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aInstituto de F́ısica Teórica UAM/CSIC,
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1 Introduction

The study of the classical solutions of General Relativity and its generalizations has been

one of the major sources of information about the properties of those theories. Supergravity

theories are a particularly interesting class of generalizations of General Relativity because

many of them describe low-energy effective field theories of different superstring theories

and a great deal of work has been devoted to them and their classical solutions (specially

to the supersymmetric ones and specially to those describing black holes).1

One of the most important features of these theories is the presence of vector and

scalar fields that give rise to many interesting phenomena and properties of the black-holes

solutions. The electric and magnetic charges associated to those vectors play a crucial role

in the stringy interpretation of the black holes that carry them and determine completely

their entropy formula in the static, extremal cases. However, in most of the literature, only

models with Abelian vector fields have been considered, even though non-Abelian vector

fields play a more relevant role in our current understanding of Nature and most string

1For a review of superstring theories and their classical solutions from this point of view see ref. [1].
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models (specially the more realistic ones) include them in their spectra. In the case of

the Heterotic Superstring, non-Abelian vector fields occur at first order in α′ and can play

an important role in the suppression or even cancellation of α′ corrections to black-hole

geometries [2–4]. Thus, it is clearly important to study the interplay between gravity and

Yang-Mills fields in this context and to understand how the results obtained in the Abelian

case are modified by the presence of the later.

During the last decade our group has been trying to fill this gap in our understanding

exploring supersymmetric solutions (specially black-hole or black-ring solutions) with non-

Abelian fields in gauged supergravity theories [5–21]. They have also played an important

role in the construction of black-hole microstate geometries [22, 23]2 and, furthermore, they

have turned out to be the intermediate step necessary to construct α′-corrected stringy

supersymmetric black-hole solutions [2–4, 25, 26]. This is due to the fact that, in the

context of the Heterotic Superstring effective action, the non-Abelian gauge fields occur at

first order in α′ and it is known that the curvature squared of the torsionful spin connection

occurs at the same order just as another gauged field [27], a feature of the theory that makes

the Green-Schwarz anomaly-cancellation mechanism possible [28]. The same mechanism

can be used to cancel some of the α′ corrections as well.

Although the multicenter solutions constructed in ref. [18] have angular momentum,

the only rotating, supersymmetric, single-center solutions constructed so far with non-

Abelian fields are the black rings and black holes of ref. [21] which are the simplest gen-

eralizations of the Abelian ones. In particular, the rotating black-hole solution presented

in that reference can be understood as a BMPV black hole (only one independent angular

momentum) with additional non-Abelian hair.

The aim of this work is to extend the catalogue of known rotating, single-center, black-

hole solutions in 4 and 5 dimensions by exploring the effect of adding dyonic non-Abelian

fields defined on hyperKähler spaces. The supergravity theories that we are going to con-

sider in this paper are the 4- and 5-dimensional versions of the SU(2)-gauged ST[2, 6] model

(an extension of the STU model), whose main interest lies in the fact that it can be obtained

by toroidal compactification and truncation of the N = 1, d = 10 supergravity coupled to

non-Abelian vector fields [25], which is often referred to as Heterotic supergravity.

The dyonic non-Abelian fields that we will consider are generalizations of those pre-

sented in refs. [22] and [29]. The latter were used in ref. [30] to construct a globally

smooth solution of Heterotic supergravity. The solutions that we are going to consider

here generalize that one by considering non-trivial hyperKähler base spaces on which the

dyonic instanton is defined and by turning on additional fields that give rise to regular

event horizons, which in 4 dimensions violates the no-go theorem for regular, supersym-

metric, rotating black holes proven in ref. [31]. In 5 dimensions, they allow us to find

supersymmetric black holes with two independent angular momenta.

This paper is organized as follows. In section 2 we describe the class of gauged N =

1, d = 5 theories (8 supercharges) we are going to work with and a general solution-

2For a review on black-hole and black-ring microstate geometries see, for instance, ref. [24] and refer-

ences therein.
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generating technique for supersymmetric solutions of this kind of theories. In section 3 we

apply this technique to the particular model we are interested in, the ST[2, 6] model, and

discuss which kind of dyonic non-Abelian fields, in particular, can be added to it. We also

describe the dimensional reduction of this model (and of the corresponding solutions) to 4

dimensions, where the theory becomes a model of gauged N = 2, d = 4 supergravity. In

section 4 we focus on the study of single-center black holes both in 5 and 4 dimensions.

Section 5 contains a discussion of our results.

2 The general set up

2.1 N = 1, d = 5 Super-Einstein-Yang-Mills theories

N = 1, d = 5 super-Einstein-Yang-Mills (SEYM) theories are the simplest theories of 5-

dimensional supergravity containing non-Abelian gauge fields. They can be described as the

simplest and minimal supersymmetrization of 5-dimensional Einstein-Yang-Mills theories

or as the simplest coupling of 5-dimensional super-Yang-Mills theory to supergravity.

For our purposes, it is convenient to describe these theories as the result of gauging

a subgroup of the isometry group of the scalar manifold of a N = 1, d = 5 supergravity

coupled to vector multiplets.3 Therefore, these theories describe

1. The supergravity multiplet containing the graviton eaµ, the gravitino ψiµ and the

graviphoton A0
µ

2. nv vector multiplets labeled by x = 1, · · · , nv (each containing a real vector field Axµ,

a real scalar φx and a gaugino λi x).

The above field content does not determine completely the theory, since the matter

fields can be coupled to supergravity in different ways, even before gauging. In order to

describe the different possibilities, it is convenient to combine the indices of the matter

vector fields and of the graviphoton into a single index I, J, . . . = 0, 1, · · · , nv so all the

vector fields are denoted by a single object AIµ. Then, all the couplings between the fields

of a given ungauged theory (between scalars, gxy(φ), between scalars and vectors aIJ(φ)

and the Chern-Simons couplings between vectors) are completely determined by a constant,

completely symmetric tensor CIJK .4

Generically, an ungauged theory of N = 1, d = 5 supergravity coupled to vector

multiplets will be invariant under certain group of symmetries acting only on the vector

and scalar fields.5 The action of these symmetries on the scalars has to preserve gxy(φ), the

metric of the scalar manifold and, therefore, it will act on them as the isometries generated

by the Killing vectors, that we will label by kI
x(φ), and which can vanish for some values

of I. At the same time, because of the non-trivial couplings between scalar and vector

fields, the vectors will be rotated by some given matrices.

3Our conventions are those of refs. [7, 32], which are based on ref. [33].
4Our description of these theories will be minimal, giving only the information required to obtain and

explain the results presented in this paper. The reader interested in further details on these theories, such

as how to derive the couplings between the fields from CIJK , may consult the references quoted above.
5Here we are ignoring R-symmetry.
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In many cases, it is possible to gauge a (necessarily non-Abelian) subgroup of this

symmetry group using as gauge fields a subset of the vector fields of the theory. We will

denote the structure constants of the gauge group by fIJ
K using the convention that they

and the associated Killing vectors, will just vanish for the values of the indices that do

not correspond to the gauge fields. In the gauging procedure, the partial derivatives of

the scalars are promoted to gauge-covariant derivatives Dµφ
x = ∂µφ

x + gAIµkI
x and the

Abelian vector field strengths are promoted to their non-Abelian counterparts F Iµν =

2∂[µA
I
ν] + gfJK

IAJµA
K
ν . Here g is the gauge coupling constant. Gauge symmetry also

demands the addition of further terms to the Chern-Simons terms, but, as different from

what happens in the gauging of many other supergravity theories, supersymmetry does

not depmand the addition of a scalar potential and no effective cosmological constant is

present in the theory and its solutions.

The bosonic action of these gauged supergravities, that we call N = 1, d = 5 Super-

Einstein-Yang-Mills (SEYM) theories, is given by

S =
1

16πG
(5)
N

∫
d5x
√
|g|
{
R+ 1

2gxyDµφ
xDµφy − 1

4aIJF
I µνF Jµν

+
1

12
√

3
CIJK

εµνρσα√
|g|

[
F IµνF

J
ρσA

K
α −

1

2
gfLM

IF JµνA
K
ρA

L
σA

M
α

+
1

10
g2fLM

IfNP
JAKµA

L
νA

M
ρA

N
σA

P
α

]}
,

(2.1)

where G
(5)
N is the 5-dimensional Newton constant and g is the Yang-Mills coupling con-

stant.6

For the sake of completeness and also for their use in defining the charges of the

solutions, we quote the equations of motion that follow from this action:

Eµν ≡
1

2
√
g
ea(µ

δS

δeaν)

= Gµν −
1

2
aIJ

(
F Iµ

ρF Jνρ −
1

4
gµνF

I ρσF Jρσ

)
+

1

2
gxy

(
Dµφ

xDνφ
y − 1

2
gµνDρφ

xDρφy
)

(2.2)

EIµ ≡
1
√
g

δS

δAIµ

= Dν

(
aIJF

J νµ
)

+
1

4
√

3

εµνρσα
√
g

CIJKF
J
νρF

k
σα + gkI xD

µφx (2.3)

Ex ≡ −gxy
√
g

δS

δφy

= DµD
µφx +

1

4
gxy∂yaIJF

I ρσF Jρσ. (2.4)

6The symbol |g| denotes, however, the determinant of the 5-dimensional metric gµν = eaµe
b
νηab.
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2.2 A solution-generating technique for N = 1, d = 5 SEYM theories

Classical solutions of N = 1, d = 5 SEYM theories with a symmetric scalar manifold can

be constructed using the following building blocks:7

1. A 4-dimensional hyperKähler (HK) manifold with metric dσ2 = hmn dx
mdxn,8 fol-

lowing fields defined on it:

2. nv + 1 vector fields ÂI = ÂIm dx
m.

