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it not promising.
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1 Introduction

The existence of the matter-antimatter asymmetry is unswervingly established over the
years by various cosmological observations such as the cosmic microwave background
anisotropies and big-bang nucleosynthesis [1]. It has been understood that the Universe
started with equal number of baryons and antibaryons, but later evolved into baryon domi-
nated Universe dynamically via a mechanism called baryogenesis. A successful baryogenesis
requires three necessary conditions namely, baryon number violation, charge conjugation
(C) and charge conjugation-parity (CP) violation and, departure from thermal equilibrium,
laid out by Sakharov in 1967 [2]. A plethora of baryogenesis scenarios have been proposed
so far to account for the observed baryon asymmetry of the Universe (BAU), however, its
origin is still unclear. After the discovery of the 125GeV Higgs boson at the Large Hadron
Collider (LHC) [3], a significant attention has been directed in particular to electroweak
baryogenesis (EWBG) [4, 15–89]1 mechanism for its direct connections to Higgs physics
and, its testability at the ongoing experiments. The Standard Model (SM) belongs to this
class, however the CP violation is too small and, the electroweak symmetry breaking is not
strongly first order phase transition (EWPT) to drive departure from thermal equilibrium.

While we do not have any strong experimental evidence of new physics yet, multi-
Higgs sector is the natural consequence of most ultraviolet (UV) theories due to enlarged

1For some reviews see e.g. refs. [5–14].
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symmetries. Whatever the fundamental theory might be, their effective descriptions at
O(100)GeV scale should resemble the SM in light of the latest experimental results. As for
the Higgs sector, two cases are conceivable: one is that all the new scalars are much heavier
than O(100)GeV scale, thereby the Higgs sector is effectively reduced to the SM, while
the other is that new scalars have O(100)GeV masses but their couplings to the gauge
bosons and fermions are SM like, mimicking the SM. From the viewpoint of new physics
discovery potential, it is timely to consider the latter case and investigate whether the
aforementioned cosmological issue can be solved or not. Since we have already confirmed
the existence of the Higgs doublet in nature, it is tempting to us to think of additional
Higgs doublets in analogy with the fact that all the fermions come in three copies.

The general two Higgs doublet model (g2HDM) is one of the simplest renormalizable
low-energy models where the scalar sector of the SM is extended by an extra scalar doublet.2

Without the presence of discrete symmetry, in g2HDM, both the scalar doublets couple
with up- and down-type fermions at tree level. In the mass eigenbasis of the fermions
(F ), one has two independent Yukawa couplings λFij and ρFij , where the former is real and
diagonal that are responsible for the fermion mass generation, while the latter is complex
and non-diagonal. Such complex couplings can provide additional CP violating sources
beyond the usual Cabibbo-Kobayashi-Maskawa (CKM) framework [92] of the SM.

EWBG in g2HDM is widely investigated in refs. [79–86]. This model can simultane-
ously accommodate the strong first-order EWPT and sufficient amount of CP violation
which the SM fails to provide. The most natural EWBG scenario in g2HDM would be
the case in which BAU is driven by the extra top Yukawa coupling (ρtt) of O(0.01 − 1)
in magnitude with moderate size of the CP phase (ρtt-EWBG) [84]. The devoted collider
study of this scenario is conducted in ref. [93].

As a complementary study to ρtt-EWBG, the present authors consider a scenario in
which the CP phase of ρtt is approximately zero and the extra bottom Yukawa coupling
(ρbb) plays a dominant role in generating BAU (ρbb-EWBG) [85]. It is demonstrated that
BAU can reach the observed level if |Imρbb| & 0.058 with generous assumptions on a
Higgs bubble wall profile. There exist several direct and indirect search constraints on the
parameter space for ρbb-EWBG such as h boson signal strength measurements, heavy Higgs
searches at the LHC. The ρbb-EWBG can be discovered at the LHC via bg → bA→ bZH

(or bg → bH → bZA) process if |Im(ρbb)| ∼ O(0.1) [94]. However, the process requires
that mA > mH + mZ and ρtt to be negligibly small to avoid constraints from flavor
physics [94]. In addition, for mA > 2mt, the process gets dilution from A→ tt̄ decay if ρtt
is nonvanishing. Also, it would be extremely difficult to probe the phase of ρbb at the LHC
since its information is lost in pp collision.

In this paper we show that the electron EDM measurement and asymmetry of CP
asymmetry of the B → Xsγ decay offer exquisite probes for Im(ρbb). We also analyze
the prospect of discovery at the LHC. In particular we study the discovery potential of
ρbb-EWBG via bg → bA → bZh and bg → bA → btt̄ processes at 14TeV LHC. Purpose of
this paper is to find possible direct and indirect signatures and correlation between them
in probing the parameter space for the ρbb-EWBG.

2For pedagogical reviews on 2HDM see e.g. refs. [90, 91] and references there in.
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Induced by ρbb, the bg → bA → bZh process can be searched at the LHC via pp →
bA + X → bZh + X (X is inclusive activities) followed by Z → `+`− (` = e, µ) and
h → bb̄ decays, constituting same flavor opposite sign dilepton pair and three b-tagged
jets. While the bg → bA → bZh process can be induced ρbb, the bg → bA → btt̄ process
requires both ρbb and ρtt to be nonvanishing. The latter process can be searched via
pp → bA + X → btt̄ + X with at least one top decays semileptonically, constituting three
b-tagged jets, at least one charged lepton (e and µ) and missing transverse energy signature
(denoted as 3b1` process). These processes provide the sensitive probes for the parameter
space of ρbb-EWBG, which is complementary to ref. [94].

For the sake of completeness we also investigate the discovery prospect of the gg →
tt̄A→ tt̄bb̄ process, which is induced by nonzero ρbb and ρtt. At the LHC the process can
be searched via pp→ tt̄A+X → tt̄bb̄+X, with at least one top decaying semileptonically.
As ρtt gets involved in both bg → bA → btt̄ and gg → tt̄A → tt̄bb̄, the processes would
provide complementary probes also for ρtt-EWBG.

In the following, we outline the formalism in section 2, followed by a detailed discussion
on the available parameter space and potential indirect probes in section 3. We discuss the
discovery potential of ρbb-EWBG at the LHC in section 4 and summarize our results with
some outlook in section 5.

2 Framework

The particle content of g2HDM is the SM plus additional Higgs doublet. In general, this
model induces flavor-changing neutral current (FCNC) processes mediated by the neutral
Higgs bosons at tree level. It is common to impose a Z2 symmetry to suppress the FCNC
processes to be consistent with various flavor physics data. Though this setup works well,
having the Z2 symmetry implies that the model has some specific UV theories such as
supersymmetric models. Since we do not try to connect the model to any specific UV
completions, we do not impose the Z2 symmetry or something similar, which enables us to
discuss physics at O(100)GeV scale in wider perspective. In this bottom-up approach, the
tree-level FCNC processes are possible as long as the experimental data allow, and sources
of CP violation are much richer than 2HDMs with some discrete symmetries.

The most general two Higgs doublet potential can be written in the Higgs basis
as [95, 96]

V (Φ,Φ′) = µ2
11|Φ|2 + µ2

22|Φ′|2 − (µ2
12Φ†Φ′ + H.c.) + η1

2 |Φ|
4 + η2

2 |Φ
′|4 + η3|Φ|2|Φ′|2

+ η4|Φ†Φ′|2 +
[
η5
2 (Φ†Φ′)2 +

(
η6|Φ|2 + η7|Φ′|2

)
Φ†Φ′ + H.c.

]
. (2.1)

Each Higgs doublet fields is expressed as

Φ =

 G+

1√
2(v + h+ iG0)

 , Φ′ =

 H+

1√
2(A+H)

 , (2.2)
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where v(' 246 GeV) is the vacuum expectation value, h is the SM-like Higgs boson, G0,±

are the Nambu-Goldstone bosons, H and A are the CP-even and -odd Higgs bosons, respec-
tively, andH± are the charged Higgs bosons. From the minimization condition with respect
to Φ, it follows that µ2

11 = −η1v
2/2. For simplicity, we assume CP-conserving Higgs sector

at tree level.3 The second minimization condition with respect to Φ′ gives µ2
12 = η6v

2/2.
The mixing angle γ between the CP-even bosons h and H satisfies the relations [96]

cos2 γ = η1v
2 −m2

h

m2
H −m2

h

, sin 2γ = 2η6v
2

m2
H −m2

h

. (2.3)

An alignment limit is defined as cγ = 0 and sγ = −1, where cγ and sγ are shorthands for
cos γ and sin γ respectively. One can express the masses of h, H, A and H± in terms of
the parameters in eq. (2.1):

m2
h,H = 1

2

[
m2
A + (η1 + η5)v2 ∓

√[
m2
A + (η5 − η1)v2]2 + 4η2

6v
4
]
, (2.4)

m2
A = 1

2(η3 + η4 − η5)v2 + µ2
22, (2.5)

m2
H± = 1

2η3v
2 + µ2

22. (2.6)

Note that in the alignment limit, one has m2
h = η1v

2 and m2
H = m2

A + η5v
2 = (η3 + η4 +

η5)v2/2 + µ2
22. In contrast to mh, the masses of the extra Higgs bosons are controlled by

ηiv
2 and µ2

22, where ηi denotes some linear combinations of the η couplings. As is well
known, magnitudes of the heavy Higgs loop contributions can become sizable if ηiv2 & µ2

22,
which is necessary for achieving the strong first-order EWPT.

