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1 Introduction

Massless scalar fields with exactly vanishing potentials — i.e., moduli — are ubiquitous
in string-derived quantum gravities with unbroken supersymmetry. When present, moduli
have important low-energy consequences, mediating new long-range forces in addition to
the usual gauge and gravitational ones.

These forces are often required to fulfill the predictions of supersymmetry. For instance,
mutually supersymmetric (BPS) objects must have vanishing force between them, but the
electrostatic and gravitational forces do not cancel in general. Moduli-mediated forces
exactly make up the difference, bringing the net force to zero. Likewise, supersymmetric
black holes typically have more charge than is allowed by the Reissner-Nordstréom (RN)
extremality bound M? > ygnQ@?. The discrepancy is again explained by the moduli, which
alter the external geometry of the black hole and reduce the gauge coupling near its core,
avoiding a naked singularity.

In the absence of moduli, there is a simple connection between long-range forces and
black holes: an extremal Reissner-Nordstrom (RN) black hole carries just enough charge
so that two identical copies of the black hole have vanishing long-range force between them
(the extremal black hole has vanishing “self-force”). In other words, extremal RN black
holes behave like BPS objects, regardless of whether they preserve any supersymmetry.
This holds to leading order in the derivative expansion of the effective field theory —
hence, for parametrically large black holes — but not necessarily beyond that.

In this paper, I establish that the connection between extremality and vanishing self-
force persists in a general theory of moduli, Abelian gauge fields, and Einstein gravity at the
two-derivative level with vanishing cosmological constant, for an appropriate generalization
of “extremal.”

In particular, an extremal RN black hole has vanishing Hawking temperature. In
theories with a dilaton, “extremal” black holes do not always have this property [1], see
also section B.1, but instead the Bekenstein-Hawking entropy goes to zero in the extremal
limit. Let us label a black hole with either vanishing Hawking temperature (surface gravity)
or vanishing Bekenstein-Hawking entropy (horizon area) quasiextremal.

I will show that static spherically symmetric quasiextremal black holes have vanishing
long-range self-force, whereas all other non-extremal (finite temperature and entropy) static
spherically symmetric black holes are self-attractive. As before, these results hold at the
two derivative level, hence for parametrically large black holes, but not necessarily beyond
that. Similar results will be obtained for black branes.

The connection between quasiextremality and long range forces is particularly relevant
for the Repulsive Force Conjecture [2-6] variant of the Weak Gravity Conjecture [7]. A
different notion of “extremal” is kinematically relevant. Let us label a black hole that is
lighter than all others of the same charge extremal. BPS black holes are always extremal
because of saturating a BPS bound. More generally, extremal black holes are closely related
to the Weak Gravity Conjecture when formulated kinematically as in, e.g., [8, 9].

It is relatively easy to write down effective field theories admitting quasiextremal black
hole solutions that are not extremal. For instance, if the gauge coupling has a critical



point somewhere in moduli space then there are RN black hole solutions in this vacuum,
including one which is quasiextremal (zero temperature), but if the critical point is not a
local minimum then it can be shown (e.g., using the methods of [10]) that there are lighter
black hole solutions of the same charge.

On the other hand, an extremal black hole should be quasiextremal on physical
grounds, because if not it will emit finite temperature Hawking radiation from a hori-
zon of finite area, and thus the radiated power will be nonzero and the black hole will lose
mass over time, contradicting the assumption that it was the lightest possible black hole
of that given charge. This argument relies on black hole quantum mechanics and assumes
that finite-temperature Hawking radiation does not efficiently discharge the black hole, but
a purely classical proof that extremal black holes are quasiextremal can be developed [10].

The relationship between quasiextremal and extremal black holes is particularly im-
portant for understanding the relationship between the Repulsive Force Conjecture and
the Weak Gravity Conjecture [6].! This will be explored in more detail in a companion
paper [10], where a general prescription for determining the mass of an extremal black
hole and hence the extremality bound Mpy(Q) > Mex(Q) will be discussed. In particular,
this prescription, based on [13, 14], is intimately tied to the BPS-like no-force condition
for quasiextremal black holes derived in this paper, and will lead to a number of useful
theorems relating extremality and self-force.

To obtain my primary result, I will show that static spherically symmetric black hole
solutions and static spherically symmetric and worldvolume translation invariant black
brane solutions are determined by a set of equations with a universal form at two-derivative
order in the derivative expansion. Among these equations is a first order (constraint)
equation descending from the Einstein equations that fixes the self-force in terms of the
product of the surface gravity and the horizon area of the solution.

To derive these equations, I make some very general assumptions about the form
of the two-derivative effective action for scalars, p-form gauge fields, and gravity. These
assumptions are difficult to derive from first principles (due to the possibility that the gauge
symmetry may take an unusual form), but are consistent with most if not all examples that
arise in UV complete quantum gravities such as string theory.

In addition, in this paper I only consider black hole solutions that do not cross from
one branch of the moduli space to another. The fact that such a crossing can occur does
not seem to be generally known, and the details are sufficiently interesting to warrant a
dedicated treatment, see [15]. In the end, the self-force properties of these novel solutions
are the same as those discussed in this paper.

An outline of this paper is as follows. Quasiextremal black holes and black branes
are introduced in section 2. In section 3, I discuss the low energy effective action and
isolate those terms which are relevant to the following analysis. Long range forces between
particles and parallel branes are discussed in section 4. In section 5, I discuss black hole
and black brane solutions and their thermodynamics and show that quasiextremal black

1Other connections between these two conjectures have been proposed [5, 11], simultaneously incorpo-
rating the Swampland Distance Conjecture [12].



holes and black branes have vanishing self-force, whereas non-extremal black holes and
black branes are self-attractive. Appendix A treats theta angles, magnetic charges, and
self-dual gauge fields in various dimensions. Appendix B reviews some examples from the
literature.

2 Quasiextremal black holes and black branes

For the purposes of this paper, a black hole is a smooth asymptotically flat? solution to a
gravitational theory with some mass M, charge (), and angular momentum L, such that
the source of the mass, charge, and angular momentum is hidden behind a single smooth
event horizon with a spherical topology. Note that () and L are vectors whose dimensions
depend on the gauge group and the spacetime dimension, respectively. For the remainder
of the paper, I will only consider static and spherically symmetric black holes, so L is
necessarily vanishing.

The thermodynamic properties of black holes are closely related to their horizon area
A > 0 and surface gravity x > 0. The former determines the Bekenstein-Hawking entropy,
and the latter determines the Hawking temperature.

Black holes with both x > 0 and A > 0 are non-extremal. Such black holes have finite
temperature and finite entropy, and behave thermodynamically. By comparison, I will call
black holes with either kK = 0 or A = 0 quasieztremal.®> In part because a smooth event
horizon cannot have vanishing area, it is convenient to include in the latter class solutions
with a singular horizon that are the limit of some sequence of solutions with a smooth
horizon. Despite the singularity, these solutions can be physically important. For instance,
DO brane solutions in string theory are of this type.

Thermodynamically, & = 0 solutions have vanishing Hawking temperature, hence they
do not emit Hawking radiation. Likewise, a system with vanishing entropy cannot give
off heat, and so A = 0 solutions also do not emit Hawking radiation.* Thus, unlike non-
extremal black holes, quasiextremal black holes do not radiate and are metastable.

A black (p—1)-brane is an extended object with p worldvolume spacetime dimensions.
For a black brane with an infinite planar worldvolume, the horizon topology S¥—7~! x RP~1
is required and (for vanishing cosmological constant) the solution must be asymptotically
flat far from the brane worldvolume.? Black (p — 1)-branes can be charged under p-form
gauge fields A, and can carry angular momentum density in their transverse directions.
For the remainder of this paper, I will only consider static, spherically symmetry, uniform
and isotropic® black branes, so in particular their angular momentum density vanishes.

2 A black hole could also be asymptotically AdS or asymptotically dS, or perhaps have some more exotic
asymptotics, but this is not relevant for the present paper.

3Solutions with A = 0 are commonly known as “small black holes.”

4Heuristically, this is because the emitting surface shrinks to zero size; correctly understanding the
details of this mechanism is beyond the scope of this paper.

5This is a distinct and weaker requirement than simply “asymptotically flat” because the brane world-
volume stretches off to infinity.

5That is, solutions must be invariant under rotations tranverse to the brane (spherically symmetric) as
well as spatial translations (uniform) and rotations (isotropic) along the brane worldvolume.



The horizon area of such a black brane is typically infinite, but the horizon area per unit
spatial worldvolume A is finite. Thermodynamically, this determines the entropy density of
the brane. Similar to before, a black brane with x > 0 and A > 0 is non-extremal, whereas
one with either kK = 0 or A = 0 is quasiextremal. As before, the quasiextremal class is
taken to include solutions with a singular horizon that are the limit of some sequence of
solutions with smooth horizons. In fact, it turns out that all quasiextremal black branes
are boost-invariant along their worldvolumes, implying a singular horizon. This includes
all BPS brane solutions in string theory.

By the same reasoning as before, quasiextremal branes do not give off Hawking radia-
tion, whereas non-extremal branes do.”

3 The two-derivative effective action

To study black holes and their long range forces, I assume that low-energy, long-wavelength
physics is described by a weakly-coupled effective action, organized in a derivative expan-
sion. For parametrically large black holes, only the leading, two-derivative effective action
will be important, and I focus on this exclusively for the rest of the paper. In the same
limit, any massive fields can be integrated out. This generates higher-derivative correc-
tions, but these can be ignored for parametrically large black holes as before, so that in
the end we obtain a two-derivative effective action for the massless fields only.

At tree-level massless fermions neither affect black hole solutions nor mediate long-
range forces, so we ignore them for the time being. By well-known arguments, massless
fields can have spin at most 2,8 and so the bosonic effective action depends only on the
metric (spin 2), p-form gauge fields (spin 1), and scalar fields (spin 0).

The typical structure of this effective action is as follows: for each p-form gauge field A,
there is a gauge-invariant modified field strength Fp+1 = dAp+(...) from which the kinetic
term is built, where the omitted terms involve wedge products of other g-forms and their
exterior derivatives. In general, gauge transformations on these g-forms B, — B, + d\;—1
do not leave dA,, invariant, but the extra terms in the modified field strength FpH ensure
that it is gauge invariant.

We can constrain these extra terms by considering the modified Bianchi identity:
dFg ) = 0%l o+ BYNES + 9N ED + . (3.1)

where we isolate the ¢-form of the highest rank in each term, a,b, ... are indices labelling
the different forms fields and o, 3%, and 4 are zero, one, and two-forms respectively built
from the other fields.

The first term comes from Fp+1 = dA, + aApi1 + (...), where the indices a,b,...
are temporarily suppressed for simplicity. However, this generates a Stueckelberg mass for

"Moreover, quasiextremal branes seem to be immune to the Gregory-Laflamme instability [16] that
afflicts non-extremal black branes [17, 18].

8] assume that the number of massless fields is finite, thereby excluding exotic possibilities such as
Vasiliev theories.



Ap11 (eating A, which can be set to zero by a gauge transformation on Ap;1). Since we
have already integrated out all massive fields, such a coupling cannot occur, hence a9 = 0.

Likewise, the second term comes from F,,; = dA, — B A A, + (...). One possibility
is that 8 = qA; for some one-form gauge field A;, indicating that A, carries charge ¢
under A;.° However, much like massless fermions, charged bosons neither affect black hole
solutions nor mediate long-range forces at tree-level, because charge conservation disallows
terms in the action containing only one charged field, and therefore all charged fields can
be consistently truncated in a background preserving the gauge symmetry.'?

Thus, for the time being we ignore all charged fields in the effective action. Once
we have truncated the charged fields, g = Bz(qb)dw must be built from the scalar fields.
Consistency of the Bianchi identity de+1 =06 A Fp+1 + ... implies that dG — 8 A B8 = 0.
Thus, B is a flat one-form connection on the scalar mamfold, implying that it is “pure
gauge,” 3 = —A~1dA for some A = A(¢). Redefining A, — A(¢)A, sets 3 = 0.

Therefore, after a field redefinition the neutral p-forms have modified field strengths,

Fo =dAS+ 44 nAD 4+ — dFS =S ANE .. (3.2)

where the additional terms involve wedge products of lower-rank forms and their exterior
derivatives. Accounting for the fact that the modified Bianchi identities can contain terms
with at most two derivatives at this order in the derivative expansion, we see that they
take the general form

p+1 - Z (O be q+1 q+1 ) (33)

for some constants C%, .11
In terms of the modified field strengths, the two-derivative effective action for the
neutral bosons is generally of the form:

1 1 i .
s= | dd:c\/—*g(MR—2Gij(¢>V¢-W— 9) - 3, > [TV n<E

+Sp + Scs (3.4)

where V' (¢) is the scalar potential, G;;(¢) is the metric on moduli space, and fu4(¢) is the
gauge-kinetic matrix. We work in Einstein frame, so m?l is independent of the scalar fields,
unlike V| G and j. The 6 terms take the general form

28 g/aab Fya NEy 1, (3.5)
whereas the Chern-Simons interactions can be specified in a gauge-invariant manner as

Scs = — [ Lcs, where

dLcs = Z panECq NEY_ + > CapeF8y NEY AFS, (3.6)
p+qt+r=d—2

°In this case, F},.H is only gauge-covariant, rather than gauge-invariant.

