as in (A.53).

The yxyx̄ is a little different from the other diagrams above because it is the only

one that involves a front-end transformation. Figure 9 shows that 2 Re(yxyx̄) is given

by a front-end transformation of 2 Re(xȳx̄y) followed by x ↔ y. The initial front-end

transformation (2.7) takes

(x, y, E) −→
( −x

1− x ,
y

1− x , (1− x)E

)
. (D.13)

One can check from the explicit formulas (A.23) for (α, β, γ) that this transformation maps

(α, β, γ) −→ (1− x)10(β, α, γ). (D.14)

We have used this plus the fact that (α, β, γ) are symmetric under x ↔ y in deriv-

ing (D.12d).

The other special feature of the front-end transformation (2.7) is that it introduces

an overall factor of (1 − x)−ε. To see what happens to this, focus on the factor [2/ε +

ln(µ4a/E2) + c1] in (D.7) for xyȳx̄. By (D.10b), this factor is the same for xȳx̄y. The

front-end transformation (D.13) of E together with the overall front-end transformation

factor (1− x)−ε, followed by the switch of variables x↔ y, then takes

[
2

ε
+ ln

(
µ4a

E2

)
+ c1

]
−→ (1− y)−ε

[
2

ε
+ ln

(
µ4a

[(1− y)E]2

)
+ c1

]
=

[
2

ε
+ ln

(
µ4a

E2

)
+ c1

]
− 4 ln(1− y) +O(ε). (D.15)

The extra −4 ln(1−y) term above is responsible for the last term in (D.11), and we will see

later that it conspires in a natural way with similar logarithms in the “(∆t<a)[2]” piece of

2 Re(yxyx̄) that we will derive from (D.8).
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When the four terms (D.12) are added together in (D.11), all but the two

(iΩ−1,x,1−x)d/2 terms cancel in pairs. Expanding those in ε, we find

2 Re

[
dΓ

dx dy

]∆t<a[1]

virt Ic

=

C2
Aα

2
s

4π2
xyz(1− x)(1− y)

× Re

{([
2

ε
+ ln

(
µ4a

iΩ0E2

)
+ c1

]
iΩ0

)[
(α+ γ)xyz + (β + γ)xy(1− x)(1− y)

]
+ 2H

(d=2)
yxyx̄ ln(1− y)

}
, (D.16)

where Ω0 ≡ Ω−1,x,1−x.

D.2.2 (∆t < a)[2] terms

Similarly combining (D.8), (D.10) and figure 9, we find the remaining contributions from

the dimensionally-regulated integration over ∆t < a are

2 Re

[
dΓ

dx dy

]∆t<a[2]

virt Ic

=
C2

Aα
2
s

8π2
xyz(1− x)(1− y) Re

{
(H

(d=2)
yxx̄y +H

(d=2)
yxyx̄ ) ln(e−iπxyz)

+ (H
(d=2)
yx̄xy +H

(d=2)
x̄yxy ) ln

(
xy(1− x)(1− y)

)
− 4H

(d=2)
yxyx̄ ln(1− y)

+ hyxx̄y + hyx̄xy + hx̄yxy + hyxyx̄

}
, (D.17)

with

hyxx̄y = (iΩ−1,y,1−y + iΩ−(1−x),y,z)
[
−2γz(1− x)(1− y) + 2(α+ γ)xyz

]
, (D.18a)

hyx̄xy = (iΩ−1,y,1−y + iΩ−(1−x),y,z)
[
2γz(1− x)(1− y) + 2(β + γ)xy(1− x)(1− y)

]
,

(D.18b)

hx̄yxy = (iΩ−1,x,1−x + iΩ−(1−x),y,z)
[
2βxyz − 2(β + γ)xy(1− x)(1− y)

]
, (D.18c)

hyxyx̄ = (iΩ−1,y,1−y + iΩ−1,x,1−x)
[
2αxy(1− x)(1− y)− 2(α+ γ)xyz

]
. (D.18d)

The individual contributions from each diagram to (D.17) can be identified by the sub-

scripts. The phase e−iπ in a logarithm should be interpreted as

ln(e−iπxyz) = ln(xyz)− iπ, (D.19)

and the selection of this branch cut is explained in section 4.6 of ref. [27].

D.2.3 D2(∆t)

We are now in a position to choose D2(∆t) of (D.1) for the entire sum of crossed virtual

diagrams. The 1/ε divergence in (D.16) represents the dimensional regularization of a

∆t → 0 divergent integral
∫ a

0 d(∆t)/(∆t). We may use this as a convenient short-cut to
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read off the ∆t → 0 behavior of the integrand from (D.16), using the observation of eq.

(4.35) of ref [27] that the regulated UV divergence is∫ a

0

d(∆t)

(∆t)d/2
=

2

ε
+ ln a+O(ε). (D.20)

From the 1/ε terms of (D.16), we then see that the small ∆t behavior F2(∆t) of the d = 2

integrand for the sum of virtual crossed diagrams is

C2
Aα

2
s

4π2
xyz(1− x)(1− y)

Re(iΩ0)

∆t

[
(α+ γ)xyz + (β + γ)xy(1− x)(1− y)

]
. (D.21)

(Alternatively, one could explicitly extract the ∆t→ 0 behavior of each diagram and add

them up to get the same answer.) Applying the replacement (D.5) to (D.21) yields our

choice of D2, given in (A.57).

One of the terms we need in our split (D.1) of analytic vs. numerical integration is an

analytic integral of D2(∆t). Integrating (A.57) using∫ ∞
a

d(∆t) Ω3 ∆t csc2(Ω ∆t) = −Ω
[
ln(2iΩa)− 1

]
+O(a) (D.22)

for small a, and combining with (D.16) and (D.17), gives a result for what we call

Apole
virt Ic(x, y) ≡ lim

“a→0”

[∫ a

0
d(∆t) Fd(∆t) +

∫ ∞
a

d(∆t)D2(∆t)

]
virt Ic

(D.23)

for this aspect of the sum of virtual crossed diagrams. Our result for Apole
virt Ic is given

in (A.58).

D.2.4 F2(∆t)

From (D.2) for 2 Re(xyȳx̄), combined with (D.10) to get other crossed g → ggg diagrams,

combined with figure 9 to relate them to crossed virtual diagrams, we have[
F2(∆t)

]
virt Ic

=

2 Re
(
−C(−1, x, z, y, α, β, γ,∆t)− C

(
−(1− x),−x, 1− y, y, β, α, γ,∆t

)
− C

(
−y,−(1− y), x, 1− x, γ, α, β,∆t

)
−
{[
C
(
−y,−(1− y), x, 1− x, γ, α, β,∆t

)]
(x,y,E)→( −x

1−x ,
y

1−x ,(1−x)E)

}
x↔y

)
. (D.24)

One can simplify the last −C term. Using (D.14) and the fact that every term in the

formulas (A.13), (A.14) determining C is proportional to one of (α, β, γ), the last term

in (D.24) is equivalent to

− (1− y)10
[
C
(
− x

1−y ,− z
1−y ,−

y
1−y ,

1
1−y , γ, β, α,∆t

) ]
E→(1−y)E

. (D.25)

From (A.13) and (A.14) [and keeping track of all E’s hidden inside of definitions of Ω’s

and M ’s and thence inside (X,Y, Z)’s and I’s], one may verify the scaling property that[
C(λx1, λx2, λx3, λx4, α, β, γ,∆t)

]
E→E/λ = λ10C(x1, x2, x3, x4, α, β, γ). (D.26)
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So (D.25) may be rewritten as

− C(−x,−z,−y, 1, γ, β, α,∆t). (D.27)

Since we take 2 Re(· · · ) in (D.24), we may replace the above by its complex conjugate. In

our formalism, conjugating diagrams is equivalent to negating the values of all the xi, and

so the conjugate of (D.27) is −C(x, z, y,−1, γ, β, α,∆t). This is the version we have used

for our final rewriting of (D.24), which is presented as 2 ReBvirt Ic in eqs. (A.55) and (A.56).