The CP-even scalars h, H and CP-odd scalar A couple to fermions by [95]

L = − 1√
2

∑
F=U,D,L

F̄i

[(
− λFijsγ + ρFijcγ

)
h+

(
λFijcγ + ρFijsγ

)
H − i sgn(QF )ρFijA

]
PR Fj

− Ūi
[
(V ρD)ijPR − (ρU†V )ijPL

]
DjH

−ν̄iρ
L
ijPR LjH

+ + H.c., (2.7)

where PL,R ≡ (1 ∓ γ5)/2, i, j = 1, 2, 3 are generation indices, V is CKM matrix, and
U = (u, c, t), D = (d, s, b), L = (e, µ, τ ) and ν = (νe, νµ, ντ ) are in vectors in flavor space.
The matrices λFij (=

√
2mF

i /v) are real and diagonal, whereas ρFij are in general complex
and non-diagonal.

Purpose of this paper is to probe the parameter space for EWBG driven by the extra
bottom Yukawa ρbb. It is found that a successful EWBG requires |Im(ρbb)| & 0.058 [85]. In
the following we shall show that the parameter space receives meaningful constraints from
several direct and indirect searches. The most stringent constraint on Im(ρbb) arises from
electron EDM and ∆ACP of B(B → Xsγ). In addition, coupling strength measurements of
h and heavy Higgs searches at the LHC would also provide the complementary probes. In

3Since we have CP violation in the Yukawa sector as delineated below, its effect appears in the Higgs
spectrum at one-loop level and CP-even and -odd Higgs boson mix with each other. Nevertheless, such
a one-loop induced mixing is so small that {h,H,A} can be regarded as the mass eigenstates to a good
approximation.
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addition to these constraints, we also study potential signatures at the LHC. We primarily
focus on three searches at the 14TeV LHC bg → bA→ bZh ,4 gg → tt̄A→ tt̄bb̄ and bg →
bA→ btt̄ (for the discussion on latter two processes see also refs. [105]5). Induced by ρbb the
bg → bA→ bZh process can be searched at the LHC if cγ is nonzero and mA > mh +mZ .
On the other hand, gg → tt̄A → tt̄bb̄ process requires ρtt and ρbb both nonvanishing with
mild dependence on cγ . The final process bg → bA → btt̄ also depends both on ρbb and
ρtt but needs mA > 2mt. Together with electron EDM and ∆ACP of B(B → Xsγ), these
processes can probe significant part of the parameter space for ρbb-EWBG.

Note that complex ρtt can provide a more robust mechanism for EWBG [84, 86].
One may also have complementary probes for the ρtt-EWBG from gg → tt̄A → tt̄bb̄ and
bg → bA → btt̄ processes. Nonvanishing ρtt motivates the conventional gg → H →
tt̄ [106, 107]6 search or gg → tt̄A/H → tt̄tt̄ [101–105],7 i.e., the four top search. Though
the former process suffers from large interference with the overwhelming QCD gg → tt̄

background [108], recent searches performed by both ATLAS [106] and CMS [107] found
some sensitivity. When both ρbb and ρtt are nonzero, one may also have gg → bb̄A/H →
bb̄tt̄, which are covered in refs. [101–105].

3 Parameter space

Let us find the allowed parameter space for mA, mH and mH± . The parameters in eq. (2.1)
are required to satisfy perturbativity, tree-level unitarity and vacuum stability conditions,
for which we utilized the public tool 2HDMC [112]. We express the quartic couplings η1,
η3−6 in terms of mh, mH , mH± , mA, µ22, γ, and v as [95]

η1 =
m2
hs

2
γ +m2

Hc
2
γ

v2 , (3.1)

η3 =
2(m2

H± − µ2
22)

v2 , (3.2)

η4 =
m2
hc

2
γ +m2

Hs
2
γ − 2m2

H± +m2
A

v2 , (3.3)

η5 =
m2
Hs

2
γ +m2

hc
2
γ −m2

A

v2 , (3.4)

η6 = (m2
h −m2

H)(−sγ)cγ
v2 . (3.5)

The quartic couplings η2 and η7 do not enter scalar masses, nor the mixing angle γ.
Therefore in our analysis we take v, mh, and γ, mA, mH , mH± , µ22, η2, η7 as the
phenomenological parameters. Further, to save computation time, we randomly gener-
ated these parameters in the following ranges: µ22 ∈ [0, 1000] GeV, mA ∈ [250, 600]GeV,
mH ∈ [250, 600]GeV, mH± ∈ [250, 600]GeV, η2 ∈ [0, 6], η7 ∈ [−6, 6], while satisfying

4Discussions on similar processes can also be found in refs. [97–100].
5For recent discussions see e.g. refs. [101–104].
6For a recent reference see also ref. [108].
7See e.g. for a non exhaustive list refs. [109–111].
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Figure 1. Scanned points plotted in mA–mH (left) and mA–mH± (right) plane. Here the scanned
points satisfy the tree level unitarity, perturbativity and positivity conditions as well as the T

parameter constraint. However, not all points lead to the strong first-order EWPT.

mh = 125GeV with cγ = 0.1.8 The randomly generated parameters are then fed into
2HDMC for scanning. 2HDMC utilizes [112] mH± and Λ1−7 as the input parameters in
the Higgs basis whereas v ' 246GeV. In order to match the 2HDMC convention, we iden-
tify η1−7 as Λ1−7 and, take −π/2 ≤ γ ≤ π/2. For the positivity conditions of the Higgs
potential of eq. (2.1), the parameter η2 > 0 along with other more involved conditions
implemented in 2HDMC. We further conservatively demand |ηi| ≤ 6.

Next we impose the stringent oblique T parameter [113] constraint, which restricts
hierarchical structures among the scalar massesmH ,mA andmH± [114, 115], and hence ηis.
Utilizing the expression given in ref. [115] the points that passed unitarity, perturbativity
and positivity conditions from 2HDMC, are further required to satisfy the T parameter
constraint within the 2σ error [116].9 These points are denoted as “scanned points”. We
plot the scanned points in the mA–mH and mA–mH± planes in the left and right panels
of figure 1, which illustrates that significant amounts of the allowed points exists. A more
detailed discussions on the scanning procedure can be found in refs. [118, 119]. At this
point, we have not yet required that EWPT should be strongly first order, and not all
points are compatible with the ρbb EWBG.

To find the constraints on ρbb and ρtt and, subsequently analyze the potential of future
probes we choose three benchmark points (BPs) from the scanned points in figure 1, which
are summarized in table 1. Here, we also demand that the chosen parameter sets give
rise to the strong first-order EWPT. The BPa and BPb are chosen such that mA < 2mt.
Since there is no suppression from B(A → tt̄), such a choice would enhance the discovery
potential of bg → bA → bZh and gg → tt̄A → tt̄bb̄ . For the BPc, where mA > 2mt, the
bg → bA → btt̄ process10 can provide additional probes for the parameter space. Further,
for all three BPs, A is assumed to be lighter than H and H± to forbid A → ZH and

8Note that, for successful ρbb induced EWBG, one requires non vanishing cγ as discussed in ref. [85]. It
was shown that for cγ ∼ 0.1, current data still allows Im(ρbb) ∼0.15–0.2, while |Im(ρbb)| & 0.058 is sufficient
to account for the observed BAU [85].

9The latest value of T parameter is obtained from ref. [117].
10Note that for BPa and BPb one may have bg → bH → bb̄tt̄, which can resemble similar final state

topologies as in bg → bA→ btt̄ . This would be discussed in the section 4.2.
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BP η1 η2 η3 η4 η5 η6 η7 mH± mA mH
µ2

22
v2

(GeV) (GeV) (GeV)

a 0.282 2.034 4.053 −1.039 1.343 −0.243 1.231 391 285 405 0.5
b 0.289 1.959 4.064 −0.418 1.56 −0.316 −1.216 414 334 456 0.8
c 0.303 0.413 5.129 −0.477 1.534 −0.455 0.457 508 444 541 1.7

Table 1. Parameter values of three benchmark points chosen from the scanned points in figure 1,
which are consistent with the strong first-order EWPT.
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Figure 2. The constraints on ρbb from B(B → Xsγ) (purple) and ∆ACP (blue) measurements for
the BPa (left), BPb (middle) and BPb (right) respectively. All three figures are generated assuming
ρtt = 0.5. See text for details.

