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1 Introduction

It has recently become apparent that much can be learned about the structure of quantum

field theories by studying their behaviour in the presence of boundaries and defects. More-

over, as we shall observe, the behaviour itself could embody interesting effects which could

be important in physical applications of the quantum field theories. There has recently been

an effort to understand a boundary electrodynamics model where a photon field resides in

the bulk of 3+1-dimensional space-time and charged matter occupies a 2+1-dimensional

boundary and interacts with the photon through interactions which are localized on the

boundary [1]–[4]. This scenario has been used as an example of a conformal field theory

with an exactly marginal deformation, the electric charge, which is conjectured to have

vanishing beta function. A perturbative computation suggests that, in the weak coupling

regime, the boundary central charges “b1” and “b2” and other data of the conformal field

theory vary continuously with the strength of this coupling.

– 1 –



J
H
E
P
1
1
(
2
0
1
9
)
1
1
4

In this paper, we wish to point out that a defect conformal field theory which is

free field theory in the bulk has some special properties which occur simply due to its

geometry. We will use a defect rather than boundary quantum field theory. Like the

boundary field theory, the defect theory has a free photon in the bulk which is coupled to

the electromagnetic currents of interacting charged fields residing on the defect. We will

consider an infinite, flat, 2+1-dimensional defect which bisects 3+1-dimensional Minkowski

spacetime (which we shall call the “bulk”) into two disjoint regions. In this context, the

main difference between the boundary and the defect conformal field theory is in the

boundary conditions. For a boundary field theory, the electromagnetic field strength obeys

the boundary condition

Fµ⊥(x→ boundary) = Jµboundary(x) (1.1)

whereas for a defect field theory it obeys the boundary condition

Fµ⊥(x→ defect+)− Fµ⊥(x→ defect−) = Jµdefect(x) (1.2)

A comprehensive discussion of bulk Abelian gauge theories with the boundary condi-

tion (1.1) and other boundary conditions related by SL(2,Z) duality [5, 6] is given in

reference [4]. Use of the defect boundary condition on the other hand has a long history,

for example see the discussion in reference [7]. In this paper, we shall use the defect bound-

ary condition. Much of our discussion could easily be adapted to the boundary field theory

case. When we consider the case of a conformal field theory, the conformal symmetry is

the SO(3, 2) conformal group of the defect.

Although most of our results depend only on the defect current-current correlation

function and have a wider degree of generality, we will consider the concrete example of

the defect quantum field theory whose (Euclidean signature time) correlation functions are

computed by inserting operators into the functional integral

Z[j] =

∫
[dψdψ̄dAµ]e−S[A,ψ,ψ̄]+

∫
d4xjµ(x)Aµ(x)∫

[dψdψ̄dAµ]e−S[A,ψ,ψ̄]
(1.3)

where the action has 4-dimensional bulk and 3-dimensional defect components

S[A,ψ, ψ̄] = S4 + S3 =

∫
d4x {L4(x) + δ(z)L3(x)} (1.4)

L4(x) =
1

4
Fµν(x)Fµν(x) + i

θ

4π
εµνρσFµν(x)Fρσ(x) (1.5)

L3(x) = −iψ̄(x)γaDaψ(x) + i
κ̃

4π
εabcAa(x)∂bAc(x) (1.6)

Here, ~ = 1 = c, µ, ν, . . . index four-vectors, for example xµ = (t, x, y, z). The defect

is located at z = 0. The indices a, b, . . . denote three-vectors which lie along the defect

world-volume, for example, xa = (t, x, y). Although up and down indices are not needed

in Euclidean space, in order to make it easier for the reader to convert our formulae

to Minkowski space, we will use up and down indices and we will adhere to the usual

summation conventions.
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The U(1) vector gauge field is Aµ(x), the defect covariant derivative is Da ≡ ∂a− ieAa
and the field strength is Fµν = ∂µAν − ∂νAµ. The field ψ(x) is a two-component spinor of

the Euclidean SO(3) Lorentz group of the defect and we shall consider N species of these

spinors so that the field theory has a global U(N) symmetry. The Dirac matrices have

the algebra
{
γa, γb

}
= 2δab. The three and four dimensional Lagrangian densities written

above contain all of the marginal local operators that can be formed with the vector and

spinor fields which are gauge invariant and Lorentz invariant.

The defect Chern-Simons term could be replaced by a discontinuity of the theta-angle

in the topological term i θ4π ε
µνρσFµν(x)Fρσ(x) which would then have θ jumping by κ̃ as one

crosses the defect. The Chern-Simons term violates parity and time reversal invariance. If

these symmetries are imposed, both κ̃ and θ should be set to zero. Since θ will not play

a role in the following, we will hereafter set it to zero, and retain the Chern-Simons term

when we discuss materials which violate time reversal symmetry.1

There are a few interesting relevant deformations of this theory. One would be a

Fermion mass term imψ̄Tψ where T is a generator of the U(N) symmetry (possibly the

unit matrix). A mass term must violate either parity and time reversal invariance or the

SU(N)⊂U(N) global symmetry. In order to preserve parity and time reversal invariance,

there would have to be another generator, say S, of U(N) with the property S†T +TS = 0,

so that the parity and time-reversal transformations would be augmented by ψ → Sψ.

On the other hand, a U(N) invariant imψ̄ψ mass term violates parity and time reversal.

The Fermion mass deformations gap the spectrum of the Fermions on the defect and they

render the defect an insulator. Moreover, when the Chern-Simons term is present, there

is no symmetry which protects the Fermions from obtaining a U(N) symmetric mass term

and it must be tuned to zero. This can be done consistently order by order in perturbation

theory [8, 9]. Another important relevant deformation is a chemical potential term

δL3(x) = iµψ̄(x)γ0ψ(x)

which can be used to control the Fermion density. We will use it to make a metallic state

of the defect.

The interaction eψ̄(x)γaAaψ(x) is thought to be exactly marginal, at least for those

values of the coupling constant e which are in the perturbative regime. As well, the θ-term

and the Chern-Simons terms have vanishing perturbative beta-functions and this field the-

ory is thought to be a defect conformal field theory for any values of these parameters which

are in the neighborhood of weak coupling. We should point out that strong interactions in

this theory are thought to result in the generation of a mass gap for the Fermions [10, 11]

driven either by strong Coulomb interactions or by four-Fermi interactions which can be-

come relevant at strong enough coupling. In our discussions of defect conformal field theory,

we will assume that the couplings are weak enough that none of these occur.