Following (D.1), this (F2)virt Ic = 2 ReBvirt Ic is combined with (D2)virt Ic and Apole
virt Ic (D.23)

to give our final total result (A.55) for the crossed virtual diagrams.

D.3 Sequential virtual diagrams

The sum of Class I sequential virtual diagrams (xyx̄y, xx̄yy, and xx̄ȳȳ from figure 4 plus

conjugates) are, by figure 9, just the back-end transformation of the sum of the three

g → ggg sequential diagrams shown in the first line of figure 2 plus conjugates. The latter,

computed previously [26], is Aseq(x, y) + Aseq(x, z) with Aseq given by (A.59), where the

separate terms Aseq(x, y) and Aseq(x, z) correspond to two different large-Nc color routings

of the diagrams.41 The back-end transformation just introduces an overall minus sign,

and we must include a loop symmetry factor of 1
2 for the amplitude (blue) or conjugate

amplitude (red) loops in the resulting virtual diagrams, giving

− 1
2

[
Aseq(x, y) +Aseq(x, z)

]
. (D.28)

This result is summarized in (A.59).

Similarly, as depicted in figure 10, a front-end transformation of Aseq(x, y)+Aseq(x, z)

followed by x↔y gives the sum 2 Re[ȳxȳx̄+ ȳȳxx̄+yyxx̄] of three Class II sequential virtual

diagrams:

− 1
2

[
Aseq

(
−y
1−y ,

x
1−y

)
+Aseq

(
−y
1−y ,

1−x
1−y

)]
E→(1−y)E

. (D.29)

Since rates for all of these processes (as well as for leading-order g → gg) ultimately depend

on q̂ and E as
√
q̂/E, we can rewrite (D.29) as42

− 1
2(1− y)−1/2

[
Aseq

(
−y
1−y ,

x
1−y

)
+Aseq

(
−y
1−y ,

1−x
1−y

)]
. (D.30)

This is the result summarized in (A.60).

A small advantage of (D.30) over (D.29) for numerical work is that one may work

throughout in units where q̂ = 1 and E = 1 to get numerical results for rates in units

of
√
q̂/E. Alternatively, one could implement the original (D.29) by making E itself an

additional argument of all the functions in section A.2.3.

For analytic work, there is a potential conceptual confusion associated with (D.30)

concerning the meaning of the integration variable ∆t in the definition (A.32) of Aseq. In all

the previous discussion in this paper, ∆t has represented the difference in time between the

41See section 2.2.1 of ref. [26].
42Note that, unlike (D.15), we do not need the overall (1 − y)−ε factor arising from the front-end trans-

formation. That’s because Aseq is finite as ε→ 0.
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middle two splitting vertices of interference diagrams like figures 1, 2, 4, and 5. However, if

one steps through in mathematical detail how the explicit formulas of section A.2.3 produce

equivalence of (D.29) and (D.30), one finds that ∆̃t = (1− y)−1/2∆t, where ∆̃t represents

the time integration variable associated here with the formula for (D.30). In terms of our

earlier scaling argument for (D.30) from (D.29), which bypassed looking at details of the

formulas for Aseq, this rescaling of the meaning of the ∆t integration variable reflects the

fact that formation times scale like
√
E/q̂.

Finally, we mention that (D.14) showed how the combinations (α, β, γ) of helicity-

dependent DGLAP splitting functions mapped into each other under front-end trans-

formation, but there is no similar relation for the combinations (ᾱ, β̄, γ̄) that appear in

formulas like (A.33) for sequential diagrams. But we have checked that front-end transfor-

mation (D.13) takes

(ᾱ, β̄, γ̄) −→ (1− x)10 ( ¯̄α, ¯̄β, ¯̄γ), (D.31)

where ( ¯̄α, ¯̄β, ¯̄γ) are the combinations of splitting functions that would be obtained by directly

evaluating front-end sequential virtual diagrams instead of using our short-cut method of

front-end transforming previously known g → ggg sequential diagrams. In detail, (D.31)

gives ( ¯̄α, ¯̄β, ¯̄γ) in terms of eqs. (A.46) for (ᾱ, β̄, γ̄) as

¯̄α(x, y) = (1− x)−10 ᾱ
( −x

1−x ,
y

1−x
)
, etc. (D.32)

Unlike (ᾱ, β̄, γ̄), the ( ¯̄α, ¯̄β, ¯̄γ) turn out to be symmetric in x↔y and so are unaffected by that

step of the transformation of g → ggg diagrams into Class II sequential virtual diagrams

in figure 10.

D.4 2 Re(xyyx̄)

As mentioned in the main text, we can obtain the result for the xyyx̄ diagram of figure 4

by adapting the results [19] for the similar QED diagram of figure 12. To go from QED to

QCD, we need the following modifications.

• To account for QCD group factors at the vertices, we need to replace Nfα
2
EM →

d−1
A α2

s tr(T aAT
b
AT

b
AT

a
A) = C2

Aα
2
s overall. However, there are two different large-Nc

color routings of the QCD diagram, similar to the discussion of color routings of

sequential diagrams in section 2.2.1 of ref. [26]. So the overall C2
Aα

2
s corresponds to

a factor of 1
2C

2
Aα

2
s per large-Nc color routing.

• Pe→e and Pγ→e are both replaced by Pg→gg/CA, where the CA is taken out because

each CA in a Pg→gg is already explicitly accounted for in the Nfα
2
EM → C2

Aα
2
s trans-

lation above. Similarly, one should use the (gluonic) QCD formulas of (A.46) for the

combinations (ᾱ, β̄, γ̄) of helicity-dependent splitting functions that are needed for

this diagram. (See appendix C for an explanation of why d = 2− ε versions are not

needed.)

• Unlike the electron self-energy loop in figure 12, the corresponding gluon self-energy

loop comes with a loop symmetry factor of 1
2 .
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• Use the (gluonic) QCD formulas of appendix A.2 for complex frequencies Ω and

matrices a of normal modes.

• Unlike QED, Ω− is non-zero, and so, for example, prefactors such as

Ω+ csc(Ω+∆t)/∆t in the QED calculation will revert to the more general form

Ω+ csc(Ω+ ∆t) Ω− csc(Ω−∆t) in the QCD calculation.