A → H±W∓ decays and boost the discovery potential of these processes to some extent.
Heavier A are indeed possible, but the cross sections are reduced due to rapid fall in the
parton luminosity. We also remark that one requires [4–14] sub-TeV mA, mH± and mH for
the strong first-order EWPT, which is required for conventional sub-TeV EWBG [15–77]
(for high-scale EWBG, see, e.g., refs. [87–89]).

In the following we will scrutinize the relevant constraints on ρbb and ρtt. For simplicity,
we assume that ρij except for ρbb, ρtt and ρee are negligibly small so as not to affect our
main discussion. The impacts of nonzero ρij would be discussed later part of the paper.

3.1 Flavor constraints

There exist several constraints from flavor physics that restricts the parameter space. In
particular, the following three observables are relevant: (i) the branching ratio measurement
of B → Xsγ (B(B → Xsγ)), (ii) the asymmetry of the CP asymmetry between the charged
and neutral B → Xsγ decays (∆ACP) and (iii) the Bq-Bq (q = d, s) mixings.

Let us first focus on B(B → Xsγ). Non-zero ρbb and ρtt modify B(B → Xsγ) via
top quark and charged Higgs boson loop. The modification is parametrized by the (LO)
Wilson coefficients C(0)

7,8 at the matching scale µ = mW

C
(0)
7,8 (mW ) = F

(1)
7,8 (xt) + δC

(0)
7,8 (µW ), (3.6)

where, mt(mW ) is the top quark MS running mass at the mW scale with xt =
(mt(mW )/mW )2. The expression for F (1)

7,8 (x) can be found in the refs. [120, 121], whereas
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δC
(0)
7,8 (µW ) the LO (leading order) charged Higgs contributions. At LO, δC(0)

7,8 (µW ) is ex-
pressed as [122]

δC
(0)
7,8 (mW ) ' |ρtt|

2

3λ2
t

F
(1)
7,8 (yH+)− ρttρbb

λtλb
F

(2)
7,8 (yH+), (3.7)

with yH+ = (mt(mW )/mH+)2 while, the full expression for F (2)
7,8 (yH+) can be found in

ref. [120]. The current world average of B(B → Xsγ)exp extrapolated to the photon-energy
cut E0 = 1.6GeV is found by the HFLAV Collaboration to be (3.32 ± 0.15) × 10−4 [123].
The next-to-next-to LO (NNLO) B(B → Xsγ) prediction in the SM for the same photon-
energy cut is (3.36 ± 0.23) × 10−4 [124]. In order to find the constraint, we adopt the
prescription outlined in ref. [125] and define

Rexp = B(B → Xsγ)exp
B(B → Xsγ)SM

. (3.8)

Based on our LO Wilson coefficients, we further express

Rtheory = B(B → Xsγ)g2HDM
B(B → Xsγ)SM

, (3.9)

and take mW and mb(mb) respectively as the matching scale and the low-energy scales.
Finally, we demand Rtheory to remain within the 2σ error of Rexp. In figure 2 the excluded
regions are shown as the purple shaded regions in the Re(ρbb)–Im(ρbb) plane for three BPs.
Here, we assume ρtt = 0.5. Flavor constraints on ρtt is moderately strong, with Bd,s-Bd,s

mixings providing the most stringent constraint on ρtt for 500 . mH+ . 650GeV, which is
the ballpark mass ranges of mH± for all the three BPs. The Bq-Bq mixing amplitude M q

12
receives modification from the charged Higgs and W bosons loop with t quark. Utilizing
the expression for Bq-Bq mixing in type-II 2HDM [126], it is found in ref. [122] that

M q
12

M q SM
12

= 1 + IWH(yW , yH , x) + IHH(yH)
IWW (yW ) , (3.10)

where yi = m2
t /m

2
i (i = W,H±) and x = m2

H±/m2
W with mt and mW being the masses

of the top quark and W bosons. The expressions for IWW , IWH and IHH are respectively
given by [122]

IWW = 1 + 9
1− yW

− 6
(1− yW )2 −

6
yW

(
yW

1− yW

)3
ln yW , (3.11)

IWH '
(
ρ∗tt
λt

+ Vcbρ
∗
ct

Vtbλt

)(
ρtt
λt

+
V ∗cqρct

V ∗tqλt

)
yH

×
[ (2x− 8) ln yH

(1− x)(1− yH)2 + 6x ln yW
(1− x)(1− yW )2 −

8− 2yW
(1− yW )(1− yH)

]
, (3.12)

IHH '
(
ρ∗tt
λt

+ Vcbρ
∗
ct

Vtbλt

)2(ρtt
λt

+
V ∗cqρct

V ∗tqλt

)2 ( 1 + yH
(1− yH)2 + 2yH ln yH

(1− yH)3

)
yH . (3.13)

For |ρtt| ∼ O(1) coupling ρct is strongly constrained due to |Vcq/Vtq| ∼ 25 (q = d, s)
enhancement [122], as can be seen from eqs. (3.12) and (3.13). As we are primarily inter-
ested in the parameter space where ρtt is O(1), we turn off ρct throughout our paper for
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simplicity. The 2018 summer results of UTfit finds [127]:11

CBd ∈ 1.05± 0.11,
CBs ∈ 1.110± 0.090,
φBd ∈ −2.0± 1.8 [in ◦],
φBs ∈ 0.42± 0.89 [in ◦]. (3.14)

with M q
12/M

q SM = CBqe
2iφBq . Under the assumption on the ρFij couplings made in our

analysis, we have M q
12/M

q SM = CBq . Allowing 2σ errors on CBd and CBs we find that
Bs,d-Bd,s mixings exclude |ρtt| & 0.9 for BPa and BPb and, |ρtt| & 1 for BPc.

One of the most powerful probes of Im(ρbb) is the direct CP asymmetry ACP [129] of
B → Xsγ. It is advocated in ref. [130], however, that ∆ACP is even more sensitive to the
CP-violating couplings, which is defined as [130]

∆ACP = AB−→X−
s γ
−AB0→X0

sγ
≈ 4π2αs

Λ̃78
mb

Im
(
C8
C7

)
, (3.15)

where Λ̃78 and αs denote a hadronic parameter and the strong coupling constant at mb(mb)
scale, respectively. One expects that Λ̃78 has a similar scale of ΛQCD. In ref. [130], it is
found that 17 MeV ≤ Λ̃78 ≤ 190 MeV. On the other hand, recently Belle measured
∆ACP = (+3.69 ± 2.65 ± 0.76)% [131], where the first uncertainty is statistical while
the second one is systematic. Allowing 2σ error on the Belle measurement, we show the
regions excluded by ∆ACP in blue shade in figures 2 for the three BPs. Here, we choose
the average value of Λ̃78 i.e., 89MeV for illustration. We stress that the constraint shown
in figures 2 depends heavily on the value of Λ̃78. The larger Λ̃78 would make the constraint
stronger. We also remark that we utilize the LO Wilson coefficients in eq. (3.6) as a first
approximation for simplicity. Note that the excluded regions by ∆ACP measurement in
figure 2 is asymmetric and constrains positive Im(ρbb) more stringently. This is solely due
to our choice of ρtt = 0.5. If we take ρtt = −0.5, the blue shaded regions would flip and
exclude the negative regions of Im(ρbb).

We note in passing that if ρtt is also complex, ∆ACP can be zero if the complex phases
of ρtt and ρbb are aligned, i.e., Im(ρttρbb)=0, equivalently, Reρbb/Reρtt = −Imρbb/Imρtt.
Such a phase alignment is discussed in ref. [86].

3.2 EDMs

The complex phase of ρbb is severely constrained by EDMs of the electron, neutron, and
atoms, etc. Currently, the most stringent experimental bound comes from EDM of thorium
monoxide (ThO), which is approximately given by

dThO = de + αThOCS , (3.16)

where de is the electron EDM and CS is the coefficient of the nuclear spin-independent
interaction (NSID), which are respectively defined as

LEDM = − i2deF
µν ēσµνγ5e, LNSID

eN = −GF√
2
CS(N̄N)(ēiγ5e), (3.17)

11The New Physics Fit results of 2018 Summer can be found at ref. [128].
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e− e−

φ γ/Z/W

γ

Figure 3. Two-loop Barr-Zee diagrams contributing to the electron EDM, where φ = h,H,A,H±.
The shaded loop collectively represents the scalar, fermion and gauge boson loops. The total
contribution is given by their sum, de = dφγe + dφZe + dφWe .

where Fµν denotes the field strength tensor of electromagnetism and GF is the Fermi
coupling constant. The coefficient αThO is estimated as αThO = 1.5 × 10−20 [132]. The
latest experimental value of dThO is placed by ACME Collaboration in 2018 (ACME18) as

dThO = (4.3± 4.0)× 10−30 e cm, (3.18)

from which under the assumption of CS = 0 the electron EDM has an upper bound of

|de| < 1.1× 10−29 e cm. (3.19)

In our scenario, de is predominantly induced by two-loop Barr-Zee diagrams as depicted
in figure 3, which are decomposed into the three parts:

de = dφγe + dφZe + dφWe , (3.20)

where φ = h,H,A for the first two terms and φ = H± for the last term. Let us denote
the contribution of i-species to dφγe as (dφγe )i. If ρbb is the only source of CP violation,
de ' (dφγe )b. With Imρbb required by ρbb-EWBG mechanism, de is so large that one cannot
avoid the ACME18 bound as noted in ref. [85]. This fact suggests two options: (i) the align-
ment limit (cγ → 0) and (ii) cancellation mechanism. As discussed in ref. [86], however, the
first option may not be consistent with EWBG in g2HDM since the BAU would be sup-
pressed with decreasing cγ . We thus consider the second option. Even though we identify
the parameter space for the cancellation in ref. [85], we do not show its detail there, and
moreover, dφWe , which can come into play in the cancellation region, is missing. We there-
fore update our previous analysis taking all the relevant contributions into consideration.

