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1 Introduction

It is well known that large scale behavior of many statistical systems near their critical

points can be described by (Euclidean) Quantum Field Theories (QFT) (see e.g. [1]). In

such description many microscopic details of initial theory are washed out, so that various

statistical systems may lead to the same continuous theory. In this respect it is interesting

to investigate intermediate scales, where some subleading corrections (besides leading finite

size effects) to the QFT description still are noticeable. Then it would be possible to clarify

how specific microscopic structure of the system is reflected in this corrections. From QFT

point of view such corrections can be described as perturbations by irrelevant operators

which are allowed to carry nonzero spins, since the rotational invariance at small distances

is violated [2, 3]. In this respect the two dimensional Ising model [4] is an ideal object to

investigate, since it is exactly integrable [5]. Moreover, for some boundary conditions all

the eigenvalues of its transfer matrix are known exactly even for finite lattices (see e.g. [6]

for toroidal boundary conditions, [7] for several other cases).

The paper is organized as follows.

In section 2 we systematically investigate the eigenvalues of periodic critical Ising

transfer-matrix in large L limit (L is the number of spins in a horizontal row). We show how

1/L terms exactly match with CFT prediction and compute the next 1/L3 corrections for

certain families of eigenvalues. The 1/L3 corrections under discussion describe breakdown

of rotational invariance due to lattice artifacts.
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Figure 1. Periodic Ising Lattice. The leftmost (lowermost) spins are identified with corresponding

rightmost (uppermost) spins.

In section 3 we address the question, how to perturb Ising CFT in order to get precisely

those corrections which we obtained investigating lattice model. We were able to identify

the perturbing fields and the respective coupling constants. Namely we show that the

perturbing fields are the spin 4 current and its antiholomorphic counterpart, which were

introduced in the context of integrable structure of CFT long ago. Having non-zero spin,

these fields break the rotational invariance, while being irrelevant, they slightly correct the

large distance behavior in a way, to mimic the lattice result.

Finally we end up with a summary of our results and discuss the possibility of gener-

alization for full spectrum and for higher order corrections.

2 Eigenvalues of the transfer matrix

Consider square lattice Ising model. We’ll adopt the “45 degree rotated” version presented

in great details e.g. in Baxter’s seminal book [6]. The lattice consists of L vertical columns

of L′ faces, or equivalently, of L′ horizontal rows of L faces (see figure 1). We will consider

periodic boundary condition in both, horizontal and vertical directions, so that the L+1-th

column is identified with the first column and the L′ + 1-th row with the first one. The
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Figure 2. Two basic configurations of three Ising spins.

partition function of the theory is given by

Z =
∑
{σ}

exp

(
J
∑
〈i,j〉

σiσj +K
∑
〈k,l〉

σiσj

)
, (2.1)

where 〈i, j〉 belong to the set of SW-NE, and 〈k, l〉 to the NW-SE edges. In what follows,

we will restrict ourselves to the case of critical Ising model. The well known criticality

condition sinh 2J sinh 2K = 1 can be conveniently parameterized by a single parameter u

by setting

sinh 2J = cot 2u ; sinh 2K = tan 2u , (2.2)

with 0 < u < π/4. Sometimes the parameter u is referred as the anisotropy. The value

u = π/8 corresponds to the isotropic case.

To define the transfer matrix of the model, let us denote the Boltzmann weights of two

basic types of three spin configurations shown in figure 2 as

W

(
σ1 σ3σ2

)
and W

(
σ1σ3 σ2

)
,

where σi = ±1 are the Ising spins. Thus, the arrangement of spins in the argument of W

follows to the geometric pattern of their locations on the lattice. These Boltzmann weights

are explicitly given by

W

(
σ σσ

)
= W

(
σσ σ

)
=
√

2 cos(u) cos

(
π

4
− u
)
,

W

(
σ −σσ

)
= W

(
σ−σ σ

)
=
√

2 sin(u) sin

(
π

4
− u
)
,

W

(
σ σ−σ

)
= W

(
−σσ σ

)
=
√

2 sin(u) cos

(
π

4
− u
)

W

(
−σ σσ

)
= W

(
σσ −σ

)
=
√

2 sin

(
π

4
− u
)

cos(u) , (2.3)

where σ = ±1 and u is the anisotropy parameter. Note that to get (2.3) from (2.2), one

should include an overall extra factor 1
2

√
sin 4u. Such shift in vacuum energy is convenient

particularly because the transfer matrix, defined below, becomes the one-step shift operator

at the values u = 0 and u = π
4 .
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Figure 3. The transfer matrix. Sum over all middle spins σ′′ is assumed.

