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1 Introduction

Stabilizing all moduli of a 4D string compactification, especially in the presence of su-

persymmetry (SUSY) breaking and positive cosmological constant, is notoriously difficult.

Already the simplest realistic models [1, 2] involve several ingredients and significant tun-

ing. As a result, some skepticism concerning these models may be justified (see [3–27] for

a selection of papers criticizing and defending de Sitter constructions). Recently, this has

culminated in the proposal of a no-go theorem against stringy quasi-de Sitter constructions.

Concretely, in the single-modulus case, this includes the claim that [28–30]

∣

∣V ′
∣

∣ ≥ c · V or V ′′ ≤ −c′V , (1.1)

where c and c′ are order-one numbers.1 This may be taken as an incentive to better un-

derstand the KKLT and Large-Volume-Scenario (LVS) constructions and improve on them

(see [31–35] for progress in refuting some of the criticism based on 10D considerations).

However, it is also interesting to take the opposite perspective: accept the above de Sitter

swampland conjecture as true and see what would be left of string phenomenology.

The most direct way out has already been emphasized in [28, 36]: the presently ob-

served cosmic acceleration would have to come from a stringy version of quintessence [37–

39].2 The latter is, however, not easy to realize (see e.g. [14, 43–50] for discussions). The

1We set MP = 1 except in equations with units and when its explicit appearance enhances readability.
2For the purpose of this paper we are generous concerning the parameter c, allowing it to be significantly

smaller than unity to match experimental restrictions [36, 40–42].
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most promising candidates for stringy quintessence are moduli (see e.g. [51–53]) and ax-

ions (see e.g. [14, 44, 54–58]), which are both ubiquitous in string compactifications. In

the present paper, we attempt to make progress not so much towards providing an explicit

model but at least towards carefully specifying the challenges that have to be overcome.

Our focus will be on ultra-light Kähler moduli in type IIB flux compactification, follow-

ing the most explicit examples available [51, 59]. We will postpone comments on axion

quintessence to section 5.

Quintessence models rely on a scalar slowly rolling down a potential. Cosmology con-

strains its mass, which we define as
√
V ′′, to be smaller than the Hubble scale: |mφ| .

H0 ≈ 10−33 eV ∼ O
(

10−60
)

MP [60]. This lightness makes the quintessence scalar suscep-

tible to fifth-force constraints, ruling out in particular the overall-volume modulus. Our

main candidates will hence be ratios of certain 4-cycle volumes.

Stringy quintessence needs large hierarchies between the mass of the quintessence

scalar, the volume-modulus mass, and the mass scale of Standard-Model (SM) superpart-

ners. In the spirit of [51, 59], we use a large volume V and an anisotropic geometry to

suppress the loop corrections which make the quintessence scalar massive. However, this

also lowers the mass scale of the volume modulus, leading to what we want to call the

“light volume problem”.

Moreover, even if some new effect making the volume sufficiently heavy could be estab-

lished (see [51, 59] for suggestions), another problem remains: the SM-superpartner masses

induced by the available Kähler modulus F -terms are too low. This can be overcome by

introducing a dedicated SUSY-breaking sector on the SM brane. Yet, even taking the

corresponding mediation and hence F -term energy scale as low as possible, a significant

uplifting effect on the full scalar potential is induced. We call this the “F -term problem”.

In the given setting, the corresponding energy density is comparable to the positive and

negative energy scales canceling each other in the underlying no-scale model and much

above the residual 1/V3 AdS-potential of the LVS stabilization mechanism.

The rest of the paper is structured as follows: we introduce the phenomenological

requirements in section 2 and translate them to model-building restrictions in section 3,

where we re-derive the light volume problem. In section 4 we present the F -term problem

arising from the phenomenologically required SUSY breaking. A discussion of possible

loopholes, axion quintessence and alternative approaches follows in section 5 before we

conclude in section 6.

2 Preliminaries and requirements

We will focus on compactifications of type IIB string theory on Calabi-Yau orientifolds

with O3/O7 planes. One reason is that this setting is particularly well-studied and has

proven to be phenomenologically promising (see e.g. [1, 2, 61, 62]). A closely related reason

is the no-scale structure arising after the flux stabilization of complex-structure moduli.

This allows one to go to a large volume and make use of different small corrections to the

Kähler-moduli scalar potential. As we will see, this appears to be precisely what one needs

for the large hierarchies required in the present context.

– 2 –
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The 4D effective theory arising at the classical level is characterized by N = 1 super-

gravity (SUGRA) with Kähler and superpotential

Ktot = −2 lnV(T + T̄ ) +Kcs(z, z̄) and W = W (z) . (2.1)

Here T stands symbolically for all Kähler moduli and z for the complex-structure moduli

together with the axio-dilaton. After solving the F -term equations DzW = (∂z +Kz)W =

0, by which the z-moduli get stabilized, one ends up with

K = −2 lnV(T + T̄ ) and W = W0 = const. , (2.2)

where we have absorbed any additive constants in K into a redefinition of W . Since the

volume V is a homogeneous function of degree 3/2 of the Kähler moduli T = {T1, T2, · · · },
the scalar potential vanishes identically,

V = eK(KīDiWD̄W̄ − 3|W |2) = KīF
iF̄ ̄ − 3eK |W |2 = 0 . (2.3)

This no-scale structure breaks down due to quantum corrections, giving

V = δVnp + δVα′ + δVloop 6= 0 , (2.4)

where one distinguishes:

• Non-perturbative corrections due to D7-brane gaugino condensation or E3-brane

instantons. While they generically correct both Kähler and superpotential, their main

effect on the scalar potential comes from W → W = W0 +Aie
−aiT

i
.

