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1 Introduction

Extended (N ≥ 2) supergravity in four dimensions naturally appears from higher-

dimensional supergravity and string compactifications (see [2, 3] for review). For phe-

nomenological applications, we need to consider its breaking mechanism, since in extended

supergravity there is no chiral-structure which is necessary to describe real world. As

regards for the breaking of extended supergravity, there are several breaking patterns to

be considered in contrast to N = 1 case. For example, the vacuum may preserve some

supersymmetries partially. Also, even if the full breaking occurs at the vacuum, some of

supersymmetry breaking scales may be degenerate or hierarchical. The purpose of this
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paper is to clarify the relations between the breaking patterns and input parameters in the

theory, which is motivated mainly as follows:

• Indeed, some of these input parameters (e.g., gauge couplings) are determined by flux

in the context of string compactifications. Therefore, it is necessary for understanding

phenomenological/cosmological aspects of flux compactifications.

• The cases of the partial breaking where some supersymmetries remain unbroken, are

studied well in both of the local [1, 4–11] and the global [12–16] cases. Their relations

are discussed in refs. [5, 17–19]. Those models evade the no-go theorem [20–22], and

it is known that stable minima are ensured in this case [9]. It is also discussed about

some roles of the partial breaking in the effective description of D-branes (in N = 2

case, see [23–39] for example). Therefore, it is important to ask under what situations

the partial breaking occurs.

• From more bottom-up perspectives, if there exists an extended supersymmetry and

its breaking, additional massive modes we do not have in the usual N = 1 super-

gravity models necessarily appear and they could affect the cosmological history. For

example, in N = 2 supergravity, we have double massive gravitinos when N = 2→ 0

breaking occurs. Their effects cannot be negligible if the two breaking scales are close

to each other, and the usual N = 1 description might be broken down in that case.

Then, it is interesting to investigate what difference and phenomenological conse-

quence appear if such extended supersymmetry exists. To this end, we need to know

precisely the breaking patterns, the resultant spectra, and coupling constants.

As a first step in this paper, we achieve our purpose by taking N = 2 supergravity

in four dimensions as the simplest and concrete example. In particular, we focus on a

model which contains multiple (Abelian) vector multiplets and a single hypermultiplet

which parametrizes SO(4, 1)/SO(4) coset. The isometries in the hyper sector are gauged

by the vector fields in the vector multiplets as well as the graviphoton.

This model can be regarded as a multiple generalization of the vector sector of

refs. [4, 5], where it is shown that the N = 0, 1 and 2 vacua can be realized within the single

framework, depending on the gauge couplings. Therefore, the model would be appropriate

for considering various breaking patterns.1

Based on the setup above and under a specific gauging, we have explicitly constructed

a model which interpolates N = 0 and N = 1 Minkowski vacua, and evaluated the mass

spectrum in our previous paper [44]. Here we consider general gaugings extending our

previous analysis. We employ the so-called embedding tensor formalism [45, 46], which

allows us to treat the general gauging without changing duality frame (see [47, 48] for

review). Then, we derive the general expressions of the two gravitino masses and study

their behaviors by case analysis. As we will see, the breaking patterns are governed by the

1Besides this model, the full supersymmetry breaking models (N = 2→ 0) are discussed in refs. [40, 41],

based on N = 2 supergravity constrained superfield. Also, in refs. [42, 43], a model where N = 2 global

supersymmetry can be broken at two different scales is discussed.
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gauge couplings and the form of the prepotential. In particular, our approach reproduces

the result of ref. [1] in a systematic way, which claims, the partial breaking always occurs

when the third derivative of the prepotential exists at the vacuum. Moreover, we explicitly

show that there are several breaking patterns otherwise. We also discuss the case of multiple

vector multiplets and investigate how the situation becomes different from the single case.

The paper is organized as follows. In section 2, we specify our model and introduce the

notation used in the paper. Then, we evaluate the gravitino masses under the general gaug-

ing in section 3. There, we briefly explain their behaviors and discuss the conditions to real-

ize special cases such asN = 1, 2 vacua. In section 4, we analyze the scalar potential and de-

rive conditions the vacuum must satisfy. In section 5, we discuss the relation of the gravitino

masses to the gauge couplings and the prepotential, taking into account the vacuum condi-

tions. Section 6 is devoted to the summary. In appendix A, we collect the spinor notations.

2 Setup

In this section, we specify the model. Here we follow the convention of ref. [48], and use the

unit MP = 1, where MP = 2.4× 1018 GeV is the reduced Planck mass. We introduce the

only relevant parts of N = 2 supergravity for our purpose, and refer the literature [48–52]

for further details.

2.1 Vector and hyper sectors

The contents are given as follows:

Vector multiplets : {zi, λiA, Aiµ}, (i = 1, · · · , nv) (2.1)

Hypermultiplet : {bu, ζα}, (2.2)

Gravitational multiplet : {gµν , ψAµ , A0
µ}. (2.3)

An Abelian vector multiplet contains a complex scalar zi, two gauginos λiA (A = 1, 2) and

a vector Aiµ. Here the index i labels the vector multiplets (i = 1, · · · , nv). A hypermul-

tiplet contains four real scalars bu (u = 0, · · · , 3) and two hyperinos ζα (α = 1, 2).2 The

gravitational multiplet contains the spacetime metric gµν (µ, ν = 0, · · · , 3), two gravitinos

ψAµ (A = 1, 2) and the graviphoton A0
µ. Note that there are totally nv + 1 vector fields in

the system and they are labeled by AΛ
µ (Λ = 0, 1, · · · , nv).

Vector sector. The vector sector is governed by the prepotential F (XΛ), which is

a holomorphic and homogeneous function of degree two with nv + 1 complex variables

XΛ (Λ = 0, 1, · · · , nv). In general, it can be parametrized as

F = −i(X0)2f(Xi/X0), (2.4)

where f is an arbitrary holomorphic function. It is useful to define the following holomor-

phic section,

ΩM (z) =

(
XΛ(z)

FΣ(z)

)
, (Λ,Σ = 0, 1, · · · , nv) (2.5)

2Note that α is not a spinor index. The spinor indices are suppressed throughout this paper.
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where FΣ = ∂F/∂XΣ, since the electric-magnetic duality that is a symmetry of N = 2

supergravity acts on the section. Note that M labels 2nv + 2 components.