After imposing periodic boundary condition in horizontal direction for the transfer-

matrix we get (See figure 3)

Tσ,σ′ =
∑
σ′′

W

(
σ′1σ′′1 σ1

)
W

(
σ′1 σ′′2σ1

)
W

(
σ′2σ′′2 σ2

)
· · ·W

(
σ′L σ′′1σL

)
(2.4)

The exact eigenvalues of this transfer-matrix can be found in [6]. We will use a slightly

modified version of the explicit expressions, presented in [7] based on more general treat-

ment of [8] (see also later works [9–11]). There are two sets of eigenvalues, distinguished

by the parameter r = ±1 and denoted by Λ(±) respectively. To be precise, let me warn the

reader, that the quantities Λ(±) introduced below, actually are the square roots of transfer

matrix eigenvalues. Nevertheless with a slight abuse of terminology, they will be referred

simply as eigenvalues.

For r = 1 the set of eigenvalues are given explicitly as [7] (bxc stands for the largest

integer not exceeding x):

Λ(+)(µk, µ̄k) =
√

2
(

2e2iu+ iπ
4

)−L bL2 c∏
k=1

(
iµk tan

(
π(2k − 1)

4L

)
+ e4iu

)

×
bL+1

2
c∏

k=1

(
i cot

(
π(2k − 1)

4L

)
+ e4iuµ̄k

)
, (2.5)

where µk, µ̄k ∈ {+1,−1} are subject to the constraint

bL
2
c∏

k=1

µk

bL+1
2
c∏

k=1

µ̄k = 1 (2.6)

For r = −1 we have another set of eigenvalues [7]:

Λ(−)(µk, µ̄k) =
√

1 + L
(

2e2iu+ iπ
4

)−L bL2 c∏
k=1

(
iµk tan

(
πk

2L

)
+ e4iu

)

×
bL−1

2
c∏

k=1

(
i cot

(
πk

2L

)
+ e4iuµ̄k

)
; (2.7)

where again µk, µ̄k ∈ {+1,−1}, but there is no constraint anymore.

Notice that altogether we get 2L−1 + 2L−1 = 2L eigenvalues, which exactly matches

the size of transfermatrix (2.4).
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2.1 Leading Eigenvalues

The leading eigenvalues in both sectors correspond to the case when all µk = +1, µ̄k = +1.

The expressions for these eigenvalues can be simplified and represented as(
Λ(+)

max

)2
=

L−1∏
k=0

(
sin(4u) sin

(
πk

L
+

π

2L

)
+ 1

)
(2.8)

and (
Λ(−)

max

)2
=

L−1∏
k=0

(
sin(4u) sin

(
πk

L

)
+ 1

)
(2.9)

2.2 CFT prediction

From now on instead of parameters L and L′ we’ll use the even integers

N = 2L and M = 2L′,

which are the numbers of vertical and horizontal “zigzagging” columns and rows of the

lattice respectively (see figure 1). Conformal field theory predicts that the logarithm of

transfer matrix eigenvalues in large N , M limit behave as [12, 13]

M log Λ ∼ −NM
2

fbulk +

(
∆− c

24

)
log q +

(
∆̄− c

24

)
log q̄, (2.10)

where fbulk is the free energy per site (the number of sights in our lattice is NM
2 ), ∆, ∆̄

are the left and right dimensions of the conformal field which creates the corresponding

eigenstate from the vacuum. The parameter q = exp 2πiτ , where τ is modulus of the torus

on which our 2d CFT lives, should be identified as

2πiτ = log q = −2πiM e−4iu

N
(2.11)

Finally, c is the Virasoro central charge, which for our case of Ising model, assumes the

value c = 1/2.