If there exist more than two CP -violating phases, we could tune the parameters in
such a way that de becomes small. While it is nothing more than the parameter turning,
we still classify the cancellation parameter space into two kind. We call a cancellation
structured cancellation if it happens when the hierarchical structures of the ρij matrices
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closely resemble those of the SM Yukawa matrices, and anything else is unstructured can-
cellation. It is revealed in ref. [86] that the parameter space of ρtt-EWBG accommodates
the structured cancellation. We here scrutinize the type of the cancellation in ρbb-EWBG.

Following a method adopted in ref. [86], we split (dφγe )b into two parts as12

(dφγe )f = (dφγe )mix
f + (dφγe )extr

f , (3.21)

where

(dφγe )mix
f

e
= −

3αemQ
2
fs2γ

16
√

2π3v

[
Im(ρee)∆ff + λe

λf
Im(ρff )∆gf

]
, (3.22)

(dφγe )extr
f

e
=

3αemQ
2
f

16π3mf

[
Im(ρee)Re(ρff )

{
c2
γf(τfh) + s2

γf(τfH)± g(τfA)
}

+ Im(ρff )Re(ρee)
{
c2
γg(τfh) + s2

γg(τfH)± f(τfA)
}]
, (3.23)

with αem and Qf representing the fine structure constant and electric charges of f , respec-
tively, and ∆ff = f(τfh) − f(τfH) and ∆gf = g(τfh) − g(τfH) with τij = m2

i /m
2
j . f(τ)

and g(τ) are the loop functions and their explicit forms are shown in appendix A. In our
notation, the sign of e is positive. In the wave parenthesis in eq. (3.23), the upper sign is
for up-type fermions and the lower is for down-type fermions, respectively. For cγ � 1 and
mH ' mA, (dφγe )extr

t,b are approximated as

(dHγe )extr
t

e
' αem

12π3mt
Im(ρeeρtt)

[
f(τtH) + g(τtH)

]
, (3.24)

(dHγe )extr
b

e
' αem

48π3mb
Im(ρeeρ∗bb)

[
f(τbH)− g(τbH)

]
. (3.25)

In the ρbb-EWBG scenario, Im(ρeeρtt) = ρttIm(ρee). To make our discussion on the
cancellation mechanism simpler, we consider a case in which Im(ρeeρ∗bb) ' 0 so that
(dφγe )b ' (dφγe )mix

b . When ρee is nonzero, the primary contribution could be (dφγe )W as
inferred from the fact that the φ-γ-γ vertex in dφγe is more or less common to the h→ 2γ
decay. Noting that the W -loop has only the “mix” contribution since the Higgs couplings
to the W bosons are the gauge couplings, one may find [133]

(dHγe )W
e

= (dHγe )mix
W

e
= αems2γ

64
√

2π3v
Im(ρee)∆J γW , (3.26)

where ∆J γW = J γW (mh) − J γW (mH) (for explicit form of J γW , see appendix A). From the
condition of (dφγe )t + (dφγe )b + (dφγe )W = 0, it follows that

Im(ρee)
Im(ρbb)

= − s2γ∆gb/4
s2γ [∆ft + ∆fb/4− (3/16)∆J γW ] + 2ρtt[f(τtH) + g(τtH)]/λt

≡ −c× λe
λb
.

(3.27)
It is found that c = 1.0× 10−3 for cγ = 0.1, ρtt = 0.5, mh = 125GeV and mH = 405GeV.
Therefore, the cancellation is possible but unstructured since c deviates much from the unity

12By convention in this paper, the sign of γ is opposite to that in ref. [86].
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as opposed to the ρtt-EWBG scenario [86]. Once this accidental cancellation happens, other
contributions could become relevant. On the grounds of dimensional analysis, one can find
that dφZe is suppressed by the Z boson coupling to the electron, gZee = 1/4 − sin θW '
0.02 with θW representing the weak mixing angle, while dφWe is not and becomes leading
contribution. The dominant contribution in dφWe comes from the diagrams involving the
top and bottom loops, which amounts to [86, 134, 135]

(dφWe )t/b
e

' 3αem|Vtb|2

128π3s2
W

mt

m2
H±

Im(ρeeρtt)J1(τWH± , τtH±), (3.28)

where mb = 0 and Vtb is the (33) element of the CKM matrix, which is close to one [1]. J1 is
the loop function listed in appendix A. In general, this contribution has the ρbb dependence
but vanishes in the case of mb = 0. Note that (dφWe )t/b is absent in the softly-broken Z2
2HDMs. For one of the ρbb-EWBG parameter points, e.g., Im(ρbb) = −0.15, one would get
(dφWe )t/b ' 1.2×10−29 e cm in the cancellation region specified by eq. (3.27), together with
mH± = 391GeV and ρtt = 0.5, which slightly exceeds the ACME18 bound. Therefore, the
allowed region is not exactly determined by the cancellation condition but it occurs in its
vicinity, as we show in our numerical analysis conducted below. It should be noted that
even though ρtt is real in ρbb-EWBG, its magnitude can be constrained by the electron
EDM due to the proportionality of ρttIm(ρee).

Now we move on to discuss the CS contribution. We estimate CS using the CP-
violating 4-fermion interactions between the quarks and electron defined as

LCPV
4f =

∑
q

Cqe(q̄q)(ēiγ5e), (3.29)

where Cqe =
∑
φ=h,H,A g

S
φq̄qg

P
φēe/m

2
φ (explicit forms of gSφq̄q and gPφēe are shown in ap-

pendix A) With those, CS is estimated as [136]

CS = −2v2
[
6.3(Cue + Cde) + Cse

41 MeV
ms

+ Cce
79 MeV
mc

+ 62 MeV
(
Cbe
mb

+ Cte
mt

)]
. (3.30)

Note that for cγ � 1 and mH ' mA, Cqe for up- and down-type quarks are, respectively,
cast into the form [86]

Cue '
1

2m2
H

Im(ρeeρuu), Cde '
1

2m2
H

Im(ρeeρ∗dd). (3.31)

Therefore, the dependences of the CP-violating phases are the same as those of (dφγe )extr
u

and (dφγe )extr
d , respectively.

In our numerical analysis, we parametrize ρff , except for ρtt, as Re(ρee) =
−r(λe/λb)Re(ρbb) and Im(ρee) = −r(λe/λb)Im(ρbb). Though the CP-violating phases in
the first and second generations of ρF matrices have nothing to do with ρbb-EWBG, we fix
them through the above relations. However, the effects of the extra CP violation are too
small to affect our cancellation mechanism in ρbb-EWBG.

In figure 4, |dThO| and its details are shown as functions of r. We take BPa for the
Higgs spectrum and set cγ = 0.1, Re(ρbb) = 0, Im(ρbb) = −0.15 and ρtt = 0.5 as an example
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Figure 4. Details of EDMs as functions of r. We take BPa for the Higgs spectrum and set cγ = 0.1,
Re(ρbb) = 0, Im(ρbb) = −0.15 and ρtt = 0.5 as an example of the ρbb-EWBG scenario. Other ρff
are fixed by Re(ρee) = −r(λe/λb)Re(ρbb) and Im(ρee) = −r(λe/λb)Im(ρbb). The ACME18 bound
(|de| < 1.1× 10−29 e cm) is shown by the horizontal dotted line in black.

of the ρbb-EWBG scenario. As seen, the magnitude of αThOCS is much smaller than that
of de, we thus can use the ACME18 bound of |de| < 1.1× 10−29 e cm, which is represented
by the horizontal dotted line in black, to constrain the parameter space. As discussed in
eq. (3.27), the cancellation happens in dφγe at around r ' 1×10−3, which is the consequences
of (dφγe )t+(dφγe )b+(dφγe )W ' 0. At this point, dφWe becomes dominant and |de| exceeds the
ACME 18 bound. Nevertheless, the cancellation is still at work at around r ' 0.7× 10−3.
Similar to this case, we can always find cancellation regions in the cases of BPb and BPc
as well, and thus conclude that ρbb-EWBG scenario is still consistent with the ACME18
bound. Note that here we set cγ = 0.1 while finding the constraints from ACME18 to
illustrate Im(ρbb) ∼ 0.15 is still allowed for ρtt ∼ 0.5 for all the three BPs. In the rest of the
paper, however, we ignore the cγ dependence since it is insensitive to our collider study.