Based on Ω, the Kähler potential K is given by

K = − log(iΩ̄TCΩ) = − log
(
iX̄ΛFΛ − iF̄ΛX

Λ
)
, (2.6)

where C is a symplectic invariant tensor,

C =

(
0nv+1 1nv+1

−1nv+1 0nv+1

)
. (2.7)

We take a special coordinate as

X0 = 1, X i = zi, (2.8)

where zi are identified as physical scalars in the vector multiplets. Then, the Kähler

potential is written by

K = − logK0, where K0 ≡ 2(f + f̄)− (z − z̄)i(fi − f̄i), (2.9)

where the subscript i on f denotes the derivative with respect to zi.

Finally, for later convenience, we list several quantities which appear in the Lagrangian

and the supersymmetry transformations:

VM ≡ eK/2ΩM = eK/2

(
XΛ(z)

FΣ(z)

)
, (2.10)

UMi ≡ ∇iVM =

(
∂i +

1

2
∂iK

)
VM , (2.11)

∇iUMj = ∂iU
M
j +

1

2
∂iKUMj − ΓkijU

M
k = eKfijkg

kk̄ŪMk̄ . (2.12)

Hyper sector. As for the hyper sector, we consider the following metric [4, 5],

huv =
1

2(b0)2
δuv, (2.13)

which describes a nonlinear sigma model on SO(4, 1)/SO(4). The vielbein UαA = UαAu dbu

can be read off as

UαA =
1

2b0
εαβ

(
db0 − i

3∑
x=1

τxdbx

) A

β

, (2.14)

where A = 1, 2 and α = 1, 2 represent the SU(2) and Sp(2) indices respectively (their

conventions are shown in appendix A). τx is the standard Pauli matrices.

Note that eq. (2.13) depends only on b0, but not b1,2,3, which means there are three

commuting isometries:

bm → bm + cm, (m = 1, 2, 3) (2.15)

where cm are real constants. Then, the associated Killing vectors kum and the moment

maps Pxm are given by

kum = δum, Pxm =
1

b0
δxm. (2.16)
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2.2 Gauging by embedding tensor

Now we consider to gauge the isometries (2.15). For this purpose, we employ the embedding

tensor formalism [45, 46], which is useful for discussing the general gauging of the extended

supergravity. This formalism formally introduces a double copy of the gauge fields, i.e.,

the electric gauge fields AΛ
µ and the magnetic gauge fields AµΣ (Λ,Σ = 0, 1, · · · , nv), and

gauges some of the global symmetries with the gauge couplings,

Θ m
M =

(
Θ m

Λ

ΘΣm

)
=

(
Θ 1

Λ Θ 2
Λ Θ 3

Λ

ΘΣ1 ΘΣ2 ΘΣ3

)
, (2.17)

which are called the embedding tensor. In the following, we call Θ m
Λ and ΘΣm as electric

and magnetic couplings, respectively.

The tensor Θ m
M must satisfy several conditions for the self-consistency of the

theory [45, 46]. In our case where no isometry on the vector sector is gauged, the only

corresponding constraint is

Θ m
M CMNΘ n

N = 0, (2.18)

or

Θ 1
Λ ΘΛ2 −Θ 2

Λ ΘΛ1 = 0, (2.19)

Θ 2
Λ ΘΛ3 −Θ 3

Λ ΘΛ2 = 0, (2.20)

Θ 3
Λ ΘΛ1 −Θ 1

Λ ΘΛ3 = 0. (2.21)

Then the covariant derivative is defined by

Dµ ≡ ∂µ −AΛ
µΘ m

Λ Tm −AµΣΘΣmTm, (2.22)

where Tm are generators of the isometries (2.15), thus kum = Tmb
u = δum. Note that the

magnetic vectors AµΣ also participate in the gauging with the magnetic couplings ΘΣm.

We also define

kuM = Θ m
M kum, PxM = Θ m

M Pxm. (2.23)

The introduction of the magnetic vector fields leads to the wrong counting of degree of

freedom. In order to address the problem, we have to introduce two-form auxiliary fields,

which enlarge gauge symmetries, and then, modify the kinetic terms for vector fields and

add topological couplings accordingly. As these couplings do not affect to the following

discussion, we do not write their explicit forms (see [48–52] for the whole expressions).

2.3 Supersymmetry transformation

Here we show the supersymmetry transformations of the fermions, which are necessary to

discuss the supersymmetry breaking conditions (and patterns) in the next section. The

relevant parts of supersymmetry transformations are given by [48],

δψAµ = iSABγµεB + · · · , (2.24)

δλīA = W̄ ī
ABε

B + · · · , (2.25)

δζα = N̄α
Aε

A + · · · , (2.26)
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where

SAB ≡
i

2
(τx)ABPxMVM , (2.27)

W iAB ≡ i(τx)ABPxMgij̄ŪMj̄ , (2.28)

NA
α ≡ −2UAuαkuM V̄M , (2.29)

and W̄ ī
AB ≡ (W iAB)∗, N̄α

A ≡ (N A
α )∗. The ellipses in eqs. (2.24)–(2.26) represent terms

which vanish in the Minkowski background. The matrices are given explicitly by

SAB =
−ieK/2

2b0

(
iβ − α γ

γ iβ + α

)
, (2.30)

W̄ ī
AB = − ie

K/2

b0
gīi

(
∇i(iβ − α) ∇iγ
∇iγ ∇i(iβ + α)

)
, (2.31)

N̄α
A =

ieK/2

b0

(
γ iβ + α

−iβ + α −γ

)
. (2.32)

Here α, β and γ are defined by

α ≡ Θ 1
MΩM = (Θ 1

Λ X
Λ + ΘΛ1FΛ), (2.33)

β ≡ Θ 2
MΩM = (Θ 2

Λ X
Λ + ΘΛ2FΛ), (2.34)

γ ≡ Θ 3
MΩM = (Θ 3

Λ X
Λ + ΘΛ3FΛ), (2.35)

and we introduced their covariant derivatives as

∇iα = ∂iα+ ∂iKα = e−K/2Θ 1
MU

M
i , (2.36)

and so on.