Notice also that besides finite size scaling, CFT predicts also the universal amplitude

ratios (see e.g. [14] and references therein).

2.3 Large N expansion of leading eigenvalues

Denote

f(x) = log(1 + sin(4u) sin(x)) (2.12)

and h = 2π
N . Due to Euler-Maclaurin summation formula (Bn(α) are the Bernoulli poly-

nomials) from eq. (2.8) we get

log Λ(+)
max +

N

2
fbulk =

∞∑
n=1

Bn
(

1
2

) (
f (n−1)(π)− f (n−1)(0)

)
hn−1

n!

=
π sin(4u)

12N
+

7π3
(
2 sin(4u)− 4 sin3(4u)

)
1440N3

+O(1/N5) (2.13)
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and from (2.9)

log Λ(−)
max +

N

2
fbulk =

∞∑
n=1

Bn (0)
(
f (n−1)(π)− f (n−1)(0)

)
hn−1

n!

= −π sin(4u)

6N
−
π3
(
2 sin(4u)− 4 sin3(4u)

)
180N3

+O(1/N5) (2.14)

The bulk free energy is given by

fbulk = −
∫ π

0
f(x)

dx

2π
. (2.15)

Taking into account that the leading eigenvalue should correspond to the identity operator

with conformal dimensions ∆ = ∆̄ = 0, consistency of the leading terms in (2.13), (2.14)

with CFT prediction (2.10) immediately fixes the value of central charge c = 1/2 and

identifies the torus parameter q with the expression (2.11). Besides for the dimensions of

the conformal field corresponding to the eigenvalue Λ
(−)
max we get ∆ = ∆̄ = 1/16, which are

the correct dimensions of Ising spin field.

2.4 Partition function on a large torus and Ising fermions

For given p, denote Λ
(+)
p (Λ̄

(+)
p ) the r.h.s. of (2.5) for the case when r = 1 with all µ’s and

µ̄’s set to 1 with a single exception, namely µp = −1 (µ̄p = −1). Analogously, using (2.7),

we define Λ
(−)
p , Λ̄

(−)
p for the case when r = −1. In large N limit the impact of flipping the

sign at position p are given by ratios

log
Λ

(+)
p

Λ
(+)
max

= − iπ(2p− 1)e−4iu

N
−
iπ3(2p− 1)3e−4iu

(
1− e−8iu

)
12N3

+O

(
1

N5

)
log

Λ̄
(+)
p

Λ
(+)
max

=
iπ(2p− 1)e4iu

N
+
iπ3(2p− 1)3e4iu

(
1− e8iu

)
12N3

+O

(
1

N5

)
(2.16)

and

log
Λ

(−)
p

Λ
(−)
max

= −2iπpe−4iu

N
−

2iπ3p3e−4iu
(
1− e−8iu

)
3N3

+O

(
1

N5

)
log

Λ̄
(−)
p

Λ
(−)
max

=
2iπpe4iu

N
+

2iπ3p3e4iu
(
1− e8iu

)
3N3

+O

(
1

N5

)
(2.17)

It is important to notice that due to factorized structure of eigenvalues (2.5) and (2.7), if

there are several indices p1, p2, · · · , such that the respective µ’s or µ̄’s assume the value

−1, the logarithm of ratios of eigenvalues will be given by the same expressions (2.16)

and (2.17) summed over above specified indices p.

Consider thermodynamic limit when M , N are sent to infinity while keeping their ratio

fixed. Notice that q, q̄ remain finite as seen from (2.11). Keeping the leading terms only,

we can conveniently rewrite expressions (2.16), (2.17) in view of eq. (2.11) as(
Λ

(+)
p

Λ
(+)
max

)M
∼ qp−

1
2 ;

(
Λ

(−)
p

Λ
(+)
max

)M
∼ qp̄−

1
2 ;

(
Λ̄

(+)
p

Λ
(−)
max

)M
∼ qp;

(
Λ

(−)
p

Λ
(−)
max

)M
∼ q̄p (2.18)
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In other words, the sign flip of µp ( µ̄p) in partition sum costs a multiplier qp−
1
2 (q̄p−

1
2 )

in the r = 1 sector and a multiplier qp (q̄p) in the sector r = −1. We’ll need also the

contributions of the eigenvalues Λ
(±)
max in partition function. Again, dropping O(1/N3)

terms, from eqs. (2.13), (2.14) we easily get(
Λ(+)

max

)M
∼ e−MNfbulk/2(qq̄)−

1
48 ;

(
Λ(−)

max

)M
∼ e−MNfbulk/2(qq̄)−

1
48

+ 1
16 .