Here, we briefly discuss the EDMs of neutron and Mercury. Their current experimental
values are respectively given by [137, 138]

|dn| < 1.8× 10−26 e cm (90% C.L.), (3.32)
|dHg| < 7.4× 10−30 e cm (95% C.L.). (3.33)

On the theoretical side, the neutron EDM based on QCD sum rules is estimated as [139],

dn = −0.20du + 0.78dd + e(0.29dCu + 0.59dCd )/g3, (3.34)
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where g3 is the SU(3)C gauge coupling and dCq are the quark chromo EDMs defined by
the operator LCEDM = −(i/2)dCq Gµν q̄σµνγ5q with Gµν representing SU(3)C field strength
tensor. We note that even though the cancellation mechanism can work in dn as well, it
does not occur at the cancellation point of de. Using the same input parameters as in
figure 4 with r = 0.7× 10−3, we obtain |dn| = 2.4× 10−29 e cm, which is nearly 3 orders of
magnitude below the current bound. For the mercury EDM, on the other hand, we estimate
it using formulas in refs. [140–142] assuming dI

Hg defined in ref. [141] and find that |dHg| =
8.0× 10−31 e cm, which is smaller than the current bound by about 1 order of magnitude.

We note in passing that a future measurement of the proton EDM could be an-
other good prober of ρbb-EWBG. The experimental sensitivity of the proton EDM at
IBS-CAPP [143] and BNL [144] is |dp| ∼ 10−29 e cm. As is the case of neutron EDM
discussed above, the proton EDM can be estimated by use of the QCD sum rules as [139]

dp = 0.78du − 0.20dd + e(−1.2dCu − 0.15dCd )/g3. (3.35)

With this, it is found that |dp| = 6.1 × 10−29 e cm for the parameters used in figure 4
with r = 0.7× 10−3. Therefore, the future measurement of dp could access the ρbb-EWBG
parameter space regardless of the de cancellation.

3.3 Direct search limits

There exist several direct search limits from ATLAS and CMS that may restrict the param-
eter space of ρbb, even for cγ = 0 and ρtt = 0. The coupling ρbb receives several constraints
from heavy Higgs boson searches at the LHC. In particular, refs. [145–149] are relevant to
our study. We find that the most stringent constraint arises from CMS search involving
heavy Higgs boson production in association with at least one b-jet and decaying into bb̄
pair based on 13TeV 35.7 fb−1 data [145]. The CMS search provides a model independent
95% CL upper limits on the σ(pp → bA/H + X) · B(A/H → bb̄) in the mass range be-
ginning from 300GeV to 1300GeV. We first extract13 corresponding 95% CL upper limit
σ(pp → bA/H + X) · B(A/H → bb̄) for our three BPs. Taking a reference |ρbb| value, we
then estimate the production cross sections of pp→ bA/H +X at the leading order (LO)
utilizing Monte Carlo event generator MadGraph5_aMC@NLO [150] (denoted as Mad-
Graph5_aMC) with the default parton distribution function (PDF) NN23LO1 set [151]
for the BPs. As the analysis does not veto additional activity in the event [145], we there-
fore include contributions from gg → bb̄A/H along with bg → bA/H while estimating the
cross sections. These cross sections are finally rescaled by |ρbb|2×B(A/H → bb̄), assuming
B(A/H → bb̄) = 100%, to obtain the corresponding 95% CL upper limits on |ρbb|. It is
found that |ρbb| & 0.6 is excluded for BPa at 95% CL and likewise, the regions where |ρbb| &
0.7 are ruled out for both BPb and BPc. These upper limits are rather weak and would
be further weakened by B(A→ Zh) and B(A/H → tt̄). The limits are even weaker from a
similar search performed by ATLAS [146]. We note that while estimating the upper limit

13To obtain the 95% CL σ(pp → bA/H + X) · B(A/H → bb̄) upper limit for the three benchmark
points BPI, BPII and BPIII, we digitized the figure of ref. [145]. The figure is available in http://cms-
results.web.cern.ch/cms-results/public-results/publications/HIG-16-018/ along with other auxiliary mate-
rials (a similar digitization strategy was followed in ref. [177]).
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on ρbb we set all ρij = 0 for simplicity. In general, we remark that nonzero ρij would further
alleviate these upper limits. Further, ρbb coupling can induce pp→ t(b)H± process which is
proportional to Vtb (see eq. (2.7)). These processes are extensively searched by ATLAS [147]
and CMS [148, 149] with H+/H− → tb̄/t̄b decays. We find that the constraints are weaker
for all the three BPs, however, as we see below these searches would provide sensitive probe
to ρtt. The effective model is implemented in the FeynRules 2.0 [152] framework.

We now turn to constraints on ρtt. As ρtt can also induce Vtb, the searches pp→ t̄(b)H+

followed by H+ → tb̄ [147–149] would also be relevant. The ATLAS search [147] is based
on 36 fb−1 √s = 13TeV dataset, which provides model independent 95% CL upper limit
on σ(pp → t̄bH+) × B(H+ → tb̄) from mH± = 200GeV and 2TeV. Similar searches are
also performed by CMS based on

√
s = 13TeV 35.9 fb−1 dataset [148, 149]. These searches

provide 95% CL upper limit on σ(pp → t̄H+) × B(H+ → tb̄) for mH± = 200GeV and
3TeV in leptonic [148] and, combining leptonic and all-hadronic final states [149]. Like
before, the nonvanishing ρtt enhanced by Vtb can induce such process, leading to stringent
constraints. To find the constraints, as done before, we calculate the cross sections σ(pp→
t̄bH+) × (H+ → tb̄) at LO for a reference |ρtt| for the three BPs via MadGraph5_aMC.
These cross sections are then rescaled by |ρtt|2×B(H+ → tb̄) to get the corresponding 95%
CL upper limits on |ρtt|. The extracted (footnote 13) 95% CL upper limits from ATLAS
search [147] on ρtt for the three BPs are |ρtt| & 0.7, 0.8 and 1, respectively, while the limits
from CMS [149] are much stronger, which read as |ρtt| & 0.6, 0.61 and 0.61, respectively.
We remark that the constraints from CMS search with leptonic final state [148] is mildly
weaker than the search with combined leptonic and all-hadronic final states [149]. We also
note that all the ρij except for ρtt are assumed to be zero when extracting the upper limits
for the sake of simplicity. Therefore if other ρij are turned on, the limits on ρtt in general
becomes weaker due to dilution from other branching ratios of H±.

The ATLAS [106] and CMS [107] search for heavy Higgs via gg → H/A→ tt̄ would also
constrain ρtt. The ATLAS [106] result is based on 20.3 fb−1 data at 8TeV, which provides
exclusion limits on tan β vsmA (or,mH) in type-II 2HDM framework starting frommA and
mH = 500GeV. The CMS search is based on 35.9 fb−1 data at

√
s = 13TeV, which provides

upper limit on coupling modifier (see ref. [107] for definition) themA (mH) from 400GeV to
750GeV based on different values of ΓA/mA (ΓH/mH) ratios. Given the values of mA and
mH of the BPs, ATLAS search can only constrain BPc via gg → H → tt̄. Reinterpreting
the ATLAS exclusion limit [106], we find that |ρtt| & 0.8 is excluded for BPc at 95% CL.
On the other hand, for CMS search [107], gg → A → tt̄ can constrain |ρtt| only for BPc,
whereas gg → H → tt̄ constrains all three BPs. We find that CMS gg → A → tt̄ search
excludes the region of |ρtt| & 1 (1.1) at 95% CL for BPc if ΓA/mA = 5% (ΓA/mA = 10%).
The gg → H → tt̄ search places the constraints that |ρtt| & 1.6 (2.1), 1.2 (1.4) and 1.2 (1.3)
if ΓH/mH = 5% (ΓH/mH = 10%) at 95% CL for the three BPs respectively. We remark
that these upper limits provided by both the collaborations assume that mA and mH are
decoupled from each other. Although mA and mH are separated sufficiently, this is not the
case for any of the BPs chosen, as can be seen from table 1. Therefore, the actual upper
limits extracted here would be mildly stronger.
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BP B(A→ bb̄) B(A→ Zh) B(A→ tt̄)
a 0.95 0.05 —
b 0.89 0.11 —
c 0.12 0.04 0.84

Table 2. Branching ratios of A for the benchmark points in table 1 with Re(ρbb) = 0.0, |Im(ρbb)| =
0.15 and |ρtt| = 0.5.

