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1 Introduction

More than 30 years after its discovery, superconductivity with high critical temperature

(or “High-Tc”) is still an open area of research in condensed matter physics, both from

the theoretical and the experimental viewpoints (see [1] and references therein). Being the

paradigmatic cases those of cuprates and iron based superconductors, the emerging phase

diagrams are very rich (see figure 2 in [1]). In temperature-doping phase diagrams, there

is a superconducting dome in the intermediate region of the doping axis, that is known

to be dominated by a d-wave condensate. On top of such dome, the electronic spectral

function measured by ARPES experiments [2] shows the presence of a Fermi surface, even

if the phenomenology does not allow for a Landau description unless the doping is high [3].

As the doping is decreased, the Fermi surface degenerates into “Fermi arcs”, as we move

into a region known as “pseudogap”. There, a competition of orders takes place, giving

rise to inhomogeneous phases with striped and/or checkboard patterns for different order

parameters. If the doping is further decreased, an anti-ferromagnetic phase appears, that

in some materials is replaced by a phase with striped antiferromagnetic order parameter

known as “spin density wave” [4].

From a purely theoretical perspective, a class of superconducting systems can be de-

fined in a holographic setup [5, 6]. These are known as “holographic superconductors” and

their phenomenology shares many features with that of High-Tc superconducting materi-

als [7–9]. Holographic realizations of the s-, p- and d-wave condensates have been proposed

in [10–12] and [13]. The fermionic spectral functions in such holographic backgrounds show

the presence of a Fermi surface and, according to the parameters defining the holographic
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theory, regions without quasiparticles can be found that are not suitable for a Landau de-

scription [14–16]. The breaking of translational and/or rotational symmetry enriches the

picture even further, leading to more realistic models [17–21].

Most of the aforementioned theoretical research has been pursued in holographic mod-

els whose dual theory is conformal. Then, in the absence of external scales, the phase

diagram can only depend on the single dimensionless quotient of temperature and chemi-

cal potential. In [22] a holographic model was proposed, in which an additional chemical

potential sets an independent scale that allows for the definition of a doping axis. Regard-

ing its superconducting properties, the model is very similar to the model of unbalanced

superconductor first proposed in [23] or to the model with two vector order parameters

proposed in [24]. The introduction of an additional bulk field allows the reproduction of a

phase diagram which shares many qualitative features with that of High-Tc superconduc-

tors. In particular, a superconducting dome at intermediate doping and anti-ferromagnetic

phase at low doping appear, as well as inhomogeneous phases in the intermediate region.

In the present work, we add a magnetic field to the setup of [22] and describe the

resulting 3-dimensional phase diagrams with an additional magnetic field axis. We do so

in a particular region of parameters in which the doped model can be mapped exactly into

the undoped one, previously studied in [25]. This map is such that the model with varying

doping is recast into the model without doping but with varying effective parameters, such

as the values of magnetic field and scalar field charge. Then, solutions of the undoped

model [25] with varying parameters can be used to construct a phase diagram displaying

both magnetic field and doping axes.

The plan of the paper is as follows. In section 2 we first present our bulk theory with

two Maxwell fields and its relevant background solution. Then, we perturb it with a charged

scalar probe and map the resulting equations to the undoped model with a single Maxwell

field. Later in section 3 we explore the superconducting instability both analytically and

numerically. The analysis of the results is presented in section 4.

2 Holographic model for the doped superconductor

We work with a reduced version of the model proposed in [22], including only the degrees of

freedom involved in the superconducting transition, to lowest order. The resulting action

then reads

S =
1

2κ2
4

∫
d4x
√
−g
[
R+

6

L2
− 1

4
F 2 − 1

4
F̄ 2 − |∂Ψ−iqAΨ−iq̄ĀΨ|2 −m2|Ψ|2

]
. (2.1)

Here L is the AdS radius, while q and q̄ are the charges of the massive scalar field Ψ

with respect to the two Maxwell fields Aµ and Āµ respectively, whose gauge curvatures are

Fµν and F̄µν . Notice that, as compared to the model [22], here we are allowing only for

minimal coupling of the charged scalar to the gauge fields. This is essential to simplify our

calculations in the following section by mapping the model to the undoped case, but in

principle it can be relaxed. This model is very similar to the one proposed in [23], the main

difference being that now the scalar field is charged with respect to both Maxwell fields.
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In this model, the charged scalar Ψ represents the dual of a superconducting s-wave

order parameter. The Maxwell field Aµ, which realizes a bulk gauge symmetry, corre-

sponds to the global U(1) symmetry in the boundary theory related to particle number

conservation. On the other hand, the second electromagnetic field Āµ sets a scale in the

holographic theory, allowing for a definition of a “doping” axis. This can be loosely in-

terpreted as related to a second particle number conservation due to the impurities of the

dual theory.

