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1 Introduction

It has long been a matter of interest whether strongly coupled gauge theories can generate

light or even massless fermionic bound states (baryons), since these might form the basis

for a composite model of standard model fermions [1]. A related problem is to generate the

experimentally observed top quark mass in composite Higgs models, in which the Higgs

particle is a pseudo-Nambu Goldstone boson. This requires baryonic top partners [2, 3]

that are light relative to the typical hadronic scale in the strongly coupled sector. The

AdS/CFT correspondence [4–6] has provided a new window on strongly interacting gauge

dynamics that may potentially be useful as a new approach to Beyond the Standard Model

(BSM) physics. It motivates us here to look afresh at a mechanism for generating light or

massless baryons in top-down holographic models, in which the use of a top-down string

theory D-brane construction provides control over the field content of the dual gauge theory.

As a starting point for new BSM analyses, in this paper we begin by carefully fixing

the details of top-down gauge/gravity duality models required for investigating fermionic

modes. Somewhat removed from the phenomenological BSM models mentioned, we study

a rigorously understood top-down construction of an N = 2 gauge theory with massive

quarks. In this theory, the meson states and their supersymmetric partners, the mesinos,

can be analytically computed and lie at a scale determined by the quark mass. Here we will

determine how higher dimension operators may be used to generate abnormally light mesino

states. There are two sets of mesino states corresponding to different representations of

the supersymmetry algebra. One of them is very similar to a QCD baryon multiplet since

the lowest mass entry in this multiplet consists of a product of three elementary fermion

fields (of course a true baryon at large Nc is made of Nc quarks and must be represented

by a baryon vertex in the dual [7]). In the future, we hope to extend our mechanism to

holographic descriptions of more phenomenlogically relevant gauge theories, in particular

of theories displaying chiral symmetry breaking, extending the results of [8].

The D3/probe D7-brane system [9–11] provides a clean holographic description of

a strongly coupled gauge theory with quark matter for which an easily calculable dual

description exists. The gauge theory is an N = 2 supersymmetric theory with hyper-

multiplets added to the base N = 4 super Yang Mills theory. The gravity dual in the

quenched approximation consists of probe D7-branes embedded in AdS5 × S5 space that

wrap a subspace which asymptotically near the boundary is AdS5×S3 [9]. The quark mass

and condensate are explicitly present in the model as holographic modes and determine the

near-boundary behaviour of the embedding functions. The meson spectrum, corresponding

to fluctuations of the brane about their vacuum configuration, was computed in [10]. The

fermionic spectrum in the massless theory was fully derived in [12]. In the same paper, a

phenomenological bottom-up rule was used to guess the equations of motion for the fluctu-

ations in the massive case, reproducing the expected spectrum, with further results in [11].

A full derivation of the equations of motion for the massive case has been completed in

the unpublished notes [13]. The first task we set ourselves here is to provide an explicit

derivation of these equations and to check the supersymmetric degeneracy of the spectrum.

The results in [14] are also a useful related reference.
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The general strategy for studying fermionic open string fluctuations of probe D-branes

is to write a ten-dimensional action for a 16-component Majorana-Weyl spinor and then

perform the pull-back onto the world-volume of the D-brane [15]. For supersymmetric em-

beddings such as the ones we consider, where the probe D-brane lies flat in the background

space-time, this pull-back simply corresponds to dropping derivative terms for the bulk

directions. In cases with a curved embedding, as required for modelling chiral symmetry

breaking in non-supersymmetric backgrounds for instance, this would be a more involved

process. However we do not consider such cases here. For the supersymmetric case we

re-write the metric in terms of vielbeins, determine the non-vanishing spin-connection

components of the background and evaluate the Dirac operator on the world-volume of the

probe branes. In this way, we obtain the individual terms that appear in the first-order

equations of motion. These terms can be divided into one Dirac operator associated with

the asymptotically AdS space and one on the transverse S3 in the case of the D7-brane

probe. The eigenvalues of the S3 operator split into two sectors with an opposite sign.

We need to consider both of these sectors and we choose to denote by G the set of modes

derived from the positive sign of the spherical eigenvalues, while we use F to describe

the modes associated with the negative eigenvalue on the sphere. Each of these generate

distinct mesino states in the field theory. The usual holographic operator matching shows

that the former set of modes is naively associated with bound states of two quarks and a

gaugino, while the latter are quark-squark bound states.

The first order Dirac equations can be squared to a Klein-Gordon second order form.

A factor of γρ associated with the radial direction ρ in AdS is still present in the second-

order equation. However, it is possible to write the solution in terms of eigenvectors

of γρ with eigenvalues ±1. When the mesino is massive, the leading term from either

solution in the UV region near the boundary is associated with the field theory source

J and the sub-leading term with the operator O. This identification requires some care,

as we discuss based on the previous results of [16]. We present analytic solutions for the

supersymmetric case and reconfirm earlier analysis [12] that show the solutions match

the expected supersymmetric spectrum. We also present a detailed numerical approach

for determining the mesino masses which we need for our later analysis including higher

dimension operators.

So far, the model considered does not give rise to light baryons since the masses of the

baryon-like mesinos are tied to the meson spectrum by supersymmetry. To proceed, one

possible addition to the theories are higher dimension operators. Witten’s double trace

prescription [17] allows such operators to be introduced easily as modifications of the UV

boundary conditions on the holographic solutions. Previously this has been done in the

D3/D7 system for Nambu-Jona-Lasinio type four-fermion operators in [18]. Here, instead,

we consider adding operators of “mesino squared” form which naively will generate a shift

in the mesino mass in the effective description of the low-energy hadrons. We show that as

the coupling of these operators is raised, the mesino masses can be driven to light values

relative to the rest of the spectrum. For small values of the coupling of this operator, the

shift in the mesino mass is small and linear, but above a critical value of the coupling

the shift in the mesino mass is suddenly sharp and much larger. Inspite of this, the

– 3 –
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mesino mass can only be pushed to zero for asymptotically large values of the coupling,

presumably reflecting that fermionic states cannot become tachyonic and condense. Our

approach provides at least one (tuned) mechanism for generating light composite fermions

in strongly coupled gauge theories. We also study the radially excited states of the mesinos

and show that their masses are bounded from below and do not become light along with

the lowest state whose mass approaches zero.

In later sections we also extend this derivation to the other supersymmetric systems

D3/D3 and D3/D5 in order to test that the behaviour we see is generic which it seems

to be.

This paper is organized as follows: in section 2 we present the background of the

D3/D7-brane system together with the mass spectrum of the mesons dual to bosonic fluc-

tuations of the probe D7-brane derived in [10]. We discuss the fermionic fluctuations of

the D7-brane in section 3 where we show how to obtain the mass spectrum of the dual

mesinos both analytically and numerically. In section 6 we then apply the methods dis-

cussed in section 3 for the D3/D7 system to the D3/D5, and D3/D3. We end this paper

with concluding comments and remarks in section 7. Our notational choices are discussed

in the appendix.

2 D3/D7-brane system: background and bosonic fluctuations

We begin by reviewing the bosonic sector of the canonical D3/probe D7-brane system which

describes the N = 4 super Yang-Mills theory with quenched N = 2 matter multiplets [9,

10]. This is the example for which we will study the fermionic fluctuations in full detail

below.

2.1 D3-brane background geometry

According to the AdS/CFT correspondence, a stack of D3-branes generates type IIB su-

pergravity theory on AdS5 × S5, which is dual to N = 4 gauge theory [4–6]. We choose

the following basis representation of the AdS5 × S5 metric,

ds2 = GMNdx
MdxN =

r2

R2
ηµνdx

µdxν +
R2

r2
dρ2 +

R2ρ2

r2
dΩ2

3 +
R2

r2
δm̃ñdw

m̃dwñ , (2.1)

where M,N = 0, . . . 9, µ, ν = 0, . . . , 3, m̃, ñ = 8, 9 and r2 = ρ2 +
(
w8
)2

+
(
w9
)2

. Moreover,

dΩ2
3 denotes the metric for the S3 sphere. The D7-brane is embedded in such a way that w8

and w9 are its transverse coordinates. The AdS radius R is given in terms of the number

of the background D3-branes, the string coupling gs and the string tension α′ by

R4 = 4πgsN(α′)2 . (2.2)

Let us first consider the supergravity solution associated with the D3-brane back-

ground (2.1). It comes with the dilaton φ and a Ramond-Ramond (R-R) four-potential

C(4) given by

eφ = constant, C(4) =
r4

R4
dx0 ∧ · · · ∧ dx4 . (2.3)
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This leads to the R-R five-form

F(5) = (1 + ?)dC(4) =
4

R4
r2 dx0 ∧ · · · ∧ dx3 ∧

(
ρdρ+ wm̃dwm̃

)
+

4R4ρ3

r6
(
ρ ωS3 ∧ dw8 ∧ dw9 + dρ ∧ ωS3 ∧

(
w8dw9 − w9dw8

))
,

(2.4)

where ωS3 is the standard volume form of S3.

In the next sections we will couple a spinor Ψ to the above supergravity background.

This requires us to introduce a local Lorentz frame that allows us to treat the metric (2.1)

as locally flat. For the local Lorentz frame we introduce vielbeine

eI = eIMdx
M , (2.5)

where I,M = 0, . . . , 9 and I denotes the locally flat coordinates. In terms of the eI , the

metric (2.1) is given by

ds2 = ηIJe
IeJ . (2.6)

For the geometry (2.1), we obtain the following components eIM for the vielbeine,

eIµ =
r

R
δIµ , eIρ =

R

r
δIρ , eIi =

R ρ

r
êIi , eIm̃ =

R

r
δIm̃ . (2.7)

Here the index i = 5, 6, 7 refers to the coordinates of the S3 sphere in (2.1). For I referring

to a coordinate on S3, i.e. I = 5, 6, 7, the object êIi is the dreibein on S3. When I denotes

a coordinate transverse to S3, i.e. xµ , ρ or wm̃, we set êIi to zero.