Let Anew(x, y) represent a single color routing not including the loop symmetry factor
1
2 . By the same arguments given in section 2.2.1 of ref. [26], the two color routings are

related by y ↔ z, and so

2 Re

[
dΓ

dx dy

]
xyyx̄

= 1
2

[
Anew(x, y) +Anew(x, z)

]
, (D.33)

which is (A.61). For Anew, we can then copy various formulas from ref. [19] with NfαEM →
1
2C

2
Aα

2
s and other modifications listed above. The [dΓ/dxe dye]

(subtracted)
xyyx̄ of eq. (A.43) of

ref. [19] corresponds to the
∫∞

0 d(∆t) [F2(∆t)−D2(∆t)] of our (D.1) and translates to what

we call
∫∞

0 d(∆t) 2 Re[Bnew(x, y,∆t)] in our (A.62)–(A.65).

All that remains is the pole piece, which we will package a little differently in this

paper than in ref. [19]. Similar to our analysis of crossed virtual diagrams, the pole piece

corresponds to the
∫ a

0 d(∆t)Fd(∆t)+
∫∞
a D2(∆t) term in (D.1). The QCD formula we need

can be obtained by starting from eq. (F.42) of ref. [19] for QED:43

lim
“a→0”

{[
dΓ

dxe

](∆t<a)

xyyx̄

+

[
dΓ

dxe

](D2)

xyyx̄

}

=

(
µ2

E

)ε
dNfα

2
EM

2d+2π2d
Γ2
(

1
2 + d

4

) P
(d)
e→e(xe)

x
ε/2
e (1− xe)ε

∫ 1

0
dye

P
(d)
γ→e(ye)[

ye(1− ye)
]ε/2

× 2π2iΩ̄d−1
i

[
−
(

2

ε
− γE + ln(4π)

)
+ 4 ln 2 + 3 lnπ − 1

]
+O(ε), (D.34)

where ye ≡ ye/(1− xe). Here we also adopt the shorthand notation of ref. [19] that

Ω̄ ≡ Ω sgnM. (D.35)

In the QED case, it was possible to explicitly perform the integral over ye above to get

the pole piece of [dΓ/dx]xyyx̄.44 For the QCD translation, the corresponding y integral will

be IR divergent because, unlike Pγ→e(y), gluon splitting Pg→g(y) diverges in the soft limit

y → 0. We could do the integral explicitly using our IR regulator δ, but, for our various

discussions of cancellations of QCD power-law IR divergences in this paper, it has been

very useful to work in terms of dΓ/dx dy for virtual diagrams instead of directly with the

43Here we have accounted for an overall sign error that appeared in the original published version of eq.

(F.42) in ref. [19].
44In the QED case, the pole piece of [dΓ/dx]xyyx̄ corresponds to everything other than the subtracted

term in eq. (A.41) of ref. [19].
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IR-regulated dΓ/dx for each diagram. So we’ll instead translate the unintegrated version

of (D.34),

lim
“a→0”

{[
dΓ

dxe dye

](∆t<a)

xyyx̄

+

[
dΓ

dxe dye

](D2)

xyyx̄

}

=

(
µ2

E

)ε
dNfα

2
EM

2d+2π2d
Γ2(1

2 + d
4)

P
(d)
e→e(xe)

x
ε/2
e (1− xe)ε

1

(1− xe)
P

(d)
γ→e(ye)[

ye(1− ye)
]ε/2

× 2π2iΩ̄d−1
i

[
−
(2

ε
− γE + ln(4π)

)
+ 4 ln 2 + 3 ln π − 1

]
+O(ε), (D.36)

from QED to

Apole
xyyx̄ =

(
µ2

E

)ε
dα2

s

2d+3π2d
Γ2
(

1
2 + d

4

) P (d)(x)

xε/2(1− x)ε
1

(1− x)

P (d)(y)

[y(1− y)]ε/2

× 2π2iΩ̄d−1
i

[
−
(

2

ε
− γE + ln(4π)

)
+ 4 ln 2 + 3 lnπ − 1

]
+O(ε) (D.37)

for QCD. Ωi for the QCD diagram is equal to Ω0 ≡ Ω−1,x,1−x. Now (i) use the fact that

the g → gg splitting function P (x) is independent of dimension (see appendix C), (ii) fully

expand the above in ε and drop terms that vanish as ε → 0, and (iii) use y ≡ y/(1 − x).

This gives

Apole
xyyx̄(x, y) =

α2
s

4π2

P (x)P ( y
1−x)

1− x iΩ̄0

[
−1
ε − ln

(
πµ2

Ω̄0E

)
+ 1

2 ln(xyz)
]
. (D.38)

Taking 2 Re(· · · ) to add in the conjugate diagram gives what we call Apole
new in (A.66).

D.5 2 Re(xȳȳx̄)

We obtain 2 Re(xȳȳx̄) from 2 Re(xyyx̄) by combined front-end and back-end transformation

as depicted in figure 11. The non-pole (subtracted) piece
∫∞

0 d(∆t) 2 ReBnew(x, y,∆t) of

2 Re(xyyx̄) transforms to∫ ∞
0

d(∆t) 2 Re
[
Bnew

(
−x
1−x ,

y
1−x ,∆t

)]
E→(1−x)E

. (D.39)

For the same reasons as described for Aseq in (D.30), the above can be rewritten as∫ ∞
0

d(∆̃t)

(1− x)1/2
2 Re

[
Bnew

(
−x
1−x ,

y
1−x , ∆̃t

)]
. (D.40)

This result appears as the integral in (A.69). Here we have called the integration variable

∆̃t instead of ∆t for reasons similar to those described in section D.3, but here the relation is

∆̃t = (1− x)−1/2∆t. (D.41)

For the pole piece, we could do the same thing, but we prefer to do the transformation

by hand in order to be careful about issues concerning branch cuts. Using figure 11, the
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pole piece (D.38) for xyyx̄ transforms to

Apole
xȳȳx̄(x, y) = (1−x)−ε

α2
s

4π2
P (x)P (y)

{
−iΩ∗0

[
−1
ε − ln

(
πµ2

−Ω∗0(1−x)E

)
+ 1

2 ln
(
−xy(1−y)

(1−x)3

)]}∗
=

α2
s

4π2
P (x)P (y) iΩ0

[
−1
ε − ln

(
− πµ2

Ω0E

)
+ 1

2 ln
(
−xy(1− x)(1− y)

)]
. (D.42)

The arguments of the above logarithms have minus signs, and we need to decide which

branch of the logarithms they land us on. The QED discussion given in appendix H.1 of

ref. [19] applies equally well here. That discussion tracks the origin of the complex phases

in direct calculations of what we would call here xȳȳx̄ relative to xyyx̄. The result is that

the xȳȳx̄ diagram should have a phase of id relative to the xyyx̄ diagram, which means

±i−ε since the discussion did not keep track of overall signs. Since

i−ε × 1
ε = 1

ε − iπ
2 , (D.43)

this means that the branch-cut ambiguity in (D.42) resolves as

Apole
xȳȳx̄(x, y) =

α2
s

4π2
P (x)P (y) iΩ0

[
−1
ε − ln

(
πµ2

Ω0E

)
+ 1

2 ln
(
xy(1− x)(1− y)

)
+ iπ

2

]
. (D.44)

Finally, taking 2 Re(· · · ) of (D.44) gives what we call Āpole
new in (A.70).