3 Gravitino masses

To discuss the supersymmetry breaking patterns, we need to identify the order parameters

of the supersymmetry breaking. In the global supersymmetric theory, the goldstino(s) ap-

pears if the supersymmetry is spontaneously broken, and the order parameter (or breaking

scale) can be read off from the goldstino transformations. In supergravity, the goldstino(s)

is absorbed by the gravitino(s) through the super-higgs mechanism, and the gravitino(s)

acquires a mass, which is related to the supersymmetry breaking scale at the vacuum.

Therefore, in this section, we derive the expressions of the gravitino masses under the

general gauging.

3.1 Gravitino masses and goldstino transformations

The corresponding parts in N = 2 supergravity Lagrangian are given by [48],

L = 2SABψ̄Aµ γµνψBν + igij̄W̄
j̄
ABλ̄

iAγµψ
µB + 2iN̄α

Aζ̄αγµψ
µA + h.c.,

= − ie
K/2

b0
(ψ̄1

µ, ψ̄
2
µ)Mψγ

µν

(
ψ1
ν

ψ2
ν

)
+
eK/2

b0
(χ̄1γµψ

µ1 + χ̄2γµψ
µ2) + h.c., (3.1)
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where

Mψ =

(
iβ − α γ

γ iβ + α

)
, (3.2)

and we defined the goldstinos as

χ1 = 2(iβ − α)ζ2 − 2γζ1 +∇i(iβ − α)λi1 +∇iγλi2, (3.3)

χ2 = 2γζ2 − 2(iβ + α)ζ1 +∇iγλi1 +∇i(iβ + α)λi2. (3.4)

Then, we need to diagonalize their mass matrix Mψ. This can be achieved by a unitary

matrix U ,

UTMψU =

(
σ1 0

0 σ2

)
, σ2 ≥ σ1 ≥ 0 (3.5)

where σA(A = 1, 2) are the singular values of Mψ, and given explicitly by

σ1 = X+ −X−, σ2 = X+ +X−, (3.6)

X± ≡
1√
2

√
|α|2 + |β|2 + |γ|2 ± |α2 + β2 + γ2|. (3.7)

Defining new gravitinos and goldstinos by(
ψ̃1

ψ̃2

)
= UT

(
ψ1

ψ2

)
,

(
χ̃1

χ̃2

)
=

(
1/σ1 0

0 1/σ2

)
UT

(
χ1

χ2

)
, (3.8)

we can rewrite the Lagrangian (3.1) as

L = − ie
K/2

b0

∑
A=1,2

σA

(
¯̃
ψAµ γ

µνψ̃Aν + i ¯̃χAγµψ̃
Aµ
)

+ h.c.. (3.9)

Let us show that the transformations of the goldstinos defined in eq. (3.8) are also

characterized by σA. First, using eqs. (2.24)–(2.26), the supersymmetry transformations

of χ1 and χ2 are evaluated as (
δχ1

δχ2

)
=
ieK/2

b0
Mχ

(
ε1
ε2

)
, (3.10)

where Mχ is a 2× 2 hermitian matrix whose components are

Mχ11 = 2(|α|2 + |β|2 + |γ|2)− 4Im(αβ̄)

+ |∇α|2 + |∇β|2 + |∇γ|2 − 2Im(∇α · ∇β), (3.11)

Mχ12 = M∗χ21 = −4Im(βγ̄)− 4iIm(αγ̄)− 2Im(∇β · ∇γ)− 2iIm(∇α · ∇γ), (3.12)

Mχ22 = 2(|α|2 + |β|2 + |γ|2) + 4Im(αβ̄)

+ |∇α|2 + |∇β|2 + |∇γ|2 + 2Im(∇α · ∇β). (3.13)
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Here we have introduced the notation, ∇α · ∇β = gij̄∇iα∇̄j̄ β̄ and |∇α|2 = ∇α · ∇α. This

inner product is positive definite, that is, |∇α|2 ≥ 0 and |∇α|2 = 0 if and only if ∇iα = 0.

Next, from the supergravity Ward identity,

δABV = −12S̄ACSBC + gij̄W
iACW̄ j̄

BC + 2N A
α N̄α

B, (3.14)

where S̄AB = (SAB)∗, we obtain the expression of the scalar potential and three equations:

V =
eK

(b0)2
(−|α|2 − |β|2 − |γ|2 + |∇α|2 + |∇β|2 + |∇γ|2), (3.15)

0 = Im(αβ̄)− Im(∇α · ∇β), (3.16)

0 = Im(βγ̄)− Im(∇β · ∇γ), (3.17)

0 = Im(γᾱ)− Im(∇γ · ∇α). (3.18)

In this paper, we focus on the Minkowski vacuum, and therefore, the following equation

0 = −|α|2 − |β|2 − |γ|2 + |∇α|2 + |∇β|2 + |∇γ|2, (3.19)

is satisfied at the vacuum. From eqs. (3.16)–(3.18), and (3.19), we can rewrite Mχ as

Mχ11 = 3(|α|2 + |β|2 + |γ|2)− 6Im(αβ̄), (3.20)

Mχ12 = M∗21 = −6Im(βγ̄)− 6iIm(αγ̄), (3.21)

Mχ22 = 3(|α|2 + |β|2 + |γ|2) + 6Im(αβ̄). (3.22)

Thus, we obtain a relation

Mχ = 3MψM
†
ψ. (3.23)

By definition, the unitary matrix U satisfies

UTMψM
†
ψU
∗ =

(
σ2

1 0

0 σ2
2

)
, (3.24)

which implies that we can take U as a matrix diagonalizing the supersymmetry transfor-

mation of the goldstinos (3.10), and obtain(
δχ̃1

δχ̃2

)
=

3ieK/2

b0

(
σ1 0

0 σ2

)(
ε̃1
ε̃2

)
,

(
ε̃1
ε̃2

)
≡ UT

(
ε1
ε2

)
. (3.25)

As also understood from this expressions, σ1 and σ2 characterize the supersymmetry break-

ing as they should.