In terms of the local Lorentz frame (2.7) the five-form (2.4) is given by

F(5) =
4

Rr

(
e0 ∧ · · · ∧ e3 ∧

(
ρ eρ + w8e8 + w9e9

)
+ ρ eS

3 ∧ e8 ∧ e9 + eρ ∧ eS3 ∧ (w8e9 − w9e8)
)
,

(2.8)

where eS
3

= e5 ∧ e6 ∧ e7 is the ∧-product of the three vielbeine corresponding to the S3

directions of (2.1).

In order to write down an action describing the dynamics of the spinor Ψ, we need to

compute the spin connection

ωIJM = −ωJIM = eING
NP∇MeJP = eING

NP
(
∂Me

J
P − ΓRMP e

J
R

)
. (2.9)

The non-vanishing spin-connection components corresponding to the Lorentz frame (2.7)

are given by

ωIJµ =
1

R2

(
ρ
(
δIµδ

J
ρ − δJµδIρ

)
+ wm̃

(
δIµδ

J
m̃ − δJµδIm̃

))
,

ωIJρ =
wm̃

r2
(
δIm̃δ

J
ρ − δJm̃δIρ

)
,

ωIJi = ω̂IJi +
(ρ2
r2
− 1
)(
δIρ ê

J
i − δJρ êIi

)
+
ρwm̃

r2
(
δIm̃ê

J
i − δJm̃êIi

)
,

ωIJm̃ =
ρ

r2
(
δIρδ

J
m̃ − δJρ δIm̃

)
+
wñ

r2
(
δIñδ

J
m̃ − δJñδIm̃

)
,

(2.10)
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coordinates xµ ρ S3 wm̃

dim 0 1 2 3 4 5 6 7 8 9

D3 × × × × · · · · · ·
D7 × × × × × × × × · ·

Table 1. The embedding of the D3- and D7-branes. We choose the D3-branes to be embedded

along the directions 0, . . . , 3. We refer to these coordinates as xµ. The D7-brane is embedded along

0, . . . , 4, 5, 6, 7. As can be seen from (2.1), the 4-direction is radial and we refer to it as ρ. Moreover,

the directions 5, 6, 7 form a three-sphere (2.1). We refer to them as S3.

where ω̂IJi is defined as the spin-connection on the three sphere if I and J correspond to

the S3 coordinates and set to zero otherwise.

2.2 Embedding of the probe D7-brane

We use the standard D7-probe brane embedding as reviewed in [11]. Let us briefly sum-

marize the main features. The D7-probe brane is embedded into the D3-brane geometry

of section 2.1. This embedding as well as its bosonic fields are described by

SD7 = SDBI + SWZ , (2.11)

where SDBI is the Dirac-Born-Infeld (DBI) action for the D7-brane probe, with tension T7,

SDBI = −T7
∫
d8ξe−φ

√
− det

(
gAB + 2πα′FAB

)
(2.12)

and the Wess-Zumino (WS) term is

SWZ =
(2πα′)2

2
T7

∫
P [C(4)] ∧ F ∧ F . (2.13)

Here, gAB is the pullback of the metric (2.1) to the world-volume of the D7-brane and

F = dA is the field strength of the gauge field A on the brane. Moreover, P [C(4)] is the

pullback of the R-R four-potential (2.3) to the D7-brane. We choose the xµ, ρ and S3

directions of (2.1) as world-volume coordinates ξA, as shown in table 1.

The ground state embedding of the brane may be found by setting F equal to zero

in (2.11) and using the ansatz w8 = 0, w9 = L(ρ). This leads to

SD7 = −T7 vol
(
S3
) ∫

d4x dρ e−φ ρ3
√

1 + (∂ρL)2 . (2.14)

Since e−φ is constant (see (2.3)), it is easy to verify that this action is minimized if L is

constant. Thus the brane wraps the xµ, ρ and S3 directions at a constant value L of w9.

This leads to the following metric on the brane,

ds2D7 = gABdξ
AdξB =

r2

R2
ηµνdx

µdxν +
R2

r2
dρ2 +

R2ρ2

r2
dΩ2

3 , (2.15)

where r2 = ρ2 + L2. This flat embedding of the D7-brane preserves half of the original

(sixteen) supercharges of the D3-brane background. The distance L between the D7- and

D3-branes corresponds to the quark mass mq. We have L = 2πα′mq. L sets the mass scale

of the theory and its bound states.

– 6 –
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2.3 Bosonic fluctuations

The bosonic fluctuations of the embedding of the D7-brane and the gauge field are studied

in [10]. These fluctuations correspond to scalar and vector mesons on the boundary. In

this section we briefly review the results of [10].

2.3.1 Scalar fluctuations

We consider small fluctuations Φ(ξA) of the D7 brane transverse to the flat embedding

w9 = L presented in section 2.2. These correspond to scalar mesons on the boundary. By

using1

w8 = 2πα′Φ or w9 = L+ 2πα′Φ, (2.16)

in the DBI action (2.12) for FAB = 0 and expanding to leading order in Φ, we obtain a

second order partial differential equation for Φ. To solve this equation, we make the plane

wave ansatz Φ = f(ρ)eik
µxµY`, where Y` is a scalar spherical harmonic on S3 satisfying

∇2Y` = −`(`+ 2)Y`, (2.17)

for ` ∈ N0. This leads to

∂2ρf(ρ) +
3

ρ
∂ρf(ρ) +

R4 M2

(ρ2 + L2)2
f(ρ)− `(`+ 2)

ρ2
f(ρ) = 0 , (2.18)

where M2 = −k2 corresponds to the mass of the mesons dual to Φ. Solving (2.18) and

imposing normalizability we find the mass spectrum to be of the discrete form

Ms = 2
L

R2

√
(n+ `+ 1)(n+ `+ 2) , where n ∈ N0 and ` ∈ N0 . (2.19)

In particular, we see that the meson mass scales with L, i.e. the distance between the

probe D7-brane and the stack of D3-branes and is thus proportional to the quark mass.

The solution of (2.18) corresponding to the mass (2.19) is given by

f(ρ) =
ρ`

(ρ2 + L2)n+`+1 2
F1

(
−(n+ `+ 1),−n, `+ 2,− ρ

2

L2

)
. (2.20)

The solution above has the near-boundary (ρ→∞) expansion f(ρ) ∼ 1/ρ`+2 and the

conformal dimension of the dual operator is ∆ = `+ 3.

2.3.2 Vector fluctuations

In analogy to the scalar fluctuations Φ, small excitations of the gauge field A appearing

in (2.12) may be considered. They correspond to vector mesons. By imposing the gauge

fixing condition ∂µA
µ = 0, three types of gauge fields may be distinguished [10],

Type I Aµ = 0 , Aρ = 0 , Ai = h±(ρ)eik·xY`,±i , (2.21)

Type II Aµ = ζµ g(ρ)eik·xY` , Aρ = 0 , Ai = 0 , (2.22)

Type III Aµ = 0 , Aρ = y(ρ)eik·xY` , Ai = ỹ(ρ)eik·x∇iY` . (2.23)

1Both fluctuations in (2.16) provide the same equation of motion for Φ.
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Type Solution `

I
h+(ρ) = ρ`+1

2F1

(
−(n+ `+ 3),−n, `+ 2,−ρ2/L2

)
/(ρ2 + L2)n+`+3 ≥ 1

h−(ρ) = ρ`+1
2F1

(
−(n+ `+ 1),−n, `+ 2,−ρ2/L2

)
/(ρ2 + L2)n+`+1 ≥ 1

II g(ρ) = ρ` 2F1

(
−(n+ `+ 1),−n, `+ 2,−ρ2/L2

)
/(ρ2 + L2)n+`+1 ≥ 0

III
y(ρ) = ρ`−1 2F1

(
−(n+ `+ 1),−n, `+ 2,−ρ2/L2

)
/(ρ2 + L2)n+`+1

≥ 1
ỹ(ρ) = ∂ρ(ρ

3y(ρ))/ρ `(`+ 2)

Table 2. The three types of gauge fields. By inserting the ansätze (2.21), (2.22) and (2.23) for the

gauge fields of type I, II and III into the equation of motion (2.24), we find the listed solutions.

Type Mass ∆

I
M+ = 2(L/R2)

√
(n+ `+ 2)(n+ `+ 3) `+ 5

M− = 2(L/R2)
√

(n+ `)(n+ `+ 1) `+ 1

II MII = 2(L/R2)
√

(n+ `+ 1)(n+ `+ 2) `+ 3

III MIII = 2(L/R2)
√

(n+ `+ 1)(n+ `+ 2) `+ 3

Table 3. The mass spectra for the three types of gauge fields (2.21), (2.22) and (2.23). The

solutions of the gauge fields of type I, II and III given in table 2 come with the listed discrete mass

spectra. The discreteness of the spectra is a consequence of the normalizability condition imposed

to the solutions.

Here Y`,±i and Y` are spherical harmonics on S3 and ζµk
µ = 0 guarantees the gauge fixing

∂µA
µ for Type II. By expanding (2.12) to leading order in A we obtain a second order

partial differential equation for A,

∂A(
√
−gFAB)− 4

ρ

R4
(ρ2 + L2)δBi ε

ijkAi∂jAk = 0 , (2.24)

where i, j, k = 5, 6, 7 correspond to the S3 directions of the brane. By introducing the

symbol δBi in (2.24) we emphasize that the corresponding term only vanishes if B 6= 5, 6, 7.

The solutions for the three types of A (2.21)–(2.23) are given in table 2 [10].

The appearence of the parameter n ∈ N0 is a result of the normalizability of the

solutions and leads to the discrete mass spectrum and conformal dimensions ∆ given in

table 3. Just as for the scalar mesons (see section 2.3.1) the mass of the vector mesons

scales with the distance L of the D7-brane from the stack of D3 branes.

3 Fermionic fluctuations in the D3/D7 system

Our main focus are the fermionic fluctuations. These are dual to mesinos, i.e. the fermionic

superpartners of the mesons. The fermionic excitations of D7-branes have been studied

in [12] for the case of massless quarks, i.e. L = 0. In the following we provide a full

derivation for the massive case, i.e. L > 0.

– 8 –
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3.1 Fermionic part of the D7-brane action

The supersymmetric completion of the bosonic D7-brane action in the D3-background is

given by the fermionic action [15]

SfD7 =
TD7

2

∫
d8ξ
√
− det gABΨ̄P−ΓA

(
DA +

1

2× 8× 5!
FNPQRSΓNPQRS (iσ2) ΓA

)
Ψ .