Moreover, ρtt would also receive constraint from CMS search for SM four-top produc-
tion [153]. The search is performed with 13TeV 137 fb−1 dataset and provides 95% CL
upper limits on σ(pp → tt̄A/tt̄H) × B(A/H → tt̄) for 350 GeV ≤ mA/H ≤ 650 GeV. The
search also includes contributions from σ(pp → tWA/H, tqA/H) followed by A/H → tt̄,
which can also be induced by ρtt. To understand how strong the constraints could be,
we generate these cross sections at LO by MadGraph5_aMC for a reference value of |ρtt|
setting all other ρij = 0, and then rescale simply by |ρtt|2 × B(A/H → tt̄). Again, given
the masses of BPs, the σ(pp→ tt̄A)×B(A→ tt̄) search can constrain only BPc, for which
|ρtt| & 0.8 excluded at 95% CL. However, σ(pp → tt̄H) × B(H → tt̄) can constrain all
three BPs, and we find that the regions of |ρtt| & 0.9, 0.8 and 1 are excluded at 95% CL,
respectively, where B(A/H → tt̄) = 100% is assumed. However, it should be noted that
the presence of B(A/H → bb̄) and B(A→ Zh) would alleviate the limits. As in the case of
gg → H/A → tt̄, the search here also assumes that mA and mH are decoupled from each
other. Therefore, one expects the limits to be mildly stronger for all the three BPs.

We finally conclude that for Re(ρbb) ∼ 0, cγ = 0.1, |Im(ρbb)| ∼ 0.15 and ρtt ∼ 0.5 are
well allowed by the current measurements for the mass spectrum under consideration. We
take these values as representative values for our analysis with Re(ρbb) = 0.14 Under the
assumptions, i.e., setting all ρij = 0 except ρbb and ρtt, the total decay width of A can be
nicely approximated as the sum of the partial widths of A → bb̄ and A → Zh for BPa
and BPb and, A → bb̄, A → Zh and A → tt̄ for BPc. The total decay widths of A are
0.4GeV, 0.5GeV and 4.97GeV respectively for the three BPs with |Im(ρbb)| ∼ 0.15 and
ρtt ∼ 0.5. The corresponding branching ratios are presented in table 2. Note that when
calculating decay widths and branching ratios of A, we neglect tiny loop induced decays
such as A→ γγ, A→ Zγ etc.

4 Collider signatures

4.1 The bg → bA → bZh process

In this subsection we study the discovery potential of bg → bA → bZh process at 14TeV
LHC. The process can be searched via pp→ bA+X → bZh+X followed by Z → `+`− (` =
e, µ) and h → bb̄, comprising three b-jets, same flavor opposite sign lepton pair (denoted

14As discussed before, both ρbb and ρtt can induce pp → t(b)H± process, hence, the constraints from
ref. [149] would become stronger if both the couplings are nonvanishing. However, we have checked that
ρtt ∼ 0.5 is allowed for |Im(ρbb)| ∼ 0.15 for all the three BPs.
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Figure 5. The normalized m`` (left) and mbb (right) distributions of the three BPs and leading
backgrounds for the bZh process.

as the bZh process). There are several SM backgrounds for this final state topology. The
dominant backgrounds are tt̄+jets, Drell-Yan+jets (DY+jets), Wt+jets, tt̄Z+jets, tt̄h,
tZ+jets, with subdominant contributions arise from four-top (4t), tt̄W , tWh, tWZ and
WZ+jets. Backgrounds from WW+jets and ZZ+jets are negligibly small and hence not
included. Note that one can also search for h → γγ or h → ττ ; however, we do not find
them as promising.

The signal and background event samples are generated in pp collision with
√
s =

14TeV CM energy at LO by MadGraph5_aMC with NN23LO1 PDF set as done before
and then interfaced with Pythia 6.4 [154] for hadronization and showering and finally fed
into Delphes 3.4.2 [155] for fast detector simulation adopting default ATLAS-based detector
card. We adopt MLM scheme [156, 157] for matrix element and parton shower merging.
Note that we have not included backgrounds from the fake and non-prompt sources in
our analysis. Such backgrounds are not properly modeled in Monte Carlo simulations and
requires data to estimate such contributions.

The LO tt̄+jets and Wt+jets cross sections are normalized to NNLO (next-to-next-to
LO) with NNLL (next-to-next-to leading logarithmic) corrections by factors 1.84 [158] and
1.35 [159] respectively. We normalize the DY+jets background cross section to the NNLO
QCD+NLO EW one by factor 1.27, which is obtained by utilizing FEWZ 3.1 [160, 161].
The LO tt̄Z, t̄Z+ jets, tt̄h, 4t and tt̄W− (tt̄W+) cross sections are adjusted to NLO ones by
K-factors 1.56 [162], 1.44 [150], 1.27 [163], 2.04 [150] and 1.35 (1.27) [164] respectively, but
tWZ and tWh both are kept at LO. Finally, the background W−Z+jets is normalized to
NNLO by factor 2.07 [165]. For simplicity we assume the same QCD correction factors for
the conjugate processes tZj andW+Z+jets, while the signal cross sections are kept at LO.

To reduce backgrounds, we adopt following event selection criteria: each event should
contain a same flavor opposite sign lepton pair and at least three b-tagged jets. The
transverse momenta (pT ) of the leading and subleading leptons should be > 28GeV and
> 25GeV respectively, whereas pT for all three b-jets should be > 20GeV. The pseudo-
rapidity (|η|) of the leptons and all three b-jets are required to be < 2.5. The jets are
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Figure 6. The normalized m``bb distributions of the signal and leading backgrounds for the bZh
process.

BP tt̄+ jets DY+ jets Wt+ jets tt̄Z tt̄h tZ+ jets Others Total Bkg.
(fb)

a 0.178 0.533 0.226 0.023 0.008 0.007 0.003 0.978
b 0.087 0.272 0.084 0.018 0.003 0.006 0.001 0.471
c 0.016 0.094 0.022 0.008 0.0002 0.002 0.0004 0.143

Table 3. The background cross sections (in fb) for the bZh process after selection cuts at
√
s =

14TeV LHC. Here we added together subdominant backgrounds 4t, tt̄W , tWh, tWZ and WZ+jets
as “Others”. The total background (Total Bkg.) yield is provided in last column.

BP Signal Significance (Z)
(fb) 300 (1000) fb−1

a 0.17 2.9 (5.3)
b 0.228 5.4 (9.8)
c 0.027 1.2 (2.2)

Table 4. The signal cross sections after selection cuts and the corresponding significances of the
bZh process with 300 (1000) fb−1 integrated luminosity.

reconstructed by anti-kT algorithm with radius parameter R = 0.4. The separation ∆R
between any two b-jets, a b-jet and a lepton and between two leptons should be > 0.4. In
order to reduce the tt̄+jets background, we veto events having missing transverse energy
(Emiss

T ) > 35GeV. The invariant mass of the two same flavor opposite charge leptons (m``)
is needed to remain between 76 < m`` < 100GeV, i.e., the Z boson mass window. We then
apply invariant mass for two b-jets mbb in a event. As there are at least three b-jets in a
event, more than one mbb combinations are possible; the one closest to mh is selected and
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required to remain within |mh − mbb| < 25GeV. Further, we require the invariant mass
m``bb constructed from the two same flavor opposite charge leptons and b-jets combination
that passes the mbb selection to be within |mA−m``bb| < 50GeV. The normalized m`` and
mbb distributions before application of any selection cuts are presented in figure 5 while the
same for m``bb is shown in figure 6. We adopt the b-tagging efficiency and c- and light-jets
misidentification efficiencies of Delphes ATLAS based detector card. The background cross
sections after selection cuts of the three benchmark points are summarized in table. 3, while
the signal cross sections along with their corresponding significances with the integrated
luminosity L = 300 and 1000 fb−1 are presented in table 4. The statistical significances are
estimated using Z =

√
2[(S +B) ln(1 + S/B)− S] [167], where S and B are the numbers

of the signal and background events.
Let us take a closer look at table 4. We find very promising the discovery potential with

sufficiently large S/B ratio, especially for mA < 2mt. The achievable significance for the
BPa and BPb are ∼ 2.9σ (∼ 5.3σ) and ∼ 5.4σ (∼ 9.8σ) respectively with 300 (1000) fb−1

integrated luminosity. The BPc requires larger dataset due to fall in parton luminosity and
suppression from B(A → tt̄) decay and ∼ 2.2σ is possible with 1000 fb−1 but could reach
up to ∼ 3.8σ with the full high luminosity LHC (HL-LHC) dataset (3000 fb−1 integrated
luminosity).