Let us go back to the Lagrangian (3.9). As is obvious from eq. (3.25), the goldstinos

are eliminated by taking a unitary gauge,

χ̃A = 0, (3.26)
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Figure 1. (σ1-σ2) plane. The N = 2 preserving vacuum is located at the origin, and N = 1

preserving (or partially broken) vacuum is on the line σ1 = 0 with σ2 6= 0. The other region

corresponds to the N = 0 (fully broken) vacua.

and we obtain the canonical gravitino masses

mA =
eK/2

b0
σA, A = 1, 2. (3.27)

In the following, we focus on the behaviours of σA by neglecting a common factor eK/2

b0
.3

3.2 Behaviours of gravitino masses at first sight

By definition, (σ1-σ2) plane has a domain which is restricted by σ2 ≥ σ1 (figure 1).

Obviously, an N = 2 preserving vacuum is located at its origin, and N = 1 preserv-

ing (or partially broken) vacuum corresponds to the vertical axis of σ1 = 0 with σ2 6= 0.

The other region corresponds to the N = 0 (fully broken) vacua.

Let us comment on the relation between the number of gaugings and the breaking

patterns. As can be seen from the expressions (3.6) and (3.7), when only one isometry is

gauged, e.g., α 6= 0 and β = γ = 0, we always have the degenerate breaking scales

σ1 = σ2 = |α|. (3.28)

On the other hand, for the case with the two directions gauged, e.g., α, β 6= 0 and γ = 0,

we have rich breaking patterns. In this case, we can parametrize σA(A = 1, 2) as

σ1 = X+ −X−, σ2 = X+ +X−, (3.29)

X± =
1√
2

√
|α|2 + |β|2 ±

√
|α|4 + |β|4 + 2|α|2|β|2cos2φ, (3.30)

3We regard σA as dimensionless quantities. Therefore, the gravitino masses are given by mA =
e
K/2M2

P

b0
M2

PσA when the Planck scale is recovered.

– 9 –
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Figure 2. φ ≡ argα − argβ dependence of σ1 and σ2 in the case with two isometries gauged. As

the parameters |α| and |β|, we change them under 0 ≤ |α|, |β| ≤ 0.5.

where φ ≡ argα − argβ. The figure 2 shows the parametric plot in (σ1-σ2) plane under

0 ≤ |α|, |β| ≤ 0.5 with fixed φ = {0, π8 ,
π
4 ,

3π
8 ,

π
2 }. When φ = 0, we have degenerate breaking

scales. As φ approaches to π/2, the breaking scales can be hierarchical and the N = 1

(partial breaking) can be covered when φ = π/2.

To conclude, we have obtained general expressions of gravitino masses (or supersymme-

try breaking scales) in the model containing a single hypermultiplet gauged by nv-Abelian

vector multiplets and graviphoton. These observations are based on the assumption that

the parameters Θ m
M and the prepotential f (or their specific combinations α, β, and γ)

can be changed independently. We need to check that these breaking patterns are really

realized at the minimum since the minimization conditions of the scalar potential should

impose some constraints between the parameters and vacuum expectation values of zi,

which is going to be a topic in the next section.

3.3 Condition for special cases

Before going to the detailed analysis of the scalar potential, let us discuss special cases,

where N = 2 and 1 supersymmetries are preserved. At these vacua, the parameters Θ m
M

or α, β, γ are further restricted by several conditions. Here we summarize them for later

convenience. The following discussion is based on the approach of ref. [9].

3.3.1 N = 2 (no breaking)

From eq. (3.6), the condition for N = 2 preserving vacuum is X+ = X− = 0, which leads to

α = β = γ = 0. (3.31)

In terms of the embedding tensor, these equations can be written as

Θ m
Λ XΛ + ΘΛmFΛ = 0, (m = 1, 2, 3) (3.32)
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Also, from eq. (3.19), we have

∇iα = ∇iβ = ∇iγ = 0. (3.33)

Under the conditions (3.31), the equations (3.33) give

Θ m
i + FiΛΘΛm = 0, (m = 1, 2, 3) (3.34)

since ∂iX
Λ = δΛ

i and ∂iFΛ = FΛi in the special coordinate. Multiplying zi to eq. (3.34)

and subtracting eq. (3.32), we obtain

Θ m
0 + F0ΛΘΛm = 0, (3.35)

where we have used the property FΛ = FΛΣX
Σ. As a result, eqs. (3.34) and (3.35) are

summarized as

Θ m
Λ + FΛΣΘΣm = 0. (3.36)

Since the matrix ImFΛΣ has to be invertible for special geometry, the equation (3.36)

leads to

Θ m
M = 0, (3.37)

which means that no gauging is a solution in our setup.

3.3.2 N = 1 (partial breaking)

Next, we derive the conditions for the partial breaking. Obviously, it occurs when X+ =

X−, that is,

α2 + β2 + γ2 = 0. (3.38)

In the following, we see the consequence of this equation, dividing the cases by the number

of gaugings.

(i) gauging one direction. Let us consider a case, Θ 1
M 6= 0 and Θ 2,3

M = 0. Then, the

N = 1 preserving condition (3.38) and eq. (3.19) imply

α = ∇iα = 0. (3.39)

In the same way with the subsection 3.3.1, we obtain

Θ 1
M = 0, (3.40)

which contradicts with Θ 1
M 6= 0. Therefore, the one isometry gauging cannot realize the

partial breaking.
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(ii) gauging two directions. Next, we assume that Θ 1,2
M 6= 0 and Θ 3

M = 0. The

condition (3.38) requires either of α± iβ = 0. Then, the equations. (3.16) and (3.19) read

2|α|2 = |∇α|2 + |∇β|2, (3.41)

∓|α|2 = Im(∇α · ∇β). (3.42)

By summing these two equations, we obtain |∇α ± i∇β|2 = 0. Therefore, we also have

∇iα± i∇iβ = 0. By repeating the same process, we obtain

Θ 1
Λ + FΛΣΘΣ1 ± i

(
Θ 2

Λ + FΛΣΘΣ2
)

= 0. (3.43)

Note that if there is no magnetic couplings, i.e., ΘΣ1,2 = 0, eq. (3.43) leads to Θ 1,2
Λ = 0,

which contradicts to the assumption Θ 1,2
M 6= 0. Therefore, the introduction of the magnetic

coupling is necessary for eq. (3.43) to have solutions.