As a result, a generic eigenvalue, say in sector r = −1, specified by conditions µp1 = µp2 =

· · · = µpR = −1, µ̄p̃1 = µ̄p̃2 = · · · = µ̄p̃L = −1 with all other µ’s and µ̄’s taking the value

1,1 will contribute a term

e−MNfbulk/2(qq̄)−
1
48

+ 1
16 qp1qp2 · · · qpR q̄p̃1 q̄p̃2 · · · q̄p̃L

Similarly, the contribution of a generic eigenvalue from the sector r = −1 in partition

function reads

e−MNfbulk/2(qq̄)−
1
48

+ 1
16 qp1−1/2qp2−1/2 · · · qpR−1/2q̄p̃1−1/2q̄p̃2−1/2 · · · q̄p̃L−1/2.

Here we should keep in mind that due to the constraint (2.6), the total number of minus

signs, i.e. R + L must be even. Now, by elementary considerations one can get convinced

that the partition function on the torus in continuum limit can be represented as

Z ∼ e−MNfbulk/2(qq̄)−
1
48

×

(
1

2

∞∏
k=1

(
1 + qk−

1
2

)(
1 + q̄k−

1
2

)
+

1

2

∞∏
k=1

(
1− qk−

1
2

)(
1− q̄k−

1
2

)
+(qq̄)

1
16

∞∏
k=1

(
1 + qk

)(
1 + q̄k

))
. (2.19)

Note that the sum with factors 1/2 on second line implements the constraint (2.6), since

the terms with a product of odd number of minus signs get canceled.

Obviously, the form of (2.19) reflects the well known fact that the Ising model in

continuous limit is the theory of free fermions. The fermionic fields are single valued in

vacuum sector (manifested by the half integer modes on second line of (2.19)), while they

are non-local with respect to the spin field and have integer modes as seen on third line

of (2.19). Let us briefly recall few relevant facts about free fermion theory. We will simply

state the results omitting details and proofs. The aim is to specify notations which will be

used later on. A comprehensive review of 2d fermion CFT can be found e.g. in book [15].

The left and right moving fermion fields can be defined through mode expansions

ψ(z) =
∑
ν

ψν

zν+ 1
2

(2.20)

ψ̄(z̄) =
∑
ν

ψ̄ν

z̄ν+ 1
2

(2.21)

1L, the number of parameters µ̄ taking the value −1 should not be confused with the number of rows of

faces introduced earlier. In fact the latter does not appear in the paper any more.
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where sum is over all half integers or over all integers, depending whether it acts in vac-

uum sector (usually referred as Neveu-Schwartz sector) or on spin (Ramond) sector. The

expansion modes satisfy the anticommutation relations

{ψν , ψµ} = δν+µ,0 ; {ψ̄ν , ψ̄µ} = δν+µ,0 (2.22)

In terms of fermion modes the sector r = 1 is spanned on states

∞∏
k=1

(
ψ−k+ 1

2

)ε
k− 1

2

∞∏
k=1

(
ψ̄−k+ 1

2

)ε̄
k− 1

2 |0 ; 0〉 (2.23)

where |0 ; 0〉 is the vacuum state with dimensions ∆ = ∆̄ = 0 and the occupation numbers

εν , ε̄ν assume values 0 or 1. The relation of (2.23) to the eigenstates of Ising transfer

matrix is very simple: if an occupation number εk−1/2 = 1 (εk−1/2 = 0) then µk = −1

(µk = 1). The analogous relation holds also for quantities ε̄ and µ̄. As a consequence, the

constraint (2.6) requires, that the total fermion number

Nf =
∑
ν

(εν + ε̄ν) ≡ NL +NR (2.24)

must be even. Evidently there are two alternatives here. Either both NL and NR are even

or both are odd. It is easy to see that the former case corresponds to the Virasoro module

created from the vacuum |0 ; 0〉 while the latter one to the module created from primary

state (related to the energy density) |12 ; 1
2〉.