2.1 The background: a doubly charged dyonic black hole

We want a background solution of the above defined dynamics, representing a normal

phase in a uniform magnetic field, in which the scalar field vanishes. A generic ansatz with

transverse two dimensional rotational and translational symmetry reads

ds2 =
α2L2

z2

(
−fdt2 + dx2 + dy2

)
+

L2

z2f
dz2,

A = At dt+Ay dy, Ā = Āt dt+ Āy dy, Ψ = 0 , (2.2)

in which the lapse function f and both gauge curvatures are assumed to depend only on

the coordinate z.

By plugging this ansatz into the equations of motion, we get a solution in the form of a

doubly charged dyonic black-hole, with a planar horizon. The lapse function and Maxwell

fields are written as

f = 1− 4

(
1− πT

α

)
z3 +

(
3− 4πT

α

)
z4, (2.3)

At = µ (1− z) , Ay = B x , (2.4)

Āt = xµ (1− z) , Āy = yB x . (2.5)

The horizon sits at z = 1, and the AdS boundary at z = 0. The horizon value of the gauge

fields have been tuned to zero in order to have a smooth Euclidean continuation.

In the above solution, the boundary value of the At field, given by the constant µ,

represents the chemical potential of the charged particles on the boundary theory. The

magnetic field acting on them is given by B. On the other hand, the boundary value of the

field Āt, given by the constant xµ, sets a scale in the boundary theory and it can be loosely

associated with the chemical potential of the impurities. This implies that the ratio x can

be interpreted as a measure of the doping. There is also an additional magnetic field yB

acting on impurities, that represents an additional integration constant of our model. The

magnitude T is the temperature on the boundary theory. In order for the metric to have

a smooth Euclidean continuation, it must satisfy

T =
α

4π

(
3− 1

4α4

(
α2µ2(1 + x2) +B2(1 + y2)

))
. (2.6)

From the dual perspective, the solution presented here represents the normal state of

the theory. As we will see in the forthcoming sections, such normal state is unstable at low
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enough temperatures with respect to fluctuations on the scalar field. Such instability ends

up in a hairy black hole solution with a non-trivial profile for the scalar field, that in the

dual theory represents a superconducting phase.

2.2 The probe: a charged scalar perturbation

If we now turn on a static perturbation of the scalar in the above background Ψ = 0 + ψ,

the resulting energy momentum tensor is quadratic in the perturbation ψ. This implies

that the induced deformation on the metric is second order, and we do not need to take

it into account. The same is true for the non-trivial electric current and the resulting

deformation on the Maxwell field.

The perturbation ψ satisfies the Klein Gordon equation, namely

1√
−g

Dµ

(√
−g gµνDν

)
ψ −m2ψ = 0 , (2.7)

where the gauge covariant derivative includes both Maxwell fields Dµ = ∂µ− iqAµ− iq̄Āµ.

Particularizing to the background (2.2) we get

α2z2 ∂z

(
f

z2
∂zψ

)
+ ∂2

xψ +

(
µ2(q + q̄x)2 (z − 1)2

f
−B2(q + q̄y)2x2 − α2m2L2

z2

)
ψ = 0 .

(2.8)

We solve the above equation with regular boundary conditions at the horizon, and without

a source term at the AdS boundary. In consequence, if the scalar field develops a non-

trivial profile, we conclude that the boundary U(1) is broken spontaneously, giving rise to

a superconducting phase.