3. nv + 1 functions ZI , I = 0, . . . , nv defined

4. A 1-form ω = ωm dx
m.

In terms of these building blocks and the tensor CIJK that defines the model, the

5-dimensional physical fields (metric gµν , vector fields AI and scalar fields φx) are given by

ds2 = f2 (dt+ ω)2 − f−1dσ2 , (2.5)

AI = −27
√

3CIJKZJZKf
3 (dt+ ω) + ÂI , (2.6)

φx =
Zx
Z0

, (2.7)

where the metric function f is given by

f−3 = 27CIJKZIZJZK . (2.8)

The building blocks of the solution (ÂI , ZI , ω) must satisfy the following differential

equations on the HK manifold:

F̂ I = ?σF̂
I , (2.9)

D̂ ?σ D̂ZI = −1

3
CIJK F̂

I ∧ F̂ J , (2.10)

dω + ?σdω =
√

3ZI F̂
I , (2.11)

where ?σ is the restriction of the Hodge star to the 4-dimensional HK metric dσ2, D̂ is the

gauge-covariant derivative with respect to the hatted gauge connection ÂI

D̂ZI = dZI + gfIJ
KÂJ ∧ ZK , (2.12)

and F̂ I is the field strength of that connection

F̂ I = dÂI +
g

2
fJK

IÂJ ∧ ÂK . (2.13)

The solutions consrtucted in this way are time-independent and, in general (ω 6= 0)

stationary. They are also (“timelike”) supersymmetric and preserve 1/2 of the 8 super-

symmetries of these theories.

7This recipe stems from the characterization of timelike supersymmetric solutions of the most general

N = 1, d = 5 supergravity theory including vector supermultiplets and hypermultiplets and generic gaugings

made in ref. [7], based in the results of ref. [32]. The inclusion of tensor supermultiplets was considered in

ref. [10]. We have adapted those results to the case at hands. Furthermore, we have restricted this recipe

to models with a symmetric scalar manifold, for simplicity (the model we are going to study belongs to this

class). In these models, but not in general, the tensor CIJK that one obtains by raising the indices with

the inverse of aIJ(φ) (aIJ(φ)) is constant and identical to CIJK .
8In our conventions m,n = 1, . . . , 4 are tangent space indices whereas m,n = 1, . . . , 4 are curved indices.
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3 Dyonic solutions of the SU(2)-gauged ST[2, 6] model

In this section we are going to apply the solution-generating technique described in the

previous section to the particular model we are interested in: the SU(2)-gauged ST[2, 6]

model, which can be obtained by compactification of Heterotic Supergravity on T 4 followed

by a truncation of all the fields related to the compact space. The ungauged model has

nv = 5 vector multiplets and is characterized by a CIJK tensor whose only non-vanishing

components are C0xy = 1
6ηxy, with x = 1, . . . , 5. The last three vector fields (x = 3, 4, 5)

will be used as SU(2) gauged fields in the gauged theory.

Then, it is convenient to split the index labelling the vector fields into a pair of indices

I = (i, A+ 2), where i = 0, 1, 2 labels the Abelian vector fields and A = 1, 2, 3, the SU(2)

gauged fields. Furthermore, we define the following combinations of Abelian vector fields

A± ≡ A1 ±A2 , (3.1)

and we are going to use the scalar fields φ, k and `A. The scalar φ is the string dilaton

field; k is the Kaluza-Klein scalar that measures the size of the circle of the compactification

from 6 to 5 dimensions and the `A are just a convenient SU(2) triplet of scalar fields. The

relation between these fields and those of the standard parametrization in eq. (2.7) is

e−2φ =
1

2
(φ1 − φ2) , (3.2)

k4 = 2

[(
φ1
)2 − (φ2

)2 − φAφA
φ1 − φ2

]2

, (3.3)

`A = φA/(φ1 − φ2) . (3.4)

Then, for this model and using these variables, the generic action eq. (2.1) takes the

specific form

S=

∫
d5x

√
|g|

{
R+∂µφ∂

µφ+
4

3
∂µ logk∂µ logk+2e−φk−2Dµ`

ADµ`A

− 1

12
e2φk−4/3F 0 ·F 0− 1

48
k8/3

(
1+2e−φk−2`B`B

)2
F+ ·F+− 1

12
e−2φk−4/3F− ·F−

− 1

6
e−2φk−4/3`B`BF+ ·F−− 1

12

(
e−φk2/3δAB+4e−2φk−4/3`A`B

)
FA ·FB

− 1

6
e−φk2/3

(
1+2e−φk−2`B`B

)
`AF+ ·FA− 1

3
e−2φk−4/3`AF− ·FA

+
1

24
√

3

εµνρσα√
|g|

A0
µ

(
F+

νρF
−
σα−FAνρFAσα

)}
.

(3.5)

Following the redefinition of the vector fields, in order to describe the construction of

the solutions, we will use the functions

Z± ≡ Z1 ± Z2 , and Z̃+ = Z+ − ZAZA/Z− . (3.6)

– 6 –
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3.1 The metric

According to the prescription given in the previous section, the metric of the solutions of

this model that we can construct with it will have the general form eq. (2.5), but now with

the metric function f taking the form

f−3 =
27

2
Z0Z̃+Z− . (3.7)

3.2 The scalar fields

In terms of the functions that we have defined, the scalars are given by

e2φ = 2
Z0

Z−
, k =

(
2Z̃2

+

Z0Z−

)1/4

, `A =
ZA
Z−

. (3.8)

3.3 The vector fields

The vector fields are generically given by eq. (2.6), but here we will restrict ourselves to

solutions with Â0 = Â± = 0 for simplicity. We will keep the ÂA 6= 0, though. Then, the

vector fields of our solutions will have the form

A0 = − 1√
3

1

Z0
(dt+ ω) , (3.9)

A± = − 2√
3

Z+

Z±Z̃+

(dt+ ω) , (3.10)

AA =
2√
3

ZA

Z̃+Z−
(dt+ ω) + ÂA , (3.11)

and the building blocks for which we will have to solve eqs. (2.9), (2.10) and (2.11) are the

functions Z0, Z±, ZA and the 1-forms ω, ÂA.

Let us first consider eq. (2.9). This equation can be solved in an arbitrary HK metric

by SU(2) gauge fields ÂA defined on it via a generalized ’t Hooft ansatz [3]:

gÂA = η̄Amn∂n logP vm , (3.12)

where P is a harmonic function in the HK space, the η̄Amn are the three antiselfdual

complex structures that are covariantly conserved in the HK space and which can be taken

to be the constant ’t Hooft symbols.9 Finally, the vm are the vierbein of the HK space:

dσ2 = vmvm.

9The ’t Hooft symbols satisfy the following identities

εABC η̄Bmpη̄
C
nq = −δmnη̄Apq − δpq η̄Amn + δmq η̄

A
pn + δpnη̄

A
mq , (3.13)

η̄Amnη̄
A
pq = 2δm[pδq]n − εmnpq , (3.14)

η̄Ampη̄
B
pn = −δABδmn + εABC η̄Cmn . (3.15)

– 7 –
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The selfdual gauge field strength is given by10

gF̂A =

[
η̄Anp∇m∂p logP + η̄Amp ∂p logP ∂n logP − 1

2
η̄Amn (∂ logP )2

]
vm ∧ vn . (3.19)

Next, let us focus on eqs. (2.10), which in this case take the form

d ?σ dZ0 =
1

18
F̂A ∧ F̂A , (3.20)

d ?σ dZ1,2 = 0 , (3.21)

D̂ ?σ D̂ZA = 0 . (3.22)

For the configurations considered, it was shown in ref. [3] that the instanton number

density F̂A ∧ F̂A enjoys the so-called “Laplacian property”, i.e.

F̂A ∧ F̂A = −d ?σ d

[
(∂ logP )2

g2

]
√
h d4x , (3.23)

where h is the determinant of the HK metric. Hence, we find that eqs. (3.20) and (3.21)

are solved by

Z0 = Z
(0)
0 − (∂ logP )2

18g2
, (3.24)

Z1,2 = Z
(0)
1,2 . (3.25)

where Z
(0)
0,1,2 are harmonic functions on the HK space.