• α′ corrections, which arise from higher-order terms in the 10D action. The estab-

lished leading effect [63] can be accounted for by K → K = −2 ln(V + ξ) .

• String-loop corrections, which can also be viewed as field-theoretic loop correc-

tions in a Kaluza-Klein (KK) compactification and would naively affect the Kähler

potential more strongly than the α′ corrections: K → K + δKloop . However, due

to an extended no-scale cancellation, their effect on the scalar potential is subdomi-

nant [64–67].

At large volume, the terms in (2.3) scale as 1/V2 and the no-scale structure may be

viewed as an exact cancellation of scalar potential terms at this order. The terms in (2.4) are

suppressed by further volume powers, as we will discuss in more detail below. As a result,

Kähler moduli are parametrically light at large V , which makes them natural candidates for

the quintessence scalar. Conversely, the extreme lightness of quintessence enforces V ≫ 1.

Possibilities for including the SM are fractional D3-branes at a singularity or D7-branes

wrapping a 4-cycle [68]. In the best-understood examples, this will give rise to a SUSY

version of the SM. SUSY will then have to be broken at least at about 1TeV∼ 10−15MP.

With this general setting fixed, we proceed by listing the phenomenological require-

ments, to be justified momentarily:
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1. Light quintessence modulus φ with mφ . 10−60MP .

2. Heavy superpartners with mS & 10−15MP .

3. Heavy KK scale with mKK & 10−30MP .

4. Heavy volume modulus with mV & 10−30MP .

The first two requirements are obvious from what has been said above: the need for

a slowly rolling scalar and consistency with the LHC. The third requirement follows

from the fact that standard 4D Newtonian gravity has been tested at scales below

0.2 meV ∼ 1 mm−1 [69].

Finally, the fourth requirement is obtained if one notices that, after compactification,

the Ricci scalar of the 4D theory obtains a prefactor V . Then, after Weyl rescaling to the

4D Einstein frame, the scalar field corresponding to V couples to matter fields (both from

D3 and D7 branes) with approximately gravitational strength. However, such fifth-force

effects are ruled out by the very same experiments that test gravity at the sub-millimeter

scale [47, 69, 70] (measuring the Eddington parameter in the post-Newtonian expansion).

Hence the volume modulus must be sufficiently heavy.

Comparing the first and last requirement, it is immediately clear that φ cannot be

the volume modulus. It can, however, be one of the Kähler moduli measuring the relative

size of different 4-cycles. We will see below that, while these can be much lighter than V ,
reaching the extreme level of 10−60MP proves non-trivial. We also note that such Kähler

moduli couple to matter, though not as strongly as V . These couplings tend to violate the

equivalence principle, forcing them to remain about a factor of 10−11 below gravitational

strength [70]. Fifth-force constraints on stringy quintessence models have recently been

studied in detail in [47], where a lower bound on the compactification volume, which

suppresses the couplings to other Kähler moduli, was found for a number of models. Our

focus in this paper is different and concerns the more elementary issue of mass hierarchies in

the scalar potential and the SUSY-breaking scale. The volume needed for these hierarchies

is in general even larger than prescribed by the bounds from fifth-force constraints.

3 Mass hierarchies and resulting bounds

As explained, we focus on Kähler moduli and rely on the corrections of (2.4) to generate

a non-zero potential. It will hence be useful to recall their generic volume-scaling (e.g.

from [71]). In doing so, we suppress all O(1) coefficients and write τ i := 1
2(T

i + T̄ i):

δVnp ∼
√
τse

−2asτs

V +
W0τse

−asτs

V2
→ W 2

0

V3
log3/2(W0/V) , δVα′ ∼ W 2

0

V3
, δVloop ∼ W 2

0

V10/3
.

(3.1)

Naively, the non-perturbative correction is always subleading due to its exponential sup-

pression. However, it may be relevant if it is induced by a ‘small cycle’ τs. In this case,

after the modulus τs is integrated out, a volume-dependent effect arises which (up to a

log-enhancement) scales in the same way as the α′ correction. The interplay of these two
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effects may then provide the celebrated volume stabilization in LVS [2, 68, 71] with an AdS

minimum at V = V0 and

VLVS ∼ δVnp + δVα′ ∼ W 2
0

V3
0

. (3.2)

Here V0 can be exponentially large, with the exponent being ∼ χ2/3/gs (where χ is the

Euler characteristic of the Calabi-Yau and gs the string coupling).

As explained before, this is exactly what we need: the volume must be very large but

stabilized at a sufficiently high scale to avoid fifth-force constraints. Crucially, even though

V = V(T ) is in general a complicated function of all Kähler moduli, VLVS depends only

on the overall volume. The role of quintessence can then be played by any combination of

Kähler moduli other than the overall volume (and excluding any ‘small cycles’ — i.e. those

for which exp(−τ) is not negligibly small).

We now need to discuss moduli masses in more detail. First, τs (and similar moduli

stabilized by their non-perturbative corrections) are heavy: mτs ∼ W0/V . We will not

discuss them any further and also neglect their contributions to the volume. In the moduli

space of the remaining ‘large cycles’ T i, one direction (corresponding to the overall volume

V) is stabilized by the non-perturbative and α′ corrections. The other moduli receive a

mass from Vloop. Although also other corrections could contribute to the moduli masses,

as for example the poly-instanton corrections in [59], we will only discuss loop corrections

here, since they generally contribute to any modulus and thus provide a lower limit on

moduli masses. To discuss them, we focus on the submanifold defined by V =const. and,

in addition, ignore the axions. The kinetic term is then defined by the metric Kī = Kij ,

restricted to that submanifold. After canonical normalization of the kinetic terms the

moduli masses are obtained from the second-derivative matrix of the scalar potential ∂i∂̄V .