(3.1)

Here, Ψ is a ten-dimensional pair of positive-chirality Majorana-Weyl spinors of type IIB

supergravity written in the doublet spinor notation. The ΓA are the ten-dimensional Γ-

matrices on AdS5 × S5 pulled back to the worldvolume of the probe D7-brane,

ΓA = ΓM∂Ax
M . (3.2)

Moreover, P− is a κ-symmetry projector, and DA is the curved-spacetime gauge covariant

derivative. By considering the map iσ2Ψ = −iΨ with the Pauli matrix σ2 in (3.1) we

may pass from two real spinors to one complex spinor. Thus we end up with an action of

the form

SfD7 =
TD7

2

∫
d8ξ
√
− det gABΨ̄P−ΓA

(
DA −

i

2× 8× 5!
FNPQRSΓNPQRSΓA

)
Ψ . (3.3)

3.2 Decomposition of the Γ matrices and spinors

In order to solve the equation of motion derived from (3.3), it is useful to have an explicit

basis for the Dirac matrices. The ten-dimensional curved spacetime Dirac matrices ΓM are

related to the Dirac matrices on the local Lorentz frame (2.7) via

ΓM = eIMΓI . (3.4)

We consider the following decomposition2 of the flat ten-dimensional Dirac matrices ΓI ,

Γα = σ2 ⊗ 14 ⊗ γα , (3.5)

Γm = σ1 ⊗ γm ⊗ 14 , (3.6)

where in the above α = 0, 1, 2, 3, ρ and m = 5, 6, 7, 8, 9 is taking values on the 3-sphere and

in the directions transverse to the D7-brane (see table 1). We use the shorthand notation

S3 = (5, 6, 7) in the following. The lower-case γ are 4 × 4 matrices satisfying the Clifford

algebras

{γα, γβ} = 2ηαβ , {γm, γn} = 2δmn . (3.7)

So the γα and γm obey a Minkowskian and Euclidean Clifford algebra, respectively. As

usual we define Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (3.8)

2This decomposition is a generalization of the one used in [12] for the special case L = 0.
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(3.5) and (3.6) provide a 32-dimensional representation of the (9+1)-dimensional Minkow-

skian Clifford algebra, i.e.

{Γα,Γβ} = 2ηαβ , {Γm,Γn} = 2δmn , {Γα,Γm} = 0 . (3.9)

We can define “γ5” type matrices for each sub-space as the product of all γ matrices for

the subspace,

ΓAdS = Γ0123ρ = iσ2 ⊗ 14 ⊗ 14 , ΓS = ΓS
389 = σ1 ⊗ 14 ⊗ 14 . (3.10)

The following raising and lowering relations apply,

ΓAdS = −ΓAdS ΓS = ΓS . (3.11)

Moreover, using the above relations the chirality operator Γ11 = ΓAdSΓS can be written as

Γ11 = σ3 ⊗ 14 ⊗ 14 . (3.12)

The ten-dimensional spinor Ψ has positive chirality, Γ11Ψ = Ψ. We choose the following

decomposition

Ψ =↑ ⊗χ⊗ ψ̂ , where ↑=

(
1

0

)
, (3.13)

and the spinors χ and ψ̂ both have four entries. This decomposition matches the one of

the Dirac matrices (3.5), (3.6), i.e. the Pauli matrix part of the Dirac matrices acts on ↑
while the first 4× 4 part acts on χ and the second on ψ̂.

3.3 Dirac equation

The action (3.3) leads to the Dirac equation

/DΨ− i

1920
ΓAFNPQRSΓNPQRSΓAΨ = 0, (3.14)

on the D7-brane, where /D = ΓADA. We now aim at reducing (3.14) to an equation for the

spinor ψ̂ appearing in the decomposition (3.13) of Ψ. For this we make the ansatz

χ = χ(S3) and ψ̂ = ψ̂(xµ, ρ) , (3.15)

i.e. we assume the dependence of (xµ, ρ) and the S3 coordinates to factorize in Ψ. The

covariant derivative DA in the kinetic term of (3.14) corresponds to the extrinsic curvature

of the D7-brane and thus is given by3

DA = ∂A +
1

8
∂Ax

MωIJM [ΓI ,ΓJ ] . (3.16)

Therefore, the kinetic term in (3.14) is given by

/DΨ = gAB∂Ax
MΓMDBΨ = gAB∂Ax

MΓM

(
∂B +

1

8
∂Bx

MωIJM [ΓI ,ΓJ ]

)
Ψ , (3.17)

3We thank L. Martucci and D. Van den Bleeken for clarifying this.
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where we have used (3.2). Inserting (2.10), (2.15) as well as applying {ΓI ,ΓJ} = 2ηIJ
leads to

/DΨ =

(
R

r
Γµ ∂µ +

r

R
Γρ ∂ρ +

r

R ρ
/∇S3 +

1

2R

(
ρ

r
+ 3

r

ρ

)
Γρ
)

Ψ , (3.18)

where the Dirac matrices belong to the Lorentz frame and

/∇S3 = gij
S3 ê

k
i Γk∇S3j , (3.19)

is the covariant derivative on the three sphere corresponding to the directions 5, 6, 7 (see

section 2.2). In the above gS3 is the S3 metric and Γk are the Lorentz frame Dirac matrices

in directions 5, 6, 7.

In (3.18) we see that neither Γ8 nor Γ9 appears in /D. This is a consequence of the

flat embedding of the D7-brane along xµ, ρ and S3 at a constant value w9 = L. In the

more general situation of non-flat embeddings for which the distance of the brane in w9

direction depends on the value of ρ, contributions of Γ9 are to be expected. We leave this

case to future work.

By considering the decompositions (3.5), (3.6) and (3.13) of the Dirac matrices and

the spinor together with (3.15), we find

/DΨ = ↓ ⊗χ⊗ i
(
R

r
γµ ∂µ +

r

R
γρ ∂ρ +

1

2R

(
ρ

r
+ 3

r

ρ

)
γρ
)
ψ̂

+ ↓ ⊗ r

R ρ
/∇S3χ⊗ ψ̂ .

(3.20)

Here, on the r.h.s. of the equation the Feynman slash refers to contractions with the lower

case γ matrices appearing in the decomposition (3.5), (3.6) of ΓI . The γρ is the chiral γ-

matrix in the bulk flat directions that upon acting on the spinor ψ̂ will give two eigenvalues

±1. In a two-component matrix notation, γρ can be expressed as the diagonal matrix with

±1 as its entries γρ =diag(1,−1). We now make the ansatz of χ being a spinor spherical

harmonic, i.e. χ = χ±` , with [19]

/∇S3χ±` = ±i
(
`+

3

2

)
χ±` . (3.21)

This results in

/DΨ =↓ ⊗χ±` ⊗ i
(
R

r
γµ ∂µ +

r

R
γρ ∂ρ +

1

2 R

(
ρ

r
+ 3

r

ρ

)
γρ ± r

R ρ

(
`+

3

2

))
ψ̂ . (3.22)

So by choosing χ to be a spinor spherical harmonic on S3, /D may be formulated as an

operator that only acts on ψ̂(xµ, ρ). An analogous result can be derived for the second

term in (3.14),
i

1920
ΓAFNPQRSΓNPQRSΓAΨ , (3.23)

as we now show. When using the local Lorentz frame for the R-R five-form (2.8), we may

work with the frame Dirac matrices ΓI instead of the curved spacetime ΓM , i.e.

i

1920
ΓAFNPQRSΓNPQRSΓAΨ =

i

1920
ΓAFI1I2I3I4I5ΓI1I2I3I4I5ΓAΨ . (3.24)
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Here FI1I2I3I4I5 are the components of F(5) according to the Lorentz frame,

F(5) =
1

5!
FI1···I5e

I1 ∧ · · · ∧ eI5 . (3.25)

By expressing the Dirac matrices ΓA pulled back to the (7 + 1)-dimensional world-volume

of the D7-brane in terms of the ten-dimensional Lorentz frame Dirac matrices ΓI via (2.7),

(3.2) and (3.4) and applying {ΓI ,ΓJ} = 2ηIJ , we obtain

i

1920
ΓAFI1I2I3I4I5ΓI1I2I3I4I5ΓAΨ = i

ρ

R r
Γ0123ρΨ . (3.26)

Note that in the derivation of (3.26) we have used the positive chirality of Ψ, i.e.

Γ11Ψ = Γ0123ρS389Ψ = Ψ ⇔ Γ0123ρΨ = −ΓS
389Ψ , (3.27)

Inserting the Dirac matrix and spinor decompositions (3.5), (3.6) and (3.13) we find by

considering (3.10),

i

1920
ΓAFI1I2I3I4I5ΓI1I2I3I4I5ΓAΨ =↓ ⊗χ⊗

(
−i ρ

R r

)
ψ̂ . (3.28)

So just as for the kinetic term /DΨ, we can express the second term of the Dirac equa-

tion (3.14) as an operator solely acting on ψ̂. Combining (3.22) and (3.28) we may write

/DΨ− i

1920
ΓAFNPQRSΓNPQRSΓAΨ

= ↓ ⊗χ±` ⊗ i
(
R

r
γµ ∂µ +

r

R
γρ ∂ρ +

1

2R

(
ρ

r
+ 3

r

ρ

)
γρ +

ρ

R r
± r

R ρ

(
`+

3

2

))
ψ̂ = 0 .

(3.29)

So we may formulate the Dirac equation (3.14) on the D7-brane as an equation for ψ̂,

given by(
R

r
γµ ∂µ +

r

R
γρ ∂ρ +

1

2R

(
ρ

r
+ 3

r

ρ

)
γρ +

ρ

R r
± r

R ρ

(
`+

3

2

))
ψ̂(xµ, ρ) = 0 , (3.30)

The ± in front of the last term gives rise to two different sets of modes. We will refer to

the operators dual to these modes as G (for the +) and F (for the −).

A good consistency check of our results is to take the conformal limit L → 0. Upon

taking this limit, the world-volume geometry of the D7 brane returns to being AdS5× S3

and we should reproduce the results of previous works [12, 20].

