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1 Introduction and summary

An important feature of a topological phase of matter is that it often supports a nontrivial

theory on its boundary. For example, in the case of the 2+1d quantum Hall system, the

boundary is a theory of gapless chiral charged fermion in 1+1 dimensions. This boundary

theory has an anomaly under the electromagnetic U(1) symmetry, which is cancelled by

the gauge variation of the bulk theory localized at the boundary. This prototypical case

has been generalized in many directions in the recent years, and this study led us to the

realization that the anomaly of a (d − 1) + 1 dimensional system with symmetry G is

characterized by the corresponding d+ 1 dimensional bulk topological phase, known under

the general name of a symmetry-protected topological phases (SPT phase) protected by

the symmetry G.1

1In this paper, we do not make a careful distinction between the two concepts, namely invertible phases

and SPT phases; what are referred to as SPT phases in the main text should more properly be called

as invertible phases. An invertible phase is a quantum field theory with a unique ground state on an

arbitrary closed spatial manifold. An SPT phase is usually defined as an equivalence class of short-range-

entangled gapped Hamiltonian systems with a specified symmetry. An SPT phase in this sense determines

an equivalence class of invertible phases, by isolating its ground state, but it is a difficult and unsolved

problem whether an arbitrary invertible phase associated to a global symmetry can be realized as an SPT

phase in this sense. Invertible phases also include e.g. the low-energy limit of the Kitaev chain, which is

not counted as an SPT phase in the standard usage in the literature on condensed matter physics, but is

often called (mistakenly) as an SPT phase in the high energy physics literature.
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In this context, it is a basic question to answer which nontrivial SPT phase supports a

gapped boundary.2 On the one hand, there are certainly SPT phases whose boundary are

forced to be gapless as discussed e.g. in [2–5]. On the other hand, there is also a large class

of nontrivial SPT phases which are known to admit gapped boundaries, some of which are

described in [6–27]. Notably, in an early paper [6] where the concept of the bosonic SPT

phases beyond cohomology was introduced, their gapped boundaries were already studied.

Among the known method to construct gapped boundaries, the most systematic one

thus far is based on the symmetry extension method, originally introduced in [19] and

systematized in [22]. In particular, this method is known [22, 23] to produce gapped

boundaries for bosonic SPT phase for any finite internal symmetry group G described

by the group cohomology [28]. The aim of this note is to describe how this method can

be adapted to SPT phases more general than these, i.e. to SPT phases beyond group

cohomology. Such phases are now known to be classified3 by the suitable dual of the

bordism group ΩH
d+1(BG), where G is the global symmetry group and H stands for the

choice of the spacetime symmetry such as fermionic parity and/or time reversal [29–32].

This will be explained in section 2.

We note here that the generalization of the symmetry extension method to the cases

beyond cohomology was already outlined briefly in sections 6 and 7 of [22]. Our first

intension is to make the discussions more thorough and accessible. In general, we will

give the action of finite gauge theories realizing the gapped boundary of various SPT

phases. Our second intension is to give spacetime state-sum descriptions of these actions

for some of the gapped boundaries. This is done by triangulating the spacetime manifold,

assigning various labels on the faces and edges of the simplices, and computing the actions

by assembling the locally-determined factors specified as a function of the labels. The

partition function is then given by a path integral (typically simply a sum) over the labels.

It would be an interesting question to construct more concrete lattice Hamiltonian models

with a tensor product Hilbert space, but we leave it as a future work.

We have two applications: the first is given in section 3, where we construct gapped

boundaries for time-reversal invariant bosonic SPT phases for any finite internal symmetry

group G, which are known to be characterized by Ωunoriented(BG). This result follows

easily from our general construction and a mathematical theorem from the late 60s which

describe the relevant bordism group explicitly. The resulting gapped boundary is in general

a higher-form gauge theory whose action is given by a cohomology class. As such, it can

be given a state-sum construction where we assign cochains on a triangulation of the

spacetime. The second is given in section 4, where we construct gapped boundaries for

a subclass of fermionic SPT phases known as the Gu-Wen phases, originally introduced

2Note that it is not immediate that every SPT phase admits any boundary at all in the first place.

For example, Ωspin
4n (pt) has a quotient ' Zr(n) related to the polynomials of Pontryagin classes, which

corresponds to various spin SPT phases in 4n− 1 dimensions. It is a nontrivial mathematical theorem [1]

that they can be detected by KO-Pontryagin classes. Physically, this means that these SPT phases represent

anomalies of free fermions which can have additional tangent bundle indices.
3The classification is more properly be about the invertible phases, not about the SPT phases. See

footnote 1.
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in [33] and studied further in [34]. This will be done by extending the definition of the

Gu-Wen Grassmann integral from the bulk to the coupled system of the bulk and the

boundary. Again, this allows us to construct a gapped boundary for Gu-Wen phases for

any finite internal symmetry group. This is a fermionic state-sum construction, where we

not only assign group-valued labels on the edges of the triangulations but also Grassmann

variables to account for spin structures.

2 General construction

2.1 The symmetry extension method

Let us first recall the symmetry extension method to construct gapped boundaries for

cohomological SPT phases, described in [19, 22, 23]. Take a class [y] ∈ Hd+1(BG,U(1))

where y ∈ Zd+1(BG,U(1)). The corresponding bulk SPT phase has the action
∫
Nd+1

y.

Assume that there is an extension

0→ K → H
p→ G→ 0 (2.1)

and the corresponding fibration

BK → BH
p→ BG (2.2)

such that δx = p∗y for x ∈ Cd(BH,U(1)). We let p denote both of the projection between

the groups H → G and the projection between their classifying spaces BH → BG.

Consider the boundary gauge theory whose partition function has the form

Z ∝
∑

h∈[M,BH]

exp

(
−2πi

∫
M
h∗x

)
(2.3)

where we sum over the H gauge fields specified by h ∈ [M,BH ] which lifts a given G

background gauge field specified by g ∈ [M,BG]. This provides a gapped boundary with

the anomaly y.

To see this, we explicitly show that the theory on M couples to the bulk N where

∂N = M . Suppose we are given g : N → BG such that it lifts to h : M → BH on the

boundary. Then g∗y = δ(h∗x) on the boundary. Therefore
∫
N g
∗y−

∫
M h∗x is well-defined.

In particular, as shown in [23] we can choose an abelian K with a nontrivial G action

such that every y ∈ Zd+1(BG,U(1)) can be written as y = e ∪ z where e ∈ Z2(BG,K) is

the extension class and z ∈ Zd−1(BG, K̂). Almost tautologically there is a ∈ C1(BH,K)

such that δa = e, implying x = −a ∪ z satisfies y = δx.