The specific structure of Kij for large-cycle volumes allows one to estimate the masses

simply by the square root of the relevant potential term (see the appendix and [72] for

more details). This also holds for the volume modulus so that, according to (3.1) (see

also [68]), one finds parametrically

mV ∼
√

δVα′ ∼ W0

V3/2
, mτ i ∼ mφ ∼

√

δVloop ∼ W0

V5/3
. (3.3)

Here we use the notation mφ since we already know that the quintessence field φ will be

one of those large-cycle volumes (more precisely volume ratios) present in addition to V .
Combining (3.3) with the required scales listed in the previous section, one finds

O
(

1030
)

.
mV

mφ
∼ V1/6 ⇒ V & O

(

10180
)

. (3.4)

This is a very large volume and will result in very small KK scales given by

mKK =
Ms

R
∼ MP

V1/2+1/6
. O

(

10−120
)

MP , (3.5)

which is in conflict with requirement 3. Here we have used that the string scale Ms

of the 10D Einstein frame is given by Ms = MP/
√
V and the typical Radius R of the

compactification is the sixth root of the volume, assuming isotropy.
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The loop corrections involving the quintessence modulus thus have to be suppressed

more strongly than by V−10/3. As suggested in [51, 59], anisotropic compactifications may

provide the required suppression. To understand this idea, a heuristic argument for the

power of −10/3 in the loop corrections is useful [59, 71]: from a 4D point of view, loop

corrections arise from loops of all light fields below a cutoff Λ, where the 4D description

breaks down. This Λ is assumed to be given by the lowest KK scale, where the theory

becomes effectively higher-dimensional.3 The fields running in the loops contribute with

different masses and signs and the potential at 1-loop order will be the SUSY analogue of

the Coleman-Weinberg potential [73, 74]:

V = Vtree+
1

64π2
STrM0 ·Λ4 log

Λ2

µ2
+

1

32π2
STrM2 ·Λ2+

1

64π2
STrM4 log

M2

Λ2
+ . . . . (3.6)

The second term disappears due to SUSY. The third term involves the supertrace STrM2

of all fields running in the loops. In general 4D N = 1 SUGRA, this supertrace is given by

STrM2 = 2Qm2
3/2, where Q is a model dependent O(1) coefficient, while m3/2 is the grav-

itino mass given by |W |/V . This allows us to estimate the lowest order loop corrections by

δVloop ∼ Am2
KKm

2
3/2 +Bm4

3/2 ∼ Am2
KK

W 2
0

V2
+B

W 4
0

V4
(3.7)

with O(1) constants A and B.4 As discussed earlier, in an isotropic compactification the

first term gives exactly the familiar V−10/3 dependence which results in too small KK

scales. Therefore, we now assume an anisotropic compactification with l large dimensions

of radius R ∼ V1/l and the other 6 − l dimensions at string scale for highest possible

suppression. This creates a hierarchy between the KK scales so that the heavy KK modes

have masses at string scale while the light ones have masses of order mKK ∼ V−(1/2+1/l).

Looking only at the first term in (3.7), we observe that smaller l makes the quintessence

field lighter. However, this improvement ends when the value of the first term falls below

that of the second, mKK-independent term. This occurs at l = 2, which is hence the

optimal value on which we now focus. We note that further suppression can apparently

be achieved if l = 1 and, in addition, W0 is tuned small. But, as we will explain below,

this does not resolve the problems we will face.

Thus, in the anisotropic scenario with l = 2, the quintessence scalar gets loop correc-

tions only at order V−4 which in contrast to (3.3) induces a quintessence mass5

mφ ∼
√

δVloop ∼ W0

V2
. (3.8)

3This is a non-trivial assumption since loop corrections may, of course, also arise in higher-dimensional

field theory or directly at the string level. In fact, one probably has to assume that the restoration of a

sufficiently high level of SUSY above the KK scale cuts off the loop integrals. However, in the present case

SUSY is broken by fluxes, and these penetrate not just the large-radius but all extra dimensions. So further

scrutiny may in fact be required to justify the use of the lowest KK scale as a cutoff.
4Although the terms in (3.7) could in principle cancel each other, we will not discuss cancellations here

and refer to the discussion.
5We again refer to the appendix for a justification of the formula mφ ∼

√

δVloop.
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Since requirement 3 bounds the volume to V . O
(

1030
)

we can marginally source the right

quintessence mass. However, using mV from (3.3) and mφ from (3.8) together with our

phenomenological requirements 1 and 4, we conclude

O
(

10−30
)

&
mφ

mV

∼ V−1/2 ∼ m
1/2
KK ⇒ O

(

10−60
)

& mKK , (3.9)

where in the last step, we see a contradiction with requirement 3 arising as the KK scale

becomes too low. So even in the anisotropic case the required hierarchy cannot be achieved

through the standard LVS approach.6

We will refer to this problem, which has already been noted in [51, 59], as the “light

volume problem”. To resolve it, one needs an extra contribution to the scalar potential,

which gives the volume modulus a higher mass. This is already critical. However, as we will

see momentarily, things get even more challenging if we take into account SUSY breaking.

This will provide an independent argument for a new scalar-potential term, fixing also its

sign and prescribing a significant overall magnitude.

4 The F -term problem

It is necessary to ensure that the SM superpartners are sufficiently heavy (requirement 2).