As for eq. (3.22), two solutions of it are known to us:

3.3.1 Solution D1

This solution was found in ref. [22] for HK metrics admitting a triholomorphic isometry.

These metrics are known as Gibbons-Hawking (GH) metrics [34, 35] and can be put in

the form

dσ2 = H−1(dη + χ)2 +H dxidxi , dχ = ?(3) dH , (3.26)

where ?(3) is the Hodge star on E3 and H is a (η-independent) harmonic function on E3.11

This solution also makes use of SU(2) instantons obtained through the ’t Hooft anstaz

eq. (3.12) with a function P which is also independent of η and, therefore, harmonic

on E3 as well. The consistency of the solution demands that the functions ZA are also

independent of η.

10The gauge field strength for the SU(2) group is given by

FA = dAA +
1

2
εABC AB ∧AC , (3.16)

and the covariant derivatives of the scalar functions are given by

DZA = dZA − εABCABZC , (3.17)

DϕA = dϕA + εABCABϕC . (3.18)

11This is the integrability condition of the equation dχ = ?(3) dH.

– 8 –
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Let us see in detail how this solution is obtained.

If P is independent of η and the HK metric is the above GH metric, the vector fields

defined by ‘t Hooft ansatz eq. (3.12) can be written in the simple form

gÂA = H−1ϕA (dη + χ) + ĂA , (3.27)

where ϕA and ĂA are fields (scalar and vector, resp.) defined on E3 and determined by

the choice of P by

ϕA = δAi ∂i logP , (3.28)

ĂA = εAij ∂i logPdxj . (3.29)

The selfduality of the field strength of ÂA reduces in this case to the Bogmol’nyi

equation relating the field strength of ĂA and the covariant derivative of the ϕA with

respect to that connection on E3:

?(3) F̆
A = −D̆ϕA . (3.30)

Substituting eq. (3.27) into eq. (3.22), we find the following equation for ZA

∂i∂iZA + 2δiA ∂iZB ϕ
B − 2ϕAδBj∂jZB − 2ZA ϕ

BϕB = 0 . (3.31)

Following ref. [22], we make the following ansatz for ZA:

ZA = δiA
∂iQ

gP
, (3.32)

where Q is some function on E3. Plugging this ansatz into eq. (3.31), we arrive at the

following equation for Q:

P∂i

(
∂j∂jQ

gP 2

)
= 0 , ⇒ ∂j∂jQ = kP 2 , (3.33)

for some constant k. If, as we will assume later, P = 1 + λ−2/r (a spherically-symmetric

harmonic function in E3), then

Q = Q(0) + k

[
1

6
r2 + λ−2r + λ−4 log r

]
, (3.34)

where Q(0) is another harmonic function in E3. k 6= 0 will, in general, give rise to non-

asymptotically flat metrics and, therefore, we will set it to zero.

3.3.2 Solution D2

The second solution available in the literature was found in ref. [29] in E4 and it was used to

construct a dyonic instanton solution of Heterotic supergravity in [30]. The generalization

of this solution to the case of arbitrary HK metrics is straightforward. In order to show

this, let us first rewrite eq. (3.22) as

d ?σ dZA − g εABC ZB d ?σ ÂC − 2g εABC(?σÂ
B) ∧ dZC

+g2
(
ZBÂ

B ∧ (?σÂ
A)− ZA ÂB ∧ (?σÂ

B)
)

= 0 .
(3.35)

– 9 –
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Let us keep just one of the ZA functions active, say Z3. Substituting the ’t Hooft

ansatz eq. (3.12) into eq. (3.35), we get the following conditions

η̄1
mn∂nP ∂mZ3 = η̄2

mn∂nP ∂mZ3 = 0 , (3.36)

∇2Z3 − 2Z3 (∂ logP )2 = 0 , (3.37)

which are solved by

Z3 =
ξ2

gP
, (3.38)

where ξ2 is an arbitrary constant.

Notice that when the HK metric is a GH metric and the vector fields do not depend on

the isometric coordinate η, eq. (3.38) is a particular case of eq. (3.32) given by the choice

of harmonic function Q(~x) = ξ2 x
3.

3.4 The 1-form ω

Finally, let us consider eq. (2.11). When the HK metric is a GH metric of the form

eq. (3.26), we can always write the 1-form ω as

ω = ω5(dη + χ) + ω̆ , (3.39)

and then eq. (2.11) takes the following form:

dω̆ + ω5dχ−H ?(3) dω5 =

√
3

g

(
ZBϕ

B

H
dχ+ ZBF̆

B

)
=

√
3

2g

[
ZBϕ

B

H
dχ−H ?(3) d

(
ZBϕ

B

H

)
+ ?(3)

(
ϕB D̆ZB − ZBD̆ϕB

)]
,

(3.40)

where we have made use of the Bogomol’nyi equation (3.30) in order to rewrite the r.h.s. of

the equation. The integrability condition of this equation is12

H d ?(3) d

(
ω5 −

√
3

2g

ZBϕ
B

H

)
= 0 , (3.42)

so that

ω5 = M +

√
3

2g

ZBϕ
B

H
, (3.43)

where M is another harmonic function in E3. Finally, substituting eq. (3.43) back in

eq. (3.40), we arrive at the following equation for ω:

?(3) dω̆ = HdM −MdH +

√
3

2g

(
ϕB D̆ZB − ZBD̆ϕB

)
. (3.44)

12To derive this equation, we use that

d ?(3)

(
ϕB D̆ZB − ZBD̆ϕB

)
= ϕB D̆ ?(3) D̆ZB = 0 , (3.41)

as a consequence of the Bogomol’nyi equation (3.30).
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This is the equation that will have to be solved if we use the D1 solution for the gauge

fields or if we use the D2 solution over a GH space.

For the D2 solution eq. (3.38) over a generic HK space, it is natural to try an ansatz

of the form

ω = η̄3
mn∂nΩ vm . (3.45)

Then, using eqs. (3.19) and (3.45), we find that eq. (2.11) reduces to

2 η̄3
[n|p∇m]∂pΩ +

1

2
η̄3
mn∇2Ω =

√
3ξ

g2P

{
η̄3

[n|p∇m]∂p logP

+η̄3
[m|p ∂p logP ∂n] logP − 1

2
η̄3
mn (∂ logP )2

}
,

(3.46)

which is solved by

Ω = −
√

3ξ2

2g2
P−1 . (3.47)

Summarizing, for the solutions D1 and D2 of the gauge fields, the 1-form ω is given by

D1 & D2 on GH space: ω =

(
M +

√
3

2g

ZB ϕ
B

H

)
(dη + χ) + ω̆ ,

D2 on general HK space: ω =

√
3 ξ2

2g2P 2
η̄3
mn ∂nP v

m .

(3.48)

with ω̆ satisfying eq. (3.44).

3.5 Dimensional reduction to d = 4

When the HK metric is a GH metric taking the form eq. (3.26) in the coordinate system

adapted to the triholomorphic isometry and (quite naturally) none of the physical fields

depends on the isometric coordinate η, it is possible to perform a standard Kaluza-Klein

reduction of the solution to d = 4 along that direction to obtain a solution of the SU(2)-

gauged ST[2, 6] model of N = 2, d = 4 SEYM. The matter fields of this theory are

vector fields AΛ
µ, Λ = 0, 1, · · · , 6 and complex scalars Zi, i = 1, . . . , 6 parametrizing the

coset space
SL(2,R)

SO(2)
× SO(2, 5)

SO(2)× SO(5)
. (3.49)

The interactions are determined by the cubic prepotential

F = − 1

3!

dijkX iX jX k

X 0
, (3.50)

where the constant, fully symmetric, tensor dijk is related to the tensor CIJK of the 5-

dimensional theory by

dijk = 6Ci−1 j−1 k−1 , i, j, k = 1, . . . , 6 . (3.51)

The index 1 corresponds to the 5-dimensional 0 and the 4-dimensional 0 is associated to

the Kaluza-Klein vector of the dimensional reduction fomr 5 to 4 dimensions.
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In this model, the SU(2) gauge group acts on the complex scalars and vector fields

with indices 4, 5, 6. Furthermore, the + and − combinations defined in the 5-dimensional

case now correspond to

A±µ ≡ A2
µ ±A3

µ . (3.52)

A solution-generating technique to construct directly the timelike supersymmetric so-

lutions of N = 2, d = 4 SEYM theories was found in refs. [6, 9, 11], but the procedure turns

out to be completely equivalent to the construction of timelike supersymmetric solutions

with an additional triholomorphic isometry in the auxiliary HK space (sometimes called

base space) in d = 5.