(iii) gauging three directions. Finally, we consider the case with Θ 1,2,3
M 6= 0. The

solution of eq. (3.38) can be parametrized by

α+ iβ = wγ, α− iβ = − 1

w
γ, (3.44)

with a non-vanishing complex number w. Then, from eq. (3.19) and eqs. (3.16)–(3.18),

we obtain (
|w|+ 1

|w|

)2

|γ|2 = 2(|∇α|2 + |∇β|2 + |∇γ|2), (3.45)(
|w|2 − 1

|w|2

)
|γ|2 = 4Im∇α · ∇β, (3.46)(

w +
1

w
+ c.c.

)
|γ|2 = −4Im∇β · ∇γ, (3.47)(

w − 1

w
− c.c.

)
|γ|2 = −4iIm∇γ · ∇α. (3.48)

Based on these equations, it is straightforward to show that the following equation

|∇α+ i∇β − w∇γ|2 + |w|2|∇α− i∇β +
1

w
∇γ|2 = 0, (3.49)

holds, which implies

∇iα+ i∇iβ = w∇iγ, ∇iα− i∇iβ = − 1

w
∇iγ. (3.50)

Note that w = ±1 and w = ±i imply Θ 1
M = 0 and Θ 2

M = 0 respectively, and we exclude

these cases. Then, in terms of the embedding tensor, we have

Θ 1
Λ + FΛΣΘΣ1 + i

(
Θ 2

Λ + FΛΣΘΣ2
)

= w
(
Θ 3

Λ + FΛΣΘΣ3
)
, (3.51)

Θ 1
Λ + FΛΣΘΣ1 − i

(
Θ 2

Λ + FΛΣΘΣ2
)

= − 1

w

(
Θ 3

Λ + FΛΣΘΣ3
)
, (3.52)

which give 4(nv + 1) equations. Since eqs. (3.51) and (3.52) imply w = 0 when ΘΣ1,2,3 = 0,

we can conclude that there is no solution in the absence of the magnetic couplings, also in

this case.
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4 Scalar potential analysis

In this section, we discuss the scalar potential (3.15) and its minimum. Here we show it

again:

V =
eK

(b0)2
(−|α|2 − |β|2 − |γ|2 + |∇α|2 + |∇β|2 + |∇γ|2). (4.1)

Note that it can be rewritten as

V = rMN (UMN − VM V̄ N ), (4.2)

where

UMN ≡ gij̄UMi ŪNj̄ , ŪMN = UNM , (4.3)

rMN ≡
1

(b0)2

(
3∑

m=1

Θ m
M Θ m

N

)
. (4.4)

The stationary point of the scalar potential is given by solving

∂V

∂b0
= 0, (4.5)

∂V

∂zi
= 0. (4.6)

The former (4.5) is equivalent to impose

−|α|2 − |β|2 − |γ|2 + |∇α|2 + |∇β|2 + |∇γ|2 = 0, (4.7)

which is already ensured by the Minkowski vacuum condition (3.19). As for the latter (4.6),

we can compute it as

∂V

∂zi
= rMN (∂iU

MN − UMi V̄ N )

= rMN

(
gjk̄ŪNk̄

(
∂iU

M
j − ΓkijU

M
k

)
+ gjk̄UMj ∂iŪ

N
k̄ − U

M
i V̄ N

)
= rMNg

jk̄ŪNk̄ ∇iU
M
j

= rMNe
KŪNj̄ Ū

M
k̄ gjj̄gkk̄fijk. (4.8)

In the derivation, we have used ∂ig
jk̄ = −Γjikg

kk̄, ∂iŪ
N
k̄

= 1
2∂iKŪ

N
k̄

+gik̄V̄
N , and eq. (2.12).

Then, in terms of α, β, and γ, the equation (4.6) is summarized as

e2K (∇̄j̄ᾱ∇̄k̄ᾱ+ ∇̄j̄ β̄∇̄k̄β̄ + ∇̄j̄ γ̄∇̄k̄γ̄
)
gjj̄gkk̄fijk = 0. (4.9)

As summary, we derived the conditions the vacuum must satisfy: eqs. (3.19) and (4.9).

Also, the embedding tensor must satisfy the constraints (2.19)–(2.21). We need to inves-

tigate the behaviors of σA, under these conditions. In general, they depend on the values

of gauge coupling constants Θ m
M and the form of the prepotential or f(zi). Furthermore,
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Θ m
M depends on the number of vector multiplets (nv) and gauging (m = 1, 2, 3). In the

next section, therefore, we consider several concrete examples.

Before closing this section, let us comment on the three equations of the supergravity

identity (3.16)–(3.18). Indeed, they are equivalent to the constraints on the embedding

tensor (2.19)–(2.21). This can be seen by noting that the right-hand-side in eqs. (3.16)–

(3.18) can be expressed as

e−KΘ m
M Θ n

N Im(VM V̄ N − UMN ), m 6= n, m, n = 1, 2, 3. (4.10)

Then, note the following relation [18],

UMN = −1

2
MMN − i

2
CMN − V̄MV N , (4.11)

where MMN is a symmetric matrix (see [18] for the explicit expression). By substituting

eq. (4.11) into eq. (4.10), the remaining parts are

1

2
e−KΘ m

M Θ n
N CMN , (4.12)

which vanish under the constraints (3.16)–(3.18).

5 Behaviors of two supersymmetry breaking scales in explicit models

In this section, we consider some examples which satisfy the different vacuum conditions,

and investigate how the supersymmetry breaking scales change.