In the context of the defect field theory that we have outlined, we shall be interested

in the effective field theory of the photon. The essential observation that we make here

1We will not restrict our consideration to compact QED, where the theta term plays a more important

role. For most of our results, there is very little difference between the compact and non-compact theories.
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will be that the fully quantum corrected effective field theory of the photon is still a defect

field theory with a free photon in the 3 + 1-dimensional bulk and interactions confined to

the defect. This observation depends only on the fact that, at the tree level, the bulk is

described by free field theory and that the dynamical currents are confined to the defect,

so this should hold in other interesting field theories as well and, in particular, it does not

depend on conformal or Lorentz invariance. With this observation, we will examine the

weak field response of the defect field theory to the presence of an external electric charge

and current density, which can be positioned either in the bulk or on the defect. We will

find that the presence of the defect alters the electromagnetic field due to the charge and

current density in an interesting way. In the presence of the charge or current density,

the presence of the defect induces an image charge or current. The position of the image

is always on the side of the defect which is opposite to the observer, irrespective of the

position of the charge and current density. If the charge and current density are on the

defect, the position of the image coincides with their positions. If the defect field theory

violates time reversal, the image has magnetic charge as if it were a Dirac monopole. The

magnetic monopole charge generally does not obey the Dirac quantization condition. We

shall discuss how this quantization is avoided in this case. Also, the charge is screened

with the screening depending on the properties of the defect field theory. If the defect is

metallic, the charge is completely screened. If it is semi-metallic, scale invariance as well as

other symmetries lead to a screening which is isotropic and appears as if the spacetime in

the bulk, outside of the defect, is filled with a dielectric substance. Although we shall not

discuss them, our results could have interesting implications for graphene or other single

layer materials.

2 The effective action of defect electrodynamics

To begin, let us recall the definition of the effective field theory. We begin with the classical

field, the one-point function of the photon, αµ(x), which is induced by the presence of the

classical current jµ(x) in the partition function in equation (1.3), computed by

αµ(x) =
∂

∂jµ(x)
lnZ[j] (2.1)

In this equation, x has support in the entire four-dimensional spacetime and it could be

placed on the defect. As usual, the index µ takes on the values (t, x, y, x). We then find

the effective action for this classical field αµ(x) by taking a Legendre transform of the

generating functional,

Γ[α] = − lnZ[j] +

∫
d4x jµ(x)αµ(x) (2.2)

From the structure of the Legendre transformation, the classical field αµ(x) obeys an

equation of motion

δ

δαµ(x)
Γ[α] = jµ(x) (2.3)
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which are the quantum corrected (Euclidean signature) Maxwell equations. They govern

the response of the electromagnetic fields to the presence of an external charge and current

density, jµ(x). Note that, unlike the electromagnetic currents of the defect fields, which

necessarily reside on the defect, jµ(x) can have support either on the defect or in the bulk.

Our observation is that the classical field equation (2.3) is still that of a defect field

theory in the sense that the non-linearities in that equation reside entirely on the defect.

That is, the effective action Γ[α] has the form

Γ[α] =

∫
d4x

1

4
[∂µαν(x)− ∂ναµ(x)] [∂µαν(x)− ∂ναµ(x)] +

+
∞∑
n=2

1

n!

∫
d3x1 . . . d

3xnΓa1...an(x1, . . . , xn)αa1(x1) . . . αan(xn) (2.4)

The coefficients in the functional Taylor expansion are (−1 times) the one-photon-irreducible

time-ordered correlation functions of the defect currents, Ja(x) = −eψ̄(x)γaψ(x),

Γa1...an(x1, . . . , xn) = −〈0|T Ja1(x1) . . . Jan(xn)|0〉1PI (2.5)

To see why this is the case, we begin with the intermediate step of observing that the

Dirac Fermion fields ψ(x) and ψ̄(x) appear quadratically in the action (1.4) and they can

be integrated out of the functional integral (1.3) to get an intermediate effective action for

the electromagnetic field,

Seff [A] =

∫
d4xd4y

1

2
Aa(x)∆−1

ab (x, y)Ab(y)− ln det [−iγa∂a + eγaAa(x)] (2.6)

=

∫
d4xd4y

1

2
Aa(x)∆−1

ab (x, y)Ab(y) + Sint[A] (2.7)

Sint[A] =
∞∑
n=2

1

n!

∫
d3x1 . . . d

3xnΓ̃a1...an(x1, . . . , xn)Aa1(x1) . . . Aan(xn) (2.8)

∆−1
ab (x, x′) =

[
−(∂2

z + ∂c∂c)δab + ∂a∂b
]
δ4(x− x′) (2.9)

where the expression in equation (2.8) is the functional Taylor expansion of the Fermion de-

terminant which is the last term in equation (2.6) and which we call the interaction action,

Sint[A], the last term in equation (2.7). The coefficients in the expansion in equation (2.8),

Γ̃a1...an(x1, . . . , xn), are (−1 times) the one-photon irreducible n-point defect current corre-

lation functions, that is, the functions which appear in equation (2.5), but computed in the

one-loop approximation. In the following, we will not worry about renormalization of the

field theory. We assume that all of our statements hold for a cutoff, ultraviolet regulated

theory and that counter-terms can be chosen so as to remove the singularities from the

effective action, Γ[α], once it is found. Renormalization of this model in the leading orders

of perturbation theory, as well as some interesting one and higher loop computations have

been performed in a series of interesting papers [12]–[15]. We have also fixed the Az(x) = 0

gauge, which affects only the bulk terms where it results a Gaussian term for the remaining

vector fields, Aa(x) with the invertible quadratic form ∆−1
ab (x, x′). The effective action is

– 5 –
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now given by the functional integral expression

Γ[α] = − ln

{∫
[dAa]e

−Seff [Aa]+
∫

(Aa−αa)ja
}

+ constant (2.10)

Then, the remaining task is to integrate over the vector field Aa(x). We are not able

to do this. However, we can study some of the properties of the integral. To facilitate this,

we do the change of variables in the functional integral Aa(x) = αa(x)+Ãa(x) where αa(x)

is the one-point function of the field Aa(x) that is defined in equation (2.1) and Ãa(x) is

the new functional integration variable. We are left with the functional integral expression

for the effective action

Γ[α] = − ln

{∫
[dÃa]e

−Seff [αa+Ãa]+
∫
Ãaja

}
+ constant (2.11)

Since the one-point function for Aa(x) is equal to αa(x), the one-point function of Ãa(x)

must vanish. This functional integral (2.11) determines Γ[α] when ja(x) is determined to

be that functional of αa(x) so that the one-point function of Ãa(x) indeed vanishes. This

is equivalent to the equation of motion for αa(x) in equation (2.3). To see this directly,

consider a combination of equations (2.3) and (2.11),

0 = − δΓ[α]

δαa(x)
+ ja(x) =

δ

δαa(x)
ln

{∫
[dÃ]e−Seff [α+Ã]+

∫
Ãj

}
+ ja(x)

=

∫
[dÃ]

[
δ

δαa(x) + ja(x)
]
e−Seff [α+Ã]+

∫
Ãj∫

[dÃ]e−Seff [α+Ã]+
∫
Ãj

=

∫
[dÃ]

[
δ

δÃa(x)
+
∫
d4y δj

b(y)
δαa(x)Ãb(y)