This will prove to be very challenging. For instance, the gaugino mass is given by

m1/2 =
1

2

Fm∂mf

Ref
, (4.1)

where f is the gauge-kinetic function. If the SM gauge group is realized on D7-branes,

m1/2 scales as |W |/V . For D3 realizations, the soft scale is suppressed more strongly [68]

— so this does not help. Due to the aforementioned phenomenological requirements 1 and

2, the hierarchy between the quintessence field and the gaugino must fulfill

mφ

m1/2
. O(10−45). (4.2)

We can furthermore use the first term in (3.7) to conclude thatmφ & mKKm3/2 and observe

that m3/2 ∼ m1/2 in the present setting. This implies mφ/m1/2 & mKK, in conflict with

requirement 3. We conclude that the gaugino mass cannot be generated by the SUSY

breaking of the Kähler moduli alone.

Instead, to obtain large enough gaugino masses, we need a further source of SUSY

breaking. One can realize this on the SM brane through mediation from a hidden sector

where SUSY is broken spontaneously by the non-vanishing F -term of a spurion field X.

Without loss of generality, we will use the language of spontaneous SUSY breaking even

6As mentioned above, we can further suppress Vloop by choosing l < 2 and tuning W0 small. The

obvious possibility is l = 1 corresponding to one large and five small dimensions. One may also consider

more complicated geometries where several radii between 1/Ms and some maximal radius 1/MKK are used.

This latter case may be treated by using an effective l with 1 ≤ l ≤ 2 in the crucial formula for mKK. Either

way, repeating the analysis which led to (3.9) one arrives at mKK ≤ O(10−30−15l) for general l. Thus,

requirement 3 is always violated and the light volume problem cannot be resolved by going to l ≤ 2.

– 7 –
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in the case that this breaking is realized locally (at the same Calabi-Yau singularity) and

directly at the string scale.7

According to [68], the moduli Xα of D3-branes enter the Kähler potential K(T + T )

through the replacement

2τ i = T i + T̄ ı̄ → 2τ ′i = T i + T̄ ı̄ + ki(Xα, X̄ ᾱ) , (4.3)

where ki(Xα, X̄ ᾱ) are some real-valued functions. These may be chosen quadratic or

higher-order since any linear components can be absorbed into the definition of the T i or

removed via a Kähler transformation. We will call the resulting new Kähler potential K ′.

Now computing the scalar potential involves inverting a 2×2 block matrix, with the blocks

corresponding to the T i or Xα variables. One finds that the F -term contribution from

the Kähler moduli cancels against the gravitational term −3eK
′ |W |2 in standard no-scale

fashion, leaving behind a term8

V ⊃ δVX = K ′
αβ̄F

α
X F̄ β̄

X where K ′
αβ̄ = Ki∂α∂β̄k

i , Fα
X = eK

′/2K ′αβ̄∂β̄W̄ . (4.4)

Thus, SM-brane SUSY breaking gives a positive contribution to the scalar potential,

which is added on top of the zero potential resulting from the Kähler-moduli no-scale

structure. Now consider a simple toy model with a single spurion field X and F -term

FX ≡ F . Let SUSY breaking be mediated through higher-dimension operators suppressed

by M , which we define to be the mediation scale of the flat SUSY limit (see [72] for details).

After canonical normalization of X and its F -term, one has m1/2 ∼ F/M (and similarly

for the other soft terms), which implies

δVX ∼ F 2 ∼ M2m2
1/2 . (4.5)

In the D7-brane case, a similar substitution, S + S̄ → S + S̄ + k(X, X̄) , is applied

to the dilaton term in K. Since the dilaton S is stabilized by fluxes it can be treated as

a constant, so the scalar potential is simply |DXW |2. This generates the positive F -term

even more directly so we will not discuss this case separately.

Soft masses are phenomenologically constrained to be at least ∼TeV∼ O
(

10−15
)

MP.

Moreover, M should be high enough to hide the SUSY-breaking sector. It is then natural to

assume M & O
(

10−15
)

MP,
9 which implies δVX ∼ M2m2

1/2 ∼ O
(

10−60
)

M4
P . This is of the

same order of magnitude as the cancellation in the standard no-scale scenario, i.e. far larger

than the first-order LVS corrections.10 Thus δVX raises the height of the scalar potential

to very large positive values which cannot be canceled by the terms in VLVS of (3.2).

7In this case one may speak of non-linearly realized SUSY (see [75] for recent progress in this context).

One may, however, also continue to use the language of e.g. F -term SUSY breaking in SUGRA, sending

the masses of the fields in the SUSY-breaking sector to infinity.
8Here we assume that X = 0 in the vacuum. To be completely explicit, one may think of k ∼ XX −

a(XX)2 and W = bX in the single-field case.
9We will more carefully exclude lower values in section 4.1.

10Indeed, as noted earlier mφ & mKKm3/2 so that the canceling terms in the no-scale potential are of

order Vno−scale ∼ m2
3/2 . m2

φ/m
2
KK . 10−60M4

P , where we enforce requirements 1 and 3.
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4.1 Limits on δVX

Since δVX has emerged as a key issue for the most popular stringy quintessence models,

we want to evaluate more carefully whether this hidden-sector contribution to the scalar

potential can be consistently tuned to smaller values. Recall from (4.5) that it scales as

δVX ∼ m2
1/2M

2. Since the gaugino mass should not be smaller than O
(

10−15
)

MP, the only

option is to reduce M and F at the same time, which implies a reduction of the gravitino

mass. In the past, there have been many investigations that aimed at constraining the

latter using data from electroweak colliders [76–83] like LEP or hadronic ones [84–88] like

the Tevatron. These bounds on m3/2 translate into lower limits of the SUSY-breaking

scale, which typically constrain
√
F to be larger than a few 100GeV.