5.1 Single vector multiplet

First, let us focus on the case of a single vector multiplet (nv = 1). In this case, the

conditions (3.19) and (4.9) become

−|α|2 − |β|2 − |γ|2 + gzz̄|∇zα|2 + gzz̄|∇zβ|2 + gzz̄|∇zγ|2 = 0, (5.1)

((∇̄z̄ᾱ)2 + (∇̄z̄β̄)2 + (∇̄z̄γ̄)2)(gzz̄)2fzzz = 0. (5.2)

As for eq. (5.2), we have two choices:

Case A : fzzz = 0, (5.3)

or

Case B : fzzz 6= 0, or (∇zα)2 + (∇zβ)2 + (∇zγ)2 = 0, (5.4)

since gzz̄ 6= 0. Let us consider the two cases separately below.
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5.1.1 Case A

Let us start from the case, (5.3). Here, we assume that the prepotential takes the form

f = z, (5.5)

which obviously satisfies fzzz = 0. Then, the vacuum condition (5.1) is reduced to

Rez(Θ 1
0 Θ 1

1 + Θ01Θ11 + Θ 2
0 Θ 2

1 + Θ02Θ12 + Θ 3
0 Θ 3

1 + Θ03Θ13) = 0. (5.6)

Since gzz̄ = 4(Rez)2, we should impose Rez 6= 0, and the equation (5.6) constrains the

components of the embedding tensor.4

Next, let us consider some examples by assuming the following forms of the embedding

tensors,5

(i) Θ m
M =


E1 E2 0

0 0 0

0 0 0

0 0 0

 , (ii) Θ m
M =


E1 0 0

0 E2 0

0 0 0

0 0 0

 ,

(iii) Θ m
M =


E 0 0

0 0 0

0 0 0

0 M 0

 , (5.7)

with all elements being real. All of the examples manifestly satisfy eq. (5.6) as well as

eqs. (2.19)–(2.21). Then, we obtain the following expressions of σA,

(i) σ1 = σ2 =
√
E2

1 + E2
2 , (5.8)

(ii) σ1 =
√
E2

1 + E2
2 |z|2 − 2E1E2Imz,

σ2 =
√
E2

1 + E2
2 |z|2 + 2E1E2Imz, (5.9)

(iii) σ1 = E −M, σ2 = E +M, (5.10)

where we have assumed E ≥ M ≥ 0 in the example (iii). The first example (i) obviously

predicts a degenerate breaking scale. For the examples (ii) and (iii), we show the gauge

coupling dependence of the two breaking scales in figure 3, changing the parameters as

0 ≤ E1, E2, E,M ≤ 0.5. In the case (ii), we fixed z = 1 + i. In both cases, the two

breaking scales can take different values, but the case (ii) cannot cover the line σ1 = 0

except for the origin, in contrast to the case (iii). Note that this fact is independent of the

value of z in eq. (5.9) because σ1 = 0 implies

σ1 = 0 ⇐⇒ (E1 − E2Imz)2 + (E2Rez)2 = 0

⇐⇒ E1 = E2 = 0, (5.11)

4Under the condition (5.6), the scalar potential is exactly zero, and z is a modulus.
5As we saw before, just one isometry gauging always leads to the degenerate breaking scale, thus we

consider gauging two directions (m = 1, 2) characterized by two real parameters.
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Figure 3. Left: the gauge coupling dependence of σ1 and σ2 in the case (ii). We change E1, E2 as

0 ≤ E1, E2 ≤ 0.5 and set z = 1 + i. Right: the gauge coupling dependence of σ1 and σ2 in the case

(iii). We change E,M as 0 ≤ E,M ≤ 0.5. The dotted line denotes σ2 = σ1 in both figures.

Figure 4. Left: the scatter plot of σ1 and σ2 in the case A. The value of z is set to be 1. Right:

the scatter plot of σ1 and σ2 in the case B. We have set b = c = 1. In both figures, the gauge

couplings in the embedding tensor are assigned to take the values in {−0.1, 0.1} and there are 104

sample points.

and therefore, it also leads to σ2 = 0 (N = 2 preserving vacuum). In the second equivalence,

we have used Rez 6= 0. This is consistent with the result of subsection. 3.3.2, where

it is explicitly shown that the pure electric gauging cannot realize the partial breaking

σ1 = 0, σ2 6= 0.

More generally, we plotted the values of σA in figure 4 (the left) by randomly choosing

the components of Θ m
M in such a way that they satisfy the condition (5.6) and the con-

straints (2.19)–(2.21). All the components of Θ m
M are assumed to take the values between

{−0.1, 0.1} and z is set to be 1.
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5.1.2 Case B

When fzzz 6= 0 hold at the vacuum, the condition (5.4) must be satisfied. This condition

is nothing but the partial breaking condition (3.50) with nv = 1. Therefore, N = 1

supersymmetry always remains at the vacuum in this case.6 Here, we explicitly construct

a model satisfying the condition (5.4) and show that the partial breaking actually occurs.

Let us assume that the prepotential takes the form,

f = az + bz2 + cz3, (5.12)

where a, b and c 6= 0 are complex in general. For the condition (5.4) to have a nontrivial

solution, we need to gauge at least two isometries and introduce the magnetic component as

shown in subsection. 3.3.2. For example, let us assume the following form of the embedding

tensor,

Θ m
M =


E1 E3 0

E2 0 0

0 0 0

M 0 0

 , (5.13)

which satisfies eqs. (2.19)–(2.21). Under this choice, one can check that the stationary

conditions (5.1) and (5.4) are satisfied if

E2 − ifzzM = 0, (5.14)

E1 + zE2 − iMfz − iE3 = 0, (5.15)

are satisfied. These equations determine z and a as

z = − b

3c
− i E2

6cM
, a =

b2

3c
− E3

M
− E2

2

12cM2
+ i

(
−E1

M
+

bE2

3cM

)
, (5.16)

where we have assumed b and c are real just for simplicity.

In figure 4 (the right), we plotted the two breaking scales σA under the conditions (5.16).

The parameters E1, E2, E3 and M are assigned to take the values in {−0.1, 0.1}, Also, we

have set b = c = 1. It can be found that all the points are located on the line σ1 = 0,

which means that the partial breaking always occurs in this case. As explicitly shown in

ref. [9], the partially broken vacuum is ensured to be stable.

5.2 Multiple vector multiplets

Finally, we study the case of multiple vector multiplets. The case analysis of the condi-

tion (4.9) is not simple unlike the single case. Nevertheless, we roughly divide the situations

into the following two cases,

Case A : fijk = 0, for all i, (5.17)

Case B : fijk 6= 0, for some i, (5.18)

6In ref. [1], this claim is proved by taking a concrete choice of the embedding tensor (see section 4.3 and

appendix D of the paper).
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in order to illustrate the similarity and the difference with nv = 1 case.