]
e−Seff [α+Ã]+

∫
Ãj∫

[dÃ]e−Seff [α+Ã]+
∫
Ãj

=

∫
d4y

δjb(y)

δαa(x)

∫
[dÃ]e−Seff [α+Ã]+

∫
ÃjÃb(y)∫

[dÃ]e−Seff [α+Ã]+
∫
Ãj

where we have assumed that the functional integral of the functional derivative of

e−Seff [α+Ã]+
∫
Ãj vanishes. We assume that the kernel δjb(y)

δαa(x) , which is proportional to the

inverse of the two-point function, is invertible. Then, from the above, we conclude that,

consistent with our construction,∫
[dÃ]e−Seff [α+Ã]+

∫
ÃjÃb(y)∫

[dÃ]e−Seff [α+Ã]+
∫
Ãj

= 0 ⇐⇒ δ

δαa(x)
Γ[α] = ja(x)

We can also easily show that Γ[α] is irreducible. The definition of an irreducible

functional is that it cannot be rendered a sum of two functionals of α by removing a single

internal two-point-function. (This could either be the bare two-point function ∆ab(x, y) or

the full two-point function with interactions included. For simplicity, we will use ∆ab(x, y).)

To proceed, let us consider the functional integral (2.11) but with ∆−1
ab (x, y) replaced, for

the moment, with an arbitrary invertible kernel, rather than the one that is specified in

equation (2.9). Then, we can obtain a sum of terms, each one of which is the expression

– 6 –
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that is obtained by removing a different one of the 2-point functions ∆ab(x, y) from Γ[α]

by taking the functional derivative (while holding αa(x) and ja(x) fixed)

2
δ

δ∆ab(x,y)
Γ[α]

∣∣∣∣
j,α

=

∫
d4dd4z′∆−1

bc (y,z)

∫
[dÃ]e−Seff [Ã,α] 2 δSeff [α+Ã]

δ∆−1
cd (z,z′)∫

[dÃ]e−Seff [Ã,α]
∆−1
da (z′,x)

=

∫
d4dd4z′∆−1

bc (y,z)

∫
[dÃ]e−Seff [Ã,α]

(
αc(z)+Ãc(z)

)(
αd(z

′)+Ãd(z
′)
)

∫
[dÃ]e−Seff [Ã,α]

∆−1
da (z′,x)

=

∫
d4dd4z′∆−1

bc (y,z)

[
αc(z)αd(z

′)+

∫
[dÃ]e−Seff [Ã,α]Ãc(z)Ãd(z

′)∫
[dÃ]e−Seff [Ã,α]

]
∆−1
da (z′,x) (2.12)

We then set ∆−1
ab (x, y) back to its value that is given in equation (2.9). The first term in

equation (2.12) is consistent with Γ[α] having the form

Γ[α] =

∫
d4xd4y

1

2
αa(x)∆−1

ab (x, y)αb(y) + Γint[α] (2.13)

Since α is to be determined so that the one-point function of Ãa(x) vanishes, the two-point

function for Ãa(x) which occurs in the second term on the right-hand-side of (2.12) must

be connected. Thus, δ
δ∆ab(x,y)

Γint[α]
∣∣∣
α

is connected. It is the sum of terms, each term being

the result of the removal of a different propagator, ∆ab(x, y), from Γint[α]. The sum can

only be connected if each term in the sum is connected. Otherwise, it would be a sum of

disconnected and connected terms, and therefore
∫

[dÃ]e−Seff [Ã,α]Ãc(z)Ãd(z′)∫
[dÃ]e−Seff [Ã,α]

would be a sum

of connected and disconnected parts and Ãa(x) would have a non-zero one-point function,

which is a contradiction. If every possible removal of a propagator from Γint[α] results in

a connected functional, Γint[α] itself must be irreducible.

Since Γint[α] is an irreducible functional, the terms in its functional Taylor expan-

sion must also be irreducible, they are (−1 times) the irreducible defect current correla-

tion functions which are obtained by sewing together the one-loop correlation functions

Γ̃a1...an(x1, . . . , xn) for n ≥ 3, which can be visualized as an infinite tower of vertices in a

non-local field theory, using the defect-to-defect propagator which is obtained by taking

the inverse of the bulk differential operator

∆−1
ab (x, x′) + δ(z)δ(z′)Γab(x, x

′)

and setting the endpoints on the defect. This results in the full irreducible functions

Γa1...an(x1, . . . , xn) which appear in equation (2.4), all of whose external points are on the

defect. The full effective action therefore necessarily has the form given in equation (2.4)

which is a defect field theory.

In this section, we have demonstrated that the full effective has the form (2.4). The

defect quantum field theory remains a defect quantum field theory after radiative correc-

tions are included. Indeed, this implies that the equation of motion for the expectation

– 7 –
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value of the vector potential, and therefore the electric and magnetic fields, is that of a

free photon in the bulk coupled to correlated defect currents. In the next sections we will

study the properties of the solution of the quantum corrected Maxwell’s equations in the

weak field regime and in a few different scenarios.

3 Quantum corrected Maxwell equations in the linear regime

The quantum corrected Maxwell equations are the equation of motion (2.3) for the effective

action (2.4). In the regime of linear electrodynamics, where the terms that are of higher

order than two in the gauge fields are negligible, either because the sources which induce

the gauge fields are small or the n-point functions themselves are small, we can simply

focus on the quadratic term in the effective action, the irreducible defect current-current

correlation function,

1

2

∫
d3xd3yΓab(x, y)αa(x)αb(y), Γab(x, y) =

∫
d3k

(2π)3
eik·(x−y)Γab(k), ka = (k0, kx, ky)

Here, we have assumed translation invariance for displacements along the defect worldvol-

ume. We will also assume that the Ward-Takahashi identity, kaΓ
ab(k)=0=kbΓ

ab(k), holds.

Then we linearize the field equation (2.3) and we find the linearized equation[
−(∂2

z + ∂c∂c)δ
ab + ∂a∂b

]
αb(x) + δ(z)

∫
d4x′δ(z′)Γ̃ab(x, x′)αb(x

′) = ja(x) (3.1)

This equation has the solution

αz(k, z) = 0 (3.2)

αa(k, z) =

∫
dz′

e−k|z−z
′|

2k

(
δab −

kakb
k2

)
jb(k, z′)−

∫
dz′

1

2
|z − z′|k

akb
k2

jb(k, z′)

−
∫
dz′

e−k(|z|+|z′|)