Now note that an h : M → BH lifting g : M → BG provides a := h∗a ∈ C1(M,K)

such that δa = g∗e. Then the boundary gauge theory (2.3) becomes∑
δa=g∗e

exp

(
2πi

∫
M
a ∪ g∗z

)
=

∑
a∈C1(M,K),

b∈Cd−2(M,K̂)

exp

(
2πi

∫
M

(a ∪ δb+ a ∪ g∗z + (g∗e) ∪ b)
)

(2.4)

where a was simply denoted by a.
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2.2 Extension by higher-form symmetries

We note that the action (2.4) is an example of the topological Green-Schwarz mechanism.

More generally, we can consider a cochain field theory whose partition function is of the form

Z ∝
∑

a∈Cp(M,K),

b∈Cq(M,K̂)

exp

(
2πi

∫
M
a ∪ δb+ a ∪A+B ∪ b

)
∝

∑
a∈Cp(M,K),

δa=B

exp

(
2πi

∫
M
a ∪A

)
(2.5)

where p + q = d − 1, A ∈ Zd−p(M, K̂), B ∈ Zd−q(M,K). This is a (p−1)-form K-gauge

theory,4 and couples to a (q + 1)-form K̂-symmetry background A and a (p+ 1)-form K-

symmetry background B.5 This theory has an anomaly
∫
N B ∪A. Our case (2.4) is when

p = 1, A = g∗z and B = g∗e.

This means that the symmetry extension method can be generalized so that the

symmetry is extended by a higher-form symmetry. For example, say that a given y ∈
Zd+1(BG,U(1)) can be written as y = e∪z where e ∈ Zp+1(BG,K) and z ∈ Zq+1(BG, K̂).

Then the (p−1)-form K-gauge theory (2.5) has the anomaly y, by setting A = g∗z and

B = g∗e, and the action x := a ∪ A = a ∪ g∗z is exactly the class x which trivializes g∗y

via δx = g∗y.

The class x itself can be considered as a pull-back via the projection of the fibration

K(K, p)→ BH → BG (2.6)

whose Postnikov class is specified by e ∈ Hp+1(BG,K). Tautologically, there is a cochain

a ∈ Cp(BH,K) such that δa = e and therefore δ(a ∪ z) = e ∪ z = y.

The fibration (2.6) is a fibration among classifying spaces for the extension of symme-

tries

0→ K[p−1] → H → G[0] → 0 (2.7)

where the subscript [d] means a d-form symmetry, and the underlines are used to emphasize

that it represents a symmetry which mixes the ordinary 0-form symmetry and the higher

(p− 1)-form symmetry.

More generally, if the anomaly class y ∈ Hd+1(BG,U(1)) is trivialized in BH so that

there is an x ∈ Cd(BH,U(1)) such that δx = y, we can simply consider the d-dimensional

(p−1)-form K-gauge theory whose partition function is

Z ∝
∑

h∈[M,BH],
p(h)=g,

e−2πi
∫
M h∗x (2.8)

which has the required anomaly.

4Our convention is that an ordinary gauge theory is a 0-form gauge theory having a one-form gauge

field.
5For the basics of higher form symmetries, see e.g. [35].
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2.3 Symmetry breaking as symmetry extension

Let us now consider an extreme case of the construction in the last subsection. Recall that

one way to trivialize a class in H∗(BG,U(1)) is to consider the fibration

G→ EG→ BG. (2.9)

Since EG is contractible, every class in H∗(BG,U(1)) trivializes when pull-backed via the

projection. This means that a boundary sigma model with the target space G can couple to

any bulk theory with G-symmetry. In particular, the G-bundle trivializes on the boundary.

This is the limiting case when p = 0 in the discussion in the last subsection, in particular

around (2.6), since for a finite group G we have K(G, 0) = G and K(G, 1) = BG.

Since the symmetry G acts on the sigma model by a permutation, this corresponds

to the symmetry breaking. In general the dimension of the Hilbert space on Sd−1 is |G|.
We are interested in gapped boundaries where the symmetry is unbroken. One necessary

condition then is that the Hilbert space on Sd−1 is one-dimensional.

In the case of higher symmetries, we have a standard fibration6

K(A, p)→ ∗ → K(A, p+ 1). (2.10)

Therefore, any class H∗(K(A, p + 1),U(1)) characterizing the anomaly of a p-form A-

symmetry is trivialized if we introduce a gauge field ∈ Cp(−, A) for the (p−1)-form A-

symmetry on the boundary. Again this corresponds to the spontaneous symmetry breaking

of the p-form A-symmetry. Note that this still keeps the Hilbert space on Sd−1 to be one

dimensional. So, in the case of the higher symmetry, we would like to keep the A symmetry

unbroken, but this cannot be characterized by the dimension of the Hilbert space on Sd−1.

We note that the construction of the boundary theory describing the symmetry breaking

of a higher symmetries was also discussed in a recent paper [36].

2.4 Cases beyond group cohomology

Preliminaries. We next discuss how the symmetry extension method can be applied

to SPT phases beyond group cohomology. For definiteness we first consider the case of

fermionic SPT phases specified by ω ∈ Hom(Ωspin
d+1(BG)tors,U(1)), but the generalization

to other cases should be straightforward and will be outlined at the end of this paper.

Suppose we have an extension (2.1) such that p∗(ω) = 1, where 1 here means the identity

map sending any element to 1 ∈ U(1). How do we construct a K-gauge theory on the

boundary, which produces for us a gapped boundary?

Consider a (d+ 1)-dimensional spin manifold Nd+1 with boundary ∂Nd+1 = Md, and

its structure map g : Md → BG. We would like to define a K-gauge theory on Md coupled

with the G-background g. This means that we would like to sum over h ∈ [Md, BH]

lifting g ∈ [Md, BG], i.e. over h such that p(h) = g, so that we can define the partition

6For a pointed topological space X there is a path fibration ΩX → LX → X, where ΩX is the loop

space of X and LX is the path space of X which is contractible. We also have ΩK(A, p+ 1) ∼= K(A, p).
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function by7

ZKgauged(Md, g) ∝
∑
p(h)=g

P (h). (2.11)

How do we define a phase P (h) for each h? Note that a state-sum definition of ω is not in

general available. Therefore we need to be slightly more abstract.