The case A manifestly satisfies the condition (4.9). Then, all we have to take into

account are only the constraints (2.19)–(2.21) and the Minkowski condition (3.19). The

situation is almost the same with the single case, and we can realize several types of

supersymmetry breaking, N = 0, 1, 2.

In the case B, however, more conditions on the embedding tensor are required. The

condition (4.9) in this case seems complicated, but we realize soon that it can be satisfied

if the partial breaking condition (3.50) is satisfied, since

∇jα∇kα+∇jβ∇kβ +∇jγ∇kγ

=

[
1

4

(
w − 1

w

)2

− 1

4

(
w +

1

w

)2

+ 1

]
∇jγ∇kγ = 0. (5.19)

Therefore, we can obtain the partially broken vacuum as nv = 1 case.

However, there exist other solutions of eq. (4.9) which do not necessarily satisfy the

partial breaking condition. This is contrast to the situation of nv = 1 case, where we always

have the partially broken vacuum if the cubic coupling in the prepotential exists. To show

it based on an explicit model, we consider nv = 2 case, and choose the prepotential as

f(z1, z2) = z2
1z2. (5.20)

Also, the form of the embedding tensor is assumed to be

Θ m
M =



Θ 1
0 Θ 2

0 0

Θ 1
1 0 0

0 Θ 2
2 0

0 0 0

Θ11 0 0

0 Θ22 0


, (5.21)

which satisfies the constraints (2.19)–(2.21). Then, we found that the sets

(I) z1 = z2 = 1 + i, Θ 2
0 = 2Θ22, Θ 1

0 = Θ 1
1 = Θ 2

2 = 0, (5.22)

(II) z1 = z2 = 1 + i, Θ 2
0 = 2Θ22, Θ 1

0 = Θ 2
2 = Θ11 = 0, (5.23)

(III) z1 = z2 = 1 + i, Θ 1
0 = Θ 2

0 = Θ 1
1 = Θ 2

2 = Θ22 = 0, (5.24)

(IV) z1 = z2 = 1 + i, Θ 1
0 = Θ 2

0 = Θ 2
2 = Θ11 = Θ22 = 0, , (5.25)

are the solutions of eqs. (3.19) and (4.9). Each value of σA is given by

(I) σ1 = σ2 = X(I)+, (5.26)

(II) σ1 = X(II)+ −X(II)−, σ2 = X(II)+ +X(II)−, (5.27)

(III) σ1 = σ2 = 4|Θ11|, (5.28)

(IV) σ1 = σ2 = 4|Θ 1
1 |, (5.29)
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Figure 5. The gauge coupling dependence of σ1 and σ2 in the case (II), which is given by

eqs. (5.27), (5.31), and (5.32). We change the gauge couplings, Θ 1
1 and Θ22, between {0, 0.1}.

with

X(I)+ = 4
√

(Θ11)2 + (Θ22)2, X(I)− = 0, (5.30)

X(II)+ =

√
(Θ 1

1 )2 + 8(Θ22)2 +
√

(Θ 1
1 )4 + 64(Θ22)4, (5.31)

X(II)− =

√
(Θ 1

1 )2 + 8(Θ22)2 −
√

(Θ 1
1 )4 + 64(Θ22)4. (5.32)

Here X± are defined by eq. (3.7). Then, it can be found that σ1 can be nonzero, and there

exist full broken vacua even when we consider the case fijk 6= 0. In the case (I), (III), and

(IV), we have degenerate supersymmetry breaking scales. As for the case (II), we have

shown the Θ 1
1 and Θ22 dependence in figure 5. These parameters are assumed to take the

values between {0, 0.1}.
As for the stability of the scalar potential, we evaluate eigenvalues of the Hessian

matrices and obtain

(I)

{
1

2

(
X(I)+

4

)2

− 1

2

√
(Θ11)4+(Θ22)4,

1

2

(
X(I)+

4

)2

+
1

2

√
(Θ11)4+(Θ22)4,0,0

}
, (5.33)

(II)

{
1

4
X2

(II)−,
1

4
X2

(II)+,0,0

}
, (5.34)

(III)

{
4(Θ11)2,0,0,0

}
, (5.35)

(IV)

{
1

2
(Θ 1

1 )2,0,0,0

}
. (5.36)

Although there are some massless scalars, tachyonic mode does not exist.
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6 Summary

In the paper, we analyzed the patterns of supersymmetry breaking in N = 2 gauged super-

gravity with multiple vector multiplets and a single hypermultiplet. Based on the embed-

ding tensor formalism, we derived the general expressions of the two gravitino masses (3.6)

(supersymmetry breaking scales) under the gauging of the isometry (2.15). Then, we dis-

cussed how they change depending on the input parameters such as the gauge coupling

constants and the prepotential, taking into account the conditions the vacuum must satisfy.

In the case with a single vector multiplet, we can classify the situation by the vacuum

expectation value of the third derivative of the prepotential, fzzz. When fzzz = 0, we

have varieties of the breaking patterns, depending on the gauge couplings (see figure 3).

When fzzz 6= 0, on the other hand, it was shown that the N = 1 supersymmetry always

remains, which is consistent with the previous result of ref. [1]. This result does not depend

on the specific choice of the prepotential and the form of the embedding tensor, as long

as eq. (5.4) has a solution. For the case of multiple vector multiplets, we found that the

full breaking can be realized even when the third derivatives of the prepotential are non-

trivial. These observations would be important when we discuss the relation to the string

compactifications, D-brane effective action, and the particle phenomenology/cosmology.

As future directions, it is important to investigate the mass spectrum other than the

gravitinos, especially, how they change depending on the two supersymmetry breaking

scales and affects the low energy physics. There is also a room for further generalizations

of our model: the extension of the hyper sector and non-Abelian generalization may change

the situation significantly. Also, applications to other extended supergravities in various

dimensions are interesting themes. We will study these issues elsewhere.
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A Spinor notation

Here, we summarize spinor conventions.