2k

[
Γ

2k + Γ

]a
b

(
δbc −

kbkc
k2

)
jc(k, z′) (3.3)

where we have assumed that the current density is Fourier transformable in the (t, x, y)

variables and we define the Fourier transforms over (t, x, y) as

αµ(xa, z) =

∫
d3k

(2π)3
eikb(x−y)bαµ(k, z), jµ(xa, z) =

∫
d3k

(2π)3
eikb(x−y)bjµ(k, z) (3.4)

kb = (k0, kx, ky), k =
√
k2
x + k2

y + k2
0

Equation (3.2) reminds us that we are in the αz = 0 gauge. The first two terms on

the right-hand-side of equation (3.3) are the solutions of vacuum Maxwell’s equations

in this gauge with the source ja(k, z). We should remember that the source current is

conserved, ikaj
a(k, z) + ∂zj

z(k, z) = 0 and that the z-component of jµ(x) is related to the

other components by this continuity equation. The third term on the right-hand-side of

equation (3.3) contains the response of the defect to the induced field. We shall have much

– 8 –
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more to say about this response term in the following sections. Finally, it is easy to see that

if the test current is located on the defect, ja(k, z) = ja(k)δ(z) with kaj
a(k) = 0, so that

F az(k, z → 0+)− F az(k, z → 0−) = ja(k)−
[

Γ

2k + Γ

]a
b

jb(k) (3.5)

which contains the boundary current, the first term on the right-hand-side and the induced

current, or image current, which is the second term on the right-hand-side. In this sense,

the fields obey the defect boundary condition (1.2).

4 Defect conformal field theory

Conformal symmetry restricts the form of the defect correlation functions of operators with

definite scaling dimensions. The defect current Ja(x) = −eψ̄(x)γaψ(x) is conserved and

thus it does not get an anomalous dimension.2 Its two-point function is then determined by

dimensional analysis, Lorentz invariance, and the Ward-Takahashi identity and it contains

two parameters, χ and κ in

Γab(k) = χ
√
kckc

(
δab −

kakb
k2

)
+ κεabck

c

Here, κ is a parity and time-reversal symmetry violating parameter which includes the tree-

level κ̃ from equation (1.6) as well as quantum corrections to it. If time reversal and parity

symmetries are present, κ would vanish. On the other hand, κ is well known to get con-

tributions from integrating out Fermions with time reversal violating mass terms [32]–[34].

Note that on an open, infinite space-time, κ is not necessarily quantized and, in a theory

with no charge gap, such as the defect conformal field theory, it can obtain nontrivial and

non-quantized quantum corrections beyond one-loop order [18]. The parameter χ is gener-

ically non-zero for any system with mobile charged matter on the defect. For example, in

the one-loop approximation of the theory with N species of massless defect fermions, it is

given by

χ =
Ne2

8
+ . . .

where the ellipses stand for terms of order e4 and higher. This correction can be significant,

particularly if N is large. The quantity which enters the solution of the Maxwell equation,[
Γ

2k+Γ

]
, depends on these parameters and, explicitly, it is[

Γ

2k + Γ

] b

a

=
χ(2 + χ) + κ2

(2 + χ)2 + κ2

(
δ b
a −

kak
b

k2

)
+

2κ

(2 + χ)2 + κ2

ε bca kc
k

(4.1)

The two terms in the above equation are the time reversal non-violating and the time

reversal violating response of the defect. When they are plugged in to the linearized

Maxwell equations, they both have interesting consequences. In the following sections, we

will examine some of the possibilities.

2Some more general quantum field theories where it might get an anomalous dimension are discussed in

recent interesting work in references [16]–[17].
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5 Defect conformal field theory with a static point test charge

Let us consider the response of the defect conformal field theory to the presence of a static

point charge Q located at the space-point (x0, y0, z0), that is the current density

jµ(x) = Qδµ0 δ(x− x0)δ(y − y0)δ(z − z0)

If we plug this current density and the response function given in equation (4.1) into the

general solution given in equation (3.3), we can find the classical photon field that is induced

by a static point charge located at the space-point (x0, y0, z0). The vector potential is

α0(x) =
Q

4π

{
1√

(x− x0)2 + (y − x0)2 + (y − z0)2
−

− χ(2 + χ) + κ2

(2 + χ)2 + κ2

1√
(x− x0)2 + (y − x0)2 + (|z|+ |z0|)2

}
(5.1)

αx(x) =
g

4π

y − y0

(x− x0)2 + (y − y0)2

(
1− |z|+ |z0|√

(x− x0)2 + (y − y0)2 + (|z|+ |z0|)2

)
(5.2)

αy(x) = − g

4π

x− x0

(x− x0)2 + (y − y0)2

(
1− |z|+ |z0|√

(x− x0)2 + (y − y0)2 + (|z|+ |z0|)2

)
(5.3)

αz(x) = 0 (5.4)

g = Q
2κ

(2 + χ)2 + κ2
(5.5)

Here, we have Wick rotated the result back to Minkowski space so that the field strength

tensor that is gotten from this vector potential represent physical electric and magnetic

fields.3

The temporal component of the gauge field, α0(x), in equation (5.1) has two terms.

The first term is the Coulomb potential of the point charge Q which is located at (x0, y0, z0).

The second term is the Coulomb potential of an image charge −χ(2+χ)+κ2

(2+χ)2+κ2Q which is located

at position (x0, y0,−|z0|sign(z)). The z-coordinate, −|z0|sign(z), always has the opposite

sign to the observer value of z. Consequently, it is always located on the side of the defect

that is opposite to the position of the observer, which is located at (x, y, z). It can therefore

be either on top of the test charge, if the observer and test charge are on opposite sides

of the defect, or at the mirror image point relative to the test charge, if the observer is

located on the same side of the defect as the test charge.

If the observer, at point (x, y, z), is on the same side of the defect as the point test

charge (sign(z) = sign(z0), the Coulomb field is

α0 =
Q

4π

 1√
(x− x0)2 + (y − y0)2 + (z − z0)2

−
χ(2+χ)+κ2

(2+χ)2+κ2√
(x− x0)2 + (y − y0)2 + (z + z0)2


≈ Q

4π

2(2 + χ)

(2 + χ)2 + κ2

1√
(x− x0)2 + (y − y0)2 + (z − z0)2

, |z| � |z0|

3This rotation back to Minkowski space avoids some spurious factors of i =
√
−1 associated with time

reversal violation and Euclidean space.
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Figure 1. Lines of electric and magnetic flux apparently emanating from the image electric and

magnetic monopole which always appears on the side of the defect that is opposite to the observer.

If the observer and the test charge are on opposite sides of the defect, the image and test

charge are at the same position. In that case the Coulomb field is still that of a point

charge with value

α0(x, y, z) =
Q

4π

2(2 + χ)

(2 + χ)2 + κ2

1√
(x− x0)2 + (y − y0)2 + (z − z0)2

(5.6)

In both cases, when seen from large distances, the charge is screened from Q to 2(2+χ)
(2+χ)2+κ2Q

which, since χ is generically positive, has magnitude less than Q. This screening can be

significant. It is present when there is time reversal symmetry, that is, when κ = 0, and it

is enhanced when time reversal symmetry is absent and κ 6= 0. We note that this screening

of Q is a dielectric effect which is present even when there is no dielectric in the bulk.