For this purpose, we use the Atiyah-Segal description of the invertible G-equivariant

TQFT ZωG associated to the anomaly ω. For the details concerning the construction of the

invertible TQFT from the cobordism class ω ∈ Hom(Ωspin
d+1(BG),U(1)), see [31, 32]. We re-

call only the minimal information about it. For a d-dimensional spin manifold Md equipped

with a structure map g ∈ [Md, BG], the TQFT assigns the Hilbert space ZωG(Md, g). Be-

cause ZωG is invertible, this Hilbert space is one-dimensional. For a (d+1)-dimensional spin

manifold Nd+1 with boundary Md tM
′
d and a map ĝ ∈ [Nd+1, BG], the invertible TQFT

assigns an isomorphism between Hilbert spaces

ZωG(Nd+1, ĝ) : ZωG(Md, ĝ|Md
)→ ZωG(M ′d, ĝ|M ′d), (2.12)

which is interpreted as the Euclidean time evolution along the manifold Nd+1 and the

symmetry insertion ĝ. We regard the empty set ∅ to be a d-dimensional (spin) manifold for

any d. A (d+1)-dimensional closed manifold equipped with a map (Nd+1, ĝ) can be thought

as a bordism between two empty sets. Then, the isomorphism ZωG(Nd+1, ĝ) : ZωG(∅) →
ZωG(∅) provided by the invertible TQFT should be the multiplication by ω(Nd+1, ĝ).

An abstract construction. We first note that that a d-dimensional theory has an

anomaly specified by ω is that the partition function of the boundary theory takes values

in the one-dimensional vector space ZωG(Md, g) rather than in C with a canonically defined

basis vector. Therefore, in the partition function of the form (2.11), the phase P (h) is

better interpreted as a vector |P (h)〉 ∈ ZωG(Md, g) whose norm is one, and we need to

provide a rule to find |P (h)〉. The rule is provided by the assumption that ω trivializes

when pulled back to H. Indeed, our assumption is that Z
p∗(ω)
H is a trivial theory. This

means that there is a canonical basis vector in each of the 1-dimensional vector space:

|1〉(Md,h)
∈ Zp

∗(ω)
H (Md, h), (2.13)

such that they are sent to themselves by the morphisms Z
p∗(ω)
H (Nd+1, ĥ), etc. That we

obtained the H-symmetric theory by a pull-back provides an isomorphism

η : Z
p∗(ω)
H (Md, h)

∼−→ ZωG(Md, p(h)) = ZωG(Md, g) (2.14)

and then we define

|P (h)〉 = η(|1〉(Md,h)
) ∈ ZωG(Md, g). (2.15)

This construction might sound too abstract, so let us spell out the details.

7This expression is schematic; when K is not Abelian, the summand needs to include a factor

|AutK(h)|−1, where AutK(h) is the group of K gauge transformations fixing the H-bundle h.
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A more concrete version. We first note that, because we assume p∗(ω) = 0,

ZωG(Ld+1, p(ĥ)) is the identity map for any closed manifold Ld+1 and any map ĥ to BH.

More generally, two bordisms (Ld+1, p(ĥ)) and (L′d+1, p(ĥ
′)) between manifolds (Md, p(h))

and (M ′d, p(h
′)) give the same map

ZωG(Ld+1, p(ĥ)) = ZωG(L′d+1, p(ĥ
′)) : ZωG(Md, p(h))→ ZωG(M ′d, p(h

′)), (2.16)

as long as all the involved structure maps can be lifted to BH. This can be shown by

considering the union Ld+1 ∪ L′d+1 and applying the statement about closed manifold.

Now, we construct the phase P (h) in (2.11) given the null-bordism (Nd+1, ĝ) of the

pair (Md, g) and a lift h of g with p(h) = g. First, we arbitrarily fix vectors |0〉∅ ∈ ZωG(∅)

and |0〉(Md,g)
∈ ZωG(Md, g), and a lift h0 of g with p(h0) = g. (If g does not lift, the partition

function (2.11) is set to be zero.) When (Md, h) and (Md, h0) are bordant inside BH, we

can set the phase P as

P (h) = (Md,g)〈0|Z
ω
G(Ld+1, p(ĥ))ZωG(Nd+1, ĝ) |0〉∅ , (2.17)

where (Ld+1, ĥ) is any bordism between (Md, h) and (Md, h0). This phase P (h) has the

required anomaly ω since the construction relies on an arbitrary choice |0〉(Md,g)
.

For h with which (Md, h) is not bordant to (Md, h0) in BH, we need to introduce

an additional state as depicted in figure 1. We choose a representative (M̃a
d , h̃

a) for each

bordism class a ∈ Ωspin
d (BH), and pick states |1〉

(M̃a
d ,p(h̃

a))
∈ ZωG(M̃a

d , p(h̃
a)) satisfying the

condition

(M̃a+b
d ,p(h̃a+b))

〈1|ZωG(La,bd+1, p(h̃
a,b))

(
|1〉

(M̃a
d ,p(h̃

a))
⊗ |1〉

(M̃b
d ,p(h̃

b))

)
= 1, (2.18)

where (L̃a,bd+1, h̃
a,b) is an arbitrary bordism between (M̃a

d , h̃
a) t (M̃ b

d , h̃
b) and (M̃a+b

d , h̃a+b).

Such a choice of |1〉
(M̃a

d ,p(h̃
a))

is not unique, and another choice can be parametrized

by ω̃ ∈ Hom(Ωspin
d (BH),U(1)) as

|ω̃〉
(M̃a

d ,p(h̃
a))

= ω̃(M̃a
d , h̃

a) |1〉
(M̃a

d ,p(h̃
a))
. (2.19)

Then, the phase P (h) in general can be defined by

P (h) = (Md,g)〈0|Z
ω
G(Ld+1, p(ĥ))

(
|ω̃〉

(M̃d,p(h̃))
⊗ ZωG(Nd+1, ĝ) |0〉∅

)
(2.20)

as illustrated in figure 1, where (M̃d, h̃) is the chosen representative of the bordism class

[Md, h] − [Md, h0] and (Ld+1, ĥ) is an arbitrary bordism between (Md, h) and (Md, h0) t
(M̃d, h̃). We have obtained multiple boundary theories in general, each of which (non-

canonically) corresponds to an element ω̃ of Hom(Ωspin
d (BH),U(1)); they form a torsor

over ω̃ of Hom(Ωspin
d (BH),U(1)).8

8Difference in the pure gravity part Hom(Ωspin
d (pt),U(1)) of Hom(Ωspin

d (BH),U(1)) merely gives the

difference in the gravitational counter term on the boundary.
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(Md, h0) (Nd+1, ĝ) |0〉∅(Md, h)(Md,g)〈0| (Ld+1, ĥ)

(M̃d, h̃)

|ω̃〉
(M̃d,p(h̃))

Figure 1. The geometric configuration defining P (h) in (2.20).