The formulae relating the 4- and 5-dimensional fields were given in full generality in

ref. [14]. Here, we particularize those formulae for the dyonic configurations considered in

this paper.13

We find that the 4-dimensional Einstein-frame metric takes the standard form of the

timelike supersymmetric solutions of N = 2, d = 4 SEYM theories

ds2
(4) = e2U (dt+ ω̆)2 − e−2U dxidxi , (3.53)

where the metric function e−2U is given by

e−2U =

√
f−3H − (ω5H)2 =

√
27

2
Z0Z̃+Z−H − (ω5H)2 , (3.54)

and the 1-form ω̆ is the solution to eq. (3.44).

The 4-dimensional vector fields are given by14

A0
(4) =

1

2
√

2

[
−e4UH2ω5 (dt+ ω̆) + χ

]
, (3.55)

A1
(4) =

1

6
√

2

e4UHf−3

Z0
(dt+ ω̆) , (3.56)

A±(4) =
1

3
√

2

e4UHf−3Z+

Z±Z̃+

(dt+ ω̆) , (3.57)

AA(4) =
−e4UH

3
√

2

(
f−3ZA

Z̃+Z−
+

√
3ω5ϕ

A

2g

)
(dt+ ω̆) +

1

g
ĂA , (3.58)

where the ϕA are defined in eq. (3.28).

13It is worth mentioning that there are many purely magnetic solutions of the Bogomol’nyi equations

(and, hence, of the selfduality equations) which are, by definition, non-Abelian BPS magnetic monopoles.

They were found by Protogenov in ref. [36] and all of them can and have been used to construct regular

4-dimensional black-hole solutions with non-Abelian fields in these theories [6, 8, 9, 11, 14]. However,

not all these magnetic monopoles correspond to regular instantons in 5 dimensions and, therefore, they

cannot be used to construct regular 5-dimensional black holes. Here we are solving directly the selfduality

equation (2.9) and it is guaranteed (it is tautological) that, if they are defined on a GH space and are

independent of η, they give solutions of the Bogomol’nyi equations which correspond to regular instantons.
14We have added a subindex (4) to distinguish them from the 5-dimensional ones.
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Finally, the six 4-dimensional scalars are given by15

Z1 = − 1

3Z0H

(
ω5H − ie−2U

)
, (3.59)

Z+ = − 2

3 Z̃+H

(
ω5H − ie−2U

)
, (3.60)

Z− = − 2Z+

3 Z̃+ Z−H

(
ω5H − ie−2U

)
, (3.61)

ZA =
2ZA

3 Z̃+ Z−H

(
ω5H − ie−2U

)
+
ϕA

g H
. (3.62)

The Kaluza-Klein scalar of the 5 → 4 compactification is a particular combination of

these 6 complex scalars and it is given by

`2 = e−4UH−2f2 . (3.63)

4 Rotating black holes

In the previous section, out of the many solutions that can be obtained by using the

techniques explained in section 2, we have selected two more restricted classes characterized

by dyonic Yang-Mills fields of two different kinds that we have labeled D1 and D2. These

two classes of solutions still depend on functions and building blocks which must satisfy

certain differential equations and conditions which do not determine them completely. In

this section we are going to make some particular choices of these building blocks adequate

to find single-center black-hole solutions.16 First of all, although we can use any HK metric

for the solutions of section 3 based on the dyonic instanton D2, we are going to restrict

ourselves to GH metrics, eq. (3.26), and, in particular, to spherically-symmetric GH metrics

of the form

dσ2 = H−1 (dη + χ)2 +H
(
dr2 + r2dΩ2

(2)

)
, r2 = xixi , dΩ2

(2) = dθ2 + sin θ2dφ2 , (4.1)

where H only depends on the radial coordinate r and where the coordinate η is compact

and has period η ∼ η + 2π`s, `s being a length scale that we take to be the string length.

Since H is a function of r harmonic in E3, the most general choice of H and the

corresponding χ are locally given by

H = aH +
bH
r
, χ = bH cos θ dφ , (4.2)

where aH , bH are two integration constants to be determined.

As it stands, for generic values of bH , this metric has an undesirable feature: it has a

Dirac-Misner string. Fortunately, it can be eliminated from the metric (4.1) by taking

bH = n`s/2 , n ∈ Z , (4.3)

15Note that we use superscripts to label the 4-dimensional scalars to distinguish them from the Z-functions

which instead have subindices.
16Multicenter solutions have been considered in ref. [18].
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and covering the HK manifold with two patches. For the time being, though, we will just

study the metric locally in one of those patches.

Furthermore, when aH = 0, the compactification to 4 dimensions is singular (observe

that the KK scalar in (3.63) blows up), which means that the solutions with aH = 0 only

makes sense in 5 dimensions. When aH 6= 0, however, the asymptotic radius of the internal

direction is finite and therefore the solution is effectively 4-dimensional. We will deal with

these two possibilities separately.

Once the HK metric has been chosen, we have to specify the magnetic part of the

non-Abelian vector fields, ÂA, which is given in terms of the harmonic function P of the

‘t Hooft ansatz by eq. (3.12). Again, if P depends only on the radial coordinate, it must

be given by

P = 1 +
λ−2

r
, (4.4)

where λ−2 measures the instanton size.

This choice automatically determines (up to a proportionality constant) the electric

part of the non-Abelian vectors for solution D2. For the solution D1, the harmonic function

Q still has to be specified, but if it is only a function of the radial coordinate, it has to be

proportional to P

Q = ξ1P , (4.5)

for some constant ξ1.17

Hence, for the two classes of solutions D1 and D2, we have

ZA =


−δA i

ξ1

g (1 + λ2r) r

xi

r
, (D1)

δA 3
λ2ξ2r

g (1 + λ2r)
. (D2)

(4.6)

For the harmonic functions Z
(0)
0,+,−, we take

Z
(0)
0,+,− = a0,+,− +

b0,+,−
r

, (4.7)

and the complete functions Z0, Z̃+ and Z− appearing in the metric eq. (2.5) read

Z0 = a0 +
b0
r
− 1

18g2

1

r (aHr + bH) (1 + λ2r)2 , (4.8)

Z− = a− +
b−
r
,

Z̃+ =


a+ +

b+
r
− ξ2

1

g2r (a−r + b−) (1 + λ2r)2 , (D1)

a+ +
b+
r
− ξ2

2λ
4r3

g2 (a−r + b−) (1 + λ2r)2 . (D2)

(4.9)

17The additive constant in Q is irrelevent.
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Since we have restricted ourselves to GH spaces, the 1-form ω takes the form eq. (3.39)

with ω5 given by eq. (3.43) and with ω̆ implicitly determined by eq. (3.48). Choosing the

harmonic function M as

M = aM +
bM
r
, (4.10)

one finds

ω5 =


aM +

bM
r

+

√
3ξ1

2g2

1

r (aHr + bH) (1 + λ2r)2 , (D1)

aM +
bM
r
−
√

3ξ2

2g2

λ2r cos θ

(aHr + bH) (1 + λ2r)2 , (D2)

(4.11)

ω̆ =


(aHbM − aMbH) cos θdφ , (D1)[

(aHbM − aMbH) cos θ −
√

3ξ2

2g2

λ2r sin2 θ

(1 + λ2r)2

]
dφ . (D2)

(4.12)

At this point, the solutions are fully specified, up to the choice of integration constants.

This choice is constrained by requirements of regularity, asymptotic flatness etc., which

demand a closer, case by case, study.

In particular, as we have already mentioned, the aH = 0 and aH 6= 0 cases correspond

to asymptotically-flat 5 and 4-dimensional solutions, respectively. It is natural to analyze

them separately.

4.1 5-dimensional black holes (aH = 0)

When aH = 0, the change of variables ρ2 = 4bHr brings the metric eq. (4.1) to the form

dσ2 = dρ2 +
ρ2

4

(
dΨ2 + dφ2 + dθ2 + dφ2 + 2 cos θdΨdφ

)
≡ dρ2 + ρ2 dΩ2

(3)/n , (4.13)

where we have introduced the angular coordinate Ψ = 2η/(n`s) whose period is Ψ ∼
Ψ+4π/n and where dΩ2

(3)/n is the metric of the lens space S3/Zn. From now on we discuss

the n = 1 case, for which the above metric is that of E4 and the 5-dimensional spacetime

metric of the solution eq. (2.5) can be cast in the form

ds2 =
(
Z0Z̃+Z−

)−2/3
(dt+ ω)2 −

(
Z0Z̃+Z−

)1/3 (
dρ2 + ρ2dΩ2

(3)

)
, (4.14)

where we have defined

Z0 ≡ Z0/a0 , Z− ≡ Z−/a− , Z̃+ ≡ Z̃+/ã+ , (4.15)

ã+ being the asymptotic value of Z̃+, which is given by

ã+ =


a+ , (D1)

a+ −
ξ2

2

a−g2
. (D2)

(4.16)

and where we have imposed an asymptotic flatness condition on a0, a− and ã+, namely