In particular, if the defect lies between the observer and the test charge, equation (5.6)

tells us that, no mater what the position and orientation of the defect, the Coulomb field is

completely isotropic and the net effect is to attenuate the magnitude of the charge. It is as if

the bulk were filled with an isotropic dielectric material, even when no dielectric is present.

In the time reversal violating system, when κ is nonzero, the spatial components of

the vector potential in equations (5.2) and (5.3) are non-zero and they coincide with the

vector potential of a Dirac magnetic monopole in the az = 0 gauge. The magnetic field,
~B = ~∇× ~α, is radially symmetric,

(Bx, By, Bz) =
g

4π

(x− x0, y − y0, z + |z0|sign(z))

|~x− ~̃x0|3
sign(z) (5.7)

where ~̃x0 = (x0, y0,−|z0|sign(z)) is the location of the image charge. The monopole is

depicted in firgure 1. The monopole charge seen by an observer at (x, y, z) is

G =
Q

2

2κ

(2 + χ)2 + κ2
sign(z) (5.8)

and the z-component of its position is at |z0|sign(z).
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This is a peculiar monopole in that the magnetic charge has different signs and the

monopole has different positions when it is viewed from different sides of the defect. Phys-

ically, it is not a monopole at all, but a bundle of flux tubes which emulates a monopole

field when it is viewed only from one or the other side of the defect. Since the total mag-

netic monopole moment, taking into account both sides, is zero, one might expect that

the magnetic charge need not be quantized. This non-quantization of the magnetic charge

is also consistent with the observer always seeing both the monopole singularity and the

Dirac string as being in the inaccessible region on the opposite side of the defect. Note

that the monopole charge does not obey the Dirac quantization condition even when the

Chern-Simons level is quantized, that is, when κ = e2

2π ·integer, even if χ = 0.

Synthetic or emergent monopoles have previously been found in several contexts, spin

ice [19]–[22], cold atoms [23, 24] and as image charges in certain topological insulators [25].

The monopole field profile of image charges in the topological insulating Hall states of sus-

pended graphene, the subject of our next subsection, have recently been looked for [26, 27]

and perhaps seen [28] in precision experiments. The monopole image charge that we find

here is very similar to the one that was discussed for the topological insulator. We will

study the quantum Hall state of graphene in a later section.

6 Charge neutral graphene

Graphene is a one-atom thick layer of carbon atoms where electrons within ∼ 1ev of the

Fermi energy obey an emergent massless Dirac equation and have a linear dispersion re-

lation ω(k) = vF |k| with Fermi velocity vF ∼ c/300. It has been studied as an analog of

relativistic field theory [29] where relativistic quantum mechanics and field theory phenom-

ena special to 2+1 space-time dimensions could be realized in nature. When it is coupled

to a dynamical photon, which resides in the bulk surrounding the graphene layer, the com-

posite system bears a close resemblance to the defect quantum field theories that we have

been discussing so far. However, since the vacuum speed of light, c, which we have set

equal to one in this paper, and the speed of the emergent massless graphene electron are

different, graphene does not exhibit Lorentz invariance or conformal invariance. Moreover,

in the perturbative regime, the electron speed has a nonzero beta function and it is not

scale invariant. In spite of this, graphene does have approximate scale invariant behaviour

over a large dynamical range. In particular, some of its electromagnetic properties, such as

its AC conductivity, are to a good approximation frequency independent and scale invari-

ant from milli-volt to electron volt energy scales [30, 31, 35]–[38]. What is more, its value is

very close to the value given by a computation with free fermions. If we postulate that the

Fourier components of the charge and current densities are in this regime of approximate

scale invariance, even without full conformal invariance, graphene should exhibit screening

behaviour similar to what we found for a defect conformal field theory. We would expect

that the defect correlation function has the form

Γ00(q) =
e2

2

1

vF

√
~q2 + . . . (6.1)
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where vF is the electron fermi-velocity and we have put N = 4 to account for the spin

and valley degeneracy of graphene. The response to the presence of a test charge can be

extracted from equation (5.1) as

α0(k, z) =
Q

4π

{
1√

(x− x0)2 + (y − y0)2 + (z − z0)2
−

− e2/vF
e2/vF + 4

1√
(x− x0)2 + (y − y0)2 + (z − |z0|sign(z))2

}
(6.2)

This screening effect is very small. In the natural units in which we are working,

e2 ≈ 4π/137 and with the graphene Fermi velocity is vF ≈ 1/300

e2/vF
e2/vF + 4

≈ 0.87

and test charges should be highly screened

Q → 0.13Q

This should be a testable effect. As in all of the previous cases, if the graphene screen is

located between the observer and the charge, the electric field is still that of a point charge,

the screening effect is completely isotropic, but the value of the charge is reduced by ninety

percent. If the observer and the charge are on the same side of the screen, the screening

of the electric monopole charge by ninety percent is still seen from a large distance, but

closer up the charge and its image have electric dipole and higher moments.

7 Quantum Hall phase

The analysis of the previous parts of this section can be applied to layer of material with

a controllable conduction electron density such as graphene which is tuned so that it is in

a quantum Hall phase. The quantum Hall phase is the state of the system which occurs

at low temperature and in a strong magnetic field, where, as a function of the ratio of

density to magnetic field, the material exhibits plateaux of quantized Hall conductivity.

The system is in a “quantum Hall phase” when its parameters are tuned so that it is

on such a Hall conductivity plateau. It has a non-zero Hall conductance, σxy and it has

vanishing longitudinal conductivity σxx = 0. The modification of our formalism which

would be needed would introduce an additional constant background magnetic field Bz.

This is straightforward and it could be done by adding a large solenoid to the external

current jµ(x). We will not spell out the details here. We do note that our discussion does

not depend on Lorentz invariance, or conformal invariance of the underlying system. It

is enough that its phenomenology is described at small momenta by the Chern-Simons

effective action. In our language, the quantum Hall state has the parameter χ vanishing

and κ = σxy. With our units where ~ = 1 and c = 1, and in an integer quantum Hall state,

σxy = n
2πe

2 where n is an integer. In the case of the anomalous integer quantum Hall effect

in graphene [30, 31], n would be replaced by 4n + 2 where n is an integer. Such states in

graphene are very pronounced, in fact they are even visible at room temperature.
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Then, in the presence of a static point charge Q located at the space-point (x0, y0, z0),

the vector potential is obtained by setting χ to zero and κ to σxy in equations (5.1)–(5.4).

Let us assume that z and z0 have opposite signs, that is, that the graphene “screen” is

located between the observer and the test charge. Then, the test charge appears to the

observer as a dyon, a particle with both electric and magnetic charge, in this case, it has

an electric monopole charge, which is reduced by screening to the value

q =
Q

1 + σ2
xy/4

(7.1)

and it has a magnetic monopole charge

g =
2Qσxy
4 + σ2

xy

sign(z) (7.2)

The presence of the magnetic charge is very similar to the one that is predicted to appear in

some topological insulators [25]. In fact, the layer in a Hall state is an example of a topolog-

ical insulator. This monopole image charge has been looked for in experiments [26]–[28].