10An exception is when the gauge symmetry is spontaneously broken close to the black hole, i.e., when
the black hole solution passes onto another branch of the moduli space near the event horizon. Further
discussion of this case is deferred to [15].

1A priori, C%, might depend on the scalar fields, but this is inconsistent with d2F2 o1 = 0.



is a closed, gauge-invariant, formal d 4+ 1 form, involving at most three derivatives at this
order. The two-derivative terms in dLqg correspond to a one-derivative Chern-Simons
terms. However, in combination with the usual Maxwell kinetic terms in (3.4), these
generate massive poles in the propagator. Since we integrated out all massive fields, we
assume [qp = 0.12

The effect of the remaining cubic Chern-Simons interactions C’abc on the equations of
motion is easiest to see by defining the magnetic-dual field strengths

F(me®) = orfyy « FY 4 P00 o (3.7)
2 4

In terms of the larger set of electric and magnetic field strengths the equations of motion
and Bianchi identities combine into equations of the form (3.3). The couplings C'%,. and
Cope are therefore closely related and are intermixed by Hodge duality.

Using Hodge duality, we can restrict to 1 < p < (d —2)/2. This eliminates most of the
theta terms, except those for p = (d — 2)/2 forms in even dimensions:

1 - -
S0 =53 [ Oa(@)Fdjo A . (3.8)

An additional possibility in dimensions d = 4k + 2 is the presence of (anti)self-dual bosons,
satisfying constraints of the form

« F'g = N () Fil (3.9)

for some A9(¢). The resulting theory is non-Lagrangian: the constraints (3.9) must be
imposed by hand on top of the Euler-Lagrange equations for the “pseudo-action” (3.4).

The arguments above are not meant to be rigorous, but provide a strong motivation
for studying an effective action of the general form (3.4). In the next section, I reduce the
effective action to a simpler effective action that is equivalent for the purpose of charac-
terizing spherically symmetric black holes and the long range forces between them. I then
return to the issue of quantum effects, so far neglected.

3.1 Static, spherically symmetric backgrounds

With the general form of the action in mind, let us specialize to static, spherically symmetric
backgrounds, assumed henceforward. Such backgrounds are sufficient to describe the long-
range fields sourced by a particle at rest, and also to describe many (but not all) static
black hole solutions.'?

Spherical symmetry severely restricts which background fields can be turned on, which

allows us to truncate many fields and simplify the problem. In particular, the SO(d — 1)

12 Another possibility is a Chern-Simons gauge theory, where pa, # 0 but fo, = 0. In this case, the
equations of motion fix Fp+1 algebraically in terms of the other fields, fixing A, up to the addition of
a flat gauge bundle. At the classical level, this gauge bundle has no effect on the black hole geometry.
Understanding its quantum effects (if any) is an interesting question beyond the scope of this paper.

13 As discussed in section 2, I will not consider multi-center solutions and other non-spherically symmetric
black hole solutions.



rotational invariance around a particle or spherically symmetric black hole implies that
Fp+1 = 0 except in the Hodge-dual cases p = 1 and p = d — 3. Per (3.3), the F, Bianchi
identity is unmodified, whereas a non-vanishing Chern-Simons contribution to d * F> could
only involve Fo A Fy (in d = 5), but this too vanishes because Fy o< dt Adr. We can therefore

reduce the action (3.4) to
1 1 . . 1
5= [diay=4( 5z - 5050V 99 ~V(0)) 5 [fal0)F5 n+FE 4 5y (310

without affecting the subsequent calculations in this paper.

Consistent with a Minkowski vacuum, suppose that V' (¢) — 0 asymptotically far from
the black hole, with V' (¢) > 0 nearby in scalar field space. Because the scalar potential is
lower-order in the derivative expansion than other terms in the action, for parametrically
large black holes it is parametrically important. The associated force pushes solutions
down to the moduli space V(¢) = 0 in the large black hole limit, hence we can ignore all
scalar fields that are not moduli in this limit, restricting to the submanifold V(¢) = 0 of
scalar field space.'?

The theta-term Sp = —# [ 0up(¢)F$ A FY is present only in 4d, in which case the
black hole can carry magnetic charge Fy o« €29 as well as electric charge F» o dt A dr,
where 5 is the volume form of the transverse S2. If the magnetic charge vanishes, then
Fy oc dt A dr, hence d¢ A F» = 0 because d¢ < dr by spherical symmetry. Thus, for purely
electrically charged particles and black holes, the theta term can be ignored. I focus on
this case in the main text for simplicity, deferring a complete treatment of magnetic charge
to appendix A.

With this caveat, we see that the following action is sufficient for analyzing paramet-
rically large spherically symmetric black holes and long-range forces between them

d 1
5= [dtzy=g(5zR-
2K5

SCo(V0 V6 — Su@F B, @)

where we use
1
/wp N *kXp = /ddx —gWp - Xp for Wy Xp 1= HX]\/[l__]\/[pcuMl'“Mf” . (3.12)

3.1.1 Black branes

Similar considerations apply to black branes and the long range forces between them. I
focus on (p — 1)-branes with 1 < p < d — 3 that are rotationally invariant in the directions
transverse to their worldvolume and invariant under spacetime translations and spatial
rotations along their worldvolume. The complete symmetry group is then

SO(d—p) x R xISO(p—1), (3.13)

where the Euclidean group ISO(p — 1) acts on the worldvolume spatial directions and R
translates in time.

14\Massless scalars that are not moduli contribute to long-range forces, but since parametrically large
black holes are confined (very close) to the moduli space, they are not charged under these scalars.



We could also demand boost-invariance (hence, Poincaré invariance) along the world-
volume, in which case the symmetry group would be

SO(d — p) x ISO(p — 1,1). (3.14)

Such a brane cannot truly be “black” because boost invariance requires g,, — 0 for all
worldvolume directions p, ¥ whenever g;; — 0, making a smooth horizon impossible. How-
ever, quasiextremal solutions can be boost-invariant, and in fact they always are with the
assumptions used in this paper.

In the boost-invariant case, the symmetries (3.14) impose F'qH = 0 except for ¢ = p,
q = p — 1, and their Hodge duals g =d —p—2 and ¢ =d — p — 1. In particular,

Fy= f(r)dt Ady* A ... AdyPt, (3.15)

but the Bianchi identity (3.3) imposes f'(r) = 0 because the symmetries do not allow
FQH A Fr-{-l with ¢,7 > 1 to have a component along dt A dy* A ... A dyP~' A dr. Thus,
Fp retains a constant background value far from the brane. This is inconsistent with
asymptotic flatness, so we require Fp =0.

The action for the remaining fields is

S — /ddxr( R Gm(qb)V(ﬁi-Vqﬁj— )—/fa,, Fo, A*FY +8p, (3.16)

analogous to (3.10). To verify that this is a consistent truncation, note that the symmetries
require FZ‘}H o dt Ady' A ... AdyP~! A dr except when d = 2p + 2, where a component

along S%P~1 is also possible. Thus, F® o1 A F(( “ ) “1)b and (for d = 2p + 2) Fd/2 A F§/2

and F érr;ag IAF énzag ) are the only non-vanishing wedge products of ¢-form gauge fields in
this b;ckgroun(f. As top forms, these cannot appear as source terms in the F ' 1 Bianchi
identities and equations of motion for 0 < ¢ < d— 2, allowing these fields to be conmstently
truncated for g # p.

With the smaller symmetry group (3.13), the black brane can carry a one-form charge
density sourcing Fy o< dt A dr and a (p — 1)-form charge density sourcing Fp x dy' AL A
dyP~! A dr in addition to its p-form charge. I will focus on the case where these charge
densities vanish, in which case F» = Fp = 0, and we can again consistently truncate to the
action (3.16). Note that in this case the larger symmetry group (3.14) is broken by the
metric only, and not by the other fields.

The theta term (3.8) is only present in d = 2p + 2 dimensions. As above, it has no
effect on black (p — 1)-branes with purely electric charge. For simplicity, I focus on this
case in the main text, leaving further discussion of magnetic charges, theta angles, and
self-dual gauge fields to appendix A.

With these caveats, the action simplifies to (see (3.12))

5= [dlav=a(5aR = 3640V -V~ @) B ). (1)
sufficient for analyzing black (p — 1)-branes with the indicated symmetries and the long-
range forces between them.



3.2 Singularities in the moduli space

Until now we have neglected all quantum effects. For d > 4 all interactions between massless
fields are irrelevant'® and the theory is infrared free. Because of this, loop contributions
will generally be subleading in comparison with the tree-level interactions, and so the
latter will completely determine the leading long-range forces and the leading behavior of
parametrically large black holes.

However, an important subtlety occurs when a massive particle becomes massless along
some locus in the moduli space.'® Moving infinitesimally off this locus and integrating out
the now massive particle, loop effects will generate new terms in the effective action for the
modulus along which we displaced and other fields coupled to it. These new couplings are
generally non-analytic functions of the modulus, and so cannot be absorbed into tree-level
counterterms. By comparison, while the same motion will generally change the masses of
various already-massive fields, the loop effects associated with these changes are analytic
at the chosen point in moduli space, and can be absorbed by counterterms.

Thus, the functions fq,(¢) and G;;(¢) should be analytic functions of the moduli away
from certain singular points in the moduli space where additional particles become massless.
Moreover, the non-analytic behavior of f.,(¢) and Gj;(¢) at the singular points should
correspond to loops of the particles becoming massless there.!”

As an example, in 5d a particle of mass M (¢) = p;¢'+O(¢?) and charge @, contributes
non-analytic couplings of the form A fup(¢) o< QuQp|pi¢’| and AG;;(¢) ox umj|,uk¢k| near
the point ¢° = 0, as illustrated in figure 1. Specific d = 5 quantum gravities of this kind
are analyzed in detail in [19]. In larger dimensions, the leading non-analytic behavior is
higher-order in the moduli displacement.

The situation in 4d is subtly different. Because gauge interactions are marginal, the
presence of massless charged particles (or massless non-Abelian gauge fields) has a larger
effect. If there are massless charged particles everywhere in moduli space then generically
the gauge couplings will either run to zero in the infrared or become non-perturbatively
large, depending on the signs of their beta functions. Either way, quantum effects play
an essential role in the deep infrared. Analyzing such a situation is beyond the scope of
this paper.'8

Suppose instead that massless charged particles only appear at loci in the moduli space
of codimension one or higher. In this case, the interactions are irrelevant away from these
singular loci, and we can continue to use the effective action (3.17) everywhere else in the
moduli space. The main difference versus higher-dimensional theories is that in 4d the
singularities in f4(¢) and Gj;(¢) are more dramatic, see figure 2(a).

5 Although a cubic scalar interaction is relevant (marginal) in d = 5 (d = 6), the presence of such an
interaction between massless scalars implies that V' (¢) decreases after an infinitesimal displacement along
some direction in field space, and we are not in a stable vacuum.

16T thank M. Alim, M. Reece and T. Rudelius for extensive discussions on related points. Some associated
results are reported in [19].

17T assume that V(¢) = 0 is maintained at loop level, e.g., due to supersymmetry.

18The non-perturbatively large couplings we are concerned with here do not include those associated with
confining gauge theories, since the confined gauge symmetry plays no role in the deep infrared.
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(a) One-loop corrections to fou(6), G (¢) (b) Singular point in a 5d theory due to
massless charged particles

Figure 1. (a) Leading contributions to non-analytic couplings near a singular point in the moduli
space of a 5d theory, in the case where the particle becoming massless is a fermion (similar diagrams
apply to bosons). (b) Behavior of a 5d gauge coupling e?(¢) = 1/f(¢) near a singular point in the
moduli space ¢ = ¢g where massless charged particles appear.

9 e2(¢)

A
> -
b0 >
b0 ¢
(a) Singular point in a 4d theory due to (b) A strongly-coupled singular point

massless charged particles

Figure 2. (a) In 4d theories massless charged particles lead to logarithmic infrared divergences,
driving the gauge coupling to zero in the deep infrared. (b) A singular point at which perturbation
theory breaks down, signaled by diverging or large dimensionless couplings nearby.

A further possibility in both 4d theories and higher-dimensional theories is that per-
turbation theory breaks at certain points in the moduli space, see figure 2(b). This can
happen due to the appearance of a conformal field theory (CFT), or when a monopole or
dyon becomes massless (as in Seiberg-Witten theory [20]).

3.2.1 Effect on charged black hole solutions

Because the moduli travel within the moduli space as we approach the event horizon,
sometimes by a substantial distance, charged black hole solutions can be sensitive to distant
features in the moduli space. To understand the effects of moduli space singularities on
black hole solutions, consider for example a 4d theory with a U(1) gauge group and a
one-dimensional moduli space in which a charged particle becomes massless at a singular
point ¢ = ¢y, see figure 2(a). Suppose we are interested in black hole solutions in a vacuum
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leo > ¢ %o

(a) Renormalized singular point (b) Limit of analytic functions

> ¢

Figure 3. (a) The gauge coupling renormalized at the scale of the horizon radius avoids the
singular behavior at ¢ = ¢g. (b) The non-analytic behavior near a singular point can be described
as the limit of a sequence of analytic functions, appropriate to the large black hole limit.