There are alternative ways one could write our result for 2 Re(xȳȳx̄) that may be

useful for some purposes. If one wants a formula in terms of the actual duration ∆t of the

self-energy bubble, one can make the change of variables (D.41) in (A.69) to write

Ānew(x, y) = Āpole
new(x, y) +

∫ ∞
0

d(∆t)

(1− x)
2 Re

[
Bnew

(
−x
1−x ,

y
1−x , (1− x)−1/2∆t

)]
. (D.45)

Alternatively, going back to (D.39), one could use (D.31) and scaling arguments similar

to (D.24)–(D.26) to write (A.69) as

Ānew(x, y) = Āpole
new(x, y)+

∫ ∞
0

d(∆t)2 Re
[
Dnew(1−x,−y,−(1−y), x, ¯̄α, ¯̄β, ¯̄γ,∆t)

]
. (D.46)

We have checked that this is the form one would get by directly evaluating the xȳȳx̄

diagram using our methods [19, 25–27] instead of taking our shortcut of front- and back-

end transforming the xyyx̄ diagram.

E Power-law IR divergences diagram by diagram

In the main text, we merely demonstrated numerically that power-law IR divergences cancel

to leave a double log divergence. In this appendix, we give detailed diagram-by-diagram

information on the size of power-law divergences and give (with caveats) analytic formulas.
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y→ 0 z→ 0 x→ 0

g→ ggg Real Diagrams:

crossed (a minimal subset):

2 Re(yxx̄ȳ) +2; 0; +
(
G−π

2

)
+2; 0; +

(
G−π

2

) (A3)
(B3) 0; +1; +D

2 Re(yx̄xȳ) +2; 0; +
(
G+ π

2

)
∼ z−5/2 (C1)

(C2) 0; +1; +
(
D+π

2

)
2 Re(xȳx̄y) −2; 0;−

(
G+ π

2

)
∼ z−5/2 −2; 0;−

(
G+ π

2

)
sum 2 Re(yx̄xȳ + xȳx̄y) −2; +1;−X

sequential: one color routing of 2 Re(xyx̄ȳ + xx̄yȳ + xx̄ȳy)

Aseq(x, y) 0;−1;−
(
D−π

4

)
0;−1;−

(
D−π

4

)
0;−1;−(D − π

4 )

Virtual Diagrams (Class I):

crossed:

2 Re(yxx̄y) −2; 0;−
(
G−π

2

)
−2; 0;−

(
G−π

2

)
0;−1;−D

2 Re(yx̄xy) −2; 0;−
(
G+ π

2

)
∼ z−5/2 0;−1;−

(
D+π

2

)
2 Re(x̄yxy) +2; 0; +

(
G+ π

2

)
∼ z−5/2 +2; 0; +

(
G+ π

2

)
2 Re(yxyx̄) +2; 0; +

(
G− π

2

) (A2)
(B1) 0; +1; +D +2; 0; +

(
G− π

2

)
sum 2 Re (yx̄xy + x̄yxy) +2;−1; +X

back-end sequential:

− 1
2 [Aseq(x, y) +Aseq(x, z)] 0; +1; +

(
D−π

4

)
0; +1; +

(
D−π

4

)
0; +1; +

(
D − π

4

)
virtual xyyx̄:

2 Re(xyyx̄)
1
2 (A1)
1
2 (B2)

0;−1;−D
1
2 (A1)
1
2 (B2)

0;−1;−D −2; 0;−
(
G− π

2

)
Virtual Diagrams (Class II):

front-end sequential:

see eq. (A.60) 0; +1; +
(
D+3π

4

)
∼ z0 0; +1; +

(
D−π

4

)
virtual xȳȳx̄:

2 Re(xȳȳx̄)
1
2 (C3)

0;−1;−
(
D + π

2

)
∼ z0 −2; 0;−

(
G+ π

2

)
Table 1. The limiting behaviors of different diagrams. Format explained in the text.

E.1 Individual results

The diagram-by-diagram power-law divergences are given in table 1, which requires a bit

of explanation about why only a subset of diagrams are included, the notation used in the

table, and how to combine the various cases shown to see the cancellation of power-law

divergences.

An entry of the form “T ;U ;V ” means that the limiting behavior of the unrenormalized

result is

CAα
2
sP (ξ)

4π2(small)3/2

√
q̂A

E

[
T

(
1

ε
+ ln

(
µ2

(q̂AE)1/2

))
+ 1

2 U ln(small) + V (ξ)

]
(E.1)
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where “small” is the variable that is going to zero (e.g. y), and ξ is either of the two other

variables, which are being held fixed (e.g. ξ = x fixed as y → 0, causing z → 1− x). All of

the limits shown in the table turn out to be symmetric under ξ → 1 − ξ.45 The function

designations V in the table are bolded if we’ve worked them out analytically and not just

numerically. Those that are not bolded indicate cases where we have not taken the time

to derive an analytic result but have instead extracted the function V with numerics to

roughly 5 digit precision for the specific case ξ = 0.3 and noticed that V is numerically the

same as a bolded case. The functions V listed in the table include

D(ξ) = 1
2 ln

(
1
ξ + 1

1−ξ − 1
)

+ ln(2π)− γE, (E.2)

G(ξ) = − ln
(
ξ(1− ξ)

)
+ 2 ln 2 + 3 lnπ − γE. (E.3)

For X(ξ), we have not yet derived an analytic formula. At the moment, we only know that

in leading-log approximation for small� ξ � 1 (or, symmetrically, for small� 1−ξ � 1),

it is

X(ξ) ≈ −1
2 ln
[
ξ(1− ξ)

]
. (E.4)

Some individual entries are more divergent than the (small)−3/2 of (E.1), but these

more severe divergences cancel between pairs of diagrams, leaving behind a net (small)−3/2

divergence. For example, the z → 0 limit of 2 Re(yx̄xȳ) and 2 Re(xȳx̄y) are marked in the

table as each diverging like (small)−5/2, but we give a separate line in the table showing

the net divergence of their sum.

The table explicitly shows as “±mπ
n ” all contributions that arise from logs of complex

phases, which are commented on in section 5.

The annotations (A1), (B3), etc. on some entries are just comments to connect to the

soft limits of those diagrams considered in previous leading-log analyses of overlap effects.

See section E.3 below for an explanation.

E.2 Assembling y → 0 limit of v(x, y) + 1
2r(x, y)

In the table, we have entries for only three of the crossed g → ggg diagrams (plus their

conjugates). The full set of crossed g → ggg diagrams (figure 1) consists of these three

entries plus all possible permutations of the three daughters (x, y, z). But those other cases

can be read off from permutations of what is included in the table. For instance, the y → 0

limit of 2 Re(xyȳx̄), which is not listed in the table, corresponds by permutation symmetry

to the x→ 0 limit of 2 Re(yxx̄ȳ), which is listed. We have chosen yxx̄ȳ, yx̄xȳ, and xȳx̄y to

be our three representative entries in the table in order to highlight their direct back-end

relation to the virtual-diagram table entries for yxx̄y, yx̄xy, and x̄yxy: the corresponding

rows of the table are just the negative of each other.