27

2
a0ã+a− = 1 . (4.17)
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This condition, together with the expressions of the scalars in terms of the Z functions

eq. (3.8) allows us to write a0, a− and ã+ in terms of the two moduli of this theory φ∞, k∞:

a0 =
1

3
eφ∞k−2/3

∞ , ã+ =
1

3
k4/3
∞ , a− =

2

3
e−φ∞k−2/3

∞ . (4.18)

We can, therefore, eliminate these three integration constants in the functions that

appear in the metric, which, with the definitions

κ2 ≡ 4bHλ
−2 , ξ̃1 ≡ 4bHξ1 , (4.19)

now take the form

Z0 = 1+
Q0

ρ2
+

2e−φ∞k
2/3
∞

3g2

ρ2+2κ2

(ρ2+κ2)2
, (4.20)

Z−= 1+
Q−
ρ2

, (4.21)

Z̃+ =


1+
Q̃+

ρ2
+

9ξ̃2
1 e

φ∞k
−2/3
∞

2g2

ρ4+ρ2
(
Q−+2κ2

)
+κ2

(
κ2+2Q−

)
Q− (ρ2+Q−)(ρ2+κ2)2 , (D1)

1+
Q̃+

ρ2
+

9ξ2
2 e

φ∞k
−2/3
∞

2g2

ρ4
(
Q−+2κ2

)
+ρ2κ2

(
2Q−+κ2

)
+Q−κ4

(ρ2+Q−)(ρ2+κ2)2 . (D2)

(4.22)

Here we have introduced new constants Q0, Q̃+ and Q− whose relation with the parameters

of the harmonic functions b0, b+, b−, bH in eqs. (4.7) is

Q0 =
4bH
a0

(
b0 −

1

18g2

)
, Q− =

4bHb−
a−

, Q̃+ =


4bH
ã+

(
b+ −

ξ2
1

g2b−

)
, (D1)

4bHb+
ã+

, (D2)

(4.23)

Finally, setting aM = 0 in eqs. (4.11) and (4.12), we find

ω =



J +
√

3ξ̃1
2g2

ρ2
−
√

3ξ̃1

2g2

ρ2 + 2κ2

(ρ2 + κ2)2

 (dΨ + cos θdφ) , (D1)

J
ρ2

(dΨ + cos θdφ)−
√

3 ξ2 κ
2ρ2

2g2(ρ2 + κ2)2
(dφ+ cos θdΨ) , (D2)

(4.24)

where we have defined a new constant

J = 4bMb
2
H . (4.25)

We have replaced some integration constants by physical quantities and we have also

made some redefinitions. Then, at this point, the solutions we have constructed depend on

the independent constants

φ∞ , k∞ , g , κ , J , Q0 , Q̃+ , Q− , and ξ̃1 or ξ2 .

– 16 –



J
H
E
P
1
1
(
2
0
1
9
)
1
6
7

The first three of these have a clear physical meaning. They are moduli of the solutions:

asymptotic values of two scalars and Yang-Mills coupling constant. There is another mod-

ulus of the solutions: the asymptotic value of the gauge-invariant combination
√
`A`A, that

we can denote by v. Only for the D2 solution it has a non-trivial value:

v =
ξ2

a−g
=

3

2g
ξ2e

φ∞k2/3
∞ , (D2) (4.26)

which allows us to replace ξ2 by 2
3gve

−φ∞k
−2/3
∞ .

Our next task will be to compute the conserved charges of the solution in terms of the

rest of the integration constants.

Charges of the solution. It is well-known that the presence of Chern-Simons terms in

field strengths or actions leads to the possibility of defining different notions of charge, see

for instance refs. [37, 38]. In the theories under consideration, they induce the occurrence

of F ∧ F terms in the equations of motion of the vector fields, as can be seen in eq. (2.3),

which in differential-form language takes the form:

−D(aIJ ? F
J) +

1√
3
CIJKF

J ∧ FK + gkI xDφ
x = 0 . (4.27)

The F∧F terms vanish when all the vector fields are purely electric and static, but they give

non-vanishing contributions at infinity when they are non-static or magnetic (instantonic,

for instance). Therefore, one gets different results in the calculation of a charge, depending

on whether one includes these terms in the definition or not.

Let us study the different possibilities.

If we couple the supergravity action to a 0-brane that couples electrically to the vector

field AI , the equations of motion eq. (4.27) are modified by a 1-form current JSI as follows18

−D(aIJ ? F
J) +

1√
3
CIJKF

J ∧ FK + gkI xDφ
x = ?JI

S , (4.28)

and we can compute the so-called brane-source charges, QSI , by integrating both sides over

some spatial 4-volume (such as a t = constant hypersurface):

QSI ≡
∫
V 4

?JI
S =

∫
V 4

{
−D(aIJ ? F

J) +
1√
3
CIJKF

J ∧ FK + gkI xDφ
x

}
. (4.29)

In general, this charge is not conserved, d ? JI
S 6= 0, because the l.h.s of eq. (4.28)

is not closed. However, in the ungauged directions, the Killing vectors kI
x vanish, the

gauge-covariant derivative becomes an ordinary exterior derivative and the F ∧ F terms

are a closed (but not exact) 4-form and

QSI =
1

2π2

∫
V 4

{
−d(aIJ ? F

J) +
1√
3
CIJKF

J ∧ FK
}
, (4.30)

is a conserved charge.

18Apart from the overall factor of 16πG
(5)
N , that we are ignoring here, typically the 1-form current JSI will

come multiplied by different combinations of asymptotic vallues of the scalars and other constants that we

will ignore in our discussion.

– 17 –



J
H
E
P
1
1
(
2
0
1
9
)
1
6
7

Since each of the two terms that appear in the above integral for the Abelian directions

are closed 4-forms, we can use them separately to define other possible conserved charges.

In particular, using only the terms with second derivatives in the volume integral gives the

so-called Maxwell charges

QMI ≡ −
1

2π2

∫
V 4

d(aIJ ? F
J) . (4.31)

For our supergravity model (see the action eq. (3.5)) and applying Stokes theorem,

we have

QM0 = − 1

6π2

∫
∂V4

e2φk−4/3 ? F 0 , (4.32)

QM+ = − 1

6π2

∫
∂V4

{
1

4
k8/3

(
1 + 2e−φk−2`B`B

)2
? F+ + e−2φk−4/3`B`B ? F−

+e−φk2/3
(

1 + 2e−φk−2`B`B
)
`A ? FA

}
, (4.33)

QM− = − 1

6π2

∫
∂V4

e−2φk−4/3 ?
(
F− + `B`BF+ + 2`AFA

)
, (4.34)

where ∂V4 is the boundary of V4. The relation between the Maxwell charges and the

brane-source charges is19

QS0 = QM0 +
1

12
√

3π2

∫
V4

(
F+ ∧ F− − FA ∧ FA

)
, (4.35)

QS± = QM± +
1

6
√

3π2

∫
V4

F 0 ∧ F∓ . (4.36)

By direct computation, we find that, for the solutions described in this section, the

Maxwell charges have the following values

QM0 =
2√
3
eφ∞k−2/3

∞ Q∞0 , (4.37)

QM+ =


1√
3
k4/3
∞ Q̃∞+ (D1)

1√
3
k4/3
∞ Q̃+ (D2)

, (4.38)

QM− =


2√
3
e−φ∞k−2/3

∞ Q∞− (D1)

2√
3
e−φ∞k−2/3

∞

(
1 + 2v2e−φ∞k−2

∞

)
Q∞− (D2)

, (4.39)

where we have defined Q∞0 , Q̃∞+ and Q∞− as

Q∞0 ≡ lim
ρ→∞

ρ2 (Z0 − 1) = Q0 +
2e−φ∞k

2/3
∞

3g2
, (4.40)

19Observe that, in general, we cannot apply Stokes’ theorem since they are closed but not exact 4-forms.
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Q̃∞+ ≡ lim
ρ→∞

ρ2
(
Z̃+ − 1

)
=


Q̃+

(
1 +

9ξ̃2
1e
φ∞k

−2/3
∞

2g2Q̃+Q−

)
(D1)

Q̃+ + 2v2e−φ∞k−2
∞
(
Q− + 2κ2

)
(D2)

, (4.41)

Q∞− ≡ lim
ρ→∞

ρ2 (Z− − 1) = Q− .

Observe that the difference between Q∞i and the constants Qi is always a shift by some

quantity. This behavior is characteristic of systems which have delocalized sources (such as

those introduced by the non-Abelian fields) that can contribute at infinity. In this respect,

the shift in Q0 corresponds to the contribution of the instanton to this kind of charge,

already observed in refs. [2, 4, 20, 25]. The new shifts in Q̃+, which are proportional

respectively to ξ̃2
1 and v2 (or equivalently to ξ2

2), are due to the dyonic nature of the

instanton.