Doo = @(r = 0), where ¢ is close to (but not at) the singular point ¢o. Because the
gauge coupling is minimized at ¢ = ¢g, the modulus is drawn towards this point near the
event horizon, reducing the electrostatic energy \E |2 oc €2Q?.1 In the quasiextremal limit,
the value at the horizon ¢;, goes to ¢ due to the attractor mechanism [21-25].

Naively, the gauge coupling is exactly zero at the singular point ¢ = ¢, due to the
screening effect of the massless charged particle. However, for a finite size black hole the
size of the near-horizon region is likewise finite, and consequently the gauge coupling is
not completely screened. Defining an appropriate renormalized coupling to account for the
finite size of the black hole, the singularity in moduli space is smoothed, see figure 3(a).
This is an example of the well-known fact that phase transitions do not occur in a finite
volume, thus finite size black holes do not probe actual singularities in the moduli space,
but rather very sharp, analytic features that approximate them.

Honestly calculating these finite-size effects requires a much more careful treatment of
quantum effects beyond the scope of this paper. However, we can crudely model them by
postulating some analytic functions f,;>(¢) and G}3*($) (roughly speaking the renormalized
couplings) that closely approximate fu;(¢) and G;;(¢) away from the singular points. As the
black hole size is increased, the appropriate f,,°(¢) and G};*(¢) should be made sharper
near the singularities. Thus, in the large black hole limit, we take a limit of analytic
functions f,,°(¢) — fap(¢) and Gg?\g (¢) = Gij(¢), recovering the non-analytic behavior as
the black hole size goes to infinity, as illustrated in figure 3(b).

With this in mind, to construct black hole solutions we begin with the simplifying
assumption that fo,(¢) and Gj;(¢) are analytic. Singularities in the moduli space can then
be described by taking a limit of these solutions as fq,(¢) and Gij(¢) develop localized
sharp features. Typically the result of taking such a limit will not depend on the choice of
a sequence of analytic functions fi%g(@ and Gi;g(qb) approaching the desired singular fq(¢)
and Gj;(¢), and so we can describe parametrically large black hole solutions parametrically
well without needing to analyze the aforementioned finite-size effects in detail.

19This is qualitative explanation, but the same result can be shown explicitly using (5.35) and (5.32b).
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3.2.2 Strongly coupled black holes?

Above we focused on singularities with a perturbative description. One might worry that
a strongly-coupled singularity (e.g., figure 2(b)) might lead to a loss of calculability, i.e.,
knowledge of the infrared couplings fu;(¢) and G;;(¢) might be insufficient to determine
the large black hole solutions. However, for the same reason that they are attracted to
regions with small gauge couplings, ordinary charged black hole solutions are generally
repelled from regions with large gauge couplings, and so are insensitive to the physics of
the strongly-coupled singular points.

Despite this, it is possible in principle that a separate class of “strongly coupled” black
hole solutions exist, with strongly-interacting degrees of freedom appearing a finite distance

t20

outside the event horizon. Such solutions — if they exist®’ — cannot be analyzed by an

effective field theory of the form described above, and are outside the scope of this paper.

4 Long-range forces

At very low energies (i.e., at length scales large compared to the event horizon), a black
hole looks just like a massive particle. Effective field theory principles then imply that
the low-energy dynamics of a black hole can be described by some point particle effective
action. In particular, this action accurately describes the force on a black hole in the slowly
varying background of another distant black hole. Thus, to determine the long range force
between a pair of charged black holes, we consider the long range force between a pair of
massive, charged particles. The latter turns out to depend only on mass M, charge @,
and scalar charge %—M, and therefore the long range force between charged black holes is
determined by the same three quantities in the same way.

Similar reasoning applies to black branes with membranes in place of particles, with a
few complications to be discussed below. Thus, to determine the long range force between
black branes, we study the analogous forces between dynamical membranes. Both particle
and membrane cases are treated in turn in the following sections.

4.1 Particles

Let us begin with particles. The probe action for a massive particle in slowly varying
background fields is

spp:—/M(¢)ds—Q/A. (4.1)

This is a slight generalization of the usual action for a massive particle (see, e.g., [26],
chapter 3), where the mass is allowed to depend on a background modulus ¢. The form
of the action is completely fixed by the symmetries up to terms involving derivatives of
the background fields. In particular, () cannot depend on ¢, as this would violate gauge
invariance. We omit any terms involving derivatives of the background fields, as these do
not contribute to the long range forces.

200ne obstacle to finding such solutions is that the large gauge coupling leads to a large electrostatic
contribution to the stress tensor, potentially leading to a naked singularity, as it does for a superextremal
RN “black hole.” This requires more study, left to future work.
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Choosing a worldline parameterization A\, we define the projection operator

L. : dxt
Pﬁ = 591} — ﬁxpxy , ot = K’ (42)
which projects onto spatial components in the particle rest frame. In terms of this, the
equation of motion is

M(9)
Py | s

(3 + T i7i%) + M'(§)V—=i2V"¢ + QF",i? | =0. (43)

Under worldline reparameterizations, &” picks up a piece proportional to &"; this is an-
nihilated by the projection operator, ensuring the covariance of the equation. Fixing the
parameterization A = 7 with 7 the worldline proper time (so that #? = —1), the equation
of motion simplifies to

M(¢)(i* 4 Th, @ i) + M'(¢) PN ¢+ QF 3" =0, 2 =-1, (4.4)

where now P = 6 + iti,,.
Given a Killing vector K, (satisfying V(, K,y = 0) such that K*V,¢ = 0 and K*F},, =
—V,U for some potential U, the equation of motion (4.4) implies a conservation law

% [~M($)K,i" + QU] =0. (4.5)

In particular, in a static background ds? = gy (z)dt? + g;j(v)dxida?, ¢ = ¢(x) and A =
®(x)dt, we find the conserved energy

E = M(¢)y/~gu(1 + gijid7) + Q. (4.6)

Note that the motion is integrable in a spherically symmetric background, ds? = gy (r)dt> +
Grr(r)dr® + R(r)?dQ% _,, ¢ = ¢(r), and ® = &(r). In particular,

(E — Q®)? L2

.2
gt S AR () T REM(9)?

=0, (4.7)

where £ > Q® and L? > 0 is the conserved total angular momentum.
Taking the non-relativistic (|&| < 1) and weak-field (g, = npw + hyw for |hy,| < 1)
limit, we obtain:

By ~ =M ($)&* + (1+ )M (¢) + QP (4.8)

N |

where 1) = —hy;/2 is the Newtonian potential. Thus, we identify Vi, = (1+¢)M (¢)+QP as
the non-relativistic potential energy. This specifies the force on a massive charged particle
probing a fixed, slowly varying background.
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4.1.1 Linearized backreaction

To calculate the long-range force between two massive charged particles, we compute the
linearized background fields sourced by the action (4.1). First, we introduce an action for
the background fields:

1 1 1
Stields = /dda?\/ —g [MR - §G¢¢(V¢)2 - @FWF’“’ . (4.9)
d

In general, G4 and e? will be functions of the modulus, ¢, but as we will be interested in
the linearized equations of motion, we ignore this dependence.
From S = Shelas + Spp, we obtain the field equations

1 RS B 6(d)(m—x(/\)) et
%d(R 20 R)+(...)-/ L T M),

G V2 = / —”\“’/;‘” V_EZM ()
6Dz —x(N)
V=g

where the omitted terms in the Einstein equations depend quadratically on the background

?V#F“” —Q / 2 (4.10)

fields V¢ and F,,. In particular, for a particle stationary at the origin z* = 0, (4.10)

becomes
R — %Q“VR + () = KM (¢)L e ) it
Gy V30 = WM’(¢), e%VuF“” = Qé(d\g;) &, (4.11)
Linearizing around a background g,, = 1,, and ¢ = ¢g, we obtain
— GO = 3 M(60)d ) (a5 5
G026 = M’ ()30 (a1 SO = Qi@ 8, (412)

where g, = Ny + My, BW = hu — %nw,h, and we work in Lorenz gauge 8,/3‘“’ =0.2!
In (d — 1) spatial dimensions,
s
. 2
—(d — 3)Vyg_20""V(a), Vig=—

7 ) 2T

(4.13)

where Vj_s is the volume of S92 and we use Gauss’s law to fix the normalization. Thus,
we obtain the static, spherically symmetric solution:

262M (o) 1 GoyM'(d0) 1 &Q 1

}_l = = — =
U (d = 3)Vy_g rd=3" ¢ =do (d 3)Vy_o rd—3" (d — 3)Vy_o rd=3

(4.14)

21See, e.g., [27] section 8.3 for an overview of linearized gravity.
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at the linearized level. The Newtonian potential ¢ is

d—3 - K2M(dg) 1
- _ oy = ——d , 4.15
v 2d—2) " (d—2)Vy_grd3 (4.15)
Applying (4.8), we find the potential between two widely separated, non-relativistic
particles:
Vioo—_ IQZ MlMQ _ G;(; 8¢M18¢M2 62 QlQQ (4 16)
m (d — Q)Vd_g rd—3 (d — 3)Vd_2 rd=3 (d — 3)Vd_2 rd—3 ° ’
The magnitude of the long-range central force is therefore
d—3)k3 MMy Gy 95M0,M: 2
Flp— - ( Jhg MiMy Gy 0pM105 My L Q1Q2 (4.17)

(d=2)Vgp 1972 Vgo 12 Vi—g 14727

with Fyo > 0 for a repulsive force.
Note that the scalar charge 04M is more correctly written Md8¢MMd, where My =

H;2/(d—2)

is the d-dimensional Planck mass. In particular, this can differ from M08¢MMO for
some other mass scale M (such as the D = d+1 dimensional Planck scale in Kaluza-Klein
theory) because My/My may depend on ¢. In general, moduli derivatives of dimensionful
quantities are ambiguous until we specify which scale is held fixed.

This calculation is easily generalized to the case with multiple gauge bosons and moduli.

Fixing the background field action (3.11)

1 . 1
5Gii(9)Ve' - V! — Zfan(0) F F| (4.18)

1
Stields = /ddxx/jg [MR_ 2
d

the long range force between two particles comes out to

’ d—3
Fi2 = f°Q1aQap — G puyipa; — mliiMle , (4.19)

Fi2

Fio=——"15
Vi rd=2’

where §2° and G are the inverse gauge kinetic matrix and scalar metric, respectively, and
a
Hi =

825{ is the scalar charge.

4.2 Dirac branes

Now consider membranes.?? In the special case that a (p — 1)-brane is characterized solely
by its tension 7 and p-form charge @), it has an essentially unique action

Sy=— [ @eV=GT6) - @ [ 4, (4.20)

at leading order in slowly varying background fields, where § is the pullback of the spacetime
metric g to the brane worldvolume. This is the charged Dirac membrane action, matching
the familiar form of BPS brane actions in string theory and generalizing the point-particle
action (4.1).

221 thank M. Reece and T. Rudelius for helpful discussions and initial collaboration on this topic.
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The Dirac action is boost-invariant along the brane worldvolume, hence it can de-
scribe black branes with the full symmetry group (3.14). However, non-extremal black
branes (whose mass density and tension generally differ) are not boost-invariant along
their worldvolumes, and require a more general approach.?? For simplicity, I focus on
boost-invariant Dirac branes in this section, returning to the general case (with reduced
symmetry (3.13)) later on.

Consider a background of the form ds? = g datdx” + gmpdx™dz™ and A, = Pdaz0 A

..AdxzP~!, where u,v =0,...,p—1, and m,n = p,...d — 1. Fixing static gauge, £&* = z#
and expanding in small fluctuations about 2™ (£) = 0, we find

~ /dpfﬁ/—detgw, [—gmng“ Opx™ 0" — 1} Q/dp§<1> (4.21)

In the weak field limit, where g,, = 1y + by and gmn = Omn + hmap, this reduces to

Sy~ [ @[ 5T@E™? = ST - T@A+¥,) - Q2] (122)
where the p-brane analog of the Newtonian potential ¥, is:
1 1 iy
vy = 577Wh/w = 5(—htt + 0 hij) . (4.23)

Note that 7 (¢) simultaneously plays two distinct roles in this action. It is the energy
density of the brane as well as its tension. The gravitational coupling 7 (¢)¥, accounts for
both: as we will show later, —hy /2 couples to the mass density, whereas §% hi;/2 couples
to the tension.

We read off the potential energy density:

U=T(o)(1+V,)+ Q. (4.24)

The pressure (force density) on the brane in the specified background is P = —VU. To

compute the pressure exerted on the brane by another brane, we calculate the background
fields sourced by the second brane.
The background field action is

1 1
Sfields = /ddfﬂx/ —9 l%gR - §G¢¢(V¢)2 — 55l Fpnl?] - (4.25)
d

22

where Fpi1 = dA, and |Fpp1|? = Fpi1 - Fpr1 = (p+1)rFM1 ]\4p+ll7’]\/[1 Mp+1 Varying
S = Sfelds + Sp with respect to the background fields, we obtain the field equations
1 1 o =€)
L (puyv _ L MNR> &P ﬁ— aby Mg N
£))
Cus V20 /dpgx/ 700 — ()
¢ Ne (9),

(D) (g —
évMOFMO...Mp — Q/dpg(w\/_—‘;‘(f))ffalmapaalle . aapop 7 (426)

23 As non-extremal black branes suffer from the Gregory-Laflamme instability [16-18], they may not live

long enough to measure the force between them. However, nearly extremal black branes should be long
lived, and for this reason I will not explore this issue further.
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where €%(P=1) = 41 is the brane Levi-Civita symbol and we omit terms of the Einstein
equations that are quadratic order in the background fields V¢ and Fj,11.