When L = 0, r = ρ and the Dirac equations for the G and F modes reduce to Dirac

equations on AdS5,(
/DAdS + `+

5

2

)
ψ̂`G = 0 ,

(
/DAdS −

(
`+

1

2

))
ψ̂`F = 0 , (3.31)

where

/DAdS =
R

ρ
γµ ∂µ +

ρ

R
γρ ∂ρ +

2

R
γρ, (3.32)
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is the covariant derivative on AdS5. The AdS bulk masses mG and mF of ψ̂`G,F satisfy

|mG | = `+
5

2
, |mF | = `+

1

2
, (3.33)

which is in agreement with [12, 20].

Note that the Ramond-Ramond/spinor coupling (3.23) induced the term ρ/r in (3.30).

In the conformal limit, this corresponds to a shift in the bulk fermion mass by one unit,

an observation first made in the dilatino spectrum of type IIB supergravity compactified

on a five-sphere [21].

3.4 Second-order equations of motion

In order to proceed and determine the mass spectrum of the mesinos for the G and F modes

we now construct a second order differential equation for ψ̂`F ,G . We begin by considering

the plane-wave ansatz

ψ̂`F ,G(xµ, ρ) = eikµx
µ
(
ψ`F ,G,+(ρ)α+ + ψ`F ,G,−(ρ)α−

)
, (3.34)

where the α± are eigenstates of the γρ satisfying γρα± = ±α±, and these eigenspinors are

related via

α− =
i kµ γ

µ

M
α+ . (3.35)

Note that the relation (3.35) was already used in [22] for spinors in AdSd+1. The normal-

ization is chosen such that α†−α− = 1 — in fact though our choice only works in the rest

frame of the mesino where kµ = (M, 0, 0, 0) (here γ0† = −γ0), but this choice of frame is

sufficient to determine the spectrum. We will first restrict to the case of the G-modes here

as an illustrative example. Inserting eq. (3.34) and (3.35) in eq. (3.30) leads to(
r

R
∂ρψ

`
G,+(ρ) + (A+B)ψ`G,+(ρ) +

RM

r
ψ`G,−(ρ)

)
α+ = 0,(

− r
R
∂ρψ

`
G,−(ρ)− (A−B)ψ`G,−(ρ) +

RM

r
ψ`G,+(ρ)

)
α− = 0,

(3.36)

where the factors A, and B are given by

A =
1

2R

(
ρ

r
+ 3

r

ρ

)
, B =

ρ

Rr
+

r

Rρ

(
`+

3

2

)
. (3.37)

Since the spinors α± are linearly independent, we conclude that

r

R
∂ρψ

`
G,+(ρ) + (A+B)ψ`G,+(ρ) +

RM

r
ψ`G,−(ρ) = 0 ,

− r
R
∂ρψ

`
G,−(ρ)− (A−B)ψ`G,−(ρ) +

RM

r
ψ`G,+(ρ) = 0 .

(3.38)

From this set of coupled differential equations, we rearrange the second to obtain

ψ`G,+(ρ) =
r

RM

( r
R
∂ρψ

`
G,−(ρ) + (A−B)ψ`G,−(ρ)

)
. (3.39)
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If we now insert (3.39) in the first equation of the coupled system eq. (3.38) we obtain the

desired second order equation(
r2

R2
∂2ρ +

3

R2

(
ρ+

r2

ρ

)
∂ρ +

M2R2

r2
−
r2
(
`2 + 2`

)
R2ρ2

− 4`+ 2

R2
− 3ρ2

4R2r2

)
ψ`G,−(ρ) = 0.

(3.40)

Thus we need to solve (3.40) for ψ`G,−(ρ). Subsequently, we may insert the solution

into (3.39) to obtain ψ`G,+(ρ).

In a complementary approach, we are able to obtain the equivalent second-order equa-

tions of motion for the ψ`G,+. We proceed as follows: from (3.38) we solve the first one to

obtain

ψ`G,−(ρ) =
r

RM

(
− r
R
∂ρψ

`
G,+(ρ)− (A+B)ψ`G,+(ρ)

)
, (3.41)

and as before we insert this solution in the second equation from the set of the first-order

coupled ones, eq. (3.38) and obtain(
r2

R2
∂2ρ +

3

R2

(
ρ+

r2

ρ

)
∂ρ +

M2R2

r2
−
r2
(
`2 + 4`+ 3

)
R2ρ2

+
6

R2
− 3ρ2

4R2r2

)
ψ`G,+(ρ) = 0.

(3.42)

The second-order differential equations can be written in a more compact and convenient

form in the following way,[
r2

R2
∂2ρ +

1

R2

(
3ρ+ 3

r2

ρ

)
∂ρ +

M2R2

r2
+

1

R2

(
4 + 2`− r2

ρ2

(
`+

3

2

))
γρ

+
1

R2

(
−3ρ2

4r2
+ 2− 2`

)
− r2

R2ρ2

(
`2 + 3

(
`+

1

2

))]
ψ`G(ρ) = 0 ,

(3.43)

where k2 = −M2. Note this form can also be obtained directly from the first-order

formulation of the fluctuations equations, see (3.30), by acting upon that equation with(
rγρ∂ρ + 1

rγ
ν∂ν
)
, i.e. with the first two terms of (3.20). In this approach, we need to ma-

nipulate (3.30) slightly to simplify some terms. As an example, we consider the following

expression that is useful for the computations below,

R2 ρ

r2
γµ∂µψ̂

`
F ,G = −R2

(
ργρ∂ρ +

1

2

(
ρ2

r2
+ 3

)
γρ +

ρ2

r2
±
(
`+

3

2

))
ψ̂`F ,G . (3.44)

Using this and γµγν∂µ∂ν = ηµν∂µ∂ν we may avoid any explicit appearance of γµ in the

second order differential equation for ψ̂`F ,G . For the G modes, those derived from the

positive eigenvalue on the sphere, after inserting the plane wave ansatz (3.34), this again

leads to (3.43).

In order to obtain the equivalent expressions for the F -modes we need to consider a

sign change in the B-factor described in (3.37); namely we have

B =
ρ

Rr
− r

Rρ

(
`+

3

2

)
. (3.45)
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The second-order equations of motion for the F -modes we obtain read[
r2

R2
∂2ρ +

1

R2

(
3ρ+ 3

r2

ρ

)
∂ρ +

M2R2

r2
+

1

R2

(
−2− 2`+

r2

ρ2

(
`+

3

2

))
γρ

+
1

R2

(
−3ρ2

4r2
+ 8 + 2`

)
− r2

R2ρ2

(
`2 + 3

(
`+

1

2

))]
ψ`F (ρ) = 0 .

(3.46)

3.5 Large ρ limit and holographic map for the G modes

Let us consider solving the coupled linear equations (3.38) near the conformal boundary,

ρ → ∞. In this limit the mixing terms involving the mesino mass vanish. The equations

become (
ρ ∂ρ +

(
`+

9

2

))
ψ`G,+(ρ) = 0,(

−ρ ∂ρ +

(
`+

1

2

))
ψ`G,−(ρ) = 0,

(3.47)

and the solutions are given by

ψ`G,+(ρ) ∼ c1 ρ−(`+9/2), ψ`G,−(ρ) ∼ c2 ρ`+1/2, (3.48)

with c1,2 the constants of integration.

On the other hand, we can take the large-ρ limit at the level of the second-order

equations of motion, (3.43). We can expand in the UV (ρ→∞) and obtain(
∂2ρ +

6

ρ
∂ρ +

9/4− `2 − 4`

ρ2

)
ψG,+(ρ) = 0,(

∂2ρ +
6

ρ
∂ρ −

11/4− `2 − 6`

ρ2

)
ψG,−(ρ) = 0,

(3.49)

where the ± refers to the two different eigenvalues of the γρ upon acting on the spinor.

The solutions are given by, respectively,

ψG,+(ρ) ∼ c3 ρ−1/2+` + c1 ρ
−9/2−`,

ψG,−(ρ) ∼ c2 ρ1/2+` + c4 ρ
−11/2−`,

(3.50)

with c1,2,3,4 being constants of integration. Note we have identified c1,2 between the solu-

tions in (3.48) and (3.50). Why though are there extra terms in (3.50) relative to (3.48)?

The answer is that the two second order equations duplicate the data of the first order

equations [16] - the solutions of one are tied to a particular solution of the other at leading

order in M and beyond. To see this we must return to the first order equations to link the

solutions. In particular we can substitute (3.50) into (3.39) and (3.41). For example if we

substitute the ψG,− solution from (3.50) into (3.39) the c2 term vanishes but the remaining

term must reproduce the leading term in ψG,+ in (3.48) fixing c3 in terms of c2. In this

way we can fix the solutions of the second order equations to take the asymptotic form

ψG,+(ρ) ∼ − c2R
2M

2(2 + `)
ρ−1/2+` + c1 ρ

−9/2−`,

ψG,−(ρ) ∼ c2 ρ1/2+` −
R2Mc1
(6 + 2`)

ρ−11/2−`,

(3.51)
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which have the same number of degrees of freedom as the solutions of the linearized equa-

tion. Note in practice now we can solve just one of the second order equations and extract

c1 and c2 from the asymptotics.

Let us now consider the holographic dictionary for these modes. We associate the

integration constants c1,2 with the operator (O) and source (J) of a dual field theory

operator of dimension ∆G = ` + 9
2 . Note the dimensions of the operator and source add

to d = 4, as expected.

The dual field theory operator naively corresponds to a fermionic bound state of two

fermionic quarks and a gaugino of the N = 4 theory (ψ†qλψq), dressed with adjoint scalars

at non-zero `. The exact form of the fermionic operators was found in [12] to be

G` ∼ ψ̄iσ
B
ijλCX

`ψj + q̄mXB
V λCX

`qm , where B,C = 1, 2 . (3.52)

Here ψi = (ψ, ψ̃†)T is the fundamental spinor and λαC is the adjoint hypermultiplet. X`

is a symmetric and traceless operator insertion of ` adjoint scalars, X{i1 · · ·Xi`}, where

i = 4, 5, 6, 7. XB
V is a vector and σB = (σ1, σ2) a doublet of Pauli matrices.