2.3 The mapping: effective parameters and the undoped case

A key observation, that we exploit in the rest of the paper, is the fact that we can define

effective parameters in terms of which the problem gets mapped onto the undoped holo-

graphic superconductor in a magnetic field, first studied in [25]. Indeed, defining effective

parameters as

qeff µeff = (q + q̄ x)µ, (2.9)

qeff Beff = (q + q̄ y)B, (2.10)

Teff = T, (2.11)

where Teff satisfies

Teff =
α

4π

(
3− 1

4α4

(
α2µ2

eff +B2
eff

))
, (2.12)

the equation of motion of the scalar field (2.8) becomes

α2z2 ∂z

(
f

z2
∂zψ

)
+ ∂2

xψ +

(
q2

effµ
2
eff

(z−1)2

f
− q2

effB
2
eff x

2 − m2α2L2

z2

)
ψ = 0 , (2.13)

where the function f is now written as in (2.3) but with T replaced by Teff . This is exactly

the problem studied in [25], so in the rest of the paper we will replicate the analysis of that
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reference and map the results back to our system using (2.9)–(2.11). However, the results

presented in [25], which correspond to qeff = 1, are not enough for our purpose and we will

need to extend the numerical resolution for other values of qeff .

Borrowing from [25] the standard procedure to deal with this equation, we separate

variables with the ansatz ψ(x, z) = X(x)Z(z), getting

Z ′′ +

(
f ′

f
− 2

z

)
Z ′ +

1

f

(
q2

effµ
2
eff

(z−1)2

α2f
− k2

α2
− m2L2

z2

)
Z = 0 , (2.14)

X ′′ +
(
k2 − q2

effB
2
eff x

2
)
X = 0 , (2.15)

where k is a separation constant.

In order to solve equations (2.14)–(2.15) in the bulk, we impose regular boundary

conditions at the horizon and at the boundary. Close to the boundary, the variable Z

behaves as

Z ' Z+z
∆+ + Z−z

∆− , (2.16)

while close to the horizon it satisfies

Z ' Zreg + Zdiv log(1− z) . (2.17)

Following [25] we integrated numerically the equations starting from the horizon with a

regular solution Zdiv = 0 and shooting with the parameter µeff so as to get Z− = 0 at the

boundary. Whenever a non-trivial profile for the scalar field exists, the U(1) symmetry of

the boundary theory is spontaneously broken and the system becomes superconducting.

In the following section, we analyze the planes (T, x), (T,B) and (B, x) separately,

and then construct the full phase diagram by using the above defined mapping from the

(Teff , Beff) plane into the (T,B, x) space.

3 The superconducting instability

3.1 Finite temperature and doping, and vanishing magnetic field

In the case of vanishing magnetic field, equations (2.14)–(2.15) decouple and the equation

for X can be solved trivially with a constant profile. The numerical solution of the equation

for Z leads to a superconducting region in the plane (T, x). As described in [22], depending

on the values of parameters m, q and q̄, different sorts of phase diagrams corresponding to

different sorts of phenomenology are obtained.

In the particular example depicted in figure 1 the resulting phase diagram presents a

“dome” which extends for all positive values of x. However, depending on the case, the

superconducting phase may exist only for finite range of x. A generic behaviour for the

different cases we shall discuss, is that the critical temperature exhibits a maximum value

at a finite value of the doping x.

In order to prove that analytically, we notice that when the magnetic field B vanishes,

the effective magnetic field Beff vanishes as well. Then, the regularity condition at the AdS

boundary Z− = 0 imposes a relation between the two remaining free parameters of the

– 5 –
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x

T

Figure 1. Generic phase diagram in the (T, x) plane.

effective model Z−[qeff , µeff ] = 0, which can be solved as qeff = p
(
µeff/

√
12
)
, where p(·) is

a function that has to be determined numerically, and the factor
√

12 is included for later

convenience. From (2.12), the critical temperature reads

Tc =
3α

4π

(
1−

(
p−1(qeff)

)2)
(3.1)

where p−1(·) stands for the inverse of p(·). When B = 0, the mapping (2.9)–(2.11) can be

solved explicitly for

qeff =
q + q̄x√
1 + x2

, (3.2)

and equation (3.1) can be used to study the properties of the critical temperature as a

function of the doping.

In particular, the maximum value of the critical temperature sits at a value of the

doping such that

∂xTc = −3α

2π

p−1(qeff)

p′(µeff/
√

12)
∂xqeff = 0. (3.3)

Solving ∂xqeff = 0 we obtain a value of x at which the critical temperature is stationary

xmax =
q̄

q
. (3.4)

Additional stationary points might exist if the prefactor in (3.3) vanished at some particular

values of qeff , whose position in the doping axis could then be obtained from (3.2).