The single table entry for g → ggg sequential diagrams shows the Aseq of (A.32). As

discussed in ref. [26], this corresponds to one of two large-Nc color routings for the sum of

45This is a special feature of the power-law IR divergences. There is no similar diagram-by-diagram

ξ → 1 − ξ symmetry for the IR log divergences, as demonstrated by the lack of such symmetry for the

circles in figure 19.
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the three diagrams shown explicitly in the top line of figure 2 (plus their conjugates). The

complete set of sequential diagrams and color routings corresponds [26] to summing Aseq

over all possible permutations of (x, y, z), as made explicit in (A.31).

The total differential rate r(x, y) for g → ggg (1.8b) corresponds to the sum over all

six permutations of the table entries discussed above. Because of the relationship between

limits of those permutations, the y → 0 limit of r(x, y) is then twice the sum of the results

listed in all three columns y → 0, z → 0, and x→ 0 of the subset of g → ggg results given

in the table. Adding the g → ggg table entries together then gives

1
2r(x, y) '

y→0

[
0; 0;G−D −X − π

4

]
=
CAα

2
sP (x)

4π2y3/2

√
q̂A

E

[
G(x)−D(x)−X(x)− π

4

]
. (E.5)

Now turn to the virtual diagrams listed in the table. The Class I virtual crossed

diagrams in the table correspond to all of the virtual crossed diagrams (top line of figure 4

plus conjugates) — there are no permutations to add. The Class I and Class II virtual

sequential diagrams are related by back-end and front-end transformation to the g → ggg

sequential diagrams discussed above. See section D.3 for a discussion. Again there are

no permutations to add, and the same is true for the remaining virtual diagram entries

2 Re(xyyx̄) and 2 Re(xȳȳx̄).

Because of the addition of “(y ↔ z)” in the definition (1.8a) of v(x, y), the y → 0 limit

of v(x, y) will sum both the y → 0 and z → 0 (but not x → 0) columns of the virtual

diagram entries of the table, with result46

v(x, y) '
y→0

[
0; 0;−G+D +X + π

4

]
, (E.6)

which is the negative of (E.5). This is in detail how power-law IR divergences cancel in

the combination v(x, y) + 1
2r(x, y) presented in (1.11).

Note that we never made use of the x → 0 column for the virtual diagrams. Those

entries do not add to zero. These divergences (and the related 1 − x → 0 divergences for

class II diagrams) correspond to the blue lines in figure 13. They do not cause divergences

in the applications we have discussed for the reasons described in section 3.1.4.

E.3 The diagrams responsible for double logs in earlier papers

The diagrams that were analyzed in earlier papers [10–12] that found the IR double log-

arithm correspond to the subset of 9 diagrams (A1, A2, ..., C3)47 depicted by figure 21,

where y represents the softest gluon in the process. Here we comment on why our IR

power-law divergences were absent in their analysis.

The y → 0 limit of each of these diagrams corresponds to the entries of table 1 cor-

respondingly marked (A1), (A2), etc. Some entries in the table correspond to more than

46The contributions of just Class I diagrams or just Class II diagrams to (E.6) are [0; 0;−G + D + X]

and [0; 0; +π
4

] respectively.
47This naming convention for these diagrams can be made to agree with that used by ref. [10] if our

names xE and yE for gluon energies are translated to their zE and ω′. In their notation, ref. [10] works

mostly in the limit ω′ � ω ≡ (1− z)E � E.
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y 0

A

B

C

1

2

3

x

Figure 21. Double-log diagrams. The labels A, B, C, 1, 2, and 3 for where the soft y gluon might

connect the three harder gluons are provided for the sake of later naming individual diagrams.

The green color of the soft gluon line is used to indicate that the line could be either blue or red

depending on how it is connected. (See figures 22 and 24, for example).

1 2 3

A 0;−2;−2D 0; +1; +D 0; +1; +D

B 0; +1; +D 0;−2;−2D 0; +1; +D

C 0; +1; +
(
D + π

2

)
0; +1; +

(
D + π

2

)
0;−2;−2

(
D + π

2

)
Table 2. The power-law IR divergences of diagrams A1, A2, · · · , C3 extracted from table 1.

one of these diagrams: for example, the x → 0 limit of 2 Re(yxx̄ȳ) is listed as both (A3)

and (B3). That’s because permutation symmetries relate this to the y → 0 limit of both

A3 = xyȳx̄ and B3 = zyȳz̄. In other places, an entry may be listed as giving only half

of the corresponding contribution. For example, the table entries for both the y → 0 and

z → 0 limits of 2 Re(xyyx̄) are listed as half of the y → 0 limit of (A1). That’s just a

combinatoric issue arising from our labeling the two internal lines of the gluon self-energy

loop in the xyyx̄ diagram in figure 4 as y and z = 1 − x − y, and in our table there are

divergences associated with either becoming soft. In figure 21, however, y is by definition

whichever one of the two is softest.

The resulting y → 0 divergences for the diagrams of figure 21 are collected in table 2.

Each row of table 2 sums to zero. Consider, for example, the sum A1+A2+A3 shown

in figure 22. The reason for this cancellation is that the diagrams are identical except

for which line the blue y → 0 gluon couples to on the right-hand side, and so the sum is

proportional to the sum of those couplings, shown in figure 23. Because the three hard

particles form a color singlet on the right-hand side of this diagram, the coupling of the

small-y gluon to the collection of all three will be suppressed compared to its coupling to

any individual particle, which is why the leading IR behavior (the power-law divergences)

cancel among these diagrams.

In contrast, it’s interesting to note that the columns of table 2 do not sum individually

to zero. Consider, for example, the sum A1 + B1 + C1 shown in figure 24. They differ not

only by which line the y → 0 gluon couples to on the left-hand side of each diagram but

also by whether the y → 0 gluon corresponds to a particle propagating in the amplitude

(blue line) or conjugate amplitude (red line), which changes the overall time evolution of
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y 0

A 1

2

3

x

+

y 0

(A2)

+

y 0

(A3)

=

y 0

(A1)

x x x

Figure 22. An example A1 + A2 + A3 of three diagrams whose power-law small-y behaviors

cancel.

≡ + +

y
→
0.

Figure 23. Diagram elements whose leading y → 0 behaviors cancel in the small-y limit.

A

B

C

+

y 0

(B1)

+

y 0

(C1)

=

y 0

(A1)

x x x

y 0

1

x

Figure 24. An example A1 + B1 + C1 of three diagrams whose leading small-y behaviors do not

cancel.

the diagram. For this reason, one cannot simply factorize out the sum over vertex couplings

as we did for A1 + A2 + A3, and so there is no reason for this particular sum of diagrams

to be suppressed.

Regardless, the cancellation of each row of table 2 is sufficient to guarantee that there

will be no power-law IR divergences in the sum of all nine diagrams of figure 21, which is

why earlier leading-log analyses did not need to address such divergences.