3.6 Large ρ limit and holographic map for the F modes

The analysis for the F modes follows that for the G modes. We now solve the first order

equations (3.38) with B in (3.45) and the second order equation (3.46) at large ρ and

identify the integration constants. The asymptotic solution takes the form

ψF ,+(ρ) ∼ c2 ρ−3/2+` +
c1MR2

2(`+ 1)
ρ−7/2−`,

ψF ,−(ρ) ∼ c2MR2

2`
ρ−5/2+` + c1 ρ

−5/2−`.

(3.53)

Here, the dual field theory mesinos are naively bound states of a scalar and a gaugino.

We associate the integration constants c1,2 with the operator (O) and source (J) of a dual

field theory operator of dimension ∆F = ` + 5
2 . Note the dimensions of the operator and

source add to d = 4 as expected. The exact form of the operator given by c1 in (3.53) was

obtained again in [12] and is given by

F ` ∼ q̄X`ψ̃†α + ψ̃αX
`q. (3.54)

3.7 Supersymmetric mode solutions & spectra

In order to determine the mesino mass spectra associated to the G and F modes, we now

solve the second-order differential equations for ψ̂`F ,G which we constructed above, (3.43)

and (3.46).

In the supersymmetric theory the source should be set strictly to zero, whilst O as a

linearized perturbation is a free parameter corresponding to the normalization. For this
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case there is a unique solution to (3.43) that does not have any complex infinities [12],

ψ`G(ρ) =
(
−L2

)n [ ρ`+1

(ρ2+L2)n+`+
11
4

2F1

(
−n,−(n+`+2), `+3,− ρ

2

L2

)
α+

− R2M(`+2)

2(`+n+2)(`+n+3)

ρ`

(ρ2+L2)n+`+
11
4

2F1

(
−n,−(n+`+3), `+2,− ρ

2

L2

)
α−

]
(3.55)

here we have fixed the coefficients of each term so that we reproduce precisely the large-ρ

behaviour in (3.51) with the source c2 zero. This solution corresponds to the mass spectrum

MG = 2
L

R2

√
(n+ `+ 2)(n+ `+ 3), n ≥ 0 , ` ≥ 0 . (3.56)

Next we construct the solutions for the F modes. These correspond to the minus sign

in (3.21). The solutions are obtained from (3.46). Again setting the source to zero and

keeping only those solutions that do not have any complex singularities gives [12]

ψ`F (ρ) = (−L2)n

[
R2M

2

ρ`

(ρ2 + L2)n+`+
7
4

2F1

(
−n,−(n+ `+ 1), `+ 2,− ρ

2

L2

)
α+

+
(n+ `+ 1)

(`+ 1)

ρ`+1

(ρ2 + L2)n+`+
7
4

2F1

(
−n,−(n+ `), `+ 3,− ρ

2

L2

)
α−

]
.

(3.57)

The near-boundary expansion of these solutions is given by (3.53) with the source c2 zero

and the corresponding mass spectrum is

MF = 2
L

R2

√
(n+ `+ 1)(n+ `+ 2), n ≥ 0 , ` ≥ 0 . (3.58)

3.8 Open string fluctuation-operator mapping

We have computed the mass spectra of the spin-1/2 modes arising in the massive canonical

D3/D7 system. As was first shown in [10], open string excitations of the probe D7-brane

fit into massive N = 2 supermultiplets. While the counting of the states in the super

(conformal)multiplets has been performed in the past, in [23] and [10], it is useful test of

our results to check the counting.

For L→ 0, the fundamental hypermultiplet are massless and the theory is conformal.

The modes are in representations of the SU(2)R × SU(2)L × U(1)R labelled by (j1, j2)s,

where j1,2 is an index denoting the spin under the SU(2)R,L respectively, and s is the

eigenvalue associated with the group U(1)R. The dimension of chiral primaries is given by

the formula ∆ = 2j1+s/2. Two scalar fields are associated with the transverse fluctuations

of the D7-brane each of which, after a Kaluza-Klein reduction on the three-sphere, will lead

to tower of real scalars, φ`, transforming in the
(
`
2 ,

`
2

)
2
, with ` ∈ N0. The vector field admits

a similar expansion, and from the bulk components on the D7-brane we obtain a tower of

AdS vectors, A`, transforming in the
(
`
2 ,

`
2

)
0
, with ` ∈ N0. Finally, from the components

of the vector field on the internal manifold we obtain two different Kaluza-Klein towers of
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Modes Fluctuation Representations Shifted `

2 real scalars transverse oscillations
(
`
2 ,

`
2

) (
`
2 ,

`
2

)
1 real scalar Type I+ fluctuations

(
`−1
2 , `+1

2

) (
`−2
2 , `2

)
1 real scalar Type I− fluctuations

(
`+1
2 , `−12

) (
`+2
2 , `2

)
1 vector Type II fluctuations

(
`
2 ,

`
2

) (
`
2 ,

`
2

)
1 real scalar Type III fluctuations

(
`
2 ,

`
2

) (
`
2 ,

`
2

)
1 Dirac fermion Type F fluctuations

(
`+1
2 , `2

) (
`+1
2 , `2

)
1 Dirac fermion Type G fluctuations

(
`
2 ,

`+1
2

) (
`−1
2 , `2

)
Table 4. The origin, degrees of freedom and quantum numbers of the fermionic and bosonic states

of the N = 2 multiplets of mesinos.

real scalar fields, that we call A`±, transforming in the
(
`∓1
2 , `±12

)
0
, with ` ∈ N. There are

also two types of fermions, which upon reduction on the three sphere will give two towers

of states transforming in the
(
`
2 ,

`+1
2

)
1

-the F fermions- and
(
`+1
2 , `2

)
1

-the G fermions.

Introducing a mass gap in the probe-brane setup (L 6= 0) breaks the U(1)R acting on

the two-dimensional plane that is transverse to both the background and the probe branes

and the R-symmetry group is just SU(2)R.

The spectra of the modes are degenerate, namely states with the same n + ` have

the same mass. It was observed that such is the case for the D3-brane background in

the analysis performed in [24, 25]. We proceed to counting the number of states in a

given multiplet. Since the theory has a global N = 2 supersymmetry the modes should

fill massive supermultiplets, and they have to be in the same representation of the copy

of SU(2) that is inert under the supercharges. To arrange this we have to appropriately

shift the angular quantum number of the sphere, such that all states fall in the same

representation of the SU(2)L. This is shown in table 4.

Moreover, we have to account for the degeneracy under the SU(2)R: we count the

degrees of freedom of a given state and then multiply by (2j1 + 1). Then, the number of

bosonic components in a given multiplet for a fixed value of ` is equal to

1

(
2

(
`

2
+ 1

)
+ 1

)
+ 6

(
2 · `

2
+ 1

)
+ 1

(
2

(
`

2
− 1

)
+ 1

)
(3.59)

and the number of states for the spin-1/2 components in the same multiplet is given by

4

(
2
`+ 1

2
+ 1

)
+ 4

(
2
`− 1

2
+ 1

)
(3.60)

For the ` = 0 multiplet, we obtain eight bosonic degrees of freedom and an equal number

of fermionic states.

4 Numerically solving for the SUSY spectrum

Above we have presented closed form solutions to the equations of motion for the fermionic

fluctuations (3.43), (3.46). Here we present a numerical approach to solving these equations
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ρ
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-0.02

0.00
ρ-1/2 ψ,-

Figure 1. Shooting from the IR to the UV for different values of M2 in (3.40) for the G,− type

mesinos, using the boundary conditions in (4.1). The left plot shows the results for ρ−1/2ψG,− for

the ground state (n = ` = 0) starting from M2 = 0 and proceeding with steps of one to M2 = 24

and the right plot corresponds to the first excited state (n = 1, ` = 0) starting from M2 = 25 and

proceeding with steps of one to M2 = 48. The solutions relevant to the supersymmetric theory

asymptote to zero where the source J vanishes.

which we will use in section 5 when we need to find the spectrum in cases where the source

for the fermionic operator does not vanish.

To demonstrate the method, we consider the G modes and we will just concentrate on

the n = 0, ` = 0 and n = 1, ` = 0 cases. We need to solve (3.40) (or equally we could

solve (3.42) which contains the same information as we have discussed). We have seen the

solution of the differential equations near the boundary, however shooting from the IR to

the UV looking for normalizability of the solutions is a much less numerically intensive

procedure.

We expand the analytic solutions to obtain their IR scaling behaviour and find that

ψG,+(ρ) ∼ ρ`+1, ∂ρψG,+(ρ) ∼ (`+ 1)ρ`,

ψG,−(ρ) ∼ ρ`, ∂ρψG,−(ρ) ∼ `ρ`−1.
(4.1)

Thus for ψG,− we may use the shooting technique with (3.40) and for the ` = 0 state the

boundary conditions ψG,−(0) = 1, ψ
′
G,−(0) = 0 to seek solutions that asymptote to the

source J = 0 in the UV. We recall that the solution takes the asymptotic form

ψG,+(ρ) ∼ − JR2M

2(2 + `)
ρ−1/2+` +O ρ−9/2−`,

ψG,−(ρ) ∼ J ρ1/2+` − OR
2M

(6 + 2`)
ρ−11/2−`,

(4.2)

where O is the operator value (we have absorbed factors of R into M for the numerical

analysis). We find it most helpful to plot ρ−1/2 ψG,−(ρ) since this asymptotes to J . The

procedure is simply to shoot out tuning M2 so that J = 0 in the UV. In this way, it

is straightforward to numerically reproduce the analytic solutions in section 3.7 — we

have been able to straightforwardly reproduce the value of M2 of the analytic spectrum

numerically to three decimal places. In figure 1 we show this process in action, plotting

the solutions for different M2.

– 19 –



J
H
E
P
1
1
(
2
0
1
9
)
1
6
0

2 4 6 8 10
ρ

-1.0

-0.5

0.0

0.5

1.0
ρ3/2 ψℱ ,+

4 6 8 10
ρ

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15
ρ3/2 ψℱ ,+

Figure 2. Shooting from the IR to the UV for different values of M2 in (3.46) for the F ,+ type

mesinos, using the boundary conditions in (4.3). The left plot shows the results for ρ3/2ψF,+ for

the ground state (n = ` = 0) starting from M2 = 0 and proceeding with steps of one to M2 = 8

and the right plot corresponds to the first excited state (n = 1, ` = 0) starting from M2 = 9 and

proceeding with steps of one to M2 = 24. The solutions relevant to the supersymmetric theory

asymptote to zero where the source J vanishes.