Taking the brane to be stationary at 2™ = 0, fixing Lorenz gauge V;, AM+Mp» = 0,
and linearizing about a fixed background gyn = NN + by and ¢ = ¢g + ¢, we obtain

GO = 35D YT (o)
G D¢ = 61P) (2™ T (o) , (?12V2‘I’ = —Qo4P) (™), (4.27)

where ® = Ay (,—1) = — A=Y hyn = han — %nMNh, and the remaining components
of Ay, .. M, and hMN hesides those shown are not sourced by the brane.
Using (4.13), we read off the solution,

hoo—_ 2,%?17'(@)) N
e (d—p—2)Vy_p_y rdp=2’
G AT 1 2 1
b = do — w0l (P0) — . D= c°Q C——— . (4.28)
(d—p—=2)Vgp1 ri P2 (d—p—2)Vgp1 riP2
Using hyy = hyn — ﬁT]MN?L, we obtain the Newtonian p-brane potential
1 d—p—2 p kg7 (do)
\I] — = 1224 v = _ — . . 42
p =g e = 2(d —2) -2 " T Td—2 Vip_1rtP=2 (4.29)

Thus, applying (4.24) and P = —VU, we find the pressure on a brane exerted by a distant,
parallel brane:

P12 _ 2 —14 / pd—p—2) ,
Py = Vi, 71 Pi2 = e Q1Q2 — G, T1 () T2(9) — Wﬁdﬂ(@ﬁ(@bf
(4.30)
This is easily generalized to multiple gauge fields and moduli per (3.17):
” d—p—2
12 = f°Q1aQa — G0, T10;Tz — p<d_p2)/£?ﬂ’17§ , (4.31)

where, as always, the moduli partial derivatives are taken with the d-dimensional Planck

scale held fixed.

4.3 General branes

As seen above, a boost-invariant brane at rest in a flat background has the stress tensor
Ty = 6P (2™) diag(T, -T,... = T), (4.32)

where 7 is both the brane energy density and tension. This stress tensor is invariant under
boosts parallel to the brane. On the other hand, subextremal black branes have a more
general non-boost-invariant stress tensor

Ty = 0P (2™) diag(M, T, ..., =T), (4.33)
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in their rest frame, where the brane energy density M is no longer equal to the tension
T. Note that the null energy condition implies M > T in section 5.3 we show that this is
satisfied for black branes and saturated if and only if the brane is quasiextremal.

To calculate the force between two non-boost-invariant branes we should in principle
write down a probe action for each brane and proceed as above. The stress tensor for a
black brane is that of a perfect fluid confined to the worldvolume with density p = M and
pressure p = —7 . Thus, we might be inclined to write down a worldvolume action of the
perfect fluid form, see, e.g., [28]. Whether this is the “correct” action depends on the physics
of the black brane in question. Indeed, even assuming a perfect fluid worldvolume action,
the brane dynamics will depend on an a priori unknown equation of state. Thus, while the
Dirac action was essentially unique due to the assumption of worldvolume diffeomorphism
invariance, the action for a black brane is much less constrained.

This is a serious obstacle, but fortunately we are only interested in the long range forces
between widely separated branes. The stress tensor (4.33) is sufficient to determine the
long-range gravitational fields sourced by the brane, hence it is also sufficient to determine
the long range gravitational force (mediated by these fields) between two such branes.

It is convenient to generalize (4.33) to an arbitrary Lorentz frame:

T = 0P (2™) T (4.34)

where 7, is the “covariant tension,” with 7,, = diag(M,—T,...,—T) in the rest frame
of the black brane. Note that the general covariant form of (4.34) is

TMN(x) _ /dpé\/jg 5(d)($ - x(ﬁ))Tab(g)aaxMabe’ (4.35)
V=9

where the covariant tension 79(€) is a worldvolume tensor and the integral defines the

appropriate covariant delta function.

In general, unlike the boost-invariant case, M = M(z) and 7 = 7 (z) need not be
constant along the brane worldvolume. In fact, for a generic brane they are dynamical
quantities and can evolve with time, propagate disturbances, etc.. For simplicity, we will
consider static, translation invariant black branes, so that M and T are constant along the
worldvolume. However, unlike the mass of a particle or the tension of a boost-invariant
brane (which can be thought of as a brane-localized cosmological constant), it is important
not to confuse M and 7 with “constants of nature”: taking such a brane and stretching it
will in general change both M and 7.

Solving the linearized Einstein equations, we obtain the gravitational field far from

the brane )
284 Ty

(d=p—2)Vypy rTP2

Since the long-range gravitational field is linear in 7#”, the long-range force between two

By = (4.36)

parallel branes must be bilinear in 7/ and 75" as well as Poincaré covariant along their
parallel worldvolumes. This fixes the general ansatz:
7D(graw)

P = i P = kAT T + BTHT), (430)
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for coefficients A and B to be determined. Taking one of the branes to be boost invariant,
T = =T, and applying (4.24) gives A+ pB = d;ff.

To fix the remaining linear combination of A and B, we study the dynamics of a

particular type of non-boost invariant brane. The easiest case to consider is that of a
“tensionless” brane, i.e., one with a worldvolume action describing pressureless dust:

§=— / 1 edr Mo ()]~ grinOraM Oz | (4.38)

where we omit couplings to gauge fields and moduli for the time being, and My(§) is a
fixed (non-dynamical) positive function (the comoving density of the dust). This action
is not invariant under general diffeomorphisms mixing & and 7, but it is invariant under
T — 7 =7(7,€) as well as £ — € = £(€) combined with Mg(£) = Mg(€) = Mo (€) det (89%:‘
Because of £ reparameterizations, the comoving density My(&) has no physical significance,

and can be gauge-fixed to any positive value.

Varying the action with respect to the background metric, we find the covariant tension

T%® = Mu®ub, where u™ = \/%, u' = 0 is the covariant velocity of the dust along the

worldvolume and

M(&,7) = Mo(§) N (4.39)
is the invariant mass density. Unlike M(§), the dynamical quantity M (&, 7) is reparame-
terization invariant and physical.

The action (4.38) has enough gauge freedom to allow the gauge choice 7 = 2. Lineariz-
ing the background and expanding in small fluctuations, we obtain the potential density
Uy = Mo(1 + W) per comoving volume by the same methods as before, where ¥ = —hy; /2
is the usual Newtonian potential for point particles. This is a very reasonable result: the
brane can be thought of as a sheet of particles at rest with no short-range interactions
between them, and reacts to gravitational fields in the same way that each particle in the
sheet reacts.

From this, we obtain the force per comoving volume Py = —VU; on the tensionless
brane due to another brane with covariant tension 73,

1

Tt — Utt%ﬂu) . (4.40)
d—2

As noted before, the comoving density My is not invariant under £ reparameterizations.

The pressure (force per physical volume) is instead

2
KkaM

P = -
‘/alfpflrd_p_1

1
m
(7'21;t - mmﬂé u) ; (4.41)
with the invariant mass density M replacing the comoving mass density.
Comparing with (4.37) fixes A = 1 and B = —715.
A+pB = d;f ;2 obtained using boost-invariant branes, a non-trivial consistency check of

This agrees with the result

the calculation.

—90 —



We conclude that the gravitational pressure exerted on one brane by a distant parallel
brane takes the general form

7D(gmv)

(grav) 12 (grav) 2 v 1 v
Py = Vi, rd 1 Pis = kg | T Tow — mﬂ“ﬂ-zu : (4.42)

This corresponds to a brane energy density whose variation is
1
oU = —§TMN69MN (4.43)

for small perturbations about a flat background dgyrny = harn. This form follows di-
rectly from the definition of the stress tensor and the ansatz (4.34), so the result (4.42) is
completely general.

To complete our calculation, we reintroduce couplings to gauge bosons and moduli.
The general result is:

.. v 1 y
Pi2 = *°Q1aQ2 — G” iy — k3| T Topw — mﬂ”ﬂ; p (4.44)

The last term is the gravitational contribution, discussed extensively above, whereas the
first term is the gauge field contribution, which follows from the coupling —g [ A, indepen-
dent of the details of the rest of the action. The middle term is mediated by the moduli,
with the “scalar charge” u; defined by the linearized backreaction

1 Gy
(d—p—2)Vy_pq rir2

¢ =l — +..., (4.45)
up to terms that are subleading in the large r limit, where G¥ is the inverse of the metric on
moduli space, as before. The long range forces can only depend on the long range fields,?**
and therefore the scalar contribution to the pressure (4.44) between two branes must be
bilinear in their scalar charges p1; and ;. Diffeomorphism invariance in the moduli space
implies that only the combination G% [14ft2; can appear, where the constant prefactor can
be fixed by comparing with (4.28) and (4.31).

Note that the scalar charge p; generalizes 0;7 in the Dirac brane case, but is no longer
defined as a moduli derivative of the mass density and/or tension. There can still be a
relation between p; and a moduli derivative, however, as in, e.g., (4.50) below.

4.4 Perfect branes

We now check our calculation by considering a more general class of black brane encom-
passing both the Dirac and tensionless cases. Consider the action:

S = —/dpflgdm?g/w (so(f)\/\/__?;, ) - Q/Ap, (4.46)

24This is a consequence of Newton’s third law, ﬁlz = —ﬁgl. Since the force on 1 due to 2, ﬁ12, depends

only on the long range fields of 2, Newton’s third law implies that Fyy = —Fyy depends only on the long
range fields of 2 (as well as the long range fields of 1), and therefore the long range forces depend only on
the long range fields.
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for some fixed equation of state M = M(s, ¢), where s is the entropy density of a perfect
fluid on the brane worldvolume and M is the energy density in the fluid rest frame. As
in (4.38), we choose comoving coordinates ¢’ along the brane, which are constant along
fluid flow lines. Like M(&) in (4.38), so(&) is a gauge-dependent positive function, whereas

s(€,7) = so(6) YL (4.47)

is the physical entropy density. The action (4.46) is that of a general perfect fluid confined
to the worldvolume, in the limit where the fluid has no additional conserved quantities (such
as particle number) besides its entropy.?® I will refer to branes of this class as “perfect
branes.”

Varying the action (4.46) with respect to the background metric, we obtain the covari-
ant tension

0 1
T% = Muu® — T(G° +ub), T=M-s a—jl/l o u® = —— 0%, (4.48)

Since M is the internal energy density, T := M /0s| s 1s the brane temperature, and the

tension 7 is the Helmholz free energy density:2°
T=M-Ts. (4.49)

More generally, since the brane tension performs work, any black brane must satisfy M —
Ts > 7T, an inequality saturated by perfect branes. Assuming that T's > 0, this implies
the null energy condition 7 < M.
Likewise, varying the action (4.46) with respect to the background moduli, we obtain
the scalar charge
oM
M e,

This formula can be understood as follows. In a flat background with vanishing gauge

(4.50)

fields, the brane has an energy density U = M(¢,Y) where Y schematically represents the
internal degrees of freedom of the brane. Varying with respect to the moduli while holding
the internal degrees of freedom fixed, we obtain

6U = ; M|y 09" . (4.51)

Thus, the brane is subject to a pressure P = — §; M|, V¢'. Comparing with (4.44)
and (4.45), we read off p; = 0;M|y. Since the brane entropy density s depends only
on the internal degrees of freedom Y, and in the perfect case the latter are fixed by the

Z5This action can be obtained from that of [28], section 5, by taking the limit of zero number density
(with fixed entropy density) and choosing Lagrangian coordinates on the brane.

26When the cosmological constant is non-vanishing, interpreting it as thermodynamic pressure suggests
that the mass of a black hole is its thermodynamic enthalpy [29, 30], see also [31]. In this case, it seems
likely that the tension of a perfect brane will correspond to its Gibbs free energy density. However, checking
this is beyond the scope of the present paper.
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former, O;M|y = 0;M|,, and we recover (4.50). This agrees with (4.31), where in the
Dirac case s = 0 identically.

The black brane solutions that arise from the two-derivative effective actions we con-
sider will turn out to satisfy (4.49) and (4.50) (see (5.52) and (5.64)), strongly suggesting
that these black branes are likewise perfect.

To compute the force on a perfect brane in some background, we choose the gauge
7 = 29, expand in small fluctuations, and linearize the background. After some calculation,

one obtains the brane potential energy density

U = M(s0,0) — 5huM(s0,0) + 51T (50, 6)+ @ = M(s0,0)~ 3T ¥ harx+Q , (452

for small uniform displacements in the transverse directions, where sg is the unperturbed
brane entropy density. From this, we readily recover (4.44) using the methods previously
described.

4.4.1 Dimensional reduction

It is interesting to consider what happens to the long-range forces after dimensional reduc-
tion on a circle of radius R. This was analyzed in the case of Dirac branes in [6], with the
result that the sign of the force between two parallel branes is unchanged. I now briefly
describe how this works for perfect branes.