The integrals of the F ∧ F terms are

1

2π2

∫
V4

F 0 ∧ F+ = 12e−φ∞k−2/3
∞

β

1 + β
Q− , (4.42)

1

2π2

∫
V4

F 0 ∧ F− =


6k4/3
∞

β

1 + β
Q̃∞+ , (D1)

6k4/3
∞

β

1 + β
Q̃+ , (D2)

(4.43)

1

2π2

∫
V4

F+ ∧ F− =


12eφ∞k−2/3

∞
β

1 + β

(
1 +

9eφ∞k
−2/3
∞ ξ̃2

1

2g2Q̃+Q−

)
Q0 , (D1)

12eφ∞k−2/3
∞

β

1 + β
Q0 , (D2)

(4.44)

1

2π2

∫
V4

FA ∧ FA =


8

g2
+ 54e2φ∞k−4/3

∞ Q0
β

1 + β

ξ̃2
1

g2Q̃+Q−
, (D1)

8

g2
, (D2)

(4.45)

where the constant β is defined by

β =
4J̃ 2

Q0Q̃+Q− − 4J̃ 2
, with J̃ =


J +

√
3ξ̃1

2g2
, (D1)

J , (D2)

(4.46)

and J is related to the angular momenta of the solutions, as we will see below. The

shift in J̃ is due to the contribution of the non-Abelian field to the angular momentum at

the horizon.

Eq. (4.45) indicates that our solutions include a dyonic deformation of the BPST

instanton [39]. The electric part of this dyonic configuration will be characterized later

on. Notice that the instanton number in the D1 case is not quantized since the integral∫
V4
FA ∧ FA has a second contribution due to the fact that the gauge fields do not vanish

at the horizon.
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Taking all these results into account, we find that the brane-source charges are given by

QS0 =
2√
3
eφ∞k−2/3

∞

(
1 +

β

1 + β

)
Q0 , (4.47)

QS+ =


1√
3
k4/3
∞

(
1 +

β

1 + β

)
Q̃∞+ , (D1)

1√
3
k4/3
∞

(
1 +

β

1 + β

)
Q̃+ , (D2)

(4.48)

QS− =


2√
3
e−φ∞k−2/3

∞

(
1 +

β

1 + β

)
Q− , (D1)

2√
3
e−φ∞k−2/3

∞

(
1 + 2v2e−φ∞k−2

∞ +
β

1 + β

)
Q− . (D2)

(4.49)

In order to characterize the electric part of the non-Abelian dyonic configuration, we

can integrate the gauge-invariant quantity `A ? FA over a S3 and take the ρ → ∞ limit

or that in which it goes to zero. For the solution D1, the profile of the fields is such that∫
S3 `

A ? FA vanishes when computed in the ρ → ∞ limit since they fall off to zero too

fast, but in the ρ → 0 limit it does not. The opposite is true for the D2 solution. Thus,

we find20

1

2π2

∫
S3
0

`A ? FA = 9
√

3
ξ̃2

1e
2φ∞

g2

(
Q2

0

Q̃+Q4
−

)1/3

, (4.50)

QD2 =
1

2π2

∫
S3
∞

`A ? FA = 9
√

3
ξ2

2e
2φ∞

g2

(
κ2 + Q̃∞+ +Q∞−

)
. (4.51)

It is worth mentioning that the while the interpretation of
∫
S3
0
`A ? FA as a charge is not

very rigorous, the quantity that we have denoted by QD2 does have a charge interpretation.

It is the charge (up to moduli factors) associated of the unbroken U(1) vector field [30].

Mass and angular momenta. The mass and the two independent angular momenta of

the solution can be found by examining the asymptotic behavior of the metric eq. (4.14)

in a suitable coordinate system. Thus, to this aim, it is convenient to introduce a new

set of coordinates (t̃, ρ̃, θ̃, φ̃+, φ̃−) related to the previous one by the following coordinate

transformation

t̃ = t , ρ̃ = ρ
(
Z0Z̃+Z−

)1/3
, θ̃ =

θ

2
, φ̃± =

Ψ± φ
2

. (4.52)

In terms of these new coordinates, the asymptotic expansion of eq. (4.14) for large

values of ρ̃ reads

ds2 ∼

(
1−

8G
(5)
N M

3πρ̃2

)
dt̃2 +

4J+

ρ̃2
cos2 θ̃ dt̃ dφ̃+ +

4J−
ρ̃2

sin2 θ̃ dt dφ̃−

−

(
1 +

8G
(5)
N M

3πρ̃2

)
dρ̃2 − ρ̃2

(
dθ̃2 + cos2 θ̃ dφ̃2

+ + sin2 θ̃ dφ̃2
−

)
,

(4.53)

20ξ̃1/g has dimensions of length squared, as a charge, while ξ2/g is dimensionless.
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where M, the ADM mass of the solution, is given by

M =
π

4G
(5)
N

(
Q∞0 + Q̃∞+ +Q∞−

)
, (4.54)

and J± are the two independent angular momenta of the solution

J± =


J , (D1)

J ∓
√

3κ2ξ2

2g2
. (D2)

(4.55)

Properties of the solution. Let us list here the main properties of these solutions:

• There is a regular horizon located at ρ = 0. Hence, they describe supersymmetric,

rotating, asymptotically-flat black holes. The induced metric at the horizon is

− ds2
H =

(
Q0Q̃+Q−

)1/3

4

[
1

1 + β
(dΨ + cos θdφ)2 + dΩ2

(2)

]
. (4.56)

Therefore, the horizon is a squashed 3-sphere and the squashing parameter β is given

by eq. (4.46).

In the D1 solution, β vanishes when both the total angular momentum J and the pa-

rameter ξ̃1 vanish. Therefore, there can be squashing even for vanishing total angular

momentum due to the contribution of the dyonic field to the angular momentum at

the horizon (related to ξ̃1).

In the D2 solution the squashing parameter can vanish even when there is angular mo-

mentum (J± = ∓
√

3κ2ξ2
2g2

) because there is a delocalized source of angular momentum

in the dyonic non-Abelian field.

• The Bekenstein-Hawking entropy is given in terms of the near-horizon charges by

SBH =
AH

4G
(5)
N

=
π2

2G
(5)
N

√
Q0Q̃+Q− − 4J̃ 2 . (4.57)

Rewriting this expression in terms of the brane-source of Maxwell charges is very

difficult or would result in a very complicated expression.

• These black holes can be seen as non-Abelian generalizations of the 5-dimensional

supersymmetric black holes of ref. [40] (with the BMPV black hole [41] as a particu-

lar case). The non-Abelian interactions play an important role here, particularly in

solution D2. They are the essential ingredient that allow us to describe an asymptot-

ically flat, supersymmetric, rotating black hole with two different angular momenta,

something that has not appeared so far in the literature. Furthermore, as a conse-

quence of the interactions between electric and magnetic non-Abelian sources, the

2-form dω is no longer anti-selfdual, as can be seen at the level of eq. (2.11). This

property, which does not hold here, was thought to be crucial to construct regular

supersymmetric rotating black holes in five dimensions [42], although the analysis

carried out in that reference did not include non-Abelian fields.
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• Even though the black holes are spinning, there is no ergosurface. This is expected

for supersymmetric solutions because the existence of ergosurfaces was shown to be

incompatible with supersymmetry in ref. [43].

• The presence of closed timelike curves (CTCs) is a quite common feature of these

kind of metrics. This problem has been studied with special emphasis in the context

of the microstate geometries program [44, 45]. It turns out that the condition that

guarantees the spacetime is free of closed timelike curves reduces to the positivity in

the whole spacetime of certain function.21 In our case, we must demand

Z0Z̃+Z−H − (ω5H)2 −
(

ω̆φ

r sin θ

)2

≥ 0 . (4.58)

In general, this is a complicated problem that has to be studied in a case by case

basis for particular values of the physical constants. Often, however, it is enough to

study this condition in the ρ → 0 and ρ → ∞ limits, in which case it is equivalent

to the positivity of the horizon area AH and to the positivity of the ADM mass M,

respectively. In the case at hands, we have checked numerically that if this is the case,

then eq. (4.58) can be satisfied without imposing more constraints on the parameters.

• In the D1 solution, the instanton size κ remains a modulus with arbitrary value while

the parameter ξ̃1 appears, as we have seen, non-linearly in the Maxwell and brane-

source charges. It also contributes to some quantities computed at the horizon such

as the angular momentum J̃ and the entropy.

• In the D2 solution, however, the instanton size κ is no longer a free parameter since it

can be fixed for instance in terms of the electric charge of the dyon by using eq. (4.51).