Similarly the Ramond subspace is spanned over the states

∞∏
k=1

(ψ−k)
εk

∞∏
k=1

(
ψ̄−k

)ε̄k ∣∣∣∣ 1

16
;

1

16

〉
(2.25)

which exactly match the states of the sector r = −1 in lattice side. It is not difficult to

calculate the torus partition function of this free fermion theory

Zferm = Tr qL0− c
24 q̄L̄0− c

24 ,

where L0, L̄0 are left and right Virasoro 0-modes, q and q̄, as earlier, are the torus parameter

and its conjugate and c = 1/2 is the Virasoro central charge. The trace is over the

states (2.25) and (2.23) subject to the constraint Nf = 0 mod 2 (see eq. (2.24)). The

result besides the non universal factor exp(−NMfbulk) exactly matches the the partition

sum (2.19).

3 Irrelevant perturbation of Ising CFT

Let us introduce coordinate ζ = x + iy on cylinder (ζ ∼ ζ + 2π), which is related to the

coordinate z on plane through exponential map z = exp ζ. The least irrelevant perturbation

of Ising CFT from the conformal family of identity operator, responsible for deviation from

conformal theory, is (see [2, 3, 16, 17])

Hint =

∫ (
gT 2

cyl(ζ) + ḡT̄ 2
cyl(ζ̄)

) dy
2π

(3.1)
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where T 2
cyl and its antiholomorphic counter part are regularized squares of the energy

momentum tensor. More precisely

T 2
cyl(ζ) ≡

∮
Tcyl(ζ

′)Tcyl(ζ)dζ ′

2πi(ζ ′ − ζ)
(3.2)

where integration over ζ ′ is along a small contour surrounding ζ anticlockwise. Using

transformation rule of stress-energy tensor from plain to cylinder

Tcyl(ζ) = z2T (z)− c

24
, (3.3)

where the second term comes from Schwarzian derivative, one can see that in terms of

conventional Virasoro modes the interaction Hamiltonian becomes

Hint = g

(
2

∞∑
n=1

L−nLn + L2
0 −

c+ 2

12
L0 +

c(22 + 5c)

2880

)

+ḡ

(
2
∞∑
n=1

L̄−nL̄n + L̄2
0 −

c+ 2

12
L̄0 +

c(22 + 5c)

2880

)
. (3.4)

Note that (3.4) is a combination of higher integrals of motion I3 and Ī3 [18–20]

Hint = gI3 + ḡĪ3

Remined also that the unperturbed Hamiltonian coincides with

H0 = L0 + L̄0 −
c

12
≡ I1 + Ī1

Since the commutator [I1, I3] = 0, the perturbation theory appears to be remarkably simple.

In fact, the calculations presented in the remaining part of the paper, strongly suggest

that eigenstates of the transfer-matrix (2.4) simultaneously diagonalize all operators I1,

I3, Ī1 and Ī3. It is expected that this feature is generic, and higher order calculations

would involve further integrals of motion I5, I7, . . . as well, thus making contact between

integrable structures of the lattice model and CFT (see [21] for discussion of the dimer

model from this perspective).

Representation of the interaction Hamiltonian in form (3.4) is very convenient for

calculation of various matrix elements. In particular it is straightforward (for arbitrary c)

to get:

〈∆ ; ∆̄|Lp1L̄
p̃
1HintL

p
−1L̄

p̃
−1|∆ ; ∆̄〉

〈∆ ; ∆̄|Lp1L̄
p̃
−1L

p
−1L̄

p̃
−1|∆ ; ∆̄〉

= gM(∆, p) + ḡM(∆̄, p̃) (3.5)

where

M(∆, p) =

(
c

24

)2

+
11c

1440
+ (∆ + p)

(
− c

12
+ ∆ +

p(2∆ + p)(5∆ + 1)

(∆ + 1)(2∆ + 1)
− 1

6

)
(3.6)