On the other hand, the critical temperature (3.1) vanishes at the values of x that satisfy

qeff = p(±1) ≡ p±, the sign being that of µeff . This can be rewritten as(
p2
± − q̄2

)
x2 − 2 qq̄ x + (p2

± − q2) = 0. (3.5)

– 6 –
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- p 0 p

- p

0

p

q

q

No root

One root

Two roots

Figure 2. The (q, q̄) plane, showing the regions in which there are no, one or two roots for the

critical temperature as a function of x. The critical value p corresponds to p± (or to, p0 see bellow).

In this equation, the signs of the independent and quadratic coefficients depend on q and

q̄ respectively. Then, using Descartes’ sign rule, we can draw a diagram in the (q, q̄) plane

with the number of positive roots, figure 2. There we see that, according to the values of

q and q̄, we can have superconductivity along the whole doping axis (no positive root), up

to a maximum doping (one positive root) or between a minimum and a maximum doping

(two positive roots).

3.2 Finite temperature and magnetic field, and vanishing doping

Now we turn to the problem of solving equations (2.14)–(2.15) for a nontrivial profile of the

fields Z and X at vanishing doping. As before, we identify the existence of such solution

with the onset of a superconducting phase.

The procedure employed to find the superconducting region in a (T,B) diagram at

zero doping (or equivalently in a (Teff , Beff) diagram) is completely analogous to that of

reference [25], as follows. We first solve equation (2.15) for X in terms of confluent hyper-

geometric functions with k initially unconstrained. Then, we assume a finite profile for X,

which constrains k to be proportional to an odd integer, i.e., k =
√
qeffBeff (2n+ 1). This

has the effect of turning the confluent hypergeometric functions into Hermite polynomials

of order n, namely, Hn. Finally, as ψ phase must remain constant in order to satisfy the

equation of motion, we are forced to choose n to be zero, because H0 is the only Hermite

polynomial that is an even function. Having obtained the allowed value k =
√
qeffBeff , we

solve numerically equation (2.14) by means of a shooting method. We do this for several

discrete values of qeff and m.

Depending on the values of qeff and m, a superconducting region may exist or not. For

the cases in which it does exist, the phase diagram is generically as the one depicted in

figure 3.

3.3 Vanishing temperature, and finite magnetic field and doping

When the Beckenstein-Hawking temperature of the black hole (2.6) vanishes, the metric

has a near horizon expansion with the form

ds2 = α2L2
(2)

(
− 1

ζ2
dt2 + dx2 + dy2

)
+
L2

(2)

ζ2
dζ2 (3.6)

– 7 –
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B

T

Figure 3. Generic phase diagram in the (T,B) plane.

Where we defined
√

6(z − 1) = 1/ζ. This corresponds to an AdS2 × R2 geometry, with

AdS2 radius given by L(2) = L/
√

6.

The scalar equations (2.14)–(2.15) in this limit reduce to

ζ2Z ′′ −m2
(2)L

2
(2)Z = 0 , (3.7)

X ′′ + qeffBeff

(
1− qeffBeffx

2
)
X = 0 , (3.8)

where now the prime denotes a derivative with respect to ζ. Equation (3.7) corresponds

to that of a scalar field fluctuation on the AdS2 background defined by (3.6) with a mass

m2
(2)L

2
(2) =

1

6

(
m2L2 +

qeffBeff

α2
− 1

6α2
q2

effµ
2
eff

)
. (3.9)

In order for AdS2 background to be stable under the scalar field fluctuation, the mass

m2
(2)L

2
(2) must satisfy the Breitenlohner-Freedman bound in two dimensions

m2
(2)L

2
(2) > −

1

4
. (3.10)

The violation of this bound would indicate an instability of the near-horizon black hole

geometry, i.e. the development of a superconducting phase. In terms of the physical pa-

rameters of the boundary theory, the above condition reads

m2L2 +
3

2
+ (q + q̃y)

B

α2
+

(q + q̃x)2

1 + x2

(
(1 + y2)

B2

6α4
− 2

)
> 0. (3.11)

We expect the condensation of our system whenever the left hand side becomes negative.

A generic phase diagram for a suitable choice of parameters is shown in figure 4.