We repeat the analysis for the F -modes by solving (3.46). This time we choose to study

the differential equation associated with the positive eigenvalue of the chiral γ-matrix. The

IR scaling behaviour here is

ψF ,+(ρ) ∼ ρ`, ∂ρψF ,−(ρ) ∼ `ρ`−1,
ψF ,−(ρ) ∼ ρ`+1, ∂ρψF ,+(ρ) ∼ (`+ 1)ρ`,

(4.3)

and the UV asymptotics are

ψF ,+(ρ) ∼ J ρ−3/2+` +
OMR2

2(`+ 1)
ρ−7/2−`,

ψF ,−(ρ) ∼ JMR2

2`
ρ−5/2+` +O ρ−5/2−`.

(4.4)

We solve for ψF ,+(ρ) shooting out from ψF ,+(0) = 1, ψ′F ,+(0) = 0 and seek solutions where

J = 0. It is helpful to plot ρ3/2 ψF ,+(ρ) which asymptotes to J . Again the supersymmetric

states are easily recovered — we show the process in figure 2.

5 Double-trace boundary deformations in the D3/D7 system

So far we have explored the fermionic bound states of the supersymmetric N = 2 gauge

theory dual to the D3/probe D7 system. Our motivation is to find holographic models

that give rise to anomalously light fermionic bound states, as required in composite Higgs

models. What we have seen though is that the spectrum of the supersymmetric brane

models is characterized by the scale mq/
√
λYM . As the ’t Hooft coupling of the gauge

theory grows large, this scale is small relative to the bare quark mass, but it nevertheless

sets an intrinsic scale for the strong dynamics. All states lie near that scale, up to order one

numerical numbers. This of course has been known for many years, since supersymmetry

ties the fermionic bound states to the mesonic bound state masses computed in [10].
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How can we then obtain a baryonic bound state (denoted generically by ΨB associated

with an operator OB), to be light relative to that scale? We wish to explore an answer to

that question which consists of including a higher dimension operator in the field theory.

These higher dimension operators should be associated with new physics at a UV scale

ΛUV. The precise form of the operator will be chosen so that it corresponds to a shift in

the bound state mass at low energies. Generically the approach is this: we add a term to

the field-theory Lagrangian of the form

∆LUV =
g2

ΛpUV

ŌBOB, (5.1)

where the power, p of the cut off ΛUV determined dependent on the UV dimension of the

operator. As a very simple model, we assume that this operator leads to an RG flow such

that in the IR, the baryon ΨB receives a mass shift of the form

∆LIR ∝
g2mp+1

q

ΛpUV

Ψ̄BΨB . (5.2)

Here we have assumed that the dynamics that binds the fermions occurs around the quark

mass scale where the conformal symmetry is broken — hence the mq term which is present

to make the operator of dimension four in the IR. Naively if this term plays a passive role

only, this could be used for a negative shift in the baryon mass that could be tuned to

reduce the baryonic mass scale. In fact we will see that such operators show a sort of

critical behaviour at large g which is more than just this shift.

To include such an operator, we use Witten’s multi-trace prescription [17]. This es-

sentially says that, if the operator (5.1) acquires a vev, then a source is generated with the

value

J =
g2

ΛpUV

〈OB〉 . (5.3)

This relation is imposed on the holographic field corresponding to the operator at the UV

cut-off ρ = ΛUV — there is thus a large ρ boundary of the dual space. In practice one just

finds solutions with different source-operator combinations and computes g2 at the scale

ΛUV. We have done most of the work for this process in previous sections.

5.1 An explicit example — the ` = 0 G mode

Let us now study an explicit example. We are interested in driving the mass of one of the

mesinos of the N = 2 gauge theory described by the D3/probe D7 system much lighter

than the characteristic scale mq/
√
λYM . Let us pick on the lightest ` = 0, n = 0 G-type

mesino discussed above. In particular the masses of this state are found by solving (3.43),[
r2

R2
∂2ρ +

1

R2

(
3ρ+ 3

r2

ρ

)
∂ρ +

M2R2

r2
+

1

R2

(
4 + 2`− r2

ρ2

(
`+

3

2

))
γρ

+
1

R2

(
−3ρ2

4r2
+ 2− 2`

)
− r2

R2ρ2

(
`2 + 3

(
`+

1

2

))]
ψ0
G(ρ) = 0 ,

(5.4)
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for the supergravity modes corresponding to the G-type mesinos. We will solve for the

negative eigenvalue of γρ. The UV and IR behaviour of the solutions have been determined

in (4.1), (4.2),

ψG,−(ρ)IR ∼ 1, ∂ρψG,−(ρ)IR ∼ 0,

ψG,−(ρ)UV ∼ J ρ1/2 +
OR2M

6
ρ−11/2.

(5.5)

In section 4 we gave a full numerical prescription to find these solutions. In figure 1 we

display the full set of regular solutions for ψG — each line corresponds to a particular

mesino mass M and predicts an associated value of the source J extracted from the UV

asymptotics. In the supersymmetric model we rejected any solutions for which J 6= 0 but

now we will consider the full set.

Remember that in the dual field theory we are looking at states that are associated with

the UV operator in (3.52) — which includes a three fermion bound state. Here consider

adding, at the scale ΛUV, the field-theory Lagrangian term

∆LUV =
g2

Λ5
UV

Ḡ0G0 . (5.6)

The IR mesino ΨM receives a mass shift of the form

∆LIR ∝
g2m6

q

Λ5
UV

Ψ̄MΨM . (5.7)

Witten’s multi-trace prescription [17] tells us to require of our regular solutions in figure 1

J =
g2

Λ5
UV

〈G0〉 . (5.8)

We have already numerically computed the solutions to the fluctuation equations for dif-

ferent values of the mass by solving (3.43) for the mode ψ0
G−, using the shooting method.

We obtain the supersymmetric spectrum from these numerical flows by considering the

solutions that asymptote to zero for a vanishing source, J = 0, and disregarding all other

numerical flows. Now, we allow for all the different numerical values of M2 and consider

the corresponding numerical solutions we obtained by performing the method described

above. For each of those cases we then extract O from the UV asymptotics in (5.5). Here

we determine J and O at a value of ρ that corresponds to the UV cut-off ΛUV (numerically

here we pick ΛUV/L = 10 as an example).

Now we have a series of solutions with M,J and O and we may compute the higher

dimension operator’s coupling g from (5.8). The result is shown in figure 3 — it tracks the

mass of the mesino against the strength of the coupling g.

The red dots show the lightest state at each value of g2. As g2 increases from zero,

initially the fermionic bound state mass is expected to fall linearly — the higher dimension

operator is a weak perturbation and the naive analysis applies simply adding a small neg-

ative shift to the mesino mass. In fact it is numerically difficult to extract solutions in this
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Figure 3. D3/D7-brane system: the mesino mass squared M2 as function of the coupling strength

g2 in units of L/R2(dots are data points whilst the line is to guide the eye) in the presence of the

double-trace deformation for the ` = 0 and n = 0, 1 radially excited modes. The G fermionic modes

are shown on the left and the F modes on the right. The green points show the first, radially

excited state getting lighter as the coupling is increased, and the red ones show the ground state of

the modes.

regime because the mesino masses must be very finely tuned close to the supersymmetric

value and g2 extracted from the noisy UV asymptotics. The lowest g2 points we extract are

consistent with this expectation though. Above g2 = 10 there is a new behaviour though

— the mesino mass falls sharply over a relatively small range of g2. This is suggestive of

the critical behaviour in a Nambu-Jona Lasinio type model where above a critical value

the higher dimension operator is having a major role in the dynamics. Rather than then

driving the mesino mass squared to zero and negative values though, above g2 ' 15 the

drop in the mesino mass plateaus before reaching M2 = 0 only at infinite coupling. Note

that taking the dimensionless g2 large should be an acceptable theory provided the mesino

masses do not rise above the scale ΛUV which here they won’t because the masses are

suppressed by the large ’t Hooft coupling. We believe this region of behaviour is governed

by the fact that fermionic modes cannot condense and so the mass cannot be driven to

become tachyonic. Mathematically, this behaviour follows from the occurrence of M in the

UV solutions for the sub-leading term of the solution — at M = 0 if the sub-leading term

is non-zero, then the operator vev is pushed to infinity and hence also g2 goes to infinity.

Interestingly, adding the term with a negative value of g2 does not greatly increase

the mass of the mesino bound state as one would naively expect — possibly the N = 4

dynamics is already so strong that adding additional strong interactions do not greatly

change the dynamics. Such theories have unbounded potentials at the UV cut off in any

case. Such a negative g2 can be viewed as a repulsion amongst the fermions; this can also

be seen by considering the operator as representing the Feynman diagram of two fermions

scattering by the exchange of a massive gauge boson where repulsion is just a change in

the signs.

The behaviour of the green dots that display the first radially excited state of the G0

modes is also interesting. These states too fall in mass as g2 approaches the critical region,

but they saturate at the value of the ground state at g2 = 0, falling no lower. The reason

is that for each choice of M2, fixing the IR boundary conditions fixes the flow — if it flows
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Figure 4. D3/D7-brane system: the mesino mass squared M2 as function of the coupling strength

g2 in units of L/R2(dots are data points whilst the line is to guide the eye) in the presence of the

double-trace deformation for the ` = 0 and n = 0, 1 radially excited modes. Here we analyze only

the G fermionic modes. On the left plot we have chosen the value for the UV cutoff to be 20 and

on the right we choose the value 50.

to a UV boundary condition corresponding to g2 = 0, then that choice of M2 can never

occur for any other value of g2. The expectation therefore is that in this method, only a

single baryonic bound state will be driven to become light, not the full tower of states.