Suppose first that the brane is transverse to the compact circle. In this case, the
mass density of the dimensionally reduced brane is the same as the original, My = Mp,
where D = d + 1 and d are the spacetime dimensions before and after compactification,
respectively. Since M does not depend on the radius, naively one might think the brane
carries no radion charge, where the radion p := log(2wr RM,) parameterizes the circle radius
in units of the d-dimensional Planck scale Mj_Q = 1/k2. This is not the case because (as
noted previously) derivatives involving dimensionful quantities implicitly hold the Planck
scale fixed, and the d-dimensional Planck scale differs from the D-dimensional Planck scale
by a radion-dependent factor, M 5_2 =27RM B ~2. Both M and s are dimensionful, giving
two independent contributions to the radion charge.

We explicitly compute the radion charge as follows:

oM |\ , 0 M MPd My, 0 M
o T Magoam| o =My YMogam| L o (498
P lse P Vg ls/ b~ D ap My PMDls/mb=" o
1
The derivative in the second term fixes s/M2 ™" but s/M% " = ﬁd:,l - (s/MP™') depends
D

on p, and we obtain

p O M Ry
Pop Mp | m—re \My Hdo b )P o(s/MB) Mp
Mpfl d MP—1 (D)
:< b — d_l)saM (4.54)
MZIJ dpM]{_’) Os &
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To compute the radion derivatives, note that applying M 5_2 =2nrRM g =2 to eliminate R
gives p=(d—1) log . Thus,

oM

7(01)_ D p—1 OM (D)
Ip |y )

-1 T o1 0

(4.55)

The first term arises because M has dimension p, whereas the second arises because s has
dimension p — 1.

We can rexpress (4.55) in terms of the tension using (4.48):
(d)
op |,

M+t (/Vl T) = —d%ng. (4.56)

d_

Using this simple result, it is straightforward to check that

2nR( G [W}
P

1 1
T T — s TETE]) = i [T T - 5 TETY] . wsT)

where k% = (2rR)k3, GPP = K?lg %,27 and the effect of the radion coupling is to change
ﬁ to ﬁ in the last term. Matching the other moduli and gauge forces, we obtain:

Ps = 7PD , (4.58)

where P is the pressure coefficient defined in (4.42). This is the same result as [6], gener-
alized to perfect branes.

Suppose instead that the brane wraps the compact circle, so that a (P — 1)-brane
in D-dimensions produces a (p — 1)-brane in d-dimensions for P = p 4+ 1. In this case
the d-dimensional mass density is explicitly R-dependent, My = (2rR)Mp. By a similar
calculation to before,

d—p—1 0OMp (D)

1 oMy|@ _d-p-2 .
d—1 D@sD s ’

2rR Op s d—1 Mp =

(4.59)

where s; = (2rR)sp. In comparison with (4.55), there is an extra 9=2 contribution to
each term originating from the explicit factors of R relating My with M p and s with sp.
Expressing this in terms of the tension we obtain:

d
2;}28?)\;‘1 id;:—MijTD +TD:—ﬁT5M+TD. (4.60)
Note that
27TRT =Mp+@-D)To=Th,—Tp, Lo
G T = Mb + (0= DTS = T4 T~ T3 |
FSee, e.g., [9], where \(*"™®) = —21log(2rRMp) = —24=2 p (up to an additive constant).
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Using these formulae, we find

! (GPP[aMerrm?[T“”% S TITE) = b T To = T8 TS
27TR ap d d 13224 d—2 du dv D D j D—2 D# Dv]|>»
(4.62)

similar to before, where the extra Tp and 73 terms in (4.60) and (4.61) conspire to cancel.
Thus, we obtain

Py = (271R)Pp, (4.63)

again in agreement with [6].

In fact, the results (4.58) and (4.63) hold more generally for sufficiently large R. In
the large R limit we can understand the effect of dimensional reduction on the long-range
forces by considering the long-range fields only, without knowledge of the brane action.
Since any choice of T, p;, and ¢, can be realized by a perfect brane, (4.58) and (4.63)
apply to arbitrary uniform, parallel branes.

5 Black hole and black brane solutions

Armed with a thorough understanding of long range forces, we now consider the details of
spherically symmetric black hole and black brane solutions to the two-derivative effective
action, subject to the assumptions discussed in section 3. By a suitable choice of gauge,
we characterize quasiextremal and non-extremal solutions and show that the former have
vanishing self-force, whereas the latter are self-attractive. Some illustrative examples from
the literature are reviewed in appendix B

5.1 Equations of motion

As argued in section section 3.1.1, for a spherically symmetric (p—1)-brane with only p-form
charge, we can truncate to the action (3.17). The corresponding equations of motion are

AGl@) < ) =0, T2+ T(0)V0 - Tok = SGT(0)fa(0)F" - F,

1 . )
Run — 59unE = kaGij(9)V e’ o Vg + kifan(¢) Fiiy o Fi, (5.1)
where?®
1 (p+1) _ (p+1) 1 N1..N,
WM O XN = WM XN) — §QMNW Xy Wy T XN = HWMNI...NPXN , (5.2)
G"(¢) is the inverse of the metric on moduli space G;;(¢), and
i 1
I (¢) == 3G N@)[Gljk(8) + Gikj(8) — Gika(d)] (5.3)

are the coefficients of the corresponding metric connection.

%See (3.12) for the definition of w - y.
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We consider the general static spherically symmetric black brane ansatz

ds? = =22 4 2 gy? 4 20 gr? 4 T2€2¢Q(T)dQ§_p_1
ot =¢'(r),  AL=0%r)dt Ady' A... AdyP, (5.4)
where (t,3™) are the directions parallel to the black brane and dy? := 6,,,dy™dy" is the

Euclidean metric in the y directions. The charge of the black brane is measured by the
integral

Qo = (_1)p %d fab( ) * Fb: which implies fab(¢) « FV = (_ )anM (5'5)
Sd—p—
using spherical symmetry, where wg_,—1 is the volume-form for the unit metric on Sd—p—1,

From this we obtain,

F5($)Qp eVetr =1y —(d=—p—1)g0
Va-p- rd—p-1

/oo b e¥ttr+(p—1)by—(d—p—1)vq
f

F*=— dr Ndt Ady' A A dyPTL

O (r) =

dr, 5.6
Vd—p—l rd=p=1 ( )
where §%°(¢) is the inverse of gauge kinetic matrix f,;(¢). We can eliminate the gauge field
from the remaining equations of motion in favor of @,. In particular,

) ) B QQ b —2(d—p—1)q
fabFa'Fb = —e¢ 2¢tfatha'Ftb =€ 21/)TfabF¢?'F‘1E7 =€ 2¢yfabF7(TlL'F7l;l = e

Vd_p_1 r2(d=p=1) ’
fabFr(ylv,'Frl; =0 (m # ’I’L), fang'F[g =0, (57)
where «, 3 index the angular directions and Q?(¢) := §*(4)QaQs.
Thus, writing the components of the Ricci tensor as
Ry="R,, Rn=R., Ry=2"R,, Rep=""Rq, (58
rr 9rr Grr

we obtain the Einstein equations

d¢' d¢y d-p-2 K2Q? e2r—2(d=p=1)¢q d—p—2

o 2 _
Ri = Ry =R, ’QdGz] dr dT - d—29 Vd2—p—1 r2(d—p—1) P Ra-
(5.9)
Likewise, the scalar equations of motion become
d2¢z T dé' dg? dg*
o [0l o= 1w v @ p - ) (vh+ )| T T
1 e2¥r—2(d—p—1)vq
_ iJ )2
= 72Vd2_p_1G Q75 oy , (5.10)
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where Q?%(¢) = 9;Q*(¢). An explicit calculation gives

Re = it = 0 = (Wi — (o= i~ (d—p— 10t (vh+ ).
Re = oy = ()" = 0 + (0 = DI — (v)" = vy

rdp 1) [olh— )? v+ 2R
Ry = Uil — vy — 0= D — vyt — == 10, (vh+ 7).

2

Ro =5 — i+ (vh-+ ) W — vl — - D) — (@ -p—1) (vh+ ;)

L= =2 a—va)

2 ; (5.11)

in agreement with [32].2

5.2 Solutions with a smooth horizon

The above equations are invariant under radial diffeomorphisms. We choose the gauge:

Vet e+ (p— Py +(d—p—3)Ya =0, (5.12)
which can be parameterized as:

dr?

f(r)

for some ¢ (r), \(r) and f(r) to be determined. Note that A(r) disappears from the ansatz
in the black hole case, p = 1, since the transverse directions 4™ are absent.

ds? = er? —f(r)eiQijlAalt2 + eiAdyz} t e Tz [ + TQdQ?lpl] , (5.13)

To check for a smooth horizon, it is convenient to rewrite this as

F(p)dt®
R(p)>@=r=2)Y (p)*(p=1)

dp?

2 _ _
ds" = (d—p—2°F(p)

+Y(p)*dy* + R(p)? [ + dQZ_pq] :

(5.14)
where
p=riP2  Y(p) = e%(¢+>‘), R(p) = Tefﬁw, F(p) = r?@P=2 (). (5.15)
Putting (5.14) into ingoing Eddington-Finkelstein coordinates, we obtain:

F(p)dv? 2dvdp

ds? = —
R2(d—p—2)y2(p-1) (d —p— 2)Rd—p—3Yp—l

+Y2dy? + R%dQG_, 1. (5.16)

In this form, it is clear that to have a smooth horizon, R(p) and (for p > 1) Y (p) must
remain finite while F'(p) — 0 as p — py, for finite pj. There is a residual gauge symmetry
p — p + ¢ for constant € that we will fix below.

There is a typo in the expression for Ry in [32]: (v)Zee should actually be (u)Zere-
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Returning to the ansatz (5.13), we compute:

M 3d—3p—5£+(d—p—2)2f—1

- Ri—(p—-1 —(d—p—-2 = D S— 1
Ri—(—-1)Ry —(d—p—-2)Ra gt 7 2 7 (5.17)
Thus, the Einstein equations imply:
3d—3p—5 d—p—2)?
f”+pf’+2(7{’2)(f—1):0, (5.18)
which has the solution:
A B . 2
f(r)y=1+ o + T corresponding to  F(p) = p“+ Ap+ B. (5.19)

F(p) must have a zero for finite p in order to have a horizon. Thus, we require A? > 4B,
and F(p) can be factored:

F(p) = (p—p-)(p—p+), (5.20)

for p— < py. We use the residual gauge symmetry to set p_ = 0, so that F'(p) = p(p — pn)
for pp, = 0. In this gauge, we have

rd—p—2
fry=1- ﬁ (5.21)

for rp, > 0. (We later show that r;, = 0 if and only if the solution is quasiextremal.)
For p > 1, we find:

!/ d—p—l f// f/d_p_l
Ri— Ry = \" [f } X - ( ) 5.22
Ry =X T s to ) (5.22)
but the term in parentheses vanishes in the gauge p_— = 0, so the Einstein equations imply
" d—p-—1

N+ {f + p] N =0. (5.23)

f

The solution for r;, > 0 is

A=Clogf+ D, (5.24)

for constants C' and D, where D = 0 to have A — 0 as r — oo. However, since R(p) and

1
Y (p) must be finite at the horizon, e»” must also be finite at the horizon. Therefore C' = 0,
implying that A = 0.
If r,, = 0 then f =1, and the solution is instead:

C

A= ——
pd—p—2

+ D, (5.25)

with D = 0 to preserve asymptotic flatness, as before. Consider:
RIP2yP — pd=p=2 A — pd=p=2 oy ¢ (5.26)
= = P( s ) -

Regardless of the value of C, this is not finite as » — 0, so a smooth horizon is impossible
for rp, = 0 when p > 1.
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Thus, in our chosen gauge all solutions with smooth horizons take the form

dr

ds? = sV [~ f(r)dt® + dy?] + ¢ T3 [f( )

+r7dQg 1] , (5.27)

dp—

with f(r) = 1— m, rp, = 0, and ¥(r) to be determined. Note that for p > 1 boost-
invariance is restored as rp — 0, though a smooth horizon is lost in this limit.

With the above gauge choice and solution for f and A, the remaining non-vanishing
components of the Ricci tensor are:

R (p= DRy =+ |+ Py,
_ Y 1Rg-R, =172 /
Ri+(p—1)Ry+(d—p—1)Ra— R, pld—p— )w (1/1 + f) (5.28)
Thus, the scalar equations of motion and the remaining Einstein equations are
1 d d—p—1 d 7 FZ d d k __ 1gl] Q2 62'¢) 5.99
dp1f Plr fdr¢'l +1"(¢)d ¢ dr b =5 (#) ,j(¢)M7 (5.29a)
1 d—p—1 ev b
Td p— 1f [ fw] (¢)r2(d—p—1)f’ (529 )
’ 29
o (4 %) + Gy @)t ¢? = Q0) s (5.29¢)
where
d—p-—2
Q)= Q). Gyl =endeu(e). =22 D (5
d—p—1

and d, is a shorthand for dir‘ Note that (5.29¢) is a constraint equation (containing no

second derivatives); its r derivative vanishes upon imposing (5.29a), (5.29b), as required
for consistency.
Defining the inverse radial variable

- ! (5.31)
T @p ot |
the equations (5.29) become still simpler:
d:[f4] = Q*(¢)e™, (5.32a)
d=[f') + fT'31(0) ¢ 6" = 5GY(6) Q% (9)e™, (5.32b)
D+ )+ [Gi(9)d'¢ = Q*(9)e?, (5.32¢)
where dots denote derivatives with respect to z. Here z = 0 corresponds to spatial imﬁnity7
r =00, and z increases as r decreases with the event horizon at zj, := [(d—p—2)r), d=p= 2]
Thus, f=1— 2, and f = —i is a constant.
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Note that the equations (5.32) are invariant under

z— 2 =az+b, oz oz, =azm+b ¥ e = mew, (5.33)

which implies f — f/ = agiibf. Moreover, note that (5.32a) and (5.32c) together imply

the useful relation

b =49+ Gij(9)d' . (5.34)
5.2.1 General properties of solutions with smooth horizons

While the solutions to (5.32) will depend on the charge function Q2(¢) as well as on
the metric on moduli space Gj;(¢), we can understand their general properties without
knowing these functions. For N moduli, there are N 4 1 dynamic variables ¢ and ¢
satisfying second-order equations of motion, with a single constraint equation. Thus, a
general solution depends on 2N + 1 free parameters. However, the requirement of a smooth
horizon reduces the number of free parameters, as follows.