The SU(2) and Sp(2) invariant tensors satisfy

εABεBC = −δAC , ε12 = ε12 = 1, (A.1)

CαβCβγ = −δαγ , C12 = C12 = 1, (A.2)

and the indices of SU(2) and Sp(2) vectors are raised and lowered by

εABP
B = PA, ε

ABPB = −PA, (A.3)

CαβP β = Pα, CαβPβ = −Pα. (A.4)
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The Pauli matrices are (τx) B
A (x = 1, 2, 3) are

(τ1) B
A =

(
0 1

1 0

)
, (τ2) B

A =

(
0 −i
i 0

)
, (τ3) B

A =

(
1 0

0 −1

)
. (A.5)

Their indices are raised and lowered by εAB and εAB defined above.

We denote the chirality of the spinors as

γ5


ψA
λiA

ζα
εA

 =


ψA
λiA

ζα
εA

 , (A.6)

γ5


ψA

λīA
ζα

εA

 = −


ψA

λīA
ζα

εA

 . (A.7)
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[6] P. Fré, L. Girardello, I. Pesando and M. Trigiante, Spontaneous N = 2→ N = 1 local

supersymmetry breaking with surviving compact gauge group, Nucl. Phys. B 493 (1997) 231

[hep-th/9607032] [INSPIRE].

[7] H. Itoyama and K. Maruyoshi, U(N) gauged N = 2 supergravity and partial breaking of local

N = 2 supersymmetry, Int. J. Mod. Phys. A 21 (2006) 6191 [hep-th/0603180] [INSPIRE].

[8] K. Maruyoshi, Gauged N = 2 Supergravity and Partial Breaking of Extended Supersymmetry,

Ph.D. Thesis, Osaka City U. (2006) [hep-th/0607047] [INSPIRE].

– 21 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP08(2018)045
https://arxiv.org/abs/1806.09639
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.09639
https://doi.org/10.1016/j.physrep.2005.10.008
https://doi.org/10.1016/j.physrep.2005.10.008
https://arxiv.org/abs/hep-th/0509003
https://inspirehep.net/search?p=find+EPRINT+hep-th/0509003
https://doi.org/10.1016/j.physrep.2007.04.003
https://arxiv.org/abs/hep-th/0610327
https://inspirehep.net/search?p=find+EPRINT+hep-th/0610327
https://doi.org/10.1016/0370-2693(95)01378-4
https://arxiv.org/abs/hep-th/9510074
https://inspirehep.net/search?p=find+EPRINT+hep-th/9510074
https://doi.org/10.1016/0370-2693(96)00229-8
https://arxiv.org/abs/hep-th/9512180
https://inspirehep.net/search?p=find+EPRINT+hep-th/9512180
https://doi.org/10.1016/S0550-3213(97)00076-X
https://arxiv.org/abs/hep-th/9607032
https://inspirehep.net/search?p=find+EPRINT+hep-th/9607032
https://doi.org/10.1142/S0217751X06034045
https://arxiv.org/abs/hep-th/0603180
https://inspirehep.net/search?p=find+EPRINT+hep-th/0603180
https://arxiv.org/abs/hep-th/0607047
https://inspirehep.net/search?p=find+EPRINT+hep-th/0607047


J
H
E
P
1
1
(
2
0
1
9
)
1
0
1

[9] J. Louis, P. Smyth and H. Triendl, Spontaneous N = 2 to N = 1 Supersymmetry Breaking in

Supergravity and Type II String Theory, JHEP 02 (2010) 103 [arXiv:0911.5077] [INSPIRE].

[10] J. Louis, P. Smyth and H. Triendl, The N = 1 Low-Energy Effective Action of Spontaneously

Broken N = 2 Supergravities, JHEP 10 (2010) 017 [arXiv:1008.1214] [INSPIRE].

[11] T. Hansen and J. Louis, Examples of N = 2 to N = 1 supersymmetry breaking, JHEP 11

(2013) 075 [arXiv:1306.5994] [INSPIRE].

[12] J. Hughes and J. Polchinski, Partially Broken Global Supersymmetry and the Superstring,

Nucl. Phys. B 278 (1986) 147 [INSPIRE].

[13] I. Antoniadis, H. Partouche and T.R. Taylor, Spontaneous breaking of N = 2 global

supersymmetry, Phys. Lett. B 372 (1996) 83 [hep-th/9512006] [INSPIRE].

[14] K. Fujiwara, H. Itoyama and M. Sakaguchi, Partial breaking of N = 2 supersymmetry and of

gauge symmetry in the U(N) gauge model, Nucl. Phys. B 723 (2005) 33 [hep-th/0503113]

[INSPIRE].

[15] K. Fujiwara, H. Itoyama and M. Sakaguchi, Partial supersymmetry breaking and N = 2

U(Nc) gauge model with hypermultiplets in harmonic superspace, Nucl. Phys. B 740 (2006)

58 [hep-th/0510255] [INSPIRE].

[16] K. Fujiwara, H. Itoyama and M. Sakaguchi, Supersymmetric U(N) gauge model and partial

breaking of N = 2 supersymmetry, Prog. Theor. Phys. Suppl. 164 (2007) 125

[hep-th/0602267] [INSPIRE].

[17] J.R. David, E. Gava and K.S. Narain, Partial N = 2→ N = 1 supersymmetry breaking and

gravity deformed chiral rings, JHEP 06 (2004) 041 [hep-th/0311086] [INSPIRE].

[18] L. Andrianopoli, P. Concha, R. D’Auria, E. Rodriguez and M. Trigiante, Observations on BI

from N = 2 Supergravity and the General Ward Identity, JHEP 11 (2015) 061

[arXiv:1508.01474] [INSPIRE].

[19] R.A. Laamara, E.H. Saidi and M. Vall, Partial breaking in the rigid limit of N = 2 gauged

supergravity, PTEP 2017 (2017) 113B04 [arXiv:1704.05686] [INSPIRE].

[20] E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].

[21] S. Cecotti, L. Girardello and M. Porrati, Two into one won’t go, Phys. Lett. 145B (1984) 61

[INSPIRE].

[22] S. Cecotti, L. Girardello and M. Porrati, Constraints On Partial Superhiggs, Nucl. Phys. B

268 (1986) 295 [INSPIRE].

[23] J. Bagger and A. Galperin, A New Goldstone multiplet for partially broken supersymmetry,

Phys. Rev. D 55 (1997) 1091 [hep-th/9608177] [INSPIRE].
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