The case of cohomological SPT phases. The construction can be applied to the

bosonic SPT phases by just ignoring the spin structure on the manifolds. When the

SPT corresponds to a cohomology element ω ∈ Hd+1(BG,U(1)), the construction (2.20)

coincides with the construction of [22] which was reviewed in section 2.1. In this setup,

when the (Md, h) and (Md, h0) are bordant in BH, the formula (2.17) computes

P (h) ∝ e−
∫
Ld+1

p(ĥ)∗(ω)+
∫
Nd+1

ĝ∗ω
, (2.21)

up to a overall phase independent of h. As p∗ω is trivial, we can take a cochain x on BH

with δx = p∗ω. Then the phase can be rewritten as

P (h) = e
−

∫
Md

h∗x+
∫
Nd+1

ĝ∗ω
, (2.22)

where the factor
∫
Md

h∗0x is absorbed into the overall coefficient. The phase (2.22) is

precisely what is reviewed in section 2.1. Indeed, the formula (2.22) also holds when

(Md, h) and (Md, h0) are not bordant.9 The ambiguity parametrized by ω̃ corresponds to

the ambiguity of the choice of x.

The action of the K-gauge theory. From the assumption p∗(ω) = 1, the ω should not

contain the pure gravity anomaly. Therefore, the phase (2.11) should define a spin K-gauge

theory without gravitational anomaly. When the background g is turned off, the action of

such a gauge theory is supposed to be given by an element ωK ∈ Hom(Ωspin
d (BK)tors,U(1)).

However, the definition (2.20) works only when Md is null-bordant as a spin manifold

without an additional structure map. For general Md, we can instead define ωK as

ωK(k ∈ [Md, BK]) = (Md,0)〈0|Z
ω
G(Ld+1, p(ĥ))

(
|ω̃〉

(M̃d,p(h̃))
⊗ |0〉(Md,0)

)
, (2.23)

where i : K → H is the injection with p ◦ i = 0, (M̃, h̃) is the representative of the bor-

dism class [Md, i(k)] − [Md, 0], and (Ld+1, ĥ) is an arbitrary bordism between (Md, i(k))

9The relation (2.21) does not apply in this case, because the states |1〉(M̃d,h̃)
are prepared so that they

cancel the contribution e
∫
M̃d

h̃∗x
coming from e

∫
Ld+1

p(ĥ)∗ω
, which can be observed from (2.18).
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(Md, 0) |0〉(Md,0)(Md, i(k))(Md,0) 〈0| (Ld+1, ĥ)

(M̃d, h̃)

|ω̃〉
(M̃d,p(h̃))

Figure 2. The geometric configuration defining ωK in (2.23).

and (Md, 0) t (M̃d, h̃). The geometry of (2.23) is illustlated in figure 2. One can

check that this action depends only on the spin-bordism class of (Md, k), and hence

ωK ∈ Hom(Ωspin
d (BK),U(1)). This action ωK depends on ω̃ ∈ Hom(Ωspin

d (BH),U(1)),

and in fact the set of possible ωK obtained in this way is an i∗Hom(Ωspin
d (BH),U(1))-

torsor. Therefore, we have obtained the secondary cohomology operation

Ker(p∗d+1)→ Coker(i∗d) (2.24)

of the Pontryagin dual of the spin-bordism homology, where p∗d+1 : Hom(Ωspin
d+1(BG),U(1))

→ Hom(Ωspin
d+1(BH),U(1)) and i∗d : Hom(Ωspin

d (BH),U(1)) → Hom(Ωspin
d (BK),U(1)) are

the pull-backed associated to p : BH → BG and i : BK → BH.

Further generalizations. The construction above can be generalized further in a few

ways. First, the manifold structure does not necessarily have to be the spin structure.

It could be orientation, pin±, or nothing at all. In these cases we use the corresponding

bordism groups, namely oriented, pin±, or unoriented bordism group, respectively. A more

exotic structure could be considered if we wanted. Second, the groups K, H, and G do not

necessarily have to be ordinary groups, but can be higher-groups, because the construction

works for a general fibration F → E → B instead of BK → BH → BG with ordinary

groups K, H and G.10

Lastly, we can generalize the construction by allowing for H and G to involve the

spacetime symmetry. In this case, the anomaly ω can contain a pure gravity part. For

example, we can take the pure gravitational anomaly ω ∈ Hom(ΩSO
5 (pt),U(1)) which

corresponds to the Stiefel-Whitney polynomial w2w3. This anomaly can be trivialized by

10Although H and G can also be continuous groups, K needs to be a finite group, or |π∗(BK)| needs

to be finite when K is a higher group, for the sum (2.11) to make sense. When K is not an ordinary

group, the factor 1

|K||π0(Md)|
should be modified. For the case with BK = K(A, p), the factor is replaced by∏(p−1)/2

i=0
|H2i−1(Md,A)|
|H2i(Md,A)| when p is odd, where |H−1(Md, A)| is understood to be 1, and

∏p/2−1
i=0

|H2i(Md,A)|
|H2i+1(Md,A)|

when p is even. These factors represents the residual gauge redundancies, the gauge redundancies of the

gauge redundancies, and so on. For the general K case, see [37] and references therein.
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the extension of the spacetime symmetry group

1→ Z2 → Spin(5)→ SO(5)→ 1. (2.25)

In this case, Ωspin
d+1(BG) and Ωspin

d+1(BH) in the above construction is replaced by ΩSO
d+1(pt)

and Ωspin
d+1(pt). Then the boundary theory is given by summing over the spin structures on

Md with the phase (2.11).11 As a cochain field theory, it can be written as

Z ∝
∑
δa=w2

exp

(
i

∫
M
a ∪ w3

)
=

∑
a∈C1(M,Z2),

b∈Cd−2(M,Z2)

exp

(
πi

∫
M

(a ∪ δb+ a ∪ w3 + w2 ∪ b)
)
, (2.26)

and was discussed in [38]. In general, when H and G involve the spacetime symmetry, the

bordism group of BH and BG needs to be replaced by the corresponding Madsen-Tilman

spectra. See [31] for detail.

Summary. Summarizing, given a symmetry extension trivializing the anomaly, the con-

struction (2.20) provides an abstruct construction of the topological boundary theory of the

corresponding SPT. In the rest of the paper, we are going to give more concrete construc-

tions for certain cases. In section 3, we will see that the cochain integrals are sufficient for

our purposes for time-reversal-invariant bosonic SPT phases. In section 4, we will discuss

the use of the Gu-Wen Grassmann integral in the case of the Gu-Wen SPT phases later.

3 For time-reversal invariant bosonic SPT phases

In this section we discuss time-reversal-invariant bosonic SPT phases protected by a finite

symmetry group G, where we assume that the G action and the time-reversal action are

independent. We can call them as unoriented bosonic invertible phases, and they are

described by Hom(Ωunoriented
d+1 (X),U(1)) where X = BG. Luckily, an explicit and complete

description of this group was already given in the algebraic topology literature in the

1960s [39].12 This allows us to construct gapped boundaries for all of them.