The remarkable dielectric effect, the suppression of the electric charge, and its isotropy,

particularly the fact that the isotropy is independent of the orientation or position of the

defect, as long as the defect is between the test charge and the observer, could also be

sufficiently dramatic to be observable. It could also have applications, for example, it one

wanted to design a device which had a variable and isotropic dielectric constant. Here, the

dielectric constant is ε = 1 + σ2
xy/4 and, by changing Hall plateaus, that is, changing the

integer in σxy = n
2πe

2 one could change the dielectric constant.

8 Metallic defects

It is also interesting to apply our formalism to a metallic state of a defect. This state has

a finite density of mobile charges and it has no charge gap. It is neither scale invariant

nor Lorentz invariant. We shall assume that gauge, rotation and translation symmetries

remain intact. Then Γ(k) is a matrix which it is convenient to write as a sum of two

projection operators,

Γab(k) = χ(k)ΠE
ab(k) + ξ(k)ΠM

ab (k)

where χ(k0, k) and ξ(k0, k) are two functions of the frequency, k0 and the modulus of the

wave-vector k =
√
~k2. Here, we will consider only a time-reversal invariant metal. The elec-

tric and magnetic projection operators, ΠE
ab(k)and ΠM

ab (k), respectively, have the properties

ΠE
ab = ΠE

ba , ΠM
ab = ΠM

ba (8.1)

kaΠE
ab(k) = 0 , kaΠM

ab (k) = 0 (8.2)

ΠE
ab + ΠM

ab = (k2
0 + ~k2)δab − kakb (8.3)

(ΠE)2(k) = (k2
0 + ~k2)ΠE(k) (8.4)

(ΠM )2(k) = ~k2ΠM (k) (8.5)
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and they have the explicit forms

ΠE =

[
~k2 −k0kj
−k0ki k2

0δij

]
, ΠM =

[
0 0

0 ~k2δij − kikj

]
These appear in the electric and magnetic parts of the effective action which, using trans-

lation, rotation and gauge invariance, can be seen to have the form

Seffective =
1

2

∫
d3xd3y

[
~E(x)χ(x− y) · ~E(y) +B(x)ξ(x− y)B(y) + . . .

]
where ~E = ∂0~α−~∂α0 and B = ∂xαy−∂yαx are the electric and magnetic fields on the defect

and χ(x−y), ξ(x−y) are the Fourier transforms of χ(k0, k) and ξ(k0, k). When the system

is Lorentz invariant, χ(k0, k) = ξ(k0, k) and both are functions only of kak
a = k2

0 + ~k2.

This is so in the conformal field theory which we studied in earlier sections.

Our discussion in this section will depend only on the generic form of the defect current-

current correlation function, −Γab(k0, k). Of course, unlike in the case of a conformal field

theory, this quantity is generically a complicated function of frequency and wave-vector.

There is a limit of our discussion where the results only depend on the small frequency and

wave-number limits. In those limits, the correlations functions have a certain generic form

which can be described by a few parameters,

Γ00(k0, k) = α1µ+ α2
k2√
k2 + k2

0

+ . . . (8.6)

where α1 and α2 are dimensionless numbers which characterize the metallic state of the

defect, µ is the chemical potential and the ellipses denote higher orders in powers of k0 and

k. An explicit one-loop computation of Γab(k0, k) for massless defect Fermions with finite

carrier density which is induced by the presence of a chemical potential µ is reviewed in

the appendices. It yields approximate values of the parameters α1 and α2 as

α1 =
e2N

2π
+ . . . , α2 =

e2N

16
+ . . . (8.7)

where corrections would be of higher orders in the coupling constant e2. Moreover, in the

region where k ≤ 2µ, the leading order in e2 expression Γ00 = e2N
2π µ+ e2N

16 k is exact to all

orders in k.

If we consider a static point charge, where j0 = Qδ(x−x0)δ(y− y0)δ(z− z0), plugging

Γ00 into equation (3.3) leads to

α0(~x,z) =

∫
d2k

(2π)2

e−k|z−z0|2k
− e
−k(|z|+|z0|)

2k

 1+ α2
α1µ

k+. . .

1+ (2+α2)
α1µ

k+. . .

Qeik·(x−x0)

=
Q

4π

{
1√

(x−x0)2+(y−y0)2+(z−z0)2
− 1√

(x−x0)2+(y−y0)2+(z+|z0|sign(z))2

+
2

α1µ

1

(x−x0)2+(y−y0)2+(z+|z0|sign(z))2
+. . .

}
(8.8)
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We see that, particularly when |z0|sign(z) = −z0, that is, when the observer and the test

charge are on opposite signs of the defect, the electric monopole terms, the first two on

the right-hand-side of equation (8.8) cancel exactly. The electric monopole moment is

completely screened. It is replaced by the term in the second line of equation (8.8) which

falls off like the inverse of distance squared, rather than distance, from the image charge.

Generically, there would be corrections to this formula with higher powers of the inverse

distance. We point out that, in this way, the metallic defect differs from a sheet of metal

with finite thickness where one would expect that the electric field on the side which is

opposite to the test charge is identically zero.

9 Summary

We have examined the electromagnetic properties of a defect quantum field theory where

the interacting charged particles reside on a 2+1-dimensional defect and the surrounding

3+1 dimensional bulk is occupied by a free photon field. We showed that the fully quantum

corrected quantum theory remains a defect field theory in that the classical equations of

motion for the electromagnetic fields which are induced by the presence of test charge and

current densities are given by field equations where all of the interaction terms, including

nonlinearities as well as corrections to the linear terms, are confined to the defect.

We then found a solution of the linearized Maxwell equations and we discussed the

properties of the solution. The two most striking properties are the screening of charge

and the fact that, for a defect which violates time reversal symmetry, point charges are

screened and they appear to have a magnetic monopole charge. This effect is particularly

simple when the test charge and the observer are on opposite sides of the defect. Then the

position of the image charge coincides with the position of the test charge, and the test

charge simply appears with a reduced electric charge and possibly a magnetic charge with

the fully isotropic electric and magnetic fields of a point source. When the test charge and

the observer are on the same side of the defect, the image is located at the point that is

mirror image through the defect and the electric and magnetic fields are a superposition

of the fields of two point sources. The long ranged part, the electric monopole moment is

still screened as before, and the magnetic monopole moment is totally isotropic, since only

the image has magnetic charge.

In a conformal defect field theory this screening effect depends on two parameters, one

time reversal symmetric and one time reversal violating. This includes the quantum Hall

state of a two-dimensional defect. In that case, the defect is described by a topological

field theory which for our purposes can be regarded as a limit of a conformal field theory

where longitudinal charge transport is suppressed. It is also related to other topological

insulators and the fact that the induced charge appears as a magnetic monopole has been

posited already ten years ago and it has recently been searched for in exeriments.