This result was found by a different technique long ago in [22]. Another set of matrix

elements for Ising model will be [23, 24] (now the central charge is specified to c = 1/2)

〈 1
16 ; 1

16 |ψpHintψ−p| 1
16 ; 1

16〉
〈 1

16 ; 1
16 |ψpψ−p|

1
16 ; 1

16〉
= gM(p) + ḡM(0) (3.7)

– 9 –
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where

M(p) =
7p3

6
− 7

1440
(3.8)

3.1 Identification of coupling constants

Comparing the leading term of (2.13) with (2.10) and taking into account that for vacuum

state ∆ = ∆̄ = 0, we easily verify that the values of parameters q, q̄ are given by eq. (2.11)

and that central charge c = 1
2 . It is convenient to represent (2.13) (included the second,

next to leading term) as (c.c. stands for complex conjugate)

π sin(4u)

12N
+

7π3
(
2 sin(4u)− 4 sin3(4u)

)
1440N3

=

(
− 1

48
+

7π2

5760N2

(
1− e−8iu

)) log q

M
+ c.c. (3.9)

The term

δE0 =
7π2

5760N2

(
1− e−8iu

)
(3.10)

can be interpreted as a shift of (holomorphic part of) the vacuum state energy due to

perturbation by Hint. This leads to the relation

gM(0, 0) =
7π2

5760N2

(
1− e−8iu

)
. (3.11)

Since, due to (3.6)

M(0, 0) =
c(5c+ 22)

2880
=

49

11520

for the coupling constant we get

g =
2π2

7N2

(
1− e−8iu

)
. (3.12)

Analogously, the conjugate coupling

ḡ =
2π2

7N2

(
1− e8iu

)
. (3.13)

Now let us consider in some details the isotropic case u = π
8 . In this case we have

g = ḡ =
4π2

7N2

It is subtle but possible to compare this result with the coupling constant

gl = − 1

28π
,

obtained in [25] for the (not rotated) square lattice critical Ising model. To make a correct

comparison one should take into account that in current paper we have chosen a natural

from CFT point of view energy normalization such that the level spacing in leading order

– 10 –
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is equal to 1, while in [25] it is equal to Ñ
2π (to avoid confusion we denote the parameters

N , M , of [25] by Ñ , M̃). Besides, Ñ should be rescaled by the geometric factor
√

2 (since

the number of sites NM
2 should be identified with ÑM̃). Finally a factor −1 arises due to

rotation of lattice by θ = π
4 . Indeed, the spin of the perturbing field is s = 4, hence we get

the phase factor

eiθs = −1 .

Carefully picking up all the factors arising from above considerations one arrives at the

consistency condition

g = −(2π)3

Ñ2
gl

which, obviously is satisfied.

In what follows, besides the vacuum state, we’ll examine infinitely many other states

and will demonstrate how the values (3.12), (3.13) of the coupling constants reproduces

correct energy shifts.

3.2 Energy corrections for the states Lp−1
−1 L̄

p̃−1
−1 |1/2; 1/2〉

It is straightforward to deduce from (2.16), (2.13) that the large N expansion of the transfer-

matrix eigenvalues in r = 1 sector with two sign flips µp = −1 and µ̄p̃ = −1 can be

represented as

M log Λ
(+)
p,p̃ +

NM

2
fbulk

=

(
− 1

48
+

1

2
+ p− 1 +

π2
(
1− e−8iu

)
5760N2

(
7 + 1920 (p− 1/2)3

))
log q

+

(
− 1

48
+

1

2
+ p̃− 1 +

π2
(
1− e8iu

)
5760N2

(
7 + 1920 (p̃− 1/2)3

))
log q̄

+O(1/N5) (3.14)

The leading terms in above expressions are displayed in such specific way to emphasize the

structure

− c

24
+ ∆ + l

where ∆ is the dimension of respective primary field and l is the excitation level. According

to eq. (2.23), the states under consideration should be identified with ψ−p+ 1
2
ψ̄−p̃+ 1

2
|0 ; 0〉.