If r;, > 0, then 9 and ¢* must remain finite at the horizon. With this assumption, the
equations of motion degenerate to first order equations at the horizon, giving

- ) = @O, da) = 26N e, (5.39)
Zh Zh

assuming the solution remains regular there. Higher z derivatives can be fixed by taking
derivatives of the equations of motion and setting z = z;. Thus, for fixed charges an
arbitrary solution for v, ¢’ that is smooth at the horizon has exactly N + 1 free parameters
1y, and ¢§l.30 Note that asymptotic flatness requires 1) = 0 at z = 0 (r = 00); this can be
achieved by redefining z;, — azp, as in (5.33) (leaving z,e¥* fixed), so 2 is not a separate
free parameter.

This counting implies a weak “no hair” theorem, as follows: for a fixed charge @),
and choice of vacuum ¢’ = ¢'(r = o00) = ¢'(z = 0),3! one naively expects a unique
black hole (black brane) solution for every mass (mass density) M above the extremality
bound. We found a family of solutions with N + 1 free parameters gb}l and zpe?n, which
is the same number of parameters as ¢, and M. Indeed, for large M (small z,e¥") there
7

'y M), so there is a unique solution for

is a one-to-one map between (¢}, z,e¥") and (
each mass.

This does not mean that our naive expectation is fulfilled. Indeed, as shown in [10],
for some choices of the charge function Q?(¢) there can be multiple (even infinitely many)
solutions with the same mass. However, generally there are not continuous families of such
solutions, in agreement with the above counting argument.

Now consider the case r, = 0, so that f = 1. The horizon is at z;, = oo, and the metric

function R(p) in (5.15) must remain finite there for it to be smooth. Defining x := 1 +log z,

39This argument implicitly assumes that G;;(¢) and Q%(¢) are analytic at ¢ = ¢5. If not, then 9(z) and
qSl(z) do not have convergent power series at z = z,, and the number of integration constants cannot be
determined in this way.

31Here and henceforward, the subscript oo refers to spatial infinity, regardless of the choice of coordinates.
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we find e™X = (d — p — 2)R¥P~2, s0 x must remain finite at the horizon. Written in terms
of x, the equations (5.32) become

=5 (@ -1). BTGP = S509(0)Q% ()
€= 240,089 = S(@@ -1). 63

In particular, because the double integral of 1/z? is logarithmically divergent, integrat-
ing the first equation twice we conclude that a smooth horizon with finite x, = x(z =
o) requires Q%(¢)e®X — 1 as z — oo. Likewise, the second equation implies that
G (o) Q?j(gb)eQX — 0 as z — oo is required. Thus, the conditions

Q2(¢h)62Xh =1, Q?](¢h) =0, (537)

are necessary for a smooth r, = 0 horizon to exist. The second condition implies that
the moduli reach a critical point of the charge function Q?(¢) at the horizon, regardless of
their asymptotic values, which is the well-known attractor mechanism [21-25].

For solutions satisfying (5.37), x approaches a finite value x;, = — log Qy, at the horizon
where Q7 := Q?(¢y,). Thus, the near-horizon geometry is AdS,;; x S4P~!

a5 o B2 | L (a1 dw? 4 sdymdy) + TP D g2 5.38
87 — Riags ﬁ(— + dw” 4 Omndy y)‘i‘T d—p—11| > (5.38)
where
_W}—?Xh 1 1
Rags :i= pe ) w := Raqse P"zp. (5.39)

d—p—1
(d—p—2)d»r2
This includes all smooth 7, = 0 horizons, but horizons of this kind with p > 1 are not
smooth, as previously discussed.

To extend these solutions outside the near-horizon region, first consider the case
#'(z) = ¢. Then (5.32c) integrates to

¢ = —log(Qn(z + a)) (5.40)

upon imposing the requirement that the solution is regular at large positive z, where Qy, :=
Q(¢n) > 0 and a is an integration constant to be determined. This is an extremal Reissner-
Nordstrom solution in an unusual gauge. Other r, = 0 solutions can be constructed from
this one perturbatively in small §¢°(z) = ¢'(z) — ¢}. In particular, to first order (5.32b)
gives

1

St = —— Gl seF 41
¢ On(z + a)zgh Q00" 541
where Q?j = Q;(¢p) and (]Zj := GY(¢,). We choose local coordinates on the scalar

manifold such that GY(¢,) = 67 and Q;;(¢n) = 0 for i # j. This simplifies (5.41) to
.. h
(z +a)?6¢' = %ihiéd), with the general solution

oh
1 1
s/ 1+

h (5.42)
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Figure 4. Solutions to the equations (5.32) come in one-parameter families related by the symme-
try (5.33). Given one solution ¢(z) in the vacuum ¢>§£) = ¢(0), pick any 2z < z, and set zo, = 0
using (5.33). This gives a new solution in the vacuum ¢, = ¢(20,) with the same value of ¢p,.

Assuming QZ > 0, the first exponent is positive and the second is negative, so §¢* — 0 as
z — oo requires A; = 0. Imposing 1(z = 0) = 0 and §¢*(z = 0) = §¢.,, we obtain

P(z) = —log(l+ Qnz) + O((Sgbgo) , (5.43a)

1 QZ
$(x) = i, + 660 (1+ Qnz)” VP % 40862, (5.43D)

to linear order. If instead QZ- < 0 for some i, then both terms in (5.42) grow as z — oo.
This implies A; = B; = 0, so that d¢' = 0 to this order. Thus, Q?(¢) cannot increase as
the horizon is approached, similar to (5.35).

N

The perturbative solution (5.43) can be systematically improved order by order in
d¢oo. More generally, any 7, = 0 solution will take this form close enough to the horizon,
where d¢ — 0. A different approach to constructing r;, = 0 solutions is discussed in [10].

Note that for both 7, > 0 and r;, = 0 cases, solutions with the same moduli values gzﬁﬁl
at the horizon are related in one-parameter families by the symmetry z — az + b in (5.33),
where a = a(b) is chosen to set 1o = ¥(z = 0) = 0. The net effect of this is to change
the location of the asymptotic boundary z = 0, thereby changing ¢’ (tracking the profile
#'(z)) while holding ¢}, fixed. This is illustrated in figure 4.

5.3 Thermodynamics and long range forces

The ADM mass density of the solution can be computed using (2.8) of [33], giving:

Vd—p—1|: 1. d—p-—1 1]
_ Y/ ], 5.44
/f?l é’w +d—p—2 2zp, ( )

where 1o, = 1)(z = 0). For p = 1, this is the ADM mass of the black hole. For p > 1, there
is also an ADM tension:

Via—p—1 [ 1. 1 1 }
— _ - R 5.45
T /{?l §w°°+d—p—2 2zp ( )

see, e.g., [34]. This can be derived by similar methods as (2.8) in [33] using the grav-
itational stress-energy “tensor” referenced to a flat background and integrated over the
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transverse directions. Alternatively, we can compare the r — oo limit of the solution with
the linearized result (4.36). Note that 7 < M with equality if and only if r;, = 0.
The area of the black hole event horizon can be read off from the metric ansatz (5.27)
with p =1,
_ d—2 — 9=,
A=ry"e a3V . (5.46)

In the black brane case, this generalizes to the horizon area per unit y volume along
the brane
A== le=tn/ty, (5.47)

p=1, _d=p—1
where e~ ¥n/¢ = ¢ p VhT @52 accounts for the warping in both the y and S%P~1 direc-
tions.

To compute the horizon surface gravity, we write the metric in infalling coordinates
2 1 1 2 . . 2
ds? = —ferVdv? + 2elr T2 Vdudr + e7Voydyidy’ + e THE2A0%_ . (5.48)

The surface gravity « is the solution to the equation

0

kOV kb = kKb, k=—, 5.49
“ " ov ( )

on the horizon. Since k is a Killing vector, this is the same as Vyk? = —2rky, or

1 d=p—2 4,/
_ - ) 5.50
K v Gov,r — 2 e ( )
Notice in particular that
Vdfpfl

= &P 5.51
kA 52 (5.51)

Therefore, solutions with smooth horizons are quasiextremal if and only if r;, = 0 (25, = 00).
Comparing (5.44) and (5.45) with (5.51), we find:

1
T=M-—=krA, (5.52)
Ra
where the surface gravity x should not be confused with the Einstein constant nfl. This is
very similar to the perfect brane relation (4.49). In fact, the d-dimensional analogs of the
Hawking temperature and the Bekenstein-Hawking entropy are (see, e.g., [35])

K 2
7" s=2T4, 5.53
o’ K2 ( )

so (5.52) exactly matches (4.49), where s = i—gA is the entropy density of the black brane.
d

From (5.6), the electrostatic potential is

Bo(z) = — / Fb($)Qpe d (5.54)
Va—p-1Jo
In particular,
a . Vd—p—l /Zh 2 2 o Vd—p—l /Zh ; o _Vvd—p—l ;
hQa = 51‘?3 0 Q (¢)€ dz = €H3 0 dz[fqﬂdz - f’i?l 0 - (5'55)
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For 7, > 0, we used the fact that 1) remains finite at the horizon (see (5.35)). In the
quasiextremal case we instead use ¢y — 0 as z — 00 (because x = 1 + log z approaches a
constant value).

Comparing (5.55) and (5.51) with (5.44), we obtain the Smarr formula

d—p—1 1
M=d4Q,+ L= ZxA. (5.56)
d

d—p—2.n
This reproduces the results of, e.g., [34] (in the non-spinning case), here generalized to
include arbitrary moduli.

The Smarr formula has a simple application to cosmic censorship, as follows. Suppose
that we attempt to overcharge a quasiextremal black hole by dropping in a charged particle
with charge ¢, = 2Q, for x < 1. By (4.6), the particle must have energy E > ¢,®f to
cross the event horizon, so by the Smarr formula £ > 2Q,®% = xM since either K = 0
or A = 0 (the Hawking temperature or the Bekenstein-Hawking entropy vanishes) for a
quasiextremal black hole. Therefore, the charge-to-mass ratio of the resulting black hole
cannot be larger than the initial, quasiextremal one.

To derive a “first law of black hole mechanics”, we consider a solution to (5.32) with
a smooth horizon and perturb the solution infinitesimally to find a nearby solution. By
perturbing (5.32a) and (5.34), we find that the infinitesimal perturbation satisfies the
linear ODEs:

raf () QadQy o2

2
Vdfpfl

0tp = 2009 + Gij(9) ' 66" + 205 (0)6'0¢ (5.57b)

d.[f6) + 0f)] = Q%(d)d¢'e* + 260 Q% (h)e” + 2¢ (5.57a)

where 0f = %0z, = (1 — f)‘;ﬁ Adding (5.57a) to f times (5.57b) and simplifying using
h

FI
the background equations of motion, we obtain:

2 rab
126 + ] — o = 2. 750] + 20.[Gyy(6) F'50] + 26 4T PIQO w5 55
d—p—1
Using (5.54) and noting that f = 0, this can be integrated to give
. 1o, . 1 B "y 5,{3 o aa L
£50-+ 5370 = (104 5F ) 50+ Gy (@) 1667 + P (07 - 91)3Qu + 50t (559

where the integration constant is fixed by evaluating the equation at the horizon z = zj,
and using the identity

5, = 6 (zn) + ¥ (21) 02 (5.60)
Evaluating (5.59) at z = 0 (r = 00), we obtain
e = G ()06, — L850, + 0 (5.61)
oo T g oo ¥ oo Vd—p—l h%%a 22 h .

where we used Yo, = 0.
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To interpret this condition, note that per (4.45), the scalar charge is

. Vi .
pi = Vo p 1 Gl = — L2 Gt (5.62)
f"?d
Applying (5.44), (5.47), and (5.50), we obtain:
; 1
OM = piddr, + 30Q, + ?/1(5./4. (5.63)
d

This is the first law of black hole / black brane mechanics in the non-spinning case, gen-
eralized to include scalars as in, e.g., [36]. Written in terms of the temperature 7" and
entropy density s using (5.53), the last term takes the expected form 7'Js.
Using the first law, we obtain an alternate interpretation of the scalar charge
oM

Wi = 757

- : 5.64
0% | 4.Qu0i?' (564

in agreement with the perfect brane relation (4.50).
Finally, we consider the long range force between two identical black holes / parallel
black branes. In particular, (5.32c) evaluated at z = 0 gives

§hig

Vdpl

e (e = ) + SR i s

Vdpl

F2QuQs (5.65)

using (5.62). By comparison, using (5.44) and (5.45), we obtain

B 2
TH T — s TUTL = M2 4 (p— 1T - (M +(§p_ 21)7)

v 1\ d-p-1 1
= | V(Yo — — | F 77— 53 5.66
Ky l§¢ (T/) zh)+d—p—2 4232 (5.66)
Combining these two equations,
_ Ay o214 _ pTV| — p
f QaQb oouzlulz Kq [T 77U/ d— QTHTV:| d b 2 4,‘-€th . (567)

Thus, by (4.44), the long-range pressure (force) between the identical parallel branes (iden-

tical black holes) separated by a large distance r is
Vd -1 Th,(d p—2)

—(d=p-1)(d—-p-2) WE d

(5.68)

Since rp, > 0 vanishes if and only if the solution is quasiextremal, we conclude that quasiex-
tremal black holes and black branes have vanishing long-range self-force,3?> whereas non-
extremal ones have an attractive long-range self-force. This generalizes a well-known prop-
erty of Reissner-Nordstrom black holes to static spherically symmetric black holes and
black branes in a large class of two-derivative theories with moduli.