We have also discussed the effect in some cases which are neither conformal nor topo-

logical. If the defect is a metal the inverse distance dependence of the Coulomb field is

replaced by an inverse distance squared behaviour. This differs from what happens in a

bulk metal where the electric potential would off exponentially. It also differs from a thick
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sheet of metal which would screen an electric field completely. This is particularly interest-

ing for the case where the observer and test charge are on opposite sides of the defect. If

they are on the same side, the point charge is replaced by a dipole consisting of the point

charge and its image, located at its mirror image point.

A The insulator and the semi-metal: one-loop computations

In these appendices, we will summarize some computations of the time-ordered Euclidean

space current-current correlations functions in the one-loop approximation for examples of

the physical states of the defect field theory that we are interested in. These computations

are not original and the reader should be able to find them elsewhere in the literature.

We summarize them here for the benefit of the reader. At risk of being overly pedantic,

we provide many details of the computations, also to help the reader who might want to

modify or generalize the arguments of this paper.

We shall begin in this first appendix with a computation of the current-current cor-

relation function of an insulator and a semi-metal. We will model the insulator by the

vacuum state of massive Dirac Fermions where the mass is time-reversal invariant. We will

model the semimetal by taking the massless limit at zero charge density. The semimetal

is our example of a conformal field theory when the speed of the Dirac fermion is equal to

the speed of the photon in the bulk, and it emulates graphene with a Coulomb interaction,

which is not a conformal or Lorentz invariant model when the two speeds are different.

In both cases, our computation of the defect current-current correlation function is at one

loop order. We begin with the Euclidean momentum space Feynman integral

Γab(q) = e2

∫
d2ωp

(2π)2ω
Trγa

1

[/p− iM ]
γb

1

[/p+ /q − iM ]

where the trace is over the three 2 × 2 Euclidean γ-matrices, which we can take as the

Pauli matrices, and over the N species of fermions. We will perform the computation in

Euclidean space. We will consider only time-reversal invariant systems here. In order to

maintain time-reversal invariance, we shall assume that the Fermion mass matrix M is a

traceless N×N matrix obeying TrM = 0 and M2 = m2, the square of the fermion mass. In

this case, the parity anomaly cancels. Then, taking the traces,4 and introducing Feynman

parameters and dimensional regularization, we get

Γab(q) = 2Ne2

∫ 1

0
dα

∫
d2ωp

(2π)2ω

−2α(1− α)qaqb + δab[(
1
ω − 1)p2 + α(1− α)q2 −m2]

[p2 + α(1− α)q2 +m2]2

where we have used the symmetry of the integrand to drop terms that are odd in p and

substitute papb by 1
2ωp

2δab. Then, we can use standard dimensional regularization formulae

to do the integration over p to get

Γab(q) = 4Ne2 Γ[2− ω]

(4π)ω
[δabq

2 − qaqb]
∫ 1

0
dα

α(1− α)

[α(1− α)q2 +m2]2−ω

4We assume here that the dimension of the Dirac matrices is 2 × 2. We could be more general at this

point, but it will not be needed at one loop order since the ultraviolet divergences will cancel and the

integral is finite.
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which is finite in three dimensions, when ω = 3/2,

Γab(q) =
Ne2

2π
[δabq

2 − qaqb]
∫ 1

0
dα

α(1− α)√
α(1− α)q2 +m2

=
Ne2

2πq
[δabq

2 − qaqb]
{
m

2q
+

(
1

4
− m2

q2

)
arctan

q

2m

}
≈ Ne2

8q
[δabq

2 − qaqb] m→ 0 semimetal

≈ Ne2

12π|m|
[δabq

2 − qaqb] m→∞ insulator

The result for the semi-metal is the entire contribution for massless Fermions at one-

loop order. This form of the correlation function, when combined with the Kubo formula,

and corrected to replace the vacuum speed of light by the speed of the graphene electron,

gives an accurate formula for the AC conductivity of graphene in the limit where the

frequency is much greater than the temperature [36].

B Metallic defect to one loop order

We will model a metal by massless Dirac Fermions at finite density. We will control the

density by introducing a chemical potential. We will compute all of the components of

the Euclidean current-current correlation function and then we will get the Lorentizian

functions by analytic continuation. Here, we will focus on the time reversal invariant case

only. We begin with the expression

Γab(q) = e2N

∫
d3p

(2π)3
Tr
γa/pγb(/p+ /q)

p2(p+ q)2

where the chemical potential is contained in the temporal component of the momenta as

p0 − iµ so that

Γab(q) = 2Ne2

∫
d2ωp

(2π)2ω

∫
dp0

2π

γab(p0 − iµ, ~p)
[(p0 − iµ)2 + ~p2][(p0 + q0 − iµ)2 + (~p+ ~q)2]

where

γab(p0 − iµ, ~p) = pa(p+ q)b + (p+ q)apb − δabp · (p+ q)

Here, we have dimensionally regulated the integration over spatial momenta. The time

component of the loop momentum is integrated along the real axis in the complex p0-

plane. The p0 integral is done by completing the contour in the upper half of the complex

p0-plane and using Cauchy’s theorem:∫
dp0

2π

γab(p0−iµ,~p)
[(p0−iµ)2+~p2][(p0+q0−iµ)2+(~p+~q)2]

=
γab(i|~p|, ~p)θ(µ+|~p|)

[2|~p|][q0+i|~p|−i|~p+~q|][q0+i|~p|+i|~p+~q|] +
γab(−i|~p|, ~p)θ(µ−|~p|)

[−2i|~p|][q0−i|~p|−i|~p+~q|][q0−i|~p|+i|~p+~q|]

+
γab(−q0+i|~p+~q|, ~p)θ(µ+|~p+~q|)

[−q0+i|~p+~q|−i|~p|][−q0+i|~p+~q|+i|~p|][2|~p+~q|] +
γab(−q0−i|~p+~q|, ~p)θ(µ−|~p+~q|)

[−q0−i|~p+~q|−i|~p|][−q0−i|~p+~q|+i|~p|][−2i|~p+~q|]
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We change variables ~p→ −~p−~q in the last two terms (this is a symmetry of the integration

over ~p which we shall do later) to present the above expression as

=
θ(µ+ |~p|)

2|~p|

[
γab(i|~p|, ~p)

(q0 + i|~p|)2 + (~p+ ~q)2
+
γab(−q0 + i|~p|,−~p− ~q)
(q0 − i|~p|)2 + (~p+ ~q)2

]
− θ(µ− |~p|)

2|~p|

[
γab(−i|~p|, ~p)

(q0 − i|~p|)2 + (~p+ ~q)2
+
γab(−q0 − i|~p|,−~p− ~q)
(q0 + i|~p|)2 + (~p+ ~q)2

]
If we now assume that µ > 0 and we subtract the µ→ 0 contribution so that the result is

the chemical potential-dependent part of the two-point function which we denote

δΓab = Ne2

∫
d2p

(2π)2

θ(µ− |~p|)
|~p|

[
γab(−i|~p|, ~p)