We first recall the homomorphism

H∗(BO,Z2)⊗H∗(X,Z2)→ Hom(Ωunoriented
d+1 (X),U(1)). (3.1)

This is obtained by integrating an element on the left hand side, i.e. a polynomial of the

universal Stiefel-Whitney classes wi and the cohomology classes αi of X, on the (d + 1)-

dimensional manifold M equipped with a map f to X, by using the Stiefel-Whitney classes

wi(TM) of the tangent bundle and the pullbacks f∗(αi). The theorem [39] asserts that

this homomorphism is surjective; the theorem also explicitly describes the kernel.

11When ω contains a pure gravity part, there is no way to “turn off” the gravity background. So we

cannot extract a purely d-dimensional K-gauge theory from the construction, and hence the paragraph

containing (2.23) does not generalize to this case.
12The 2nd edition of the textbook [40] contains a very readable account in its chapter I.18.
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Let us now show that we can construct a gapped boundary theory for an unoriented

invertible phase by the symmetry extension. As argued above, the bulk invertible phase is

specified by ∑
p+q=d+1

Pp(wi)αq (3.2)

where αq ∈ Hq(BG,Z2) and Pp(wi) is a degree-p combination of the spacetime Stiefel-

Whitney classes. We first apply the symmetry extension method [19, 22, 23] to find an

extension G̃ of G such that αq≥2 all become trivial. This step is possible since G was as-

sumed to be finite, and the extension only introduces 0-form Abelian gauge fields. Therefore

we can assume without loss of generality that the bulk invertible phase is specified by

Pd+1(wi) + α1Qd(wi), (3.3)

where α1 ∈ H1(BG̃,Z2) and P,Q ∈ H∗(BO,Z2) with the degrees specified in the sub-

scripts.

We note that introducing a p-form Z2 gauge field a on the boundary with δa = wp+2

corresponds to an extension of the structure

K(Z2, p+ 1)→ BH → BO, (3.4)

and trivializes the anomaly involving wp+2. (We note that we prefer to take p ≤ d − 3.

If p = d − 2, the Hilbert space on Sd−1 can be two-dimensional, which we do not want.)

Therefore the question is whether we can trivialize the entire anomaly (3.3) by repeating

this process.

This can be done recursively, as follows. We use a mathematical result [41] which says

that H∗(BO,Z2) as an algebra over the Steenrod algebra is generated by w1, w2, w4, . . . ,

w2r ,. . . . This in particular means that if w2r = 0 for r ≤ R, we have wi = 0 for i < 2R+1,

since these wi can be generated from w2r with r ≤ R using the Steenrod squares, additions

and multiplications. We also use the fact that the Wu class has the form

ν2r = w2r + decomposables (3.5)

and that the Wu class νk vanishes on a (d + 1)-dimensional space if 2k ≥ d + 1; for Wu

classes, see e.g. [42] or [43].

First, we introduce two 1-form Z2 gauge fields (for 0-form Z2 gauge symmetries) a, b

trivializing (w1)
2 and w2. This kills all polynomials of Stiefel-Whitney classes up to and

including w3, already at the level of H∗(BO,Z2). Since the Wu class ν4 vanishes if d+1 < 8,

w4 also vanishes, and therefore every Stiefel-Whitney polynomial (except w1 itself) vanishes

and the anomaly (3.3) is trivialized if d+ 1 < 8.

Next, when d+1 ≥ 8, we introduce a 3-form Z2 gauge field a3 trivializing w4. This kills

all polynomials of Stiefel-Whitney classes up to and including w7, already at the level of

H∗(BO,Z2). Since the Wu class ν8 vanishes if d+ 1 < 16, w8 also vanishes, and therefore

every Stiefel-Whitney polynomial (except w1 itself) vanishes and the anomaly (3.3) is

trivialized if d+ 1 < 16.
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In general, when d + 1 ≥ 2r+1, we introduce a (2r − 1)-form Z2 gauge field a2r−1
trivializing w2r . This kills all polynomials of Stiefel-Whitney classes up to and including

w2r+1−1, already at the level of H∗(BO,Z2). Since the Wu class ν2r+1 vanishes if d + 1 <

2r+2, w2r+1 also vanishes, and therefore every Stiefel-Whitney polynomial (except w1 itself)

vanishes and the anomaly (3.3) is trivialized if d+ 1 < 2r+2.

We note that the resulting gapped boundary is given in general by a finite gauge theory

with both higher-form gauge fields and 0-form gauge fields. Its action is simply given by a

cohomology class. Therefore, by giving the spacetime a triangulation, we can use cochains

and group elements assigned to the edges to write a state-sum description of the gauge

theory on the gapped boundary.

4 For Gu-Wen spin SPT phases

The Gu-Wen phases are a subset of fermionic SPT phases which admit a particularly

explicit description, first studied in [33] and further explored in [34]. The aim of this

section is to construct gapped boundaries for Gu-Wen phases by the symmetry extension

method. As we will see, the applicability of this method requires that we can trivialize

the cohomology classes specifying the Gu-Wen phase by some extension. This condition is

automatically satisfied for any finite group G, and therefore our methods provides a gapped

boundary for an arbitrary Gu-Wen phase for any finite group G.

This provides a fermionic state-sum description for the gapped boundary theory, where

we not only assign group elements on the edges of a triangulation of the spacetime manifold

but also Grassmann variables to detect the spin structure dependence. The partition

function is then given by a path integral over these labels, i.e. by summing over the group

elements and integrating over the Grassmann variables.

Before proceeding, we note that in a paper [44] a gapped boundary for a 3+1d Gu-

Wen phase where G = Z2 × Z4 was constructed by a similar method. We also note that

in [45] a gapped boundary for a 3+1d fermionic SPT phase protected not only by the

internal symmetry but also by spatial symmetries (in this case the crystalline translation

symmetry). It would be interesting to generalize our framework so that it is applicable to

crystalline SPT phases.

4.1 Strategy

The Gu-Wen spin invertible theories form a subgroup of Hom(Ωspin
d+1(BG),U(1)) and is

specified by a pair (nd, yd+1) ∈ Zd(BG,Z2) × Cd+1(BG,U(1)) satisfying Sq2 nd = δyd+1,

where Sq2 n := n ∪d−2 n. For a given g : N → BG where N is a spin (d+ 1)-manifold, the

action of the invertible theory is given by [33, 34]13

σ(g∗nd) exp(πi

∫
N

(η ∪ g∗nd + g∗yd)) (4.1)

13For a more mathematical treatment, see papers by Brumfiel and Morgan [46].
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where σ(g∗nd) = ±1 is the Grassmann integral of Gu-Wen [33] as formulated by Gaiotto

and Kapustin [34], and δη = w2 specifies the chosen spin structure.14

In this subsection, we write down the explicit d dimensional action on the boundary of

(d + 1) dimensional Gu-Wen spin G-SPT phase specified by the Gu-Wen data (nd, yd+1).