E.4 Derivation of D(ξ)

Here we will give an example of the derivation of one of the boldfaced D’s in table 1. We

will focus on the entry for the x→ 0 limit of 2 Re(yxx̄ȳ). This is the same, by permutation,

as the y → 0 limit of 2 Re(xyȳx̄), to which we now turn since xyȳx̄ is the canonical crossed

diagram presented in earlier work [25, 27].

E.4.1 Spurious y−2 divergence of 2 Re(xyȳx̄)

Let’s look first at the ∆t integral associated with the xyȳx̄ diagram, which is the term∫ ∞
0

d(∆t) 2 Re
[
C(−1, y, z, x, α, β, γ,∆t)

]
(E.7)
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of (A.11) and (A.12), where C is given by (A.13) in terms of the D of (A.14). One finds that

the integral is dominated by ∆t ∼ y for small y.48 An analytic analysis of the integrand

for ∆t ∼ y → 0 yields49

D(−1, y, z, x, α, β, γ) ' Dapprox (E.8)

with

Dapprox = −CAα
2
s P (x)

4π2y(∆t)2

[
ln

(
xy

1− x + 2iΩ0 ∆t

)
+

(
1 +

2iΩ0(1− x) ∆t

xy

)−1
]
, (E.9)

where Ω0 = Ω−1,x,1−x as in (2.31). Subtracting the vacuum (q̂ → 0 and so Ω0 → 0) gives

C(−1, y, z, x, , α, β, γ) ' Capprox with

Capprox = −CAα
2
s P (x)

4π2y(∆t)2

[
ln

(
1 +

2iΩ0(1− x) ∆t

xy

)
+

(
1 +

2iΩ0(1− x) ∆t

xy

)−1

− 1

]
.

(E.10)

One can rewrite the above as a total divergence,

Capprox =
CAα

2
s P (x)

4π2y

d

d(∆t)

 ln
(

1 + 2iΩ0(1−x) ∆t
xy

)
∆t

 , (E.11)

and so do the integral and then take 2 Re(· · · ) to find the leading y → 0 behavior∫ ∞
0

d(∆t) 2 ReCapprox = −CAα
2
s (1− x)P (x)

π2xy2
Re(iΩ0) (E.12)

of the ∆t integral for 2 Re(xyȳx̄). This is a y−2 divergence, which would dominate over the

y−3/2 divergences of table 1 except that (E.12) exactly cancels the y → 0 limit of the pole

term for 2 Re(xyȳx̄). This pole term [27] represents the portion of Apole (A.15) attributable

to that diagram. The piece of the pole term responsible for the y−2 divergence is 2 Re(· · · )
of the −2γ term in (D.8).

So we need not worry about the canceling y−2 divergences except that (E.10) hides a

sub-leading y−3/2 divergence of the integral. (Such cancellations make us wonder whether

there is some more elegant analysis of diagrams that would give simpler formulas that more

directly reveal the physics of the y → 0 limit.)

48A quick, initial way to figure out the scaling of the dominant contribution is to make a numerical

log-linear plot of ∆t times the integrand vs. ∆t for two extremely small values of y and see how the most

prominent feature of the plot scales with y. Because of large round-off error associated with delicate subtrac-

tive cancellations in our formulas for small ∆t, we found this method requires using much higher precision

numerics than standard machine precision in order to get good results for the integrand at extremely small

value of y and ∆t.
49In particular, D is dominated for ∆t ∼ y by the 2γZyȳI1 and γȲyȳYyȳI2 terms of (A.14); these (X,Y, Z)

are individually given by the 1/∆t terms shown in eq. (D.2) of ref. [25], but the combination XyXȳ−X2
yȳ '

−x
2yM0E
(∆t)2

[
1 + 2iΩ0(1−x) ∆t

xy

]
; I2 ' I0; and γ ' 2P (x)/x2(1− x)3y3CA.
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E.4.2 The surviving y−3/2 divergence

The contributions 2 Re(C − Capprox) to the ∆t integrand that are not accounted for by

2 ReCapprox above are dominated50 by ∆t ∼ y1/2. Physically, this corresponds to ∆t ∼
tform(y), where tform(y) is the formation time associated with bremsstrahlung of a soft y

gluon.

Repeating the analysis of the small-y expansion of D but now for ∆t ∼ y1/2 instead of

∆t ∼ y, we find51

D ' −CAα
2
s P (x)

4π2y
[Ωy csc(Ωy ∆t)]2 ln(2iΩ0 ∆t), (E.13)

where

Ωy ≡
√
−iq̂A

2yE
. (E.14)

Comparing to the already-accounted-for Dapprox of (E.9), and remembering that now

∆t ∼ y1/2,

D ' Dapprox + δC (E.15)

with

δC ≡ −CAα
2
s P (x)

4π2y

([
Ωy csc(Ωy ∆t)

]2 − 1

(∆t)2

)
ln(2iΩ0 ∆t). (E.16)

We’ve called it δC instead of δD because it already vanishes in the vacuum limit q̂ → 0,

which takes both Ωy and Ω0 above to zero. So the vacuum subtraction has no effect on

this contribution to D.

The y−3/2 divergence of 2 Re(xyȳx̄) will now come from taking the integral over ∆t

of 2 Re δC. By changing integration variable to τ ≡ iΩy ∆t, which runs from 0 to eiπ/4∞,

and then arguing that one can safely add a contour at infinity to deform the integral to be

from 0 to +∞, one gets

2 Re

[
dΓ

dx dy

]
xyȳx̄

' CAα
2
s P (x)

2π2y
Re

[
iΩy

∫ ∞
0

dτ

(
1

τ2
− 1

sh2 τ

)
ln

(
2Ω0

Ωy
τ

)]
. (E.17)

The integral formula52 ∫ ∞
0

dτ

(
1

τ2
− 1

sh2 τ

)
ln(aτ) = ln(πa)− γE (E.18)

then gives

2 Re

[
dΓ

dx dy

]
xyȳx̄

' CAα
2
s P (x)

2π2y
Re

(
iΩy

[
ln

(
2πΩ0

Ωy

)
− γE

])
. (E.19)

50One may use the same method as footnote 48.
51Not much changes from the previous derivation for ∆t ∼ y except that (i) some of the terms that

were important for ∆t ∼ y can be ignored for ∆t ∼ y1/2, and (ii) it is no longer possible to take the

small-∆t approximation to Ω+ csc(Ω+ ∆t) when calculating Zyȳ. In particular, we find that Ω+ is of order

the inverse y-formation time for small y, so that Ω+∆t � 1 for the previous case ∆t ∼ y but Ω+∆t ∼ 1

for the ∆t ∼ y1/2 case here. This point only matters for Zyȳ since we find that the small-y limits of the

relevant (X,Y )’s are not sensitive to Ω+ csc(Ω+∆t).
52See appendix B for (E.18).
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In the style of (E.1), this is

CAα
2
sP (x)

4π2y3/2

√
q̂A

E

[
1
2 ln y +D(x)

]
(E.20)

with D(ξ) determined in this derivation to be (E.2). Permuting x↔ y in (E.20) gives the

entry in table 1 for 2 Re(yxx̄ȳ) as x→ 0.