(q0 − i|~p|)2 + (~p+ ~q)2
+
γab(−q0 − i|~p|,−~p− ~q)
(q0 + i|~p|)2 + (~p+ ~q)2

]
In components we find

δΓ00 =−e
2N

4π

∫ µ

0
dp


√
~q2+(q0−2ip)2√

~q2+q2
0

+

√
~q2+(q0+2ip)2√

~q2+q2
0

−2

 (B.1)

δΓ0i =
e2N

4π

q0qi
~q2

∫ µ

0
dp


√
~q2+(q0−2ip)2√

~q2+q2
0

+

√
~q2+(q0+2ip)2√

~q2+q2
0

−2

 (B.2)

δΓij =
e2N

4π

q2
0

~q2

(
δij−2

qiqj
~q2

)∫ µ

0
dp


√
~q2+(q0−2ip)2√

~q2+q2
0

+

√
~q2+(q0+2ip)2√

~q2+q2
0

−2


+
e2N

π

(
δij−

qiqj
~q2

)∫ µ

0
dp

 ip(q0−ip)√
~q2+q2

0

√
~q2+(q0−2ip)2

− ip(q0+ip)√
~q2+q2

0

√
~q2+(q0+2ip)2


(B.3)

The Ward-Takahashi identities

q0δΓ00(q) + qiδΓ0i(q) = 0 , q0δΓ0j(q) + qiδΓij(q) = 0 (B.4)

are satisfied by the above expressions.

B.1 The functions χ(q) and ξ(q)

When the defect is not Lorentz invariant but still has space and time translation symme-

try the current-current correlation function Γab(k) is a matrix this is determined by two

projection operators,

Γab(k) = χ(k)ΠE
ab(k) + ξ(k)ΠM

ab (k)

When the field theory is Lorentz invariant, χ(k) = ξ(k) and both of them are functions

only of ~k2 + k2
0. Here, the chemical potential violates Lorentz invariance, but not rotation

invariance, so these functions depend on the frequency k0 and the wave-number k.
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From (B.3) one can read δχ(q) and the δξ(q) which are the chemical potential-

dependent parts of δχ(q) and δξ(q)

δχ(q) =−e
2N

4π

1

~q2

∫ µ

0
dp


√
~q2+(q0−2ip)2√

~q2+q2
0

+

√
~q2+(q0+2ip)2√

~q2+q2
0

−2

 (B.5)

δξ(q) =
e2N

2π

q2
0

(~q2)2

∫ µ

0
dp


√
~q2+(q0−2ip)2√

~q2+q2
0

+

√
~q2+(q0+2ip)2√

~q2+q2
0

−2


− e

2N

π

1

~q2

∫ µ

0
dp

 ip(q0−ip)√
~q2+q2

0

√
~q2+(q0−2ip)2

− ip(q0+ip)√
~q2+q2

0

√
~q2+(q0+2ip)2

 (B.6)

Upon integration over p, δχ(q) and δξ(q) become

δχ(q) =
e2Nµ

2π~q2 +
e2N

16π~q2
√
~q2+q2

0

{
iq0

(√
~q2+(q0−2iµ)2−

√
~q2+(q0+2iµ)2

)
+2µ

(√
~q2+(q0−2iµ)2+

√
~q2+(q0+2iµ)2

)
+~q2

[
tan−1

(
2µ
(
q0+

√
~q2+(q0+2iµ)2

)
~q2+4iµ(q0+iµ)

)
+tan−1

(
2µ
(
−q0+

√
~q2+(q0−2iµ)2

)
~q2−4iµ(q0−iµ)

)

−itanh−1

(
q0
(√

~q2+(q0+2iµ)2−2iµ
)

~q2+q0(q0+4iµ)

)
−itanh−1

(
q0
(

2iµ−
√
~q2+(q0−2iµ)2

)
~q2+q0(q0−4iµ)

)]}
(B.7)

δξ(q) =
e2Nµq2

0

2π(~q2)2 +
e2N

(
2~q2−q2

0

√
~q2+q2

0

)
32π~q4

√
~q2+q2

0

{
iq0

(√
~q2+(q0−2iµ)2−

√
~q2+(q0+2iµ)2

)
+2µ

(√
~q2+(q0−2iµ)2+

√
~q2+(q0+2iµ)2

)
−
(
~q2+2q2

0

)[
tan−1

(
2µ
(
q0+

√
~q2+(q0+2iµ)2

)
~q2+4iµ(q0+iµ)

)
+tan−1

(
2µ
(
−q0+

√
~q2+(q0−2iµ)2

)
~q2−4iµ(q0−iµ)

)

−itanh−1

(
q0
(√

~q2+(q0+2iµ)2−2iµ
)

~q2+q0(q0+4iµ)

)
−itanh−1

(
q0
(

2iµ−
√
~q2+(q0−2iµ)2

)
~q2+q0(q0−4iµ)

)]}
(B.8)

B.2 q0 = 0

In the static, q0 → 0 limit of (B.7) and (B.8) we can get the static forms of χ(q) and

ξ(q) (where we add back the zero µ expressions for these, which can be deduced from the

computation in the previous appendix). For χ(q) we get

χ(q)
∣∣
q0=0

=


e2Nµ

2πq2
+
e2N

16q
, for q ≤ 2µ

e2Nµ

2πq2
+
e2N

8q
− e2Nµ

4πq3

√
q2 − 4µ2 − e2Nµ

8πq
tan−1 2µ√

q2 − 4µ2
, for q ≥ 2µ

(B.9)
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For ξ(q) we get

ξ(q)
∣∣
q0=0

=


3e2N

16q
, for q ≤ 2µ

e2N

8q
− e2Nµ

4πq3

√
q2 − 4µ2 +

e2Nµ

8πq
tan−1 2µ√

q2 − 4µ2
, for q ≥ 2µ

(B.10)

B.3 Small q limit

At the first few orders in the q → 0 limit χ(q) and ξ(q) can be obtained by first expanding

for small q (B.5) and (B.6) and then integrating in p. By doing this for χ(q) we get

χ(q) =
e2N

8πq2
0

[
q0 tan−1

(
2µ

q0

)
− 2µ

]
+
e2Nq2

16π

3µ

q4
0

− µ(
4µ2 + q2

0

)2 − tan−1
(

2µ
q0

)
q3

0

+O
(
q4
)

(B.11)

and for ξ(q)

ξ(q) =
3e2N

8πq2

[
q0 tan−1

(
2µ

q0

)
− 2µ

]
− e2N

16
(
π
(
q3

0 + 4µ2q0

)2)
[
q0

(
4µ2 + q2

0

)2
tan−1

(
2µ

q0

)
−2µ

(
56µ4 + q4

0 + 28µ2q2
0

)]
+O

(
q2
)

(B.12)
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