32Note that the long-range force between identical quasiextremal black holes must vanish if a correspond-
ing family of static multicenter solutions exists. Such solutions can be found quite generally using known
methods, e.g., [37-40]. I thank Thomas Van Riet for discussions on this point.
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The principal assumptions underlying this result are (1) that the deep infrared is de-
scribed by a weakly coupled two-derivative effective action (2) with the general form (3.4)
(motivated in section 3) upon truncating to the neutral bosons, as well as (3) that solu-
tions do not enter a strongly coupled region of moduli space outside the event horizon.??
(Although we ignored solutions that cross between different branches of the moduli space,

these are addressed in [15].)
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A Magnetic charges, theta angles, and self-dual gauge fields

In dimension D = 2p + 2, (p — 1)-branes can carry both electric and magnetic charges.
In the main text, I assumed that the magnetic charge vanished, which also decoupled the
theta term. I now generalize the discussion to include magnetic charge and theta angles, as
well as the possibility (for D = 4k + 2) of self-dual gauge fields. To do so, it is convenient
to formulate the gauge boson action democratically, with separate electric and magnetic
potentials for each gauge field related by a constraint. Below, I first review the democratic
formulation, then return to the question of long range forces.

A.1 Democratic formulation

The most general two-derivative pseudo-action for gauge fields I /2 = dAY, /21 takes

the form:
1

. T
S =~ [ tarl@)Fpyo A 3Fby — < /tab(qﬁ)FD/Q APl (A1)

where t4(¢) and #4(¢) are functions of the moduli. Note that t,, = tpq, but t,p = Ftpa,
where the upper (lower) sign corresponds to D = 4k (D = 4k + 2).
The Euler-Lagrange equations associated with (A.1) are:

d[tap * F® + 1, F®] = 0. (A.2)

33] am not aware of any solutions of this type. It is unclear whether they exist, see footnote 20.
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The electromagnetic duality constraints should be consistent with and imply these equa-
tions, so they should take the form

tap * FO + T F® = ng FP, (A.3)

for some constant matrix 7,. This can be rewritten as *xF% = A“be, where A% :=
% (nap — tap) must satisfy A2 = F1 for consistency, since *%wp /2 = Fwp/2-

The stress tensor is 1

Ty = —tap(F* 0 F") s (A.4)
where o is defined in (5.2) and satisfies *w o xx = w o x. Therefore
1 1
Tonn = —ta[(F* 0 F® o + (xF% 0 % F®),] = ot (F 0 F) i+ (AF)? 0 (AF)") ]
1.
- atab(Fa % Fb)mnv (A'5)
where ¢ := (¢t + ATtA). Note that
nFn'

- 1
tA = 5(15/\ FATt) =47, where M= (A.6)

so that 7' = F#. Thus, the stress-energy tensor, self-duality constraint, and F® equations
of motion (which follow from the self-duality constraint) are equivalent to those derived
from the psuedo-action:

A 1 . o
S = ~%n /tab(gb)Fa A xFP, with the constraint tpx Fb = ﬁabe, (A.7)
T

A—

where 77 = F4) is a constant matrix and f,,(¢) is constrained to satisfy (77'%)? = F1
(equivalent to A% = F1).

To complete the picture, we check that the ¢ equations of motion are likewise un-
changed. Varying with respect to the scalars, we obtain

SA =6t Y —1) —t 716t = —t L (5tA + 61), (A.8)
and so
5t = %(& + ATSEA) + %(ATtéA +GATEA) = %(& ~ATHA) — %[AT(SE +6iTA]. (A9)
Thus,
h a b 1 a b a 2 b 1 - a b 1 .- a 2 b
Oty F'* N xF° = §5tab(F A*F° —xF* N**F’) — §5tab x FO N\ *F° — §5tbaF A*°F
= 5toy O A+ F + 5ty F A\ F, (A.10)
and so
Q 1 n a b 1 a b 1 ng a b
I — /6tabF AxFb— /tabF AxFb — /tabF AFY =65, (A1)
8w 8 8

as required.
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Therefore, without loss of generality we can use the simplified pseudo-action

1
S = ~%x /tab(¢)F“ A xF?, with the constraint tap ¥ FO = ngp B, (A.12)
T

D—-2
2

where 1,5 = (—1) 2 M, is a constant matrix and t,(@) = tpe(¢) is constrained to satisfy

D—-2

(') =(-1)"=.
A.2 Dimensional reduction and quantization

To understand the quantum dynamics of this theory, we dimensionally reduce on a circle
of radius R to d = D — 1 dimensions, via the ansatz:

a ra 1 a a _Aa 1 a
Fipy = F*+ 55 G A (dy + RB), () = A"+ 5 mC A(dy+ RB),  (A.13)

where B is the graviphoton with field strength H = dB, F® = dA%+ i(}'a ANH, G*=dC*,
and the metric takes the form:

ds?) = ea2ds? + ¢~ (dy + RB)>. (A.14)

Note that dF'® = £-G% A H. We find:

d-1 _ 1 _d—1_
#p Fp) =€ 075 P\ (dy + RB) £ 5 ™77 £ G, (A.15)

hence the pseudo-action reduces to

R —5ito a b i=to a b
§=—7 [ € T UG FNRE — i / 2Dt G G, (A.16)
with the constraints
1 _d=1_ ~ __d=1_ - 1
+ mew—matab % GY = e Y, e 227 x FO = ﬁ”abi~ (A.17)

It is easy to check that these two constraints are equivalent. Likewise, one can check that
the constraints imply the equations of motion. We now add a total derivative to the action:

d—1 ~ ~
g— & e 227t FOAxF —

_d-1 a 1 a r b
XTIy G NG+ [ napFUAGY. (A18)
s

1672R
This has no effect on the equations of motion. However, varying with respect to F* = dA?,
we obtain:
55 = & / SF% A [—6_2(dd_12)0t fBb 4 L Gb} (A.19)
- 2 ab QWRnab ) .

so if we treat F'* as a fundamental field it acts as a Lagrange multiplier imposing the

constraint. Moreover, the missing Bianchi identity dEF® = j:%Ga A H follows from the

constraint and the G® equation of motion. In this way, we recover a genuine action.
Integrating out the now-auxilliary F'*, we finally obtain:

1

5=  872R

/ TN T, GO A HGE T / s C A GY A H. (A.20)

82
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Dirac quantization for this action gives the conditions % $ G* € Z and:

7{ {ezfd_lm"t «G® — g RB A Gb} = in ]{ {Fb + LataBlez (A.21)
472R ab ab 27 b 27 ) '

Lifting back to D dimensions, these conditions correspond to

1 . 1
%?QF(D) €Z  and nab%ng(bD) ez, (A.22)

for cycles a and S respectively wrapping and not wrapping the compact circle. For a
genuine theory, the quantization condition must be the same for both kinds of cycles,
hence 74, must be a unimodular matrix.3*
In D = 4k, 1y is unimodular and antisymmetric, from which it follows that it can be
0 1 .
put into the canonical form n = nxn nX") by a Gram-Schmidt-like process.?® The

_1n><n Onxn

duality group preserving this form is Sp(2n, Z).

In D = 4k + 2, since 7 is unimodular and symmetric, it defines a unimodular lattice,
which is either even or odd. The signature of this lattice specifies the number of self-dual
and anti-self-dual chiral bosons. Likewise, the automorphism group of this lattice is the
duality group, which is a finite group in the purely self-dual or purely anti-self dual cases.
In the mixed signature cases, there are only two possible lattices: the odd lattice I, , and
the even lattice II,,,, where the latter only exists in signature m —n = 0 (mod 8). The
corresponding duality groups can be denoted O(m,n;Z); and O(m,n;Z)y. Finally, note
that the symmetric matrices

M= gl = (), (4.23)

are both positive semidefinite, since they result from applying projections IIy := %(1 +A)
to t, which is positive definite. We have

n=ny—n-, t=mny+0n-, (A.24)

so the lattice data is equivalently represented in terms of “left-moving” and “right-moving”
parts, 4 and 7_ respectively, as is familiar on the string worldsheet.

A.3 Relation to non-democratic formulations

= . A .25
7 <:F1n><n 0n><n> ( )

Suppose that

34Invariance of the Chern-Simons term $ﬁ f NasC® A G® A H under large gauge transformations seems
to suggest that 74, should be even, but this can be cancelled by the Green-Schwarz mechanism, so the
constraint is not universal. For instance, it is violated in 10d type IIB string theory.

3%Start with a primitive lattice vector v'. Pick another vector wi such that (v',w;) = 1. Now pick
V2 which is LI from v', w1, and define v* := V2 — wq (v, V?) — (V2 wi)o' (if vz is not primitive, choose
the primitive vector in this direction). Next, pick W2 such that (v27W2> = 1, and define wo = Wy —
w1 (v, W2 — (W2 wi)v'. Proceeding in this fashion, we obtain the desired basis.
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As explained above, this is always true in some basis in the case D = 4k, whereas it is

3

possible in D = 4k + 2 when 7 is even®® with signature (n,n). In this basis, the constraint

(n~'t)2 = F1 has the general solution:

T -1 T.-1
t= <T2+71_172 o ) (A.26)

where 7' = £7; and 7, = 7. The pseudo-action is then:

1 1 1
S=—-— /[Tg + 7 75 M i]apF* AFP + o /[rgln]‘}gGa A*FP — o /[72—1]“5(;& A G,

87
(A.27)
with the constraints

[72+T;—T§171]a5*F3—[TlTT{l]aﬂ*Gﬁ = G, —[75171]%*F5+[T{1]a5*Gﬂ = FF“ (A.28)

which simplify to G = i F'+ 1o+ F. As in section A.2, we add a total derivative :Fﬁ [ Ga N
F“ to the pseduo-action and then observe that varying with respect to G, gives

1
 Arx

0S /[7_2—1]0155(;& AN*(TF 4+ 1 x F —G)g, (A.29)

which is the constraint. Thus, we recover a genuine action by treating GG, as a fundamental
(auxilliary) field. Integrating it out, we are left with:

1 1
— 1 [ [lag P A « B — o /[ﬁ]aﬁFQ ANFP, (A.30)

S:

which is the usual action with gauge kinetic matrix f,5 = %(7‘2)0&5 and theta angle 0,53 =
27[71]ap. The same steps in reverse democratize a standard Maxwell action.

In D = 4k + 2 with n of signature (p,q) for p # ¢, it is not posssible to write down
a standard Maxwell action. Of course, we can describe up to min(p,q) bosons in terms
of unconstrained gauge fields, leaving at minimum [p — ¢| constraints. There is not much
benefit to this hybrid approach, but it is worth noting that we can easily go back and
forth in the same manner as above. In particular, we can democratize a hybrid action as
follows. First, ignoring the constraints we democratize the underlying pseudo-action. The
original constraints can now be expressed in terms of the democratic F'%s with no xF*%s,
and so can be used to algebraically eliminate a like number of gauge fields from the new
psuedo-action, resulting in a fully democratic action.

A.4 Long range forces

With a thorough understanding of the democratic approach in hand, I now turn to the
problem of long range forces between black holes and black branes.
We couple a probe Dirac brane to the above democratic action via the usual action:

Stnane = = [ 4°7 6T (9) — Qu [ 4® (A1)

36Such a basis also exists when 7 is odd, but with non-integral quantization. This can be interpreted as

a discrete theta angle in the resulting non-democratic action.
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S is invariant under

This action is quantum mechanically sensible for Q, € Z because e’

large gauge transformations of the background gauge field A®.
However, attempting to derive the backreaction of the brane on the background fields

from this action leads to an immediate puzzle: the action (A.31) implies that the branes

are electrically charged but not magnetically charged, i.e.,

1 1
5_llg Fb =TF2 brane; SodF* = ) A.32
5 Altan(9) * 7] = F2Qujp 54 0 (A.32)

where the brane current jprane is a delta-function supported form with the defining property:
/ Wp = Wp A jbrane‘ (AS?))
brane spacetime

Eq. (A.32) is obviously incompatible with the constraints ¢, * F® = 14, F?. To correct it,
we manually symmetrize over the self-duality constraint to obtain

1 . 1 .
%d[tab«b) * Fb] = :FQa]braney %nabde = :FQa]braney (A34)

where the extra factor of 1/2 in the first equation is notable (the other half of the charge
being magnetic).