The most recent and stringent bounds result from missing-momentum signatures in pp

collisions at the LHC. To understand the emergence of such bounds, let us consider an ex-

emplary toy model where SUSY is spontaneously broken in a hidden sector through a non-

vanishing F -term in the vacuum and mediated to the SM sector via the interaction terms

Lint =
a

M2

∫

d4θX†XΦ†Φ+
b

M

∫

d2θXWαWα + h.c. , (4.6)

where Φ is a chiral superfield representing quarks q and squarks q̃ whereas Wα is the

supersymmetric field-strength tensor of a vector superfield V representing gluons g

and gluinos g̃. A non-zero F in the vacuum will generate soft masses for the squarks

and gluinos, which are given by m2
q̃ = aF 2/M2 and mg̃ ∼ bF/M , respectively. The

hidden-sector field X contains the goldstino G̃, which gets eaten by the gravitino due

to the super-Higgs mechanism. In the limit
√
s/m3/2 ≫ 1, the helicity-1/2 modes

dominate over the helicity-3/2 modes and, according to the gravitino-goldstino equivalence

theorem [89, 90], yield the same S-matrix elements as the goldstinos. Hence in this simple

discussion, we identify the gravitino with the goldstino. We are now interested in processes

which turn two hadrons into a hadronic shower plus gravitinos, where the latter induce a

missing-momentum signature. For instance, we can consider the process of two quarks in

the initial state and two gravitinos in the final state with a gluon being eradiated from one

of the initial quarks, resulting in a hadronic shower. The gluon radiation costs a factor√
αS . Several beyond-SM processes contribute to the crucial qq-G̃G̃-amplitude. One of

them is the direct 4-particle coupling from (4.6):

∼ a

M2
¯̃GG̃q̄q ⊂ a

M2

∫

d4θX†XΦ†Φ . (4.7)

Due to the prefactor a/M2, this vertex contributes a factor 1/F 2 to the amplitude so

that the cross section will be proportional to αS/F
4. This F−4-dependence of the cross

section is typical for such processes and therefore the upper limits on them, provided by

measurements at hadron colliders, translate into lower bounds on F .

In a recent experimental analysis of the ATLAS collaboration [88], the process pp →
G̃+q̃/g̃ is considered, whereupon the squark or gluino decays into a gravitino and a quark or

gluon, respectively. Depending on the squark and gluino masses, as well as on their ratios,
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the authors derive lower bounds on the gravitino mass around m3/2 ≈ (1 − 5) × 10−4 eV

corresponding to SUSY-breaking scales
√
F ≈ (650− 1460)GeV.

In [91], not only the process pp → G̃ + q̃/g̃ → 2G̃ + q/g but also direct gravitino-

pair production with a quark or gluon emitted from the initial proton as well as squark

or gluino pair production with a following decay into gravitinos and quarks or gluons are

considered. Taking into account all three processes, the authors of [91] use the model-

independent 95% confidence-level upper limits by ATLAS [92] on the cross section for

gravitino + squark/gluino production to constrain
√
F > 850GeV. This is done for the

case when the squark and gluino masses are much larger than those of the SM particles

so that they can effectively be integrated out (in the paper, the value mq̃/g̃ = 20TeV is

used). In other scenarios, where one or both of these two types of superpartners have lower

masses, the bound becomes even higher.

We conclude that, in accordance with the current experimental status, the mass scale

of SUSY breaking
√
F cannot be lowered significantly below 100GeV− 1TeV so that δVX

can be at most a few orders of magnitude below O
(

10−60
)

M4
P. Such a contribution cannot

be canceled by any known term in our scenario as has been discussed already.

4.2 Need for a new contribution

We have seen that requirement 2 of heavy superpartners implies the presence of a large

positive contribution δVX to the scalar potential. This would raise the potential far above

the observed energy densityO
(

10−120
)

M4
P, rendering this whole scenario unviable. Since we

do not know how to avoid this effect, it appears logical to assume the presence of a further

negative contribution of equal magnitude, which fine-tunes V to a level consistent with

observations. In the preferred case of l = 2 and for W0 ∼ O(1), the required magnitude is

δVnew ∼ V−2. Such a contribution may also solve the light volume problem (3.9). Indeed, if

its volume dependence is generic, one expects an induced volume-modulus mass mV ∼ V−1.

This is just enough to build all required hierarchies.

We emphasize that this contribution is substantially hypothetical and that the nature

of its generation and form is not understood. Possible effects suggested in [51, 59] are loop

corrections from open strings on the SM brane and the back-reaction of the bulk to the

brane tension along the lines of the SLED models [93]. Open string loops may induce a

Coleman-Weinberg potential with cutoff at the string scale Ms ∼ MP/
√
V , such that the

leading term scales as M4
s ∼ M4

P/V2. Although this is the correct order of magnitude

for δVnew, the volume dependence appears to be too simple to allow for volume-modulus

stabilization. Moreover, being a higher-order correction to the brane sector, we would

assume it to already be part of the low-energy effective Kähler potential for X and the SM

fields which we used to derive F -terms and induce superpartner masses. As such it could

not contribute the required negative energy to cancel the critical F -term.

As mentioned above, a counteracting contribution could also be found in the bulk back-

reaction. Since the SM-brane tension is the origin of the large F -term, a back-reaction to

this tension from the bulk appears to be promising. Still, as our analysis shows, it remains a

challenge to include this in the 4D effective theory, specifically in the 4D effective SUGRA,
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which we expect to arise at low energies in the string theoretic settings we consider (see

also [51, 59, 94–96] for related discussions).

Finally, in the context of the de Sitter swampland conjecture (1.1), our F -term implies

yet another difficulty. Even if the new term δVnew cancels the F -term to leave a sufficiently

small potential, a small change in the SM or SUSY-breaking parameters can raise the

F -term and with it the residual scalar potential to violate the conjecture. This is also

problematic in other models and we will come back to this issue in the following sections.