We see that the superconducting phase disappears into the normal phase whenever the

– 8 –
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x

B

Figure 4. Generic phase diagram in the (B, x) plane.

magnetic field B is large enough. The maximum value of the magnetic field, that allows

for a superconducting phase, depends on the doping.

In order to understand this analytically, we saturate the bound putting B = Bc and

rewrite it as (
p2

0 − q̄2
)
x2 − 2 qq̄ x + (p2

0 − q2) = 0, (3.12)

with

p0 =
m2L2 + 3

2 + (q + q̄y)Bc
α2

2− (1 + y2) B
2
c

6α2

. (3.13)

At Bc = 0, i.e. on the x axis, we get p0 = (m2L2 + 3/2)/2, and the above equation has the

same structure as eq. (3.5), implying a diagram similar to that of figure 2 in the (q, q̄) plane.

Then again, according to the values of q and q̄, we have superconductivity along the whole

doping axis, up to a maximum doping, or between a minimum and a maximum doping.

Regarding the maximum critical magnetic field, we can compute ∂xBc using the implicit

function theorem as follows

∂xBc =
x(p2

0 − q̄2)− qq̄

p0 (1 + x2) ∂Bp0
= 0. (3.14)

Combined with (3.12), this equation gives the result xmax = q̄/q. At such value of the

doping, the critical magnetic field is maximum. Remarkably, this value coincides with

the value of the doping that maximizes the critical temperature. The resulting maximum

critical magnetic field Bc at x = xmax can then be solved from equations (3.12) and (3.13)

to obtain its explicit dependence on m2, q, q̄ and y.

3.4 The complete phase diagram

Zero doping solutions written in terms of the effective parameters, can be mapped to

curves in a 3-dimensional diagram with axes (T,B, x) and fixed y, through (2.9)–(2.11).

– 9 –
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Figure 5. Generic phase diagram in the (T,B, x) space. The dotted curves are associated with a

value of Beff .

Mapping many solutions with different effective parameters we obtain a family of curves

that eventually specifies a surface in the 3-dimensional phase diagram. The surface shown

in figure 5 is a generic example of it, where the superconducting dome extends non-trivially

into the magnetic field axes, sitting on top of the region of the (B, x) plane in which the

Breitenlohner-Freedman bound is violated.

The precise details of the phase diagrams depend on the specific values of q, q̄ and

m2. The main distinctive feature among different cases is the range of the parameter

x in which the superconducting region extends. We shall explore the three particular

possibilities: i) the dome extends for all positive values of x, ii) the dome extends from

x = 0 up to a finite positive value of x, iii) the dome extends from a minimum positive

value of x up to a maximum one. This can be easily seen in the T = 0 plane, using the

Breitenlohner-Freedman bound (3.11), as in figure 6. Notice that the value of y does not

affect substantially the form of the superconducting region.

For non-vanishing magnetic field, we can extend our analysis of the maximum critical

temperature as follows. The regularity condition at the AdS boundary Z−[qeff , µeff , Beff ] =

0 imposes a relation on the free parameters of the effective model. Taking the total differ-

ential of this relation, we have

∂qeff
Z− dqeff + ∂µeff

Z− dµeff + ∂Beff
Z− dBeff = 0 (3.15)

Now taking the total differential of (2.9)–(2.11) at constant magnetic field, we have

µeff dqeff + qeff dµeff = q̄µ dx + (q + q̄ x)dµ, (3.16)

Beff dqeff + qeff dBeff = 0, (3.17)

α2µeff dµeff +Beff dBeff = 0 (3.18)

– 10 –
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2 4 6 8
x

0.2

0.4

0.6

0.8

B

Bc

1 2 3 4 5 6 7
x

0.2

0.4

0.6

0.8

B

Bc

0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0.2

0.4

0.6

0.8

B

Bc

Figure 6. The T = 0 plane for the cases i) q = 0.7, q̄ = 0.25 and m2 = −2 (the superconducting

region covers the whole x axis), ii) q = 1, q̄ = 0.25 and m2 = −1.2 (there is a maximum doping

up to which the superconducting phase could exist) and iii) q = 0.6, q̄ = 0.6 and m2 = −0.4 (the

superconducting phase extends in a bounded region of the positive doping axis). Dotted and solid

lines correspond to the y = 1 and y = 0 cases respectively. Plots are normalized with the maximum

critical magnetic field for the y = 0 case.