4.2 The bg → bA → btt̄ process

We now discuss the discovery potential of pp→ bA+X → btt̄+X, followed by semileptonic
decay of at least one top quark, constituting three b-jets, at least one charged lepton (e
and µ) and missing transverse energy (Emiss

T ) signature, which we denote as 3b1` signature.
Note that bg → bA→ btt̄ is only possible for BPc as mA < 2mt but for BPa and BPb one
can have 3b1` signature via pp→ bH+X → btt̄+X. However, such signatures will be mild
for the former two BPs due to suppression from B(H → AZ). Further, bg → t̄H+ → t̄tb̄

process may also contribute to the same final state topologies, if at least one of the top
decays semileptonically. Such contribution could be moderate for all three BPs. In our
analysis, however, we neglect them for simplicity.

There exist several SM backgrounds. The dominant backgrounds are tt̄+jets, t- and s-
channel single-top (tj),Wt, with subdominant backgrounds from tt̄h and, tt̄Z productions.
Further, small contributions come from Drell-Yan+jets, W+jets, four-top (4t), tt̄W , tWh,
which are collectively denoted as “Others”. We do not include backgrounds originating
from non-prompt and fake sources. These backgrounds are not properly modeled in Monte
Carlo event generators and one requires data to estimate such contributions.

Here we follow the same event generation procedure for signal and backgrounds as in
previous subsections, i.e., via MadGraph5_aMC followed by hadronization and showering
in Pythia and with Delphes ATLAS based detector card for fast detector simulation. The
LO tt̄+jets background cross section is normalized up to the NNLO by a factor of 1.84
while t- and s-channel single-top cross sections are normalized by factors of 1.2 and 1.47,
respectively [166]. The LO Wt+jets background is normalized to the NLO cross section
by a factor of 1.35, whereas the subdominant tt̄h and tt̄Z are corrected to corresponding
NLO ones by factors of 1.27 and 1.56 respectively. The DY+jets background is normalized
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Figure 7. The normalized pT distributions of the leading and subleading b-jets for the signal (BPc)
and the leading backgrounds.
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Figure 8. The normalized pT distributions of the subsubleading b-jet (right) and leading lepton
(left) for the signal (BPc) and leading backgrounds.

to NNLO cross sections by factor of 1.27. Finally, the LO cross sections 4t and tt̄W are
adjusted to the NLO ones by factors of 2.04 and 1.35, respectively. The tWh and W+jets
background are kept at LO. For simplicity we assume the correction factors for the charge
conjugate processes to be the same. We remark that the signal cross sections for all the
three BPs are kept at LO.

The events are selected in a way such that they should contain at least one charged
lepton (e and µ), at least three b-tagged and some Emiss

T . The normalized transverse
momentum (pT ) distributions of the leading and subleading b-jets for the signal and leading
backgrounds are presented in figure 7. The pT distributions for the subsubleading b-jet and
leading lepton are plotted in figure 8, while the normalized Emiss

T and HT (i.e., the scalar
sum of pT of the leading charged lepton and the three leading b-jets) distributions are
shown in figure 9. To reduce backgrounds we apply the following event selection cuts. pT
of all three b-jets should be pT > 20GeV, whereas that of the leading lepton should be
pT > 25GeV. The absolute value of pseudo-rapidity (|η|) of all three b-jets and lepton should
be less than 2.5. The minimum separation (∆R) between the lepton and any b-jet as well
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Figure 9. The normalized missing energy Emiss
T (left) and HT (right) for the signal (BPc) and

leading backgrounds.

BP Signal tt̄+ jets Single-top Wt+ jets tt̄h tt̄Z Others Total Bkg.
(fb)

BPc 9.27 3953.49 98.93 77.93 10.72 4.13 30.85 4176.05

Table 5. The cross sections (in units of fb) of the signal (BPc) and different background components
for 3b1` process after selection cuts at

√
s = 14TeV.

as that between any two b-jets are required to be greater than 0.4. The Emiss
T in each event

should be larger than 35GeV. Note that in our exploratory study we do not optimize the
selection cuts such as pT , η, Emiss

T and HT for simplicity. The signal and total background
cross sections along with different components after the selection cuts are shown in table 5.

The corresponding significance Z for the integrated luminosities 300 (3000) fb−1 for
the BPc is ∼ 3.5σ (∼ 7.9σ). For the BPa and BPb from pp → bH + X → btt̄ + X are
∼ 2.4σ and ∼ 2.8σ respectively for 3000 fb−1 . Note that here we have not considered the
systematic uncertainties associated with the backgrounds, which could be considerable in
particular for the largest tt̄+ jets backgrounds. As S � B for the 3b1` process, in the
presence of systematic uncertainties the Z formula simply becomes Z ≈ S/

√
B + σ2

B. The
σB denotes the systematic uncertainty that depends on the factor between control sample
and the background in the signal region. The value of σB is very much analysis15 dependent.
Here we assume that the systematic uncertainty arise only from tt̄+ jets backgrounds for
simplicity and neglect the same for other subdominant backgrounds and take two different
for σB for illustration. E.g., if σB =

√
B the significance of BPc reduces to ∼ 5.5σ whereas

for σB = 0.1 B the significances goes below 1σ with HL-LHC dataset. Similarly, for
σB =

√
B the significances of BPa and BPb from pp→ bH+X → btt̄+X reduces to ∼ 1.7σ

and ∼ 2σ respectively but much below 1σ if σB = 0.1 B. Therefore we remark that the 3b1`
process is promising, but one needs precise understanding of the background systematics.

15We thank Efe Yazgan and K.-F. Chen for clarifying this point. We also thank the anonymous reviewer
for bringing this issue to our attention.
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BP Signal tt̄+ jets Single-top Wt+ jets Others Total Bkg. (fb)

BPa 0.2 229.2 4.5 2.8 7.8 244.3
BPb 0.14 204.9 4.0 2.3 8.2 219.4
BPc 0.01 157.8 2.7 1.9 5.3 167.7

Table 6. The cross sections (in units of fb) of three BPs and the different background components
for the 4b1` process after selection cuts at

√
s = 14TeV.

4.3 The gg → tt̄A → tt̄bb̄ process

We now briefly discuss the discovery potential of gg → tt̄A → tt̄bb̄ process. The process
can in principle probe the parameter space for ρbb-EWBG mechanism. We search this
process via pp → tt̄A + X → tt̄bb̄ + X, followed by at least one top quark decaying
semileptonically i.e., with four b-jets, at least one charged lepton and Emiss

T signature.
The final state topology receives mild contributions from inclusive pp → WtA + X and
pp→ tjA+X processes. As we show below, the signature is not promising as opposed to
bg → bA→ btt̄ process.

We generate events at LO as in 3b1` process, i.e., via MadGraph5_aMC followed
by hadronization and showering in Pythia and finally incorporate the detector effects of
Delphes ATLAS based detector card. The dominant backgrounds arise from the tt̄+ jets,
Single-top and Wt+ jets, whereas tt̄h, tt̄Z and 4t constitute subdominant backgrounds.
We assume the same QCD corrections factor as in 3b1` process for simplicity.

To reduce the background, we use the following event selection cuts. The events are
selected so that they contain at least one lepton (e and µ), at least four jets with at least
four are b-tagged and some missing Emiss

T (denoted as 4b1` process). The lepton is required
to have pT > 25GeV and |η| < 2.5. For any jet in the event pT > 20GeV and |η| < 2.5.
Emiss
T in each event is required to be greater than 35GeV. The separation ∆R between any

two jets as well as that between a jet and a lepton should be larger than 0.4. Finally, we
construct all possible combinations of the invariant mass mjj from the four leading jets and
demand that the one closest to mA should lie between |mA −mjj | < 50GeV. The impact
of these cuts on the signal and background processes are summarized in table 6.

We find that the achievable significance for all three BPs of the gg → tt̄A→ tt̄bb̄ process
are below ∼ 1σ with 3000 fb−1 integrated luminosity, which is rather low. This means that
no meaningful constraints can be extracted unless both ATLAS and CMS data are added. It
should be remarked that since we use the same QCD correction factors for the backgrounds
as in bg → bA→ btt̄ process, there are greater uncertainties in these cross sections.

Before closing this section, we discuss the impact of the other ρij couplings. So far, we
have set all ρij = 0 except ρbb and ρtt. Presence of the other ρij couplings open up other
decay modes of A, which in principle may reduce the achievable significances summarized in
previous subsections. For instance, if ρττ ∼ λτ , it would induce A→ τ+τ− decay. However,
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the significances remain practically same for all the three BPs. Moreover, ρtc ∼ 0.3-0.4 is
still allowed by current data and would induce cg → tA/tH → ttc̄ (same-sign top) [93, 168]
(see also refs. [169, 170]16) and cg → tA/tH → ttc̄ (triple-top) signature, which might
emerge in the Run-3 of LHC.