5 Loopholes and alternative approaches

There are several potential loopholes in our analysis. The first one is the possibility that

the quintessence modulus is extremely light (i.e. the loop-induced potential is extremely

flat) by fine-tuning.11 However, this seems implausible for the following reason: The flat-

ness must hold on a time scale of order H−1
0 . In quintessence models which respect the

de Sitter conjecture (1.1), the scalar field has to run sufficiently far during such a period.

Indeed, from the Klein-Gordon-equation in Friedmann-Robertson-Walker background to-

gether with |V ′|/V . 1 it follows that ∆φ ∼ O(1) in one Hubble time. In a Taylor

expansion of δVloop, we therefore have to take into account all orders of ∆φ. It is thus not

enough to fine-tune δVloop at one point but we must tune an infinite number of derivatives

to small values. This cannot be coincidental but has to be based on some mechanism or

symmetry. Although in our specific model such a perfect decoupling of one Kähler modulus

from the loop corrections seems implausible, there might of course be other constructions

where the required sequestering can be achieved (see [47, 97] for discussions).

Another possibly critical point is the approximation of loop corrections through the

Coleman-Weinberg potential (3.6) with mKK as a cutoff. Here, one has to be concerned

that no other, stronger corrections arise. This seems possible, for example, since the KK

scale is far below the weak scale. Thus, when applying the formula, one has to do so

in a setting where the SM brane (with SUSY broken at a higher scale) has already been

integrated out. This needs further scrutiny. Another concern is that even in the bulk SUSY

may not be fully restored above mKK due to the effect of bulk fluxes. Still, we trust the

formula to at least give a lower bound on loop corrections that cannot be neglected and

thus makes our conclusions inevitable.

A number of alternative approaches to quintessence building from string theory have

been proposed. Let us first comment on the possibility of axion quintessence. Based on

the SUGRA scalar potential, one generically expects an axion potential

V = Λ4 cos

(

φ

f

)

+ a , Λ4 ∼ M2
Pm

2
3/2e

−Sinst. . (5.1)

This could provide the required dark energy if φ is at the “hilltop” and, at the same

time, satisfy the second condition of (1.1) (assuming reasonably small c′). For simplicity,

let us start the discussion taking a = 0. Then the slow-roll condition, which we need

phenomenologically, requires a trans-Planckian axion decay constant f [56]. But this is in

11For example, one could imagine a model where the two terms in (3.7) cancel to a very small residue.
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conflict with quantum-gravity expectations or, more concretely, the weak gravity conjecture

for axions [98, 99]:

f ≤ O(1)MP or Sinst. ≤ α
MP

f
. (5.2)

The conflict is strengthened if one recalls that the potential must be tiny, i.e.

M2
Pm

2
3/2e

−αMP/f . 10−120M4
P. For α ∼ O(1), this implies f ∼ O

(

10−2
)

MP, which is

in conflict with slow-roll. As suggested in [14], one might hope to ease the tension by em-

ploying the constant contribution a to the potential (5.1).12 If a is negative, the slow-roll

condition is violated even more strongly. Positive a greater than Λ4 leads to a violation of

the de Sitter conjecture at the minimum. The best option is then a = Λ4 which, however,

does not help much: the slow-roll requirements on f change only by a factor
√
2, so f still

needs to be at the Planck scale.

With this naive approach we would have to violate the weak gravity conjecture by

assuming an unacceptably large Sinst.. However, the weak gravity conjecture is presum-

ably on stronger footing than the de Sitter conjecture, so this is against the spirit of the

swampland discussion. Instead, alternative elements of model building may be invoked to

save axion quintessence. One option is the use of axion monodromy [56]. Another idea

developed and discussed in [54, 58, 100–102] is a further suppression of the prefactor of

the axion potential. A specific model with a highly suppressed axion potential for an elec-

troweak axion has been developed in [54, 58]. We note that the most obvious suppression

effects are related to high-quality global symmetries in the fermion sector, suggesting a

relation between the weak gravity conjecture and global-symmetry censorship [102, 103].

If such models succeed in providing a sufficiently flat potential, we still have to account

for large enough SUSY breaking in the full model to generate heavy SM superpartners.

The large F -term required has to be canceled to allow for the flat axion potential to

dominate. Assuming this cancellation to be implemented, we can slightly change the

SUSY-breaking contributions to shift the axion potential to positive values and violate

the de Sitter conjecture at the minima. The full model would need to balance out these

changes by some intricate mechanism.

An alternative approach to building a quintessence potential from KKLT-like ingre-

dients has been taken in [53] where the quintessence field is given by the real part of a

complexified Kähler modulus. This Kähler modulus runs down a valley of local axionic

minima in the real direction. Since the universe is assumed to be in a non-supersymmetric

non-equilibrium state today, it can evolve at positive potential energies. However, since the

potential has to be sufficiently small to constitute a quintessence model, the superpotential

has to be tuned to very small values, which results in a small gravitino mass. It appears

that one needs further SUSY breaking and the F -term problem re-emerges.

An interesting alternative to quintessence has been introduced in [104]: the zero-

temperature scalar potential is assumed to satisfy the de Sitter conjecture, but a thermally

excited hidden sector stabilizes a scalar field at a positive-energy hilltop. The authors

illustrate this idea using a simple Higgs-like potential V = −m2
φφ

2/2+ λφ4 +C. Since the

12Another idea to resolve the conflict would be to move away from the hilltop to a point in field space

where both slow-roll conditions are as weak as possible. This turns out not to work.
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hidden sector must not introduce too much dark radiation, the temperature and hence also

mφ are bounded from above by today’s CMB temperature, which is roughly 0.24 meV.

Since this model does not need an approximate no-scale structure to ensure an extremely

flat potential at large V , our F -term problem does not immediately arise.