were we used the fact that at the maximum critical temperature, the temperature is sta-

tionary dT = 0, that can be rewritten as

µdµ(1 + x2) + µ2 x dx = 0. (3.19)

Combining (3.15)–(3.19) we get the relations

α2µeff (qeff∂qeff
Z− − (∂Beff

Z− + ∂µeff
Z−Beff)Beff) dqeff = 0 (3.20)

1

α2µeff

(
α2µ2

eff −Beff

)
dqeff =

q̄ − q x
(1 + x2)

µ x dx. (3.21)

The equation (3.20) is satisfied whenever dqeff = 0. This implies the vanishing of (3.21),

which in turn requires that x = xmax = q̄/q. Remarkably, such value is the same as

the one we obtained at zero magnetic field, and also coincides with the position of the

maximum critical magnetic field at zero temperature. This result is independent of y,

implying that the qualitative features of the phase diagram are robust with respect to

changes in such parameter. Again, additional stationary points might exist if the prefactor

in (3.20) vanished.

4 Results and discussion

For the three particular examples discussed in the previous section, we have integrated

numerically the equations of motions for generic values of the parameters (x, T, B) at fixed

y, obtaining the superconducting and the normal phases. The results are shown in figures 7

to 9. As it can be seen from those figures, with the model presented in section 2 one

can realize diverse types of (x, T, B) phase diagrams by adopting different values for the

parameters of the theory. In all the cases, the numerical results are in agreement with the

kind of behavior we have predicted analytically, in terms of the values of q and q̄.

In particular, as it is shown in the case iii) of figure 6, it is possible to find values of the

scalar charges q and q̄ and squared mass m2, such that a superconducting dome appears

at intermediate values of the doping, which resembles real doped high Tc superconductors.

– 11 –



J
H
E
P
1
1
(
2
0
1
9
)
0
8
5

The dome is damped as the magnetic field B is increased, and disappears completely at a

critical value of B that depends on the doping and the parameter y. As the temperature

is increased, the dome of superconductivity retracts, but at any constant T plane the

maximum of the critical magnetic field is always at the value xmax = q̄/q, as derived

analytically for T = 0. The same is true at any constant B plane for the maximum on

the critical temperature. This shows that for the studied masses, the value xmax is the

only stationary point on equations (3.20)–(3.21). In other words, the particular ratio of

chemical potentials µ̄/µ = q̄/q favours the existence of the superconducting phase. It would

be interesting to further understand this fact.

A phase diagram with the above mentioned generic features can be found for suitable

values of q, q̄ and m2. Varying the value of y deforms the superconducting region for B > 0,

but do not change the range of doping in which the system is superconductor.

Following [22], we have adopted the quotient of the chemical potential of the two U(1)

currents as a definition of a doping-like variable x. In this holographic model the two

U(1) charges are independently conserved, but a more realistic model could be achieved

by introducing a mass term coupling the two U(1) fields. As another possible extension,

we plan to investigate the magnetic field axis on the doped model in a generic region of

couplings, allowing for non-minimal interaction of the superconducting condensate with

the bulk gauge fields. In such case, the mapping to the undoped model does not seem

immediate, and a different approach may be needed.
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complete (T,B, x) diagram (right). We have m2 = −2, q = 0.7, q̄ = 0.25 and y = 0. We are

normalizing the plots with Tc, the maximal critical temperature for B = 0, and Bc, the maximal

magnetic field for T = 0. In this case Bc ' 1.425× 103T 2
c .

1 2 3 4 5

x

0.2

0.4

0.6

0.8

1.0

T

Tc

0.10.20.30.40.50.6

B

Bc

0.2

0.4

0.6

0.8

T

Tc

1 2 3 4 5 6 7

x

0.2

0.4

0.6

0.8

B

Bc

Figure 8. Top: (T, x) plane (left), and (T,B) plane (right). Bottom: (B, x) plane (left) and the

complete (T,B, x) diagram (right). We have m2 = −1.2, q = 1, q̄ = 0.25 and y = 0. We are

normalizing the plots with Tc, the maximal critical temperature for B = 0, and Bc, the maximal

magnetic field for T = 0. In this case Bc ' 6.828× 103T 2
c .