A similar story can be told for the F modes made of a gaugino and a squark — the

operator in (3.54) - and the mass spectrum is also shown in figure 3 as a function of the

coupling of the higher dimension operator g2/ΛŌO. The same behaviours are observed,

namely the lightest state can be driven to have a light mass at intermediate g2 and to zero

as g2 →∞. The n = 1, ` = 0 state falls in mass as the coupling is approaching its critical

value, but they saturate at the value of the ground state and never fall lower than that.

5.2 Changing the value of the UV cutoff

In the previous section we performed the numerical analysis for the value ΛUV/L = 10. In

this section we are interested in the effects that a shift in this cutoff has. We expect the

same qualitative behaviour, and indeed this is what we find, see figure 4. The most notable

effect is that the value of g2 where the two branches of the n = 0 and n = 1 states nearly

meet is raised. We have also estimated the gap in M2 at the point of closest approach

and obtain 0.015, 0.0005, and 0.00009 for the three cases ΛUV/L = 10, 20, 50 respectively

suggesting they close together as ΛUV/L rises.

6 Fermionic fluctuations and higher dimension operators in other probe

brane systems

The analysis of the fermionic fluctuation in the D3/probe D7 system above can be extended

to a number of other supersymmetric probe brane systems. Here we will restrain ourselves

to the D3-background of Type IIB, and we will work through these briefly presenting the

key equations for the fermionic fluctuations in each case and looking at their response to

a higher dimension operator that reduces the mesino masses. The story is very similiar to

the D3/D7 system already discussed, with no alteration in the main considerations.
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We will probe the background generated by a stack of D3-branes using D5 and D3

branes, thus completing all the cases that can be studied analytically. These systems have,

as the canonical D3/D7, eight preserved supercharges. The dual gauge theory in these

cases is 4-dimensional, but the fundamental hypermultiplet has been introduced on a 3-

dimensional and a 2-dimensional surface respectively for these two cases. We show the

agreement with the bosonic sectors of these systems as they were computed in [24, 25].

6.1 Fermionic fluctuations in the D3/D5 system

The difference from the D3/D7 system is that the D5-probe wraps an asymptotically AdS4×
S2 ⊂ AdS5× S5. The probe now extends along the x0, x1, x2 and x4 directions in the bulk

and the Dirac operator on the world-volume of the probe D5 acting on the spinor is given by

/DΨ =

(
R

r
Γµ ∂µ +

r

R
Γρ ∂ρ +

r

Rρ
/∇S2 +

1

2R

(
ρ

r
+ 2

r

ρ

)
Γρ
)

Ψ , (6.1)

where, of course, now for the spinor eigenvalues on the sphere we have to use the analogue

of (3.21) for a two-dimensional sphere, which reads /∇S2χ±` = ±i (`+ 1)χ±` .

Here we follow the same procedure that we thoroughly described in the D3/D7-setup.

A minimal way to show how this works in this case is to quote the values of the A and B

factors that were introduced in eq. (3.37). They read

A =
1

2R

(
ρ

r
+ 2

r

ρ

)
, B =

ρ

Rr
± r

Rρ
(`+ 1) . (6.2)

We are again led to a system of two first-order coupled differential equations which we

showed how to decouple and solve. Let us start by considering the positive sign in eq. (6.2).

The corresponding second order differential equation is equal to[
r2

R2
∂2ρ +

1

R2

(
3ρ+ 2

r2

ρ

)
∂ρ +

M2R2

r2
+

1

R2

(
3 + 2`− r2

ρ2
(`+ 1)

)
γρ

+
1

R2

(
−3ρ2

4r2
+

3

2
− 2`

)
− r2

R2ρ2

(
`2 + 2

(
`+

1

2

))]
ψ`G(ρ) = 0 .

(6.3)

We aim at studying the behaviour of the solutions to the above differential equations in

the large-ρ expansion. We proceed in a similar way as in the case of the D3/probe D7 and

we obtain

ψG,+(ρ) ∼ c2MR2

2
ρ−1/2+` + c1 ρ

−7/2−`,

ψG,−(ρ) ∼ c2 ρ1/2+` +
3c1MR2

2
ρ−9/2−`.

(6.4)

In order to compute the spectrum of the supersymmetric theory we set the source the

source to zero, whilst O as a linearized perturbation is a free parameter corresponding to

the normalization. For this case there is a unique solution that has no complex infinities.
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It is given by

ψ`G(ρ) =
ρ`+1

(ρ2 + L2)n+`+
9
4

2F1

(
−n,−

(
n+ `+

3

2

)
, `+

5

2
,− ρ

2

L2

)
α+

+ d`n
ρ`

(ρ2 + L2)n+`+
9
4

2F1

(
−n,−

(
n+ `+

5

2

)
, `+

3

2
,− ρ

2

L2

)
α−,

(6.5)

where, as previously, the spinors α± satisfy

γρα± = ±α±, (6.6)

As we have seen in the D3/probe-D7 analysis in section 3.7 there is a relative ` and n

dependent coefficient between the two hypergeometric solutions, d`n, which we can eval-

uate by taking the near-boundary expansion of the exact solution and matching it to the

solutions of the asymptotic equations of motion. As we have already given an example for

the computation and this coefficient is not relevant for our forthcoming analysis we will

not repeat the computation here.

The corresponding mass spectrum is given by

MG = 2
L

R2

√(
n+ `+

3

2

)(
n+ `+

5

2

)
, n ≥ 0 , ` ≥ 0 . (6.7)

We see from the above that the conformal dimension of the dual operator is equal to

∆G = `+ 7/2. This is again consistent with a ψ†qλψq operator since ψq has dimension 1 (it

is three-dimensional) and λ has dimension 3/2.

In analogy to the G modes, we may construct the solution for the F modes, which

correspond to the minus sign in eq. (6.2). After decoupling the original set of first-order

differential equations, we obtain the following second order one,[
r2

R2
∂2ρ +

1

R2

(
3ρ+ 2

r2

ρ

)
∂ρ +

M2R2

r2
+

1

R2

(
−1− 2`− r2

ρ2
(`+ 1)

)
γρ

+
1

R2

(
−3ρ2

4r2
+

11

2
+ 2`

)
− r2

R2ρ2

(
`2 + 2

(
`+

1

2

))]
ψ`F (ρ) = 0 .

(6.8)

We proceed by examining the large-ρ limit of the above equations and their asymptotic

solutions. They are

ψF ,+(ρ) ∼ c2 ρ−3/2+` +
3c1M

2
ρ−5/2−` ,

ψF ,−(ρ) ∼ c2M

2
ρ−5/2+` + c1 ρ

−3/2−` .

(6.9)

Note the dimensions of the operator and source add to d = 3 as they should.

We now set the source strictly to zero, in order to obtain the supersymmetric spectrum

and the supergravity mode solutions associated with these fermionic fluctuations. The
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solution to the eq. (6.8) is

ψ`F (ρ) =
ρ`

(ρ2 + L2)n+`+
5
4

2F1

(
−n,−

(
n+ `+

1

2

)
, `+

3

2
,− ρ

2

L2

)
α+

+ d`n
ρ`+1

(ρ2 + L2)n+`+
5
4

2F1

(
−n,−

(
n+ `+

5

4

)
, `+

5

2
,− ρ

2

L2

)
α−,

(6.10)

and the corresponding mass spectrum is given by

MF = 2
L

R2

√(
n+ `+

1

2

)(
n+ `+

3

2

)
, n ≥ 0, ` ≥ 0. (6.11)

The conformal dimension of the associated operator is ∆F = `+ 3/2 again consistent with

a scalar quark (dimension 1/2 in 3d) fermionic quark (dimension 1 in 3d) bound state.

6.1.1 Double-trace boundary deformations in the D3/D5 system

Here again we can introduce double trace higher dimension operators that we can use to

drive the mesino masses light. The field theory Lagrangian terms are

∆LG =
g2

Λ4
UV

O†GOG , ∆LF = g2O†FOF . (6.12)

Witten’s multi-trace prescription tells us then to impose the source operator relations

J =
g2

Λ4
O, J = g2O. (6.13)

As in the D3/D7 numerical studies we shoot from the IR — here to solve (6.3) (6.8). The

IR behaviour of the modes are

ψG,+(ρ) ∼ ρ`+1, ∂ρψG,+(ρ) ∼ (`+ 1)ρ`,

ψG,−(ρ) ∼ ρ`, ∂ρψG,−(ρ) ∼ `ρ`−1,
(6.14)

and of course similar analysis can be performed for the F -type mesinos. We obtain

ψF ,+(ρ) ∼ ρ`, ∂ρψG,−(ρ) ∼ `ρ`−1,
ψF ,−(ρ) ∼ ρ`+1, ∂ρψG,+(ρ) ∼ (`+ 1)ρ`.

(6.15)

We now perform the shooting from ρ = 0 with these conditions for all values of M2 and

determine J and O from the UV asymptotics. In figure 5 we show the relation between

the coupling and the mass as we make the states lighter. We observe the same features as

in the case of the D3/D7 configuration.

6.2 Fermionic fluctuations in the D3/D3 system

Here the D3-probe wraps an asymptotically AdS3× S1 ⊂ AdS5× S5 extending along the

x0, x1 directions, such that it is a one-dimensional defect in the field theory, as well as the
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Figure 5. D3/D5-brane system: the mesino mass squared M2 in units of L/R2(dots are data

points whilst the line is to guide the eye) as function of the coupling strength g2 in the presence of

the double-trace deformation for the ` = 0 and n = 0, 1 radially excited modes. The G fermionic

modes are shown on the left and the F modes on the right. The green points show the first, radially

excited state getting lighter as the coupling is increased, and the red ones show the ground state of

the modes.

x4 direction in the bulk. The Dirac operator on the world-volume of the probe D3-brane

is equal to

/DΨ =

(
R

r
Γµ ∂µ +

r

R
Γρ ∂ρ +

r

Rρ
/∇S1 +

1

2R

(
ρ

r
+
r

ρ

)
Γρ
)

Ψ , (6.16)

where, of course, now for the spinor eigenvalues on the sphere we have to use the ana-

logue (3.21) for a one-dimensional sphere which reads /∇S1χ±` = ±i
(
`+ 1

2

)
χ±` .