To justify (A.34), we begin with a heuristic argument, followed later by more precise
arguments. Note that (A.34) follows from the pseudo-action:

1

S:—g

- 1
[ta@F nsF — [ a5 ey=5T(0) - 5Qu [ A, (A35)
with the modified Bianchi identity dF® = F27[n~'Q]%jbrane. Despite the 1/2 in the last
term, this action produces the same brane dynamics as before, because the Maxwell term
also depends on the brane position:

_ _i a b __ i a b _ i/ a b
5Shax = — - / ta($)0F A F? = / B F? NG = 4 [ g A% A d(6F)
_ _%Qa / A% A Sjpranes (A.36)

where we apply the constraint in the second step and use 6(dF'?) = F27[n Q% jbrane
in the last step. This extra contribution doubles the effect of the term %Qa J A% and
reproduces the same dynamics as the probe action.3”

To further justify (A.34), we appeal to non-democratic formulations, in one of two
ways: (1) if the Dirac self-pairing Q,[n~']?Qy, vanishes (always the case in d = 4k), then
we can choose a description (undemocratic or partially democratic) where the gauge field
Q.,A” is unconstrained, and the above simply follow from backreacting the probe action
directly. Alternatively, even when Qq[n7']*Q, # 0, we can reduce on a circle along the

brane world-volume, producing the new probe brane action:

Sprane = (-2.) — Qa/C“. (A.37)

37Note that this argument is still heuristic, as I am glossing over some important subtleties.
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Coupled to (A.20), we find:

d [62&_12)015,11, x Gb] G A H = +£Q, 5 (A.38)
Am?R 4r? brane?
or .
- 1
b b —_ 0 (D
%nabd [F + %G A B] = QaJprane- (A.39)
In combination with dG* = 0, this lifts to
1 (D
5= dF” = FQajfime: (A.40)
where it should be noted that jk()fine = :Fjl()rDa)ne in the case of a brane that wraps the

compact circle, the sign relating to the definition of positive orientation in each case.?®

The self-duality constraint then implies,

1 .
5 ltas(®) * F'1 = FQu{rmmer (A1)

as we guessed before, which is half of the naively expected result. This factor of 1/2 is
easily checked against the well-understood case of D3 branes in type IIB string theory.
With this caveat in mind, we can now calculate the long-range force between parallel
branes. The calculation is completely analogous to that of section 4.2 upon treating the
pseudo-action as a genuine action with f; = ﬁtub, except that the electric backreaction
of the brane includes an additional factor of 1/2. (Although the brane now backreacts
magnetically as well, this has no effect on the force between stationary branes.) We obtain

D -2

Pro = 21t Q1,Q2p — GY0;T10; T — kHTiTa, (A.42)

for Dirac branes. Note that this reproduces (4.31) in the special case of purely electric
charges, see (A.26). Likewise, for general branes

) , 1
Pro = 21t Q1,Qap — G piipng — 53| T Ty — mﬂ%ﬁ/y . (A.43)
by the same reasoning, cf. (4.44).

A.5 Black hole and black brane solutions

Spherical symmetry allows only two components for Fy,, either along the transverse Sd/2
or radially with the remaining legs along the brane. Thus,

F® = f0(r)wajs + 5(r) * wapa, (A44)

for functions f{* and f¢. The Bianchi identities imply f{(r) = 0, where fs is fixed in terms
of f1 by the constraints. Expressing the result in terms of the charge, we obtain:

o ¥Wd/2
) Twd/2

w
T 27?(77_1(2)“—d/2
2

Fa = 27T(t_1Q Vd/2

=Ff+ (AT ) = (B F A+ )Y, (A45)

where F{' = 2ﬂ(t_1Q)a% is the purely electric portion.

38 We take f<p) wp > 0 when f(p+1) wpAdy > 0 for both the brane worldvolume and spacetime orientations.
Thus, for branes wrapping the circle we get a F sign from dy A jbrane = FJbrane N dy.
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In terms of Fy, the stress tensor is

1 1 1
Tmn - Etab(Fa o Fb)mn = Etab(Fla o Flb)mn + E(ATtA)ab(*Fla ° *Flb)mn
1
= %tab(Fla o Flb)mna (A'46)

where we make use of the fact that (Fffo*FP),,, = 0 as wellas ATtA = ¢ and *wo*o = woo.
Likewise,

1 1 1 1
1Ot P Fb = 1Ot P FP+ E[AT&A]ab « F . s FP = o Otan F FP, (AA4T)

where we use #w - *0 = —w - o and AT6tA = n't~16tt 1y = —nT6t~n = —6t, since
t= T]Tt_ln.

Thus, the backreaction of F'* on the metric and on the moduli is equivalent to that
of the electric flux Ff* with gauge kinetic matrix f,, = %tab, and the relevant black hole
potential is

Q*(¢) = 27t™(4)QuQs. (A.48)

Crucially, this is the same combination that appears in (A.42), (A.43). Apart from this
replacement, the rest of the calculations in section 5 are unchanged.

B Example solutions

In this appendix, I discuss a few example black hole and black brane solutions from the
literature to further illustrate the discussion in section 5. For simplicity, I focus on solutions
to the Einstein-Maxwell-Dilaton effective action:

5= Z/ddxf (Rd—(qu ) /ddxre avp2, (B.1)

Thus, Gyg(¢) = 5= and frr(P) = = Le~®. By shifting the definition of ¢, we can set its

252

vacuum expectation value ¢ to zero at the expense of rescaling e?.

B.1 Electrically charged solutions

Solutions with only electric or only magnetic charge have been studied extensively in the
literature [1, 32, 33, 35, 41-44], see also [9]. The two are related by Hodge duality, which
takes p —d —p — 2, a = —a, and e? — 472 /e2. Thus, both cases can be understood by
studying electrically charged solutions for general p, o and e?.

The equations (5.32a), (5.32b) become

' . _ ,aQ? 02022
LU = 0@, d[fg) = oD gp ST gy

5 Vd—p—l
where ¢ = %. A linear combination gives d.[f(a — £4)] = 0, whose only regular

solution satisfying ¥ = oo = 0 is @) — ¢ = 0. Thus eliminating ¢ from (5.34), we find
. . -1
Y= %1/12 where 7y := [{ + %2} . A general solution satisfying ) = 0 is

P(z) = —&vylog {1 + ZJ which implies d(z) = —aylog [1 + Zzo]a (B.3)

I
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for some constant zg. Substituting into (B.2), we obtain Q2 = % {% + Zh:| A priori zg
could have either sign, but if zyp < 0 then regularity at the horizon requires zy > —zp
whereas Q% > 0 requires zg < —zp, therefore zy > 0 by contradiction.

The thermodynamic properties of the solution can be read off using equa-

tions (5.44), (5.45), (5.62), (5.47), and (5.50):

vd__l{v d—p—1 1} 2 Vd2__17{1 1]
M: p L —, = p —_— | — — |, B4
K3 +dfp7222h @ e?k? 2o zo+zh (B.4a)
V. 1 1 Via—p_
T dplr } PR = (B.4b)
’%d d—p—22z, K3 220
27po1 { r d—p—2[ Zh}_7
= V, 1 T=——|14— . B4
5= /{Z "h d-p-1| 1+ 20l 4mry, + 20 (B-4c)
V2
In the quasiextremal (z), = 00) case, M = Yd=p= 5=t L oand Q* = 455t &, 80 that kK2M? =
d Kq

~ve?Q?. More generally, /i?l/\/l2 > ve?@Q? with equality only at quasiextremality, so the
quasiextremal solutions are extremal.

It is interesting to consider the behavior of the Hawking temperature as we approach
extremality. For 2z, > 2y, we have:

(B.5)

Thus, either T'— 0 (y > ﬁ), T — constant (v = ﬁ}_Q), or T — oo (y < ﬁ%—z) as
zp, — oo. Al D(p—1) branes in d = 10 string theory and its toroidal compactifications share
the value v = 1/2. Thus, if p < d — 4 then T' — 0 at extremality, whereas if p = d — 4 then
T — constant at extremality, and if p > d—4 then T — oo at extremality. Therefore, cases
with an apparently®® divergent Hawking temperature reside in the landscape of quantum
gravities, e.g., for D6 branes in ten-dimensional type ITA string theory.

By comparison, near extremality the entropy density behaves as

—p—1

2V -1 _
5o #(d p— 2) 220 722 R (B.6)
Ra
Notice that in general v < % = o d{;%Q) < g:i :;, so the entropy density either goes to zero

or to a constant in the extremal limit. In particular, the inequalities are both saturated
only when o = 0 and p = 1, which is the Reissner-Nordstréom case, with extremal entropy:

1
/€2 d-3 M, t %
Sext = 2 d = ) B.7
ot ”(vH) (d—z) (B.7)

Otherwise, the entropy / entropy density goes to zero in the extremal limit.

39Gince the horizon is singular in the quasiextremal limit, this behavior may be modified by derivative
corrections. I thank M. Montero, M. Reece and I. Valenzuela for discussions on this point.

— 44 —



B.2 Dyonic solutions

Dyonic solutions are possible for d = 2p + 2. Defining ¢, = 9 + §¢7 Vm = 1) —
§¢, (5.32a), (5.32b) become

dz[fiy&e] — 2936(1+V)¢e+(1_y)¢m7 dz[flf}m} _ 2Q3ne(1+”)wm+(1_”)we, (B.8)

a2 2 _ £e?Q2k2 9 Q% K2
where v 1= 5 Qs = Vf/z and Q7 = BATE

d/2
for v =1 [32, 45] and v = 3 [46].

. Besides v = 0, explicit solutions are known

B.21 v=1

In this case, the equations (B.8) decouple into d.[fem] = 2Q2, e*em 5o that

( L 1) =207, (B.9)

Ze,m Zh

z

we,m = _log 1+

] , where

Ze,m Ze,m

The thermodynamic properties can be read off as before:

Vg [2 2 d ) Vi, 171 1
— 242 4 = =" | -4 — B.10
M (d —2)K2 [ze + Zm + 2zh]’ ¢ e2(d—2)K3 z L’e zh]’ ( 2)
T Va2 [2 2 1] Q2 — 2e*Vily 1 {1 1} (B.10b)
(d—2)k21ze  2m  2n) " (d=2)KS Zm Lzm )] '
2 2
21 d/2 { Zhr”{ Zh]M Vay2 {1 1 }
_ 2t Violl 4+ 22 14 2 == - — B.10
s “?z Ty d/2 =+ e + Zm ) Ko /72(d — 2)&(21 % Zm 5 ( C)
2 2
_ T3 a2
T= Cé 2 [1 + Z’L} {1 + Z’l} . (B.10d)
T Ze Zm

Qm
e

], with equality only in the quasiextremal

One can check that kgM > /=% ||eQe| +
S

case. For r, < rem, = (%Ze,m) -,

27V, d—4 d—2
s~ 7;/2r6rmrh2 , T~ Th , (B.11)
Ky 8T TeTm

so T' — 0 in the extremal limit, whereas s — 0 in this limit for d > 4. In d = 4, the
extremal entropy is finite
872 1
Sext = o Tel'm = *|Q6Qm|' (B'12)
K3 2
Regardless of d, these solutions satisfy (5.37) and have an AdS;/, x 54/2 near horizon
geometry of the form (5.38).
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B22 v=3

This case arises naturally in Kaluza-Klein theory. Following [46, 47], we take the ansatz:

2z 22 2z 22
wez—flog L+ =+ 5|, Y = —glog |14+ =+ — (B.13)
6 e m m
Substituting into (B.8), we find
Ze + 22, Zm + 22 22e2p 22 2z2mzn 22,

where Z2 := 2.2, + 2m2n + Ze#m. The thermodynamic properties are now

Va2 2 2 d 9 d/z Zm [ 1 1
— 4= = — + — (B.15
M (d —2)K2 [ze + + th] @ e?(d — 2)k3 62 Ze * h]’ 2)
Vap [2 2 1 ) 2¢? Vd 1 1
— i — 4+ = (B.15b)
T (d —2)K2 [ze + Zm + zh] @ = (d—2) /{2 2 L’m h} g
27 42 {(ze+zh)(zm+zh)]d—2 de/Q {1 }
Hzrh -2 ZeZm e V2(d —2)k3 | ze )
2
d—2 (ze—i-zh)(zm—l—zh)}_“
T = . B.15d
87T7’h |: ZeZm ( )
In the quasiextremal limit, Zgym — %zem (ze + 2m), from which we obtain
1
(keMex)*’* = 75575 (1eQ™° + 1Qu/ef*%). (B.16)

One can show that all non-extremal solutions are heavier than this.*°
In the extremal limit, the entropy density and temperature behave similarly to the
v =1 case. Most notably, in d = 4,

872 1 1
ot = — ——— = —|Qe . B.1

The agreement with (B.12) is due to the attractor mechanism. Indeed, Sext = %]Qele
holds for all v # 0.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

““Note that the black hole region | s +’ T v 23 < (d—2)"/? is not convex. This does not imply that
the dyonic black holes are unstable agalnbt fragmentation into electric and magnetic constituents, because,

due to the simultaneous presence of electric and magnetic charge, angular momentum conservation plays a

non-trivial role in the kinematics [48, 49].
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