E.5 Derivation of G(ξ)

Now we give an example of the derivation of one of the boldfaced G’s in table 1. We focus

on the entry for the y → 0 limit of 2 Re(yxx̄ȳ), which by permutation is the x→ 0 limit of

the same canonical crossed diagram 2 Re(xyȳx̄) analyzed in the previous subsection.

E.5.1 Spurious x−5/2 divergence of 2 Re(xyȳx̄)

Similar to the y → 0 limit of 2 Re(xyȳx̄) studied in section E.4, the ∆t integral (E.7) also

generates a spurious dominant divergence in the x → 0 limit. In this case, the integral is

dominated by ∆t ∼ x3/2, for which53

Dapprox = −CAα
2
s P (y)

4π2x(∆t)2

[
ln

(
xy

1− y + 2iΩx ∆t

)
+

(
1 +

2iΩx(1− y) ∆t

xy

)−1
]
, (E.21)

where

Ωx ≡
√
−iq̂A

2xE
(E.22)

is the small-x limit of Ω0. Correspondingly,

Capprox = −CAα
2
s P (y)

4π2x(∆t)2

[
ln

(
1 +

2iΩx(1− y) ∆t

xy

)
+

(
1 +

2iΩx(1− y) ∆t

xy

)−1

− 1

]

=
CAα

2
s P (y)

4π2x

d

d(∆t)

 ln
(

1 + 2iΩx(1−y) ∆t
xy

)
∆t

 (E.23)

When integrated, this generates an x−5/2 contribution to the ∆t integral, which is canceled

by a similar contribution from the pole term. The relevant piece of the pole term again

comes from the −2γ term in (D.8).

E.5.2 The surviving x−3/2 divergence

In this case, the dominant contribution to 2 Re[C − Capprox] comes from two places. One

is ∆t ∼ x1/2, which physically corresponds to ∆t ∼ tform(x). The other is sub-leading

corrections to the ∆t ∼ x3/2 region we just analyzed above.

Let’s start with ∆t ∼ x1/2. In this region, we find

D(∆t∼x1/2) ' −
CAα

2
s P (y)

4π2x(∆t)2
ln(1− e−2iΩx ∆t). (E.24)

53The situation is similar to footnote 49 except that here XyXȳ −X2
yȳ ' −x

3y(1−y)E2

(∆t)2

[
1 + 2iΩx(1−y) ∆t

xy

]
and γ ' 2P (y)/y2(1− y)3x3CA.
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The difference of this with the already-accounted-for Dapprox of (E.21) is

δC(∆t∼x1/2) ' −
CAα

2
s P (y)

4π2x(∆t)2
ln

(
1− e−2iΩx ∆t

2iΩx ∆t

)
. (E.25)

Taking ∆t→ 0 above, 2 Re(δC) diverges as

2 Re δC(∆t∼x1/2) ≈
CAα

2
s P (y)

2π2x∆t
Re(iΩx), (E.26)

and so we cannot simply integrate 2 Re δC to find the result we are interested in. In general,

the 1/∆t divergence of individual diagrams is what created the need for analyzing what

we call pole terms of diagrams. In the current case, this divergence shows up at an order

in x that makes it relevant to the integral of 2 Re δC. We will need to subtract out the

1/∆t divergence to get a convergent integral and then add the subtraction back in as part

of the pole term, as in (D.1). Following (D.5), at this order in x we will choose

D2 '
CAα

2
s P (y)

2π2x
Re
[
iΩ3

x∆t csc2(Ωx ∆t)
]
, (E.27)

whose ∆t → 0 behavior matches (E.26). Eq. (E.27) is the same as taking the small-x

limit of applying (D.5) to the more general small-∆t result (D.3) for 2 Re(xyȳx̄). Defining

τ ≡ iΩx ∆t, the integral we want is

2 Re

[
dΓ

dx dy

](∆t∼x1/2)

xyȳx̄

'
∫ ∞

0
dt
[
2 Re

(
δC(∆t∼x1/2)

)
−D2

]
' −CAα

2
s P (y)

2π2x
Re(iΩx)

∫ ∞
0

dτ

[
1

τ2
ln

(
1− e−2τ

2τ

)
+

τ

sinh2 τ

]
' CAα

2
s P (y)

2π2x
Re(iΩx)

[
ln(2π)− γE

]
. (E.28)

(See appendix B for the last integral.)

Now turn back to ∆t ∼ x3/2. Carrying out the expansion of D to next order in x

(including the size of ∆t in the counting of order), we find54

D(∆x∼x3/2) =− C2
Aα

2
s

8π2
(xyz)2(1− x)(1− y)

γ

(∆t)2

×
[
(1 + ξ̄) ln

(
xyR

(1− x)(1− y)

)
+

(1− 2iΩx ∆t)

R

] [
1 +O(x2)

]
, (E.29)

where

R ≡ R0 + δR, R0 ≡ 1 +
iΩx∆t

ξ̄
, δR ≡ (Ωx∆t)2

ξ̄
, ξ̄ ≡ xy

2z
. (E.30)

54We will not list intermediate steps here except to mention, as a checkpoint, that

XyXȳ −X2
yȳ = −x

3yzE3

(∆t)2

[
1 + (2 + ξ̄−1)iΩx∆t− ξ̄−1(Ωx∆t)2] [1 +O(x2)

]
,

which at leading order in x matches the simpler formula of footnote 53.
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Note that R0 is O(1), but δR and ξ̄ are O(x) and so small. We could have more thoroughly

written out the x expansion of what is shown explicitly in (E.29), but keeping it in its

current form will be convenient. For example, not explicitly expanding γ (A.23) will make

it simpler to see what parts of this calculation eventually cancel with the pole terms at this

order in x. Subtracting the vacuum limit from (E.29) gives

C(∆x∼x3/2) =− C2
Aα

2
s

8π2
(xyz)2(1− x)(1− y)

γ

(∆t)2

×
[
(1 + ξ̄) lnR+

(1− 2iΩx ∆t)

R
− 1

] [
1 +O(x2)

]
. (E.31)

At leading order in x, this reproduces (E.23), but (E.31) correctly accounts for the next

order in x as well. At that order, D2 (E.27) is relevant, and its subtraction must be

included as well, in order for the ∆t → 0 integration to converge. It’s convenient to use

the leading-order conversion55

C2
Aα

2
s

4π2
(xyz)2(1− x)(1− y)γ =

CAα
2
s P (y)

2π2x

[
1 +O(x)

]
(E.32)

to rewrite (E.27) as

D2 '
C2

Aα
2
s

4π2
(xyz)2(1− x)(1− y)γ Re

[
iΩ3

x∆t csc2(Ωx ∆t)
]
. (E.33)

[The leading-order conversion is adequate because D2 is already a sub-leading effect to our

calculation of
∫
d(∆t) 2 Re(C − D2).] For ∆t ∼ x3/2, the argument of the csc is small, so

we may approximate

D2 '
C2

Aα
2
s

4π2 ∆t
(xyz)2(1− x)(1− y)γ Re(iΩx) (E.34)

This matches the 1/∆t divergent behavior of 2 Re(C(∆x∼x3/2)), as D2 should. It is also

convenient to switch from the ∆t variable, which is O(x3/2) in (E.31), to the O(1) variable