As we have already seen, the non-Abelian fields of this solution also contribute to the

total angular momentum in an asymmetric way, giving rise to different components

of the angular momentum in different planes. Indeed, we can also use eq. (4.55) to fix

the instanton size in terms of the combination of angular momenta ∆J ≡ J+ − J−
as follows

κ2 = −g
2∆J√
3ξ2

= −
√

3

2v
eφ∞k2/3

∞ g∆J . (4.59)

Globally smooth solution. The family of solutions D2 includes a gobally regular and

horizonless solution that does not require the addition of localized brane sources for the

choice of charges Q0 = Q̃+ = Q− = J = 0. In this case, the Z functions now take the

simpler form

Z0 = 1 +
2 e−φ∞k

2/3
∞

3 g2

ρ2 + 2κ2

(ρ2 + κ2)2 , (4.60)

Z− = 1 , (4.61)

21Recently in [23], there has been some progress to reduce eq. (4.58) to an algebraic relation, simplifying

the task of constructing explicit solutions. Although the results of [23] only apply strictly to a special class

of smooth horizonless solutions, we expect a similar analysis may also work for more general configurations.
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Z̃+ = 1 +
9ξ2

2 e
φ∞k

−2/3
∞

2g2

(
2ρ2 + κ2

)
κ2

(ρ2 + κ2)2 , (4.62)

and the 1-form ω becomes just

ω = −
√

3 ξ2 κ
2ρ2

2g2(ρ2 + κ2)2
(dφ+ cos θdΨ) . (4.63)

This 5-dimensional solution describes the heterotic dyonic instanton constructed in

ref. [30] compactified on a T 5. It can also be seen as a rotating generalization of the

instantonic solution considered in ref. [20]. The solution is characterized by two non-

vanishing asymptotic charges

Q∞0 =
2e−φ∞k

2/3
∞

3g2
, (4.64)

Q̃∞+ =
9 eφ∞k

−2/3
∞ ξ2

2 κ
2

g2
, (4.65)

and by only one independent angular momentum

J+ = −J− = −
√

3 ξ2 κ
2

2 g2
. (4.66)

Finally, the mass of the solution eq. (4.54) reduces to

M =
π

4G
(5)
N

(
Q∞0 + Q̃∞+

)
=

π

4G
(5)
N

(
2e−φ∞k

2/3
∞

3g2
+

9 eφ∞k
−2/3
∞ ξ2

2 κ
2

g2

)
. (4.67)

4.2 4-dimensional black holes (aH 6= 0)

The 4-dimensional metric of these solutions is

ds2
(4) = e2U (dt+ ω̆)2 − e−2U

(
dr2 + r2dΩ2

(2)

)
, (4.68)

where the 1-form ω̆ is given in eq. (4.12). The metric function e−2U is

e−2U =

√
27

2
Z0Z̃+Z−H − (ω5H)2 , (4.69)

where

Z0 = a0

(
1 +

q0

r
+

2

9a0aHg2
F
(
r; qH , λ

−2
))

, (4.70)

Z− = a−

(
1 +

q−
r

)
, (4.71)

Z̃+ =


ã+

(
1 +

q̃+

r
+

4ξ2
1

ã+a−g2
F
(
r; q−, λ

−2
))

, (D1)

ã+

(
1 +

q̃+

r
+

ξ2
2

ã+a−g2

(r + q−)
(
1 + 2λ2r

)
+ q−λ

4r2

(r + q−) (1 + λ2r)2

)
, (D2)

(4.72)
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H = aH

(
1 +

qH
r

)
, (4.73)

ω5 =


aM

(
1 +

qM
r
− 2
√

3 ξ1

aMaHg2
F
(
r; qH , λ

−2
))

, (D1)

aM

(
1 +

qM
r
−
√

3 ξ2

2aMaHg2

λ2r cos θ

(r + qH) (1 + λ2r)2

)
, (D2)

(4.74)

where we have introduced the function

F (r; q1, q2) ≡ (r + q1) (r + 2q2) + q2
2

4q1 (r + q1) (r + q2)2 . (4.75)

The relation between the constants q0, q̃+, q−, qH and qM and the original parameters

of the harmonic functions is

q0 =
1

a0

(
b0 −

1

18bHg2

)
, q− =

b−
a−

, qH =
bH
aH

, (4.76)

and

q̃+ =


1

ã+

(
b+ −

ξ2
1

a−g2

)
, (D1)

b+
ã+

, (D2)

, qM =


1

aM

(
bM +

√
3ξ1

2g2bH

)
, (D1)

bM
aM

, (D2)

, (4.77)

where ã+ is again given by eq. (4.16). We have implicitly assumed the finiteness of several

constants which appear in the denominators of these expressions. In most cases, this

is demanded by asymptotic flatness, but we will have to take this fact into account at

certain points.

These 4-dimensional solutions depend on the parameters

a0, ã+, a−, aH , aM , λ, g, q0, q̃+, q−, qH , qM , and ξ1 or ξ2 . (4.78)

As already mentioned, not all of these parameters are independent because they have to

satisfy certain relations demanded by asymptotic flatness and the standard normalization

of the metric at spatial infinity. These conditions are:

1. The vanishing of NUT charge. This condition demands that22

aMbH = aH bM , (4.79)

22This condition is also equivalent to imposing that the integrability condition of eq. (3.44) is also satisfied

at the pole. One may wonder if there is a fundamental reason to demand this since, after all, the Z functions

as well as the GH function H are singular at that point. Leaving aside the requirement of asymptotic

flatness and the wire singularities characteristic of Taub-NUT geometries [1], the main reason to impose

the vanishing of the NUT charge is that we do not know of any string theory configuration (source) that can

account for it. It was also argued in ref. [31] that the vanishing of the NUT charge is a necessary condition

to for the solution to be globally supersymmetric.
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which guarantees that ω̆ vanishes asymptotically, see eq. (4.12). This equation can

be satisfied in two ways:

(a) We can just set aM = bM = 0.

(b) If aM 6= 0, we have to fix the integration constant qM in terms of qH (and ξ1 in

the D1 case) as follows

qM =

 qH +

√
3ξ1

2aMaHqHg2
, (D1)

qH . (D2)

(4.80)

Either way, when there is no NUT charge, the 1-form ω̆ is given by

ω̆ =


0 , (D1)

−
√

3ξ2

2g2

λ2r sin2 θ

(1 + λ2r)2 dφ . (D2)
(4.81)

Therefore, as already observed in ref. [18], the solution D1 is static, but the solution

D2 describes a supersymmetric, asymptotically-flat, rotating black hole.

2. At spatial infinity, the metric function e2U must take a constant value that is con-

ventially taken to be 1, i.e.,

lim
r→∞

e2U → 1 , ⇒ 27

2
a0ã+a−aH − (aMaH)2 = 1 , (4.82)

which allow us to rewrite a0, ã+, a−, aH and aM in terms of only four independent

parameters. For future convenience, we choose these parameters to be eφ∞ , k∞, `∞
and f∞.23 The relation between these constants is

a0 =
1

3
eφ∞k−2/3

∞ f−1
∞ , a− =

2

3
e−φ∞k−2/3

∞ f−1
∞ , ã+ =

1

3
k4/3
∞ f−1

∞ ,

aH =
f∞
`∞

, aM = ± `∞
f∞

√
1− `∞f2

∞
`∞f2

∞
,

(4.83)

with `∞f
2
∞ ≤ 1. Together with the quotient ξ2/g, these four constants completely

determine the asymptotic values of the 4-dimensional scalars which are given in

eqs. (3.63)–(3.62). Defining

Zx∞ = vx e
iγx , x = 0,+,−, A , (4.84)

we find,

v0 = e−φ∞k2/3
∞ `1/2∞ f−1

∞ , v+ = 2k−4/3
∞ `1/2∞ f−1

∞ , (4.85)

23Recall that `∞ is the asymptotic value of the Kaluza-Klein scalar that measures the radius of the circle

of the 5→ 4 compactification. f∞ is the asymptotic value of the 5-dimensional metric function f , which is

given in eq. (3.7) and no longer has to be equal to 1.
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v− =


eφ∞k2/3

∞ `1/2∞ f−1
∞ , (D1)

eφ∞k2/3
∞ `1/2∞ f−1

∞

(
1 +

9 eφ∞f2
∞ ξ

2
2

2 g2 k
2/3
∞

)
, (D2)

(4.86)

v1 = v2 = 0 , v3 =


0 , (D1)

2 eφ∞`
1/2
∞ ξ2

g k
2/3
∞ f∞

, (D2)
(4.87)

tan2 γx =
`∞f

2
∞

1− `∞f2
∞
, ∀x . (4.88)

Let us now rewrite the solution replacing the integration constants a0, a−, aM , ã+, aH
by the physical parameters eφ∞ , k∞, `∞ and f∞. We get24

Z0 =
eφ∞k

−2/3
∞

3f∞

(
1+

q0

r
+

2e−φ∞k
2/3
∞ `∞

3g2
F
(
r;qH ,λ

−2
))

, (4.89)

Z−=
2e−φ∞k

−2/3
∞

3f∞

(
1+

q−
r

)
, (4.90)

Z̃+ =


k

4/3
∞

3f∞

(
1+

q̃+

r
+

18eφ∞f2
∞ ξ

2
1

k
2/3
∞ g2

F
(
r;q−,λ

−2
))

, (D1)

k
4/3
∞

3f∞

(
1+

q̃+

r
+

9eφ∞f2
∞ ξ

2
2

2k
2/3
∞ g2

(r+q−)
(
1+2λ2r

)
+q−λ

4r2

(r+q−)(1+λ2r)2

)
, (D2)

(4.91)

H =
f∞
`∞

(
1+

qH
r

)
, (4.92)

ω5 =


± `∞
f∞

√
1−`∞f2

∞
`∞f2

∞

(
1+

qH
r

)
+

√
3`∞ξ1

2g2 f∞ qHr
− 2
√

3`∞ ξ1

g2 f∞
F
(
r;qH ,λ

−2
)
, (D1)

± `∞
f∞

√
1−`∞f2

∞
`∞f2

∞

(
1+

qH
r

)
−
√

3`∞ ξ2

2g2 f∞

λ2r cosθ

(r+qH)(1+λ2r)2 . (D2)

(4.93)

At this point, the solutions depend on

eφ∞ , k∞, `∞, f∞, g, q0, q̃+, q−, qH , λ, ξ1, or ξ2 . (4.94)

The first 5 of these and ξ2 are moduli (asymptotic values of scalar fields and gauge coupling

constant). The 4 qs will be interpreted as near-horizon charges and we still have to find

the physical meaning of λ and ξ1. Let us study the charges of these solutions.