To construct the gapped boundary, we prepare a symmetry extension by a symmetry K̃

0→ K̃ → H̃
p̃→ G→ 0 (4.2)

such that nd trivializes as an element of Hd(BH̃,Z2); [p̃∗nd] = 0 ∈ Hd(BH̃,Z2).

We now take m̃d−1 ∈ Cd−1(BH̃,Z2) such that p̃∗nd = δm̃d−1. We see that zd+1 =

p̃∗yd+1 − Sq2 m̃d−1 is a cocycle, where Sq2 m̃d−1 = m̃d−1 ∪d−3 m̃d−1 + δm̃d−1 ∪d−2 m̃d−1.

Therefore the bulk Gu-Wen data are pulled back to (δm̃d−1, Sq2 m̃d−1 + zd+1). We now

assume that there is a further extension of the symmetry

0→ K → H
p→ H̃ → 0 (4.3)

such that p∗zd+1 = δxd for some xd ∈ Cd(BH,U(1)). We set md−1 = p∗m̃d−1.

When G is finite, the necessary extensions (4.2) and (4.3) can be prepared by gen-

eralizing the argument of [23]. In the general discussion below, we simply need such an

extension, possibly with a higher-form symmetry, so that the cohomology classes involved

trivialize.15

We now expect that the action of the K-gauge theory on the boundary is given by∑
p(h)=g

σ(h∗md−1) exp

(
πi

∫
M

(η ∪ h∗md−1 + h∗xd)

)
, (4.4)

but to make sense of this expression we have to extend the definition of the Gu-Wen

Grassmann integral σ(αd−1) to the case when αd−1 ∈ Cd−1(M,Z2) is not necessarily closed.

We will see that such extended Gu-Wen integral nicely couples to the bulk in a gauge

invariant fashion. For this purpose, let us start by recalling the construction of the Gu-

Wen Grassmann integral σ(M,α) for closed α.

4.2 Review of the Gu-Wen Grassmann integral

We first endow M with a triangulation. In addition, we take the barycentric subdivision

for the triangulation of M . Namely, each d-simplex in the initial triangulation of M is

subdivided into (d+1)! simplices, whose vertices are barycenters of the subsets of vertices in

the d-simplex. We further assign a local ordering to vertices of the barycentric subdivision,

14In [34] Gaiotto and Kapustin proposed and used an explicit cocycle representative of w2. We note that

the explicit cocycle representatives for wn were in fact originally conjectured by Stiefel and Whitney; this

was later proved in the 70s, see e.g. p.143 of [42], or [47, 48] and references therein.
15The degrees of these higher form symmetries K and K̃ need to be less than d−2 for the resulting gauge

theory to be meaningful as a TQFT. When either K or K̃ is of degree d−2, the TQFT has degenerate vacua

on Sd−1. When K and K̃ have different degrees, the boundary TQFT becomes in general a gauge theory

with a higher-group, which is more general than the higher-form symmetry, and the gauge redundancy

factor of such a theory should be taken care of carefully [37].
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such that a vertex on the barycenter of i vertices is labeled by i, as was done in [34]. Each

simplex can then be either a + simplex or a − simplex, depending on whether the ordering

agrees with the orientation or not. We assign a pair of Grassmann variables θe, θe on each

(d− 1)-simplex e of M such that α(e) = 1 for a given α ∈ Zd−1(M,Z2). We say that θe is

contained in one of d-simplices neighboring e, and θe is contained in the other d-simplex;

we will specify the detail soon. Then, σ(M,α) is defined as

σ(M,α) =

∫ ∏
e|α(e)=1

dθedθe
∏
t

u(t), (4.5)

where t denotes a d-simplex, and u(t) is the product of Grassmann variables contained in

t. For instance, for d = 2, u(t) on t = (012) is the product of ϑ
α(12)
12 , ϑ

α(01)
01 , ϑ

α(02)
02 . Here, ϑ

denotes θ or θ depending on the choice of the assigning rule, which will be discussed later.

The order of Grassmann variables in u(t) will also be defined shortly. We note that u(t) is

ensured to be Grassmann-even when α is closed.

Due to the fermionic sign of Grassmann variables, σ(α) becomes a quadratic function,

whose quadratic property depends on the order of Grassmann variables in u(t). We will

adopt the order used in Gaiotto-Kapustin [34], which is defined as follows.

• For t = (01 . . . d), we label a (d−1)-simplex (01 . . . î . . . d) (i.e. a (d−1)-simplex given

by omitting a vertex i) simply as i.

• Then, the order of ϑi = ϑ01···̂i···d for + d-simplex t is defined by first assigning even

(d− 1)-simplices in ascending order, then odd simplices in ascending order again:

0→ 2→ 4→ · · · → 1→ 3→ 5→ . . . (4.6)

• For − d-simplices, the order is defined in opposite way:

· · · → 5→ 3→ 1→ · · · → 4→ 2→ 0. (4.7)

For example, for d = 2, u(012) = ϑ
α(12)
12 ϑ

α(01)
01 ϑ

α(02)
02 when (012) is a + triangle, and

u(012) = ϑ
α(02)
02 ϑ

α(01)
01 ϑ

α(12)
12 for a − triangle. Then, we choose the assignment of θ and θ

on each e such that u(t) includes θe when e is labeled by an odd (resp. even) number if t

is a + (resp. −) simplex, see figure 3.

Based on the above definition of u(t), the quadratic property of u(t) is given by

σ(α)σ(α′) = σ(α+ α′)(−1)
∫
α∪d−2α

′
, (4.8)

for closed α, α′. To see this, we just have to bring the product of two Grassmann integrals

σ(α)σ(α′) =

∫ ∏
e|α(e)=1

dθedθe
∏

e|α′(e)=1

dθedθe
∏
t

u(t)[α]
∏
t

u(t)[α′] (4.9)

into the form of σ(α+α′) by permuting Grassmann variables, and count the net fermionic

sign. First of all, each path integral measure on e picks up a sign (−1)α(e)α
′(e) by permuting
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Figure 3. Assignment of Grassmann variables on 1-simplices in the case of d = 2. θ (resp. θ) is

represented as a black (resp. white) dot.

dθ
α(e)
e and dθ

α′(e)
e . For integrands, u(t) on different d-simplices commute with each other

for closed α, so nontrivial signs occur only by reordering u(t)[α]u(t)[α′] to u(t)[α + α′] on

a single d-simplex. The sign on t is explicitly written as

(−1)
∑e>e′

e,e′∈t α(e)α
′(e′)

, (4.10)

where the order e > e′ is determined by u(t). Hence, the net fermionic sign is given by

σ(α)σ(α′) = σ(α+ α′)
∏
t

(−1)ε[t,α,α
′], (4.11)

with

ε[t, α, α′] =
∑

e,e′∈t,e>e′
α(e)α′(e′) +

∑
e∈t,e>0

α(e)α′(e), (4.12)

where e > 0 if u[t] includes a θe variable. Then, the sign ε[t, α, α′] has a neat expression

in terms of the higher cup product. For later convenience, we compute ε[t, α, α′] including

the case that α, α′ are not closed.