τ̄ ≡ iΩx ∆t

ξ̄
, (E.35)

in terms of which

d(∆t)
[
2 Re

(
C(∆x∼x3/2)

)
−D2

]
'

− C2
Aα

2
s

4π2
(xyz)2(1− x)(1− y)γ

× Re

{
iΩx

ξ̄

dτ̄

τ̄2

[
(1 + ξ̄) ln(1 + τ̄ − ξ̄τ̄2) +

(1− 2ξ̄τ̄)

1 + τ̄ − ξ̄τ̄2
− 1 + ξ̄τ̄

]}
×
[
1 +O(ξ̄2)

]
. (E.36)

55We’ve used the leading-order relation γ ' 2P (y)/y2(1− y)3x3CA of footnote 53.
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Expansion in x is now equivalent to expansion in ξ̄. Expanding explicitly to NLO in ξ̄, we

find that we can rewrite the argument of Re above as

iΩx

ξ̄
dτ̄ × d

dτ̄

[
−(1 + ξ̄)

τ̄
ln(1 + τ̄) +

ξ̄τ̄

(1 + τ̄)

]
. (E.37)

Integration then gives

2 Re

[
dΓ

dx dy

](∆t∼x3/2)

xyȳx̄

'
∫ ∞

0
d(∆t)

[
2 Re

(
C(∆x∼x3/2)

)
−D2

]
= −C

2
Aα

2
s

4π2
(xyz)2(1− x)(1− y)γ Re(iΩx)

(
1

ξ̄
+ 2

)
(E.38)

through O(x−3/2).

The last element we need is to extend analysis of the O(x−5/2) pole terms to O(x−3/2).

Since we have had to make the D2 subtraction above, we also need to add the D2 term back

to the pole terms as in (D.1). Using (E.33) and 2 Re(· · · ) of (D.6)–(D.8), and expanding

in x, we find

lim
“a→0”

{
2 Re

[
dΓ

dx dy

](∆t<a)

xyyx̄

+

∫ ∞
a

d(∆t)D2(∆t)

}
=

C2
Aα

2
s

4π2
(xyz)2(1− x)(1− y)γ

× Re

{[
1

ξ̄
+

2

ε
+ 2 ln

(
µ2

iΩxE

)
− ln(e−iπxyz) + 2 + 2 ln π

]
iΩx

}
. (E.39)

Adding this to the two contributions (E.28) and (E.38) from
∫
d(∆t) 2 Re[C −D2], we see

once again that the leading-order contributions (represented here by the 1/ξ̄ terms) cancel,

now leaving the O(x−3/2) result

2 Re

[
dΓ

dx dy

]
xyyx̄

' C2
Aα

2
s

4π2
(xyz)2(1− x)(1− y)γ Re

{[
2

ε
+ 2 ln

(
µ2

iΩxE

)
− ln(e−iπxyz)

+ ln 2 + 3 lnπ − γE

]
iΩx

}
. (E.40)

Since the O(x−5/2) pieces have canceled, we may now use leading-order expressions for z

and γ to get

2 Re

[
dΓ

dx dy

]
xyyx̄

' CAα
2
s P (y)

2π2x
Re

{[
2

ε
+ 2 ln

(
µ2

iΩxE

)
− ln

(
e−iπxy(1− y)

)
+ ln 2 + 3 lnπ − γE

]
iΩx

}
. (E.41)

In the style of (E.1), this is

CAα
2
sP (y)

4π2x3/2

√
q̂A

E

[
2

(
1

ε
+ ln

(
µ2

(q̂AE)1/2

))
+G(y)− π

2

]
(E.42)
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with G(ξ) determined in this derivation to be (E.3). Permuting x↔ y in (E.42) gives the

entry in table 1 for 2 Re(yxx̄ȳ) as y → 0.

This has been a complicated derivation of G(ξ). Reassuringly, one can confirm the

final answer numerically by comparing to the soft limit of our full numerical results for the

diagram.

F Power-law IR cancellations in stopping distance formulas

Consider moments 〈`n〉 of the energy-weighted distribution in distance ` of where energy

is deposited by a shower that stops in the medium. Imagine also that splitting rates dΓ

scale with energy E as some power E−ν , even though that is not precisely true for NLO

rates because of the double-log dependence in QCD. Applied to our case of purely gluonic

showers, eqs. (A10) and (A12-A14) of ref. [13] give the recursion relation

〈˜̀n〉 =
n〈˜̀n−1〉
M(n)

, (F.1)

where

M(n) =
1

2

∫ 1

0
dx

dΓ̃g→gg
dx

[1− x1+nν − (1− x)1+nν ]

+
1

3!

∫
y<1−x

dx dy
dΓ̃g→ggg
dx dy

[1− x1+nν − y1+nµ − z1+nν ] (F.2)

and z ≡ 1− x− y in this presentation. Above,

˜̀≡ E−ν`, dΓ̃ ≡ Eν dΓ, (F.3)

and we do not notationally distinguish dΓ vs. ∆ dΓ. We now show that (F.2) can be written

in terms of the r(x, y) and v(x, y) defined in the main text and has the same organization

for the cancellation of power-law IR divergences.

Using the final-state permutation symmetries of (x, 1 − x) for g → gg and of (x, y, z)

for g → ggg, (F.2) can be rewritten as

M(n) =
1

2

∫ 1

0
dx

dΓ̃g→gg
dx

[1− 2x1+nν ] +
1

3!

∫
y<1−x

dx dy
dΓ̃g→ggg
dx dy

[1− 3x1+nν ] (F.4)

and thence

M(n) = Γ̃−
∫ 1

0
dx

[
dΓ̃

dx

]
net

x1+nν , (F.5)

where Γ and [dΓ/dx]net are given by (3.4) and (1.5), here scaled by (F.3). The form (F.5) is

somewhat similar to the right-hand side of (3.2). One may then mirror the steps from (3.2)

to (3.16) to obtain

M(n) = Ŝ LO + ŜNLO (F.6a)
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where

Ŝ LO =
1

2

∫ 1

0
dx

[
dΓ̃

dx

]LO

[1− x1+nν − (1− x)1+nν ]

=

∫ 1

0
dx

{[
dΓ̃

dx

]LO

θ
(
x > 1

2

)
−
[
dΓ̃

dx

]LO

x1+nν

}
(F.6b)

and

ŜNLO =

∫ 1

0
dx

∫ 1/2

0
dy

{[
v(1− x, y) θ

(
y < x

2

)
+ 1

2r(x, y) θ(y < x) θ
(
y < 1−x

2

)]
−
[
v(x, y) θ

(
y < 1−x

2

)
+ v(1− x, y) θ

(
y < x

2

)
+ r(x, y) θ

(
y < 1−x

2

)]
x1+nν

}
.

(F.6c)

Similar to (3.16c), the integrand in (F.6c) has no support for y → 1 (with fixed x), and

power-law divergences cancel as y → 0. Unlike (3.16c), the integrand in (F.6c) has support

as x → 0. However, the terms that have such support are suppressed by the x1+nν factor

and so do not generate a divergent x integration.
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