Charges of the solutions. The black hole solutions that we have constructed are electri-

cally charged with respect to the 4 non-trivial Abelian vectors A0
(4), A

1
(4), A

±
(4) in eqs. (3.55)–

(3.57) and magnetically charged only with respect to the KK vector A0
(4). Therefore, these

24The aM = 0 case can be smoothly recovered in the f∞ → 1/
√
`∞ limit.
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dyonic black holes have 5 conserved (Abelian) charges: 4 electric and 1 magnetic. Not all

these charges are independent, though, as a consequence of the zero-NUT-charge condi-

tion, but this is something that depends on the definition of charges being used. For the

near-horizon charges, eq. (4.80) leaves only 4 independent charges in the D2 case, since

qM = qH . In the D1 case, however, the near-horizon charge associated to the function ω5 is

given by qH +
√

`∞f∞
1−`∞f2∞

√
3ξ1

2qHg2
and therefore it is not fixed since ξ1 is a free parameter. This

strongly suggests that the quantity ξ1/
(
qHg

2
)

could be interpreted as the electric charge

of the non-Abelian dyon.

We can now compute the asymptotic charges q∞0 , q̃
∞
+ , q

∞
− , q

∞
H , q

∞
M , defined as

q∞0 = lim
r→∞

r

(
Z0

a0
− 1

)
= q0 +

e−φ∞k
2/3
∞ `∞

6 g2 qH
, (4.95)

q∞− = lim
r→∞

r

(
Z−
a−
− 1

)
= q− , (4.96)

q̃∞+ = lim
r→∞

r

(
Z̃+

ã+
− 1

)
=


q̃+ +

9 eφ∞k
−2/3
∞ ξ2

1

2 g2 f2
∞ q−

, (D1)

q̃+ +
9 eφ∞k

−2/3
∞ ξ2

2

2 g2 f2
∞

(
q− + 2λ−2

)
, (D2)

(4.97)

q∞H = lim
r→∞

r

(
H

aH
− 1

)
= qH , (4.98)

q∞M = lim
r→∞

r

(
ω5

aM
− 1

)
= q∞H = qH . (4.99)

In both the D1 and D2 cases, we find only 4 independent charges as a consequence of

eq. (4.80).

Mass and angular momentum. Comparing the asymptotic expansion of the metric

eq. (4.68) with

ds2
(4) ∼

(
1−

2G
(4)
N M
r

)
dt2 +

4J sin2 θ

r
dtdφ−

(
1−

2G
(4)
N M
r

)
dr2 − r2dΩ2

(2) , (4.100)

we find that the ADM massM and the angular momentum J of the solution are given by

M =
q∞0 + q∞+ + q− + qH − 4

(
1− `∞f2

∞
)
qH

4 `∞f2
∞G

(4)
N

, (4.101)

J =


0 , (D1)

−
√

3 ξ2

4 g2λ2
. (D2)

(4.102)

In the D2 case we can use this last equation to fix the instanton size λ in terms of angular

momentum and the moduli of the solution:

λ−2 = − 4g2

√
3ξ2

J . (D2) (4.103)
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Properties of the solutions

• The D1 solution is an asymptotically-flat, static solution characterized by the inde-

pendent physical parameters

eφ∞ , k∞, `∞, f∞, g, q0, q̃+, q−, qH , ξ1, λ . (4.104)

The first 5 are moduli and the next 5 can be interpreted as near-horizon charges.

The parameter λ characterizing the instanton size can be interpreted as non-Abelian

hair.

• The D2 solution is an asymptotically-flat, rotating solution characterized by the

independent physical parameters

eφ∞ , k∞, `∞, f∞, g, ξ2, q0, q̃+, q−, qH ,J . (4.105)

The first 6 are the moduli of the solution and the next 4 are the near-horizon charges.

Finally, J is the angular momentum. As already discussed, in this solution the

instanton size λ gets fixed in terms of J and some of the moduli by eq. (4.103).

• Both solutions have a spherical horizon at r = 0 with area

AH = 4π

√
q0 q+ q− qH − (qM qH)2 , (4.106)

as long as this quantity is real and finite, i.e., if q0 q+ q− qH > (qM qH)2. The angular

momentum of the D2 solution does not modify the shape of the horizon because

limr→0 ω̆ → 0, contrary to what we found in the 5-dimensional case.

• If, on top of having a regular horizon, the condition

27

2
Z0Z̃+Z−H > (ω5H)2 if r ≥ 0 , (4.107)

is satisfied everywhere,25 so that the metric function e−2U 6= 0, these solutions will

describe, respectively, a static (D1) and a rotating (D2) asymptotically-flat black

hole.

5 Discussion

5.1 Summary of the results

In this paper we have presented a general class of supersymmetric solutions of 4- and 5-

dimensional SU(2)-gauged supergravities with 8 supercharges (that is: N = 1, d = 5 and

N = 2, d = 4 supergravities) using the techniques developed in refs. [7, 14, 32].

The novel aspect of our solutions is the addition of delocalized sources of charge through

non-trivial dyonic Yang-Mills fields. As we have seen, they play a fundamental role in our

25We have checked numerically that it can be satisfied.
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analysis since the angular momentum of the solutions (specially in 4 dimensions) is related

to the electric-type charges introduced by these fields.

In 5 dimensions, we have found two non-Abelian generalizations of the well-known

BMPV black hole. One of these (D2) has two independent angular momenta, which is a fea-

ture that has not been observed in the literature before for supersymmetric asymptotically-

flat black holes.

We have also constructed 4-dimensional asymptotically-flat black holes which can be

seen as the non-Abelian counterparts of the heterotic black holes studied in ref. [46]. One

of these has in fact a non-vanishing angular momentum and it is regular, being this the first

example (up to our knowledge) of this type. Actually, a “no-go” theorem had been proven

in ref. [31] in the context of ungauged N = 2, d = 4 supergravity. Indeed, these theories

have Abelian vector fields only, and, with a single center, dyonic fields do not give rise to

angular momentum and any other sources of angular momentum give rise to singularities.

The rotating 4-dimensional solution that we have constructed overcomes these problems

because of the delocalized nature of the dyonic non-Abelian fields, which do give rise to

angular momentum.

5.2 Future directions

Since the theories that we have considered here can be obtained from toroidal compactifi-

cation of the 10-dimensional Heterotic supergravity, these solutions can be easily uplifted

to 10 dimensions as it has been recently done in ref. [25]. Heterotic supergravity, however,

does not capture the complete set of first-order α′-corrections, since it is well-known that

the effective action of the Heterotic Superstring [27] also contains terms which are quadratic

in the curvature of the torsionful spin connection. In some cases, it can be argued that the

corrections introduced by those terms are small enough to be ignored, but, as shown in

refs. [2, 4], sometimes it is possible to compute them exactly (to that order, at least) if the

results of ref. [3] can be applied to the particular supergravity solution under consideration.

Thus, it is natural to consider the embedding in Heterotic Superstring theory of

these solutions and the α′ corrections of these solutions. Work in these directions is in

progress [47].
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[40] M. Cvetič and D. Youm, General rotating five-dimensional black holes of toroidally

compactified heterotic string, Nucl. Phys. B 476 (1996) 118 [hep-th/9603100] [INSPIRE].

[41] J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes,

Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [INSPIRE].

[42] C.A.R. Herdeiro, Special properties of five-dimensional BPS rotating black holes, Nucl. Phys.

B 582 (2000) 363 [hep-th/0003063] [INSPIRE].

[43] J.P. Gauntlett, R.C. Myers and P.K. Townsend, Black holes of D = 5 supergravity, Class.

Quant. Grav. 16 (1999) 1 [hep-th/9810204] [INSPIRE].

[44] I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74

(2006) 066001 [hep-th/0505166] [INSPIRE].

[45] P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and

black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].
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