At a + simplex, after some efforts we can rewrite ε[t, α, α′] as

ε[t, α, α′] =
∑
i

α2i+1 · δα′(t) +
∑
i<j

α2i+1α
′
2j+1 +

∑
i>j

α2iα
′
2j

= α ∪d−2 α′ + α ∪d−1 δα′.
(4.13)

At a − simplex, similarly we have

ε[t, α, α′] =
∑
i

α2i · δα′(t) +
∑
i<j

α2i+1α
′
2j+1 +

∑
i>j

α2iα
′
2j

= δα(t)δα′(t) + α ∪d−2 α′ + α ∪d−1 δα′.
(4.14)

We can see the quadratic property (4.8) when α, α′ are closed.

The change of σ(α) under the gauge transformation α→ α + δγ or under the change

of the triangulation is controlled by the formula

σ(M̃, α̃) = (−1)
∫
K(Sq2(α)+w2∪α)σ(M,α), (4.15)
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where M̃ is the same manifold M with a different triangulation, α̃ is a cocycle such that

[α] = [α̃] in cohomology, and K = M × [0, 1] such that the two boundaries are given by M

and M̃ , and finally α is extended to K so that it restricts to α and α̃ on the boundaries.

The derivation was given in [34].

We note that due to the Wu relation [43], we have

(−1)
∫
K(Sq2(α)+w2∪α) = +1, (4.16)

when K is an oriented closed manifold and α is a cocycle. This means that
∫
K(Sq2(α) +

w2∪α) represents a trivial phase in d+1 dimensions, and therefore there should be a trivial

boundary in d dimensions. We can think of the Gu-Wen Grassmann integral σ(M,α) as

providing an explicit formula for such a trivial boundary.

4.3 Bulk-boundary Gu-Wen Grassmann integral

When we naively use the above definition (4.5) when α is not closed: δα = β, the result-

ing expression is problematic since u(t) can become Grassmann-odd. We can avoid this

conundrum by coupling it with the Gu-Wen integral σ(N, β) in (d + 1) dimensional bulk

N such that ∂N = M , making all components in the path integral Grassmann-even.

Now let us write down the boundary Gu-Wen integral coupled with bulk; we denote

the entire integral by σ(α;β). We assign Grassmann variables θe, θe on each (d−1)-simplex

e of M , and θf , θf on each d-simplex f of N \M . We define the Gu-Wen integral as

σ(α;β) =

∫ ∏
f |β(f)=1

dθfdθf

∫ ∏
e|α(e)=1

dθedθe
∏
t

u(t), (4.17)

where u(t) is a monomial of Grassmann variables defined on a (d+1)-simplex of N . u(t)[β]

is defined in the same fashion as the case without boundary if t is away from the boundary,

but modified when t shares a d-simplex with the boundary. For simplicity, we assign

an ordering on vertices of such t = (01 . . . d + 1), so that the d-simplex shared with M

becomes f0 = (12 . . . d+1); the vertex 0 is contained in N \M . For instance, we can take a

barycentric triangulation on N , and assign 0 to vertices associated with (d+ 1)-simplices.

Then, u(t) with t neighboring with M is defined by replacing the position of ϑf0 in u(t)[β]

with the boundary action on f0, u(f0)[α] =
∏
e∈f0 ϑ

α(e)
e . We then have: on a + simplex,

u(t) = u(f0)[α] ·
∏

f∈∂t,f 6=f0

ϑ
β(f)
f . (4.18)

On a − simplex,

u(t) =
∏

f∈∂t,f 6=f0

ϑ
β(f)
f · u(f0)[α]. (4.19)

One can check that u(t) defined above becomes Grassmann-even. For later convenience,

we will also define the variant σ(α;β) of the Gu-Wen integral σ(α;β) defined above, by

changing the role of θ and θ in u(f0). Namely, we use u(t) = u(f0) ·
∏
f∈∂t,f 6=f0 ϑ

β(f)
f
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in (4.17), where u(f0) denotes a monomial given by replacing θ ↔ θ in u(f0). σ(α;β) and

σ(α;β) only differs by linear and gauge invariant counterterm on M ,

(−1)
∑

e∈M α(e) = (−1)
∑

f+∈M
β(f+)

, (4.20)

where f+ denotes + simplices in M .

We now show that the modified Gu-Wen integrals (4.17) σ, σ both satisfy the quadratic

property

σ(α+ α′;β + β′) = σ(α;β)σ(α′;β′)(−1)
∫
M α∪d−2α

′+α∪d−1δα
′+

∫
N β∪d−1β

′
. (4.21)

Basically, the quadratic property is derived in the same manner as the case without bound-

ary. The net fermionic sign is expressed in terms of

σ(α;β)σ(α′;β′) = σ(α+ α′;β + β′)
∏
f

(−1)ε[f,α,α
′]
∏
t

(−1)ε̃[t,β,β
′]. (4.22)

Here, ε[f, α, α′] is the same as (4.13), (4.14), which counts the sign on the boundary;

(−1)α(e)α
′(e) by permuting the measure dθ

α(e)
e , dθ

α′(e)
e on (d − 1)-simplices in M , and the

sign that occurs by reordering u(f0)[α]u(f0)[α
′] to u(f0)[α+ α′] on a d-simplex f0 in M .

ε̃[t, β, β′] counts the sign on the bulk, which is identical to ε[t, β, β′] away from the

boundary, that is ε̃[t, β, β′] = β ∪d−1 β′. However, when t shares a (d− 1)-simplex f0 with

M , the sign is modified at − simplices due to the absence of (−1)β(f0)β
′(f0) sign from the

measure, since we do not have a Grassmann variable ϑf0 attached to f0. Hence, on a +

simplex we have

ε̃[t, β, β′] = β ∪d−1 β′. (4.23)

However, on a − simplex we instead have

ε̃[t, β, β′] = β ∪d−1 β′ − β(f0)β
′(f0). (4.24)

Now, we see that on the boundary such that f0 ∈ ∂t,

ε[f0, α, α
′]ε̃[t, β, β′] = α ∪d−2 α′ + α ∪d−1 δα′ + β ∪d−1 β′, (4.25)

on both + and − simplices. Here, we are choosing the orientation of simplices such that

the orientation of a d-dimplex f agrees with t such that f ∈ ∂t, when f is labeled by

an even integer, and disagrees when f is labeled by an odd integer. Then, we have the

identical orientation on f0 and t, hence in − simplices the β(f0)β
′(f0) term in (4.24) cancels

with the δα(f0)δα
′(f0) in (4.14). Therefore, now we see that the overall fermionic sign is

summarized as (4.21).