The relevant values for the A and B factors that were introduced in eq. (3.37) in this

case read

A =
1

2R

(
ρ

r
+
r

ρ

)
, B =

ρ

Rr
± r

Rρ

(
`+

1

2

)
. (6.17)

We are again led to a system of two first-order coupled differential equations which

we showed how to decouple and solve. Let us start by considering the positive sign in

eq. (6.17). The corresponding second order differential equation is equal to[
r2

R2
∂2ρ +

1

R2

(
3ρ+

r2

ρ

)
∂ρ +

M2R2

r2
+

1

R2

(
2 + 2`− r2

ρ2

(
`+

1

2

))
γρ

+
1

R2

(
−3ρ2

4r2
+ 1− 2`

)
− r2

R2ρ2

(
`2 + `+

1

2

)]
ψ`G(ρ) = 0 ,

(6.18)

We now study the asymptotic behaviour of the solutions to the above differential

equations near the boundary. The solutions we obtain are

ψG,+(ρ) ∼ c2M

2
ρ−1/2+` + c1 ρ

−5/2−`,

ψG,−(ρ) ∼ c2 ρ1/2+` +
3c1M

2
ρ−7/2−`.

(6.19)
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In order to compute the mode solutions and the spectrum of the supersymmetric

theory, we set the source to zero. For this case there is a unique solution that does not

have complex infinities. It is given by

ψ`G(ρ) =
ρ`+1

(ρ2 + L2)n+`+
7
4

2F1

(
−n,− (n+ `+ 1) , `+ 2,− ρ

2

L2

)
α+

+ d`n
ρ`

(ρ2 + L2)n+`+
7
4

2F1

(
−n,− (n+ `+ 2) , `+ 1,− ρ

2

L2

)
α−,

(6.20)

where, as previously, the spinors α± satisfy

γρα± = ±α±, (6.21)

and the d`n can be fixed from the UV asymptotics. The corresponding mass spectrum is

given by

MG = 2
L

R2

√
(n+ `+ 1) (n+ `+ 2), n ≥ 0, ` ≥ 0. (6.22)

The conformal dimension of the dual operator being equal to ∆G = ` + 5/2 (here ψq has

dimension 1/2 and the operator is again ψ†qλψq).

In analogy to the G modes, we may construct the solution for the F modes, which

correspond to the minus sign in eq. (6.17). After decoupling the original set of first-order

differential equations, we obtain the second order equation[
r2

R2
∂2ρ +

1

R2

(
3ρ+

r2

ρ

)
∂ρ +

M2R2

r2
+

1

R2

(
−2`+

r2

ρ2
(`+ 1)

)
γρ

+
1

R2

(
−3ρ2

4r2
+ 3 + 2`

)
− r2

R2ρ2

(
`2 + `+

1

2

)]
ψ`F (ρ) = 0 .

(6.23)

We proceed by examining the large-ρ asymptotic expansion of the above equations and

their solutions in that limit. They are

ψF ,+(ρ) ∼ c2 ρ−3/2+` +
3c1M

2
ρ−5/2−`,

ψF ,−(ρ) ∼ c2M

2
ρ−5/2+` + c1 ρ

−1/2−`.

(6.24)

Note the dimensions of the operator and source add to d = 2 as they should.

We now derive the spectrum and the mode solutions of the supersymmteric theory. In

order to do so, we set the source to zero. For this case there is a unique solution that does

not have complex infinities. It is given by

ψ`F (ρ) =
ρ`

(ρ2 + L2)n+`+
3
4

2F1

(
−n,− (n+ `) , `+ 1,− ρ

2

L2

)
α+

+ d`n
ρ`+1

(ρ2 + L2)n+`+
3
4

2F1

(
−n,− (n+ `− 1) , `+ 2,− ρ

2

L2

)
α−,

(6.25)

and the corresponding mass spectrum is given by

MF = 2
L

R2

√
(n+ `) (n+ `+ 1) n ≥ 0, ` ≥ 1. (6.26)

The conformal dimension of the associated operator is ∆F = `+ 1/2.
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Figure 6. D3/D3-brane system: the mesino mass squared M2 in units of L/R2(dots are data

points whilst the line is to guide the eye) as function of the coupling strength g2 in the presence of

the double-trace deformation for the ` = 0 and n = 0, 1 radially excited modes for the G fermionic

modes is shown on the left and the ` = 1 and n = 0, 1 towers of states for the F modes shown on

the right. The green points show the first, radially excited state getting lighter as the coupling is

increased, and the red ones show the ground state of the modes.

6.2.1 Double-trace boundary deformations in the D3/D3 system

As in the previous two analyses, we can introduce double-trace higher dimension operators

that we can use to drive the mesino masses light. The field theory Lagrangian terms are

∆LG =
g2

Λ3
UV

O†GOG , ∆LF =
g2

ΛUV
O†FOF . (6.27)

Witten’s multi-trace presecription tells us then to impose the source operator relations

J =
g2

Λ3
O, J =

g2

Λ
O. (6.28)

As in the numerical studies in the preceding sections we shoot from the IR — here to

solve (6.18) and (6.23). The IR behaviour of the modes are

ψG,+(ρ) ∼ ρ`+1, ∂ρψG,+(ρ) ∼ (`+ 1)ρ`,

ψG,−(ρ) ∼ ρ`, ∂ρψG,−(ρ) ∼ `ρ`−1,
(6.29)

and of course a similar analysis can be performed for the F -type mesinos. We obtain

ψF ,+(ρ) ∼ ρ`, ∂ρψG,−(ρ) ∼ `ρ`−1,
ψF ,−(ρ) ∼ ρ`+1, ∂ρψG,+(ρ) ∼ (`+ 1)ρ`.

(6.30)

We now shoot out from ρ = 0 with these conditions for all values of M2 and determine

J and O from the UV asymptotics. The result of computing the effect of these higher

dimension deformations is shown in figure 6.

7 Conclusions & summary

We have studied the fermionic fluctuations of massive probe-brane embeddings in the back-

ground generated by a stack of D3-branes. These are dual to supersymmetric theories that

arise from coupling N = 4 SU(N) gauge theory to hypermultiplets in various dimensions

(in four dimensions for the D7-brane probe case). We have obtained the supersymmetric

mode solutions and the associated mass spectra. In these cases the probe branes lie flat in
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the space and the dimensional reduction of the ten-dimensional spinor is straightforward.

It would be interesting to extend the analysis to more complex theories. These include the

study of fermionic states in backgrounds that exhibit chiral symmetry breaking, [8, 26].

Moreover, one could consider finite temperature effects due to a black hole in the bulk.

A particularly challenging task would be probes in the presence of non-vanishing Kalb-

Ramond fields [27], where the description is essentially string theory in a non-commutative

background [28]. In order to perform this analysis beyond the probe-approximation [29],

we need to address the question of the appropriate form for fermionic D-brane action for

multiple branes.

We also considered the addition of higher dimension operators of “baryon squared”

form and the effect they have on the masses of fermionic bound states. The results are

well summarized by figure 3 in the D3/D7 system. We have found that the addition of

these higher dimension operators can drive the mesino masses to light values as compared

to the rest of the spectrum. The effect of these operators is small for small values of the

coupling, and the shift in the mesino mass is linear. For higher values we observed a critical

behaviour with a rapid decrease in the mesino mass. Nevertheless, we have found that the

mode can only be made massless for an infinite value of the coupling. We have repeated

these computations for the D3/D5 and D3/D3 supersymmetric defect theories to check

that this behaviour is generic to such models.

Note that the mesino spectra shown in figures 3, 4 and 5 suggest an avoided level

crossing, i.e. asymptotically for very large coupling of the double trace operator, the mesino

mass corresponding to the n = 1 level approaches the mesino mass value of the n = 0 level

at vanishing or repulsive g2. Such a level crossing is known to occur in the D3/probe D7-

brane system if an instanton configuration is considered in the four D7-brane dimensions

perpendicular to the D3-branes [30]. There, for infinite instanton radius, the meson mass

is shifted by two levels as compared to zero instanton size. This shift was shown to be

equivalent to a large gauge transformation. Here however, the level crossing mechanism

is different since it is triggered by tuning the coupling of a double-trace operator. On

the gravity side, this means the shift occurs in the asymptotic boundary behaviour of the

solutions rather than in the fluctuation equation of motion itself. The separation between

the ground state and first excited state branches of the curve is presumably controlled by

the only dimensionless parameter, the ratio of the IR mass scale and the UV cut-off scale,

L/Λ. It may be instructive to understand this mechanism in more detail in the future, for

instance by analyzing the underlying Schrödinger equation for the fluctuations.

To conclude, we emphasize again that the higher dimension operators can be used, by

tuning the coupling, to generate light baryonic states. Of course in a true model of the UV

cut-off physics, it is unlikely that such an operator would exist in isolation, but our study

shows that in principle such operators could play this role. We are motivated by Beyond

the Standard Model theories, where composite fermionic or light top partner states are

desired. We intend to move the mechanism displayed here to holographic descriptions of

more phenomenologically appropriate gauge theories in the near future.
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A Notation

In this paper we use the following index conventions. Capital latin letters from the middle

of the alphabet starting from M,N, . . . , denote ten-dimensional spacetime indices, while

capital latin letters starting from I, J, . . . refer to the ten-dimensional Lorentz frame. Cap-

ital letters from the beginning of the alphabet, i.e. A,B . . . are probe brane indices.

Greek lower case letters from the middle of the alphabet, i.e. µ, ν, . . . , refer to Minkow-

ski indices, i.e. to the directions of the branes generating the ten-dimensional curved space

time. Greek lower case letters from the beginning of the alphabet, i.e. α, β, . . . , denote

radial and Minkowski coordinates, i.e. xµ and ρ. Lower case latin indices i, j, k, . . . are

valued on the sphere and the tilded letters m̃, ñ, . . . are the directions transverse to both

the background and the probe branes. To simplify notation we do not use separate symbols

for curved and flat spacetime indices as it should be clear from the context. In cases that

we think that it is not, we provide additional explanations and comments.

We have used the standard conventions of forms, namely a p-form is written as

A(p) =
1

p!
Aa1···ap dx

a1 ∧ · · · ∧ dxap (A.1)

Moreover, we consider branes with a positive Chern-Simons term. The above are

chosen such that we follow closely the conventions of [15] thoughout.
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