5 Discussion and summary

We have analyzed the available constraints and prospect of probing EWBG driven by the
extra bottom Yukawa coupling ρbb at the ongoing and future experiments. The parameter
space receives meaningful constraints from h boson coupling measurements, B(B → Xsγ),
∆ACP of B → Xsγ , electron EDM measurement and heavy Higgs searches at the LHC.
We primarily focused on sub-TeV mA, mH and mH± with mixing angle cγ ∼ 0.1, which is
required by EWBG [15–77, 85]. The constraints would be improved, e.g., on cγ , ρbb and
ρtt at the HL-LHC [85, 174] if no discovery is made. This would allow us to probe even
larger part of the parameter space of ρbb-EWBG.

Taking three benchmark points for illustration, two below 2mt threshold and one
above, we have shown that a discovery is possible at the LHC via ρbb induced bg → bA→
bZh process for mA < 2mt. We find that the process may emerge in the Run 3 of LHC
if 250 GeV . mA . 350GeV. With a simple rescaling of the significances in table 4, we
find that |Im(ρbb)| & 0.05 and & 0.04 can be excluded for BPa and BPb with full HL-
LHC dataset. Those are below the nominal value |Im(ρbb)| & 0.058 required EWBG. For
mA > 2mt, a discovery may happen via bg → bA → btt̄ . Note that one may also have
the bg → bH → bhh process, which could be sensitive if H is lighter than A and H±.
The process is being studied elsewhere. A discovery of the bg → bA → btt̄ process is
possible via 3b1` signature if mA ∼ 450GeV and ρtt ∼ 0.5 but requires controlling of the
systematics of tt̄-jets background. Additionally, we have also investigated the potential for
gg → tt̄A→ tt̄bb̄ process but find it below the sensitivity even at the HL-LHC.

In principle the pp→ bA+X process can also be induced by ρbd, ρdb, ρbs and ρsb at the
LHC. However, due to severe constraints arising from Bd and Bs mixings [176] their impacts
are typically inconsequential. In addition if the charm quark gets misidentified as b-jet, a
sizable ρcc can also mimic similar signature in pp collision via cg → cA→ ctt̄ process. We
remark that such possibilities can be disentangled by the simultaneous application of b-
and c-tagging on the final state topologies [177].

Although the discovery is possible at the LHC, to attribute it to ρbb-EWBG mechanism
is beyond the scope of LHC as information of the CP-violating phase of ρbb is lost in pp

collision. In this regard, ∆ACP of B(B → Xsγ) would provide very sensitive probe for
the Im(ρbb) even though the observable has uncertainties associated with the hadronic
parameter Λ̃78. While finding the constraints in figure 2, we assumed Λ̃78 = 89MeV, which
is the average of 17 MeV ≤ Λ̃78 ≤ 190 MeV [130]. However, if Λ̃78 is taken as its upper range,
the constraint becomes much severe for Im(ρbb). Furthermore, on the experimental side,
projected Belle II accuracy of ∆ACP measurement is ∼ 5% [175]. Therefore, more precise
estimation of Λ̃78 together with Belle II measurement can stringently probe the parameter

16Without detailed studies, the process was also discussed by [171, 172] and ref. [170]. See also ref. [173].
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space of Im(ρbb) unless the CP-violating phases of ρtt and ρbb are aligned [86] in which
∆ACP = 0. In such a case, measurements of EDMs play a pivotal role in probing Im(ρbb).

The unprecedented electron EDM constraint set by ACME Collaboration in 2018 re-
duces most EWBG scenarios to despair. We updated our previous analysis done in ref. [85]
including all the relevant Barr-Zee diagrams. Because of the significant contributions aris-
ing from the diagrams involving ρee, the cancellation mechanism can be effective. It was
found that the electron EDM cancellation in ρbb-EWBG belongs to the unstructured cancel-
lation category in which the diagonal hierarchical structures of ρFij are much different from
those of the SM Yukawa couplings, which is in stark contrast to the case in ρtt-EWBG that
can accommodate the structured cancellation [86]. Nonetheless, the viable parameter space
of ρbb-EWBG still exists. Besides the extreme fine tuning of the parameters, ρbb-EWBG
would be confirmed or ruled out if the electron EDM is improved down to ∼ 10−30 e cm
level. Moreover, as discussed in section 3.2, the future measurement of the proton EDM
could play a complementary role in probing ρbb-EWBG.

So far we have not discussed the uncertainties. As a first estimate, uncertainties arising
from factorization scale (µF ) and renormalization scale (µR) dependences are not included
in our LO cross section estimations. In general, the LO bg → bA/bH processes have
∼ 25−30% scale uncertainties formA/H ∼ (300−400)GeV if bottom quark with pT > (15−
30)GeV and, |η| < 2.5 [178] (see also [179–181]). It has been found that [182] the LO cross
sections calculated with LO PDF set CTEQ6L1 [183] have relatively higher factorization
scale dependence. Therefore, we remark that the LO cross sections in our analysis, which
we estimated with LO NN23LO1 PDF set, might have same level of uncertainties. It has
also been found that [182] for µF ≈ mA (or mH) the corrections to the LO cross sections
could be large negative (∼ −70%), whereas for the choice of µF ≈ mA/4 (or mH/4) the
corrections are mild; which indicates that the µF ≈ mA/4 is the relevant factorization scale.
Furthermore, the cross section uncertainties from factorization scale and renormalization
choices are found to be particularly small at µR = mA and if varied from µR = mA/2 to
µR = 2mA, along with µF = mA/4 and varied from µF = mA/8 to µF = mA/2 [182].
In addition, our analysis does not include PDF uncertainties, which could be in general
significant for any bottom-quark initiated process as discussed, e.g., in ref. [184]. Detailed
discussions on different PDFs and associated uncertainties for the LHC are summarized in
ref. [185]. These typically would induce some uncertainties in our results. We leave out
the detailed estimation of these uncertainties for future work.

In summary, we have explored the possibility of electroweak baryogenesis induced
by the extra bottom Yukawa coupling ρbb via direct and indirect signatures at the col-
lider experiments. We find that the discovery is possible at the high luminosity LHC if
250 GeV . mA . 350GeV. We also find that heavier mass ranges can also be probed via
bg → bA → btt̄ but the process is associated with larger uncertainties. While LHC can
indeed discover the process, however, the information of the CP-violating phase of ρbb can
only be probed via ∆ACP of B(B → Xsγ) or the EDM measurements of the electron,
neutron and mercury though the latter two have the less probing power to date. For com-
pleteness we also studied gg → tt̄A → tt̄bb̄ process and found that it is not promising. In
conclusion, together with the electron EDM measurement and/or ∆ACP of B(B → Xsγ)
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decay, the discovery of bg → bA → btt̄ process may help us to understand the mechanism
behind the observed matter-antimatter asymmetry of the Universe.
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A EDMs

For the EDM calculations, the following parametrization is also useful.

Lφf̄f = −φf̄
(
gS
φf̄f

+ iγ5g
P
φf̄f

)
f, (A.1)

where φ = h,H,A and

gS
hf̄f

= 1√
2

[
λfsγ + Reρffcγ

]
, gP

hf̄f
= 1√

2
Imρffcγ , (A.2)

gS
Hf̄f

= 1√
2

[
λfcγ − Reρffsγ

]
, gP

Hf̄f
= − 1√

2
Imρffsγ , (A.3)

gS
Af̄f

= ± 1√
2

Imρff , gP
Af̄f

= ∓ 1√
2

Reρff , (A.4)

where the upper sign is for up-type fermions and the lower for down-type fermions in
eq. (A.4).

Here we list the loop functions appearing in the EDM calculations in section 3.2.

f(τ) = τ

2

∫ 1

0
dx

1− 2x(1− x)
x(1− x)− τ ln

(
x(1− x)

τ

)
, (A.5)

g(τ) = τ

2

∫ 1

0
dx

1
x(1− x)− τ ln

(
x(1− x)

τ

)
, (A.6)

J VW (mφ) = 2m2
W

m2
φ −m2

V

[
− 1

4

{(
6− m2

V

m2
W

)
+
(

1− m2
V

2m2
W

)
m2
φ

m2
W

}
×
(
I1(mW ,mφ)− I1(mW ,mV )

)
+
{(
−4 + m2

V

m2
W

)
+ 1

4

(
6− m2

V

m2
W

)
+ 1

4

(
1− m2

V

2m2
W

)
m2
φ

m2
W

}

×
(
I2(mW ,mφ)− I2(mW ,mV )

)]
, (A.7)

J1(τWH± , τtH±) =
∫ 1

0

dx

x
(2− x)

[
Qt(1− x)J

(
τWH± ,

τtH±

x

)
+QbxJ

(
τWH± ,

τtH±

x

)]
,

(A.8)
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where τij = m2
i /m

2
j , Qt = 2/3, Qb = −1/3 and

I1(m1,m2) = −2m
2
2

m2
1
f

(
m2

1
m2

2

)
, I2(m1,m2) = −2m

2
2

m2
1
g

(
m2

1
m2

2

)
, (A.9)

J(a, b) = 1
a− b

[
a

a− 1 ln a− b

b− 1 ln b
]
. (A.10)
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