4.4 Effect of the change of the triangulation

To compare the value of the Gu-Wen integral on N with different triangulations, we think

of K = N × [0, 1], with the Gu-Wen integral on ∂K = (N ×{0})t (M × [0, 1])t (N ×{1}),
see figure 4 (a). Suppose we have two triangulations and configurations of (α, β) we want
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to compare, on N × {0} and N × {1}, respectively. We will compute the effect of re-

triangulations by showing that

σ(N × {0})σ(M × [0, 1])σ(N × {1}) = (−1)
∫
K Sq2(β)+w2∪β . (4.26)

Here we have extended β ∈ Zd(∂K,Z2) to K on the right hand side of the above relation.

To see (4.26), we first observe the quadratic property of σ̃(α;β) := σ(N × {0})σ(M ×
[0, 1])σ(N × {1}),

σ̃(α;β)σ̃(α′;β′) = σ̃(α+ α′;β + β′)(−1)
∫
∂K β∪d−1β

′
, (4.27)

which can be seen by applying quadratic property of σ (4.21) on N × {0}, M × [0, 1],

N × {1}. Note that (4.27) is satisfied for

σ̃′(α;β) = (−1)
∫
K Sq2(β), (4.28)

where we set Sq2(β) := β∪d−2 β+δβ∪d−1 β. Thus, we can express σ̃(α;β) as (−1)
∫
K Sq2(β)

up to linear term,

σ̃(α;β) = (−1)
∫
K Sq2(β)(−1)

∑
f∈K χ(f)β(f). (4.29)

The linear term is fixed by computing σ̃(α;β) explicitly in the simplest case; β = δλ on

∂K, and λ(e) = 1 on a single (d− 1)-simplex of ∂K, otherwise 0. If we take a barycentric

triangulation on ∂K, it is not hard to see that σ̃(α = 0; δλ) = −1 when λ is nonzero away

from the boundary of N ×{0}, M × [0, 1], N ×{1}, by imitating the logic of section 4.1. in

Gaiotto-Kapustin [34]. In the case that λ is nonzero on the boundary where λ is identified

as α, we can show that σ(N × {0}) = 1, σ(M × [0, 1]) = −1 (resp. σ(N × {1}) = 1,

σ(M × [0, 1]) = −1), when α(e) is nonzero on a single (d − 1)-simplex on M × {0} (resp.

M × {1}). Thus, we have σ̃(λ; δλ) = −1, see figure 4 (b).

Since the quadratic term Sq2(β) vanishes for such β, the linear term is fixed as

(−1)
∫
K w2∪β . Now we can write σ̃(α;β) = (−1)

∫
K Sq2(β)+w2∪β , and

σ(N × {1}) = σ(N × {0}) · σ(M × [0, 1])(−1)
∫
K Sq2(β)+w2∪β . (4.30)

Next, we determine the form of quadratic function σ(M × [0, 1]) with the property (4.21).

Note that (4.21) is satisfied for

σ′(M × [0, 1]) = (−1)
∫
M×[0,1] Sq

2(α)
. (4.31)

Thus, we can express σ(M × [0, 1]) as (−1)
∫
M×[0,1] Sq

2(α)
up to linear term,

σ(M × [0, 1]) = (−1)
∫
M×[0,1] Sq

2(α)
(−1)

∑
e∈M×[0,1] λ(e)α(e). (4.32)

Note that α extends to M× [0, 1] because α−α′ is assumed to be a coboundary. The linear

term is again fixed by computing σ(M × [0, 1]) explicitly in the simplest case; α(e) = 1 on

a single (d− 1)-simplex, otherwise 0. If we take a barycentric triangulation on M × [0, 1],

it is not hard to see that σ(α; δα) = −1 for such α. In the case that α is nonzero on

– 18 –
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Figure 4. (a): an example of K such that ∂K = (N × {0}) t (M × [0, 1]) t (N × {1}). (b):

triangulation of M × [0, 1] and N × {1} near the attaching region M , in the case of d = 2. Note

that θ (red dot) and θ (white dot) are flipped from the original assignment rule on M in the side

of N × {1}, which makes σ(N × {1}) = 1 when α(e) is nonzero on a single (d− 1)-simplex on M .

In contrast, we have σ(M × [0, 1]) = −1 in such a situation.

boundary, we have to arrange in the computation that the orientation of f0 is chosen to be

identical to t.

Thus, the linear term is fixed as (−1)
∑

e∈M×[0,1] α(e), where the sum runs over all (d−1)-

simplices of a barycentric triangulation for M × [0, 1]. Therefore, we can write the linear

term as (−1)
∫
M×[0,1] w2∪α and

σ(M × [0, 1]) = (−1)
∫
M×[0,1] Sq

2(α)+w2∪α. (4.33)

Then, the variation of σ(α;β) under re-triangulation and gauge transformation becomes

(−1)
∫
M×[0,1](Sq

2(α)+w2∪α)+
∫
N×[0,1](Sq

2(β)+w2∪β). (4.34)

On the other hand, the variation of (−1)
∫
M η∪α+

∫
N η∪β is given by

(−1)
∫
M×[0,1] w2∪α+

∫
N×[0,1] w2∪β . (4.35)

Hence, the variation of the combined term z[η;α, β] = σ(α;β)(−1)
∫
M η∪α+

∫
N η∪β becomes

(−1)
∫
M×[0,1] Sq

2(α)+
∫
N×[0,1] Sq

2(β)
. (4.36)

4.5 Gapped boundary for the Gu-Wen phase

After all these preparations, it is a simple matter to show that the boundary gauge the-

ory (4.4) correctly couples to the bulk Gu-Wen SPT phase. Indeed, the partition function

of the coupled system has the action

z[η;α, β](−1)−
∫
M h∗xd+

∫
N g∗yd+1 (4.37)
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where we take α = h∗md−1 and β = g∗nd. The first factor in (4.37) has the variation (4.36),

whereas the second factor in (4.37) has the variation

(−1)
∫
M×[0,1](h

∗δxd−g∗yd+1)−
∫
N×[0,1] g

∗δyd+1 . (4.38)

These two variations cancel since we have δyd+1 = Sq2(nd) and yd+1 pulls back to

Sq2(md−1) + δxd. This is what we wanted to achieve.
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