However, it makes an indirect appearance as follows: both the present toy model

potential as well as more general models of this type are expected to have a minimum

somewhere. In the present case, its depth is m4
φ/16λ, which is very small unless λ is truly

tiny. Now, since an F -term effect δVX must be present somewhere in the complete model,

a small de-tuning of this δVX will be sufficient to lift the model into the swampland. Thus,

some form of conspiracy must again be at work for this model to describe our world and

the de Sitter conjecture to hold simultaneously.

A way out is provided by assuming that λ ∼ O
(

10−64
)

and available δVX are bounded

at ∼TeV. Then the minimum is too deep to be lifted to de Sitter by de-tuning. Even

then, one has to be careful to ensure that |V ′′|/V does not become too small as one

uplifts the model by de-tuning the SUSY-breaking effect. We approximate the possible

de-tuning by the order of magnitude of the F -term itself: ∆(δVX) ∼ δVX ∼ F 2. As a

result |V ′′|/∆(δVX) ∼ m2
φ/F

2 ∼ O
(

(10−31)2/10−60
)

∼ O
(

10−2
)

, which is critical in view

of the de Sitter conjecture. Thus, even in this rather extreme case, a version of the F -term

problem can at best be avoided only marginally.

6 Conclusion

We have analyzed stringy quintessence on the basis of the phenomenologically required

hierarchies between quintessence mass, volume-modulus mass, SUSY-breaking scale and

KK scale. Within the type IIB framework, one is naturally led to the setting of [51], where

quintessence corresponds to the rolling in Kähler moduli space at fixed overall volume.

One also immediately notices the light volume problem, which requires a new ingredient

(see [59] for a suggestion) to make the volume modulus sufficiently heavy.

In addition, we have identified what one might call an F -term problem. It derives from

the fact that SUSY-breaking by the F -terms of Kähler moduli is far to weak phenomeno-

logically. Thus, an additional SUSY-breaking sector on the SM brane is required. This

generates a sizable uplift contribution to the scalar potential. The well-known negative

contributions associated with α′-, loop and non-perturbative effects are much too small to

cancel this uplift, given that we are at very large values of the volume modulus.

The situation can then be summarized as follows: the construction of quintessence from

a Kähler modulus in Type IIB flux compactifications requires a yet unknown contribution

to the scalar potential. This is not only needed to stabilize the volume modulus but, in addi-

tion, it must be negative and of the order δVnew ∼ V−2 to compensate for the effect of SUSY

breaking. Moreover, this correction may not raise the mass of the other Kähler moduli.

Finally, if the above requirements can be met, a further issue arises: in the framework

envisioned above, today’s tiny vacuum energy is the result of a precise cancellation be-

tween the SM-related F -term uplift and δVnew. It would then appear that models with a

slightly higher F -term uplift, induced by a tiny change in the SM or SUSY-breaking sector
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parameters, should also exist. Such models would have an unchanged tiny slope V ′ but a

much higher potential V , violating even a mild form of the de Sitter swampland conjecture

(such as (1.1) with a fairly small c and c′).

Possibilities to go forward include the specification and study of the missing potential

effect δVnew, the construction of models which completely evade the effective-4D-SUGRA

logic that we used, or the study of entirely different string-theoretic settings. The lat-

ter may, for example, use type IIA or the heterotic framework or appeal to different

quintessence candidates, like the rolling towards large complex structure or small string

coupling. Of course, in the first case one may find oneself at large volume after all, as

suggested by mirror symmetry. In the second case, one faces the risk that the string scale

falls below the KK scale. Returning to our analysis in this paper, we suspect that in many

cases some variant of our F -term problem, rooted in the strong SUSY breaking in the SM,

is likely to be relevant.
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A Estimating moduli masses from the potential

We will argue that under reasonable assumptions the mass scale of a physical modulus is

usually set by the highest order term δV in the scalar potential that involves the respective

modulus:

m2 & δV . (A.1)

This is easy to see for the volume modulus but requires justification for the other moduli.

Although heavier masses can easily arise for ‘small-cycle’ moduli which correspond to small

terms in V , much lighter masses require some kind of cancellation, which will generally

involve tuning.

To illustrate the idea, consider the toy model lagrangian

L =
∂µX∂µX

2X2
+ V (X) , where V ′′(X) ∼ V (X)

X2
. (A.2)

The canonical field is introduced through X = exp(φ). Then the physical mass squared is

the second derivative of the potential w.r.t. φ. Given our assumption about V ′′(X), this is

of the same order of magnitude as the potential itself. Thus, suppressing O(1) coefficients,

the approximation m2 ∼ δV is justified.

For the volume modulus the argument is basically as in the toy model above. So we

now restrict our attention to the submanifold of constant V in the space of real moduli

τ1, . . . , τn. We choose an arbitrary trajectory on this submanifold and parameterize it as

(τ1(φ), . . . , τn(φ)) = (τ1(0)eξ
1(φ)φ, . . . , τn(0)eξ

n(φ)φ) . (A.3)
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We normalize our parameter φ so that it takes the value 0 at the point of interest τ i ≡ τ i(0).

The coefficient vector ξi ≡ ξi(0) is chosen to be O(1) valued. Now the lagrangian for motion

along the trajectory contains the kinetic term

L ⊃ Lkin =
∑

ij

Kijτ
iτ jξiξj∂µφ∂

µφ . (A.4)

We can compute the Kähler metric from the Kähler potential K = −2 ln
(

V(τ i)
)

and since

we are moving along the submanifold of constant volume we can use

∑

i

Viτ
iξi = 0 such that Lkin = −2

∑

ij

Vij

V τ iτ jξiξj∂µφ∂
µφ . (A.5)

Unless there is significant cancellation between terms in V we can assume

Vij .
V

τ iτ j
(A.6)

and since ξi was chosen O(1), the whole prefactor of ∂µφ∂
µφ can be assumed to be O(1) or

smaller. A small prefactor can arise from a small contribution in V(τ i) as for example in

the standard LVS example of V = τ
3/2
b − τ

3/2
s where τs is a small modulus and gets a small

prefactor in the kinetic term. The canonical normalization will thus either not change or

even increase the order of magnitude of the modulus mass.