– 13 –



J
H
E
P
1
1
(
2
0
1
9
)
0
8
5

0.5 1.0 1.5 2.0

x

0.2

0.4

0.6

0.8

1.0

T

Tc

0.5 1.0 1.5 2.0 2.5 3.0 3.5

x

0.2

0.4

0.6

0.8

B

Bc

Figure 9. Top: (T, x) plane. Bottom: (B, x) plane (left) and the complete (B, T, x) diagram

(right). We have m2 = −0.4, q = q̄ = 0.6 and y = 0. We are normalizing the plots with Tc, the

maximal critical temperature for B = 0, and Bc, the maximal magnetic field for T = 0. In this

case Bc ' 7.764× 1010T 2
c .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] B. Keimer, S.A. Kivelson, M.R. Norman, S. Uchida and J. Zaanen, From quantum matter to

high-temperature superconductivity in copper oxides, Nature 518 (2015) 179.

[2] A. Damascelli, Z. Hussain and Z.X. Shen, Angle-resolved photoemission studies of the cuprate

superconductors, Rev. Mod. Phys. 75 (2003) 473 [INSPIRE].

[3] U. Chatterjee et al., Electronic phase diagram of high-temperature copper oxide

superconductors., Proc. Natl. Acad. Sci. USA 108 (2011) 9346.

[4] E. Fradkin, S.A. Kivelson and J.M. Tranquada, Colloquium: Theory of intertwined orders in

high temperature superconductors, Rev. Mod. Phys. 87 (2015) 457.

[5] S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D

78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].

[6] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys.

Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

[7] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant.

Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

– 14 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/nature14165
https://doi.org/10.1103/RevModPhys.75.473
https://inspirehep.net/search?p=find+J+%22Rev.Mod.Phys.,75,473%22
https://doi.org/10.1073/pnas.1101008108
https://doi.org/10.1103/revmodphys.87.457
https://doi.org/10.1103/PhysRevD.78.065034
https://doi.org/10.1103/PhysRevD.78.065034
https://arxiv.org/abs/0801.2977
https://inspirehep.net/search?p=find+EPRINT+arXiv:0801.2977
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevLett.101.031601
https://arxiv.org/abs/0803.3295
https://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3295
https://doi.org/10.1088/0264-9381/26/22/224002
https://doi.org/10.1088/0264-9381/26/22/224002
https://arxiv.org/abs/0903.3246
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.3246


J
H
E
P
1
1
(
2
0
1
9
)
0
8
5

[8] C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42

(2009) 343001 [arXiv:0904.1975] [INSPIRE].

[9] S.S. Gubser, TASI lectures: Collisions in anti-de Sitter space, conformal symmetry and

holographic superconductors, arXiv:1012.5312 [INSPIRE].

[10] M. Sigrist and K. Ueda, Phenomenological theory of unconventional superconductivity, Rev.

Mod. Phys. 63 (1991) 239 [INSPIRE].

[11] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12

(2008) 015 [arXiv:0810.1563] [INSPIRE].

[12] S.S. Gubser and S.S. Pufu, The Gravity dual of a p-wave superconductor, JHEP 11 (2008)

033 [arXiv:0805.2960] [INSPIRE].

[13] J.-W. Chen, Y.-J. Kao, D. Maity, W.-Y. Wen and C.-P. Yeh, Towards A Holographic Model

of D-Wave Superconductors, Phys. Rev. D 81 (2010) 106008 [arXiv:1003.2991] [INSPIRE].

[14] J.-W. Chen, Y.-J. Kao and W.-Y. Wen, Peak-Dip-Hump from Holographic Superconductivity,

Phys. Rev. D 82 (2010) 026007 [arXiv:0911.2821] [INSPIRE].

[15] T. Faulkner, G.T. Horowitz, J. McGreevy, M.M. Roberts and D. Vegh, Photoemission

‘experiments’ on holographic superconductors, JHEP 03 (2010) 121 [arXiv:0911.3402]

[INSPIRE].

[16] S.S. Gubser, F.D. Rocha and A. Yarom, Fermion correlators in non-abelian holographic

superconductors, JHEP 11 (2010) 085 [arXiv:1002.4416] [INSPIRE].

[17] T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05

(2014) 101 [arXiv:1311.5157] [INSPIRE].
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