Turning to the potential, we see that, since we move along the submanifold, any

contribution only involving the volume does not contribute to the mass, as for example VLVS

in (3.2). Turning to the leading-order contribution δV involving the other moduli (in our

case string-loop corrections) we will rewrite the potential in the coordinates (V , τ1, . . . τn−1)

where we have solved the constraint of staying on the submanifold for a suitable τn. We

introduce indices k and l which run over {1, . . . , n − 1} in contrast to i and j. The mass

squared of our modulus is now determined by the Hessian of the potential contracted with

the vector δτk corresponding to an infinitesimal shift in φ:

m2 ∼ δVkl
δτk

δφ

δτ l

δφ
=

∑

kl

δVklτ
kτ lξkξl ∼ O(δV ) . (A.7)

Here we have to assume that after rewriting the potential in terms of (V , τ1, . . . τn−1) it is

still sufficiently well behaved to allow for an order of magnitude estimate δVkl ∼ δV/τkτ l,

resembling (A.6). Since the choice of trajectory was arbitrary, we assume a similar scaling

for all moduli involved except for the volume modulus. Bearing in mind the possible mass

enhancement from the canonical normalization, we estimate

m2 & δV . (A.8)

We note that the requirements are met in many simple cases, for example the models

of [51, 59]. A more detailed analysis can be found in [72].
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Fortsch. Phys. 67 (2019) 1800100 [arXiv:1809.06861] [INSPIRE].

[18] R. Kallosh, A. Linde, E. McDonough and M. Scalisi, 4D models of de Sitter uplift,

Phys. Rev. D 99 (2019) 046006 [arXiv:1809.09018] [INSPIRE].

– 16 –

https://doi.org/10.1103/PhysRevD.68.046005
https://arxiv.org/abs/hep-th/0301240
https://inspirehep.net/search?p=find+EPRINT+hep-th/0301240
https://doi.org/10.1088/1126-6708/2005/03/007
https://arxiv.org/abs/hep-th/0502058
https://inspirehep.net/search?p=find+EPRINT+hep-th/0502058
https://doi.org/10.1007/JHEP09(2010)087
https://arxiv.org/abs/0912.3519
https://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3519
https://doi.org/10.1007/JHEP12(2012)122
https://arxiv.org/abs/1208.0261
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.0261
https://doi.org/10.1007/JHEP07(2014)054
https://arxiv.org/abs/1402.5112
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.5112
https://doi.org/10.1007/JHEP02(2015)146
https://arxiv.org/abs/1410.7776
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.7776
https://doi.org/10.1007/JHEP06(2015)104
https://arxiv.org/abs/1504.00652
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.00652
https://doi.org/10.1007/JHEP01(2016)126
https://arxiv.org/abs/1507.01022
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.01022
https://doi.org/10.1007/JHEP07(2018)078
https://arxiv.org/abs/1612.06847
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.06847
https://doi.org/10.1103/PhysRevD.97.046010
https://arxiv.org/abs/1707.08678
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08678
https://doi.org/10.1007/JHEP10(2018)022
https://arxiv.org/abs/1709.03554
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.03554
https://doi.org/10.1142/S0218271818300070
https://arxiv.org/abs/1804.01120
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.01120
https://doi.org/10.1007/JHEP09(2018)099
https://arxiv.org/abs/1805.00944
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.00944
https://doi.org/10.1002/prop.201800079
https://arxiv.org/abs/1808.08967
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.08967
https://doi.org/10.1002/prop.201800086
https://arxiv.org/abs/1808.08971
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.08971
https://doi.org/10.1002/prop.201800071
https://arxiv.org/abs/1808.09427
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.09427
https://doi.org/10.1002/prop.201800100
https://arxiv.org/abs/1809.06861
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.06861
https://doi.org/10.1103/PhysRevD.99.046006
https://arxiv.org/abs/1809.09018
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.09018


J
H
E
P
1
1
(
2
0
1
9
)
1
3
4

[19] A. Hebecker and T. Wrase, The asymptotic dS swampland conjecture — a simplified

derivation and a potential loophole, Fortsch. Phys. 67 (2019) 1800097 [arXiv:1810.08182]

[INSPIRE].

[20] F.F. Gautason, V. Van Hemelryck and T. Van Riet, The tension between 10D supergravity

and dS uplifts, Fortsch. Phys. 67 (2019) 1800091 [arXiv:1810.08518] [INSPIRE].

[21] J.J. Heckman, C. Lawrie, L. Lin and G. Zoccarato, F-theory and dark energy,

Fortsch. Phys. 67 (2019) 1900057 [arXiv:1811.01959] [INSPIRE].

[22] D. Junghans, Weakly coupled de Sitter vacua with fluxes and the swampland,

JHEP 03 (2019) 150 [arXiv:1811.06990] [INSPIRE].

[23] J. Armas, N. Nguyen, V. Niarchos, N.A. Obers and T. Van Riet, Meta-stable non-extremal

anti-branes, Phys. Rev. Lett. 122 (2019) 181601 [arXiv:1812.01067] [INSPIRE].

[24] F.F. Gautason, V. Van Hemelryck, T. Van Riet and G. Venken, A 10d view on the KKLT

AdS vacuum and uplifting, arXiv:1902.01415 [INSPIRE].
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