Using commutation relation

[Ln, ψν ] = −
(
n

2
+ ν

)
ψn+ν (3.15)

it is easy to show that

Lp−1L̄
p̃
−1 |1/2 ; 1/2〉 ∼ ψ−p+ 1

2
ψ̄−p̃+ 1

2
|0 ; 0〉 (3.16)

Comparing (3.5) with subleading terms of (3.14 ) we see that consistency with perturbation

theory requires the equality

gM(1/2, p) =
π2
(
1− e−8iu

)
5760N2

(
7 + 1920 (p− 1/2)3

)
(3.17)

which is easily checked to be satisfied identically due to (3.12) and (3.6).
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3.3 Energy corrections for the states ψ−pψ̄−p̃|1/16 ; 1/16〉

In this section we will examine the analogues infinite series of states in r = −1 sector.

Again we will assume that µp = −1, µ̄p̃ = −1 and all other µ , µ̄ = 1. In this case we get

the large N expansion

M log Λ
(−)
p,p̃ +

NM

2
fbulk =

=

(
− 1

48
+

1

16
+ p+

π2
(
1− e−8iu

)
720N2

(
−1 + 240p3

))
log q

+

(
− 1

48
+

1

16
+ p̃+

π2
(
1− e8iu

)
720N2

(
−1 + 240p̃3

))
log q̄

+O(1/N5) (3.18)

In this case the perturbation theory requires (see (3.7) and 2.17):

gM(p) =
π2
(
1− e−8iu

)
720N2

(
−1 + 240p3

)
(3.19)

which again is satisfied identically due to (3.12) and (3.8).

3.4 An example of doubly degenerate states

Now let us consider a case, when double degeneracy takes place. Namely we will consider

two forth level states

|1〉 ≡ ψ−7/2ψ−1/2|0; 0〉 ; |2〉 ≡ ψ−5/2ψ−3/2|0; 0〉 . (3.20)

Though not obvious, a direct calculation, sketched below, shows that the matrix element

of Hint between these states is zero, and that the energy shifts for either of these states

indeed agree with lattice prediction.

To make actual calculations, let us remind that

T (z) = −1

2
: ψ(z)∂ψ(z) : (3.21)

where :: stands for normal ordering. In terms of modes this is equivalent to

Lk =
1

4

∑
ν+µ=k

(µ− ν) : ψνψµ : (3.22)

As an example let us calculate the action of L2
−2 on vacuum state:

L2
−2|0; 0〉 = (· · ·ψ− 7

2
ψ 3

2
+ ψ− 5

2
ψ 1

2
+ ψ− 3

2
ψ− 1

2
)(· · ·+ ψ− 5

2
ψ 1

2
+ ψ− 3

2
ψ− 1

2
)|0; 0〉

=
5

4
ψ− 7

2
ψ− 1

2
|0; 0〉 − 3

4
ψ− 5

2
ψ− 3

2
|0; 0〉 ≡ 5

4
|1〉 − 3

4
|2〉 . (3.23)

Similarly we get

L2
−1L−2|0; 0〉 = 3|1〉+ |2〉 . (3.24)
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Inverting the relations (3.23) and (3.24) we obtain

|1〉 =
2

7
L2
−2|0; 0〉+

3

14
L2
−1L−2|0; 0〉 ,

|2〉 = −6

7
L2
−2|0; 0〉+

5

14
L2
−1L−2|0; 0〉 . (3.25)

Thus calculation of matrix elements of the interaction Hamiltonian (3.4) boils down to

simple Virasoro algebra manipulations. Here are the results of calculations:

〈1|Hint|1〉 =
577969

11520
g +

49

11520
ḡ

〈2|Hint|2〉 =
255409

11520
g +

49

11520
ḡ

〈1|Hint|2〉 = 〈2|Hint|1〉 = 0 (3.26)

According to the rules established in subsection 2.4 the state |1〉 corresponds to the transfer-

matrix eigenvalue with sign flips µ1 = −1, µ4 = −1 and |2〉 corresponds to µ2 = −1,

µ3 = −1 (both states belong to the sector r = 1). From (2.16), (2.13) we get expansions

M log Λ
(+)
1,4 +

NM

2
fbulk

=

(
− 1

48
+ 4 +

π2
(
1− e−8iu

)
N2

(
7

5760
+

1

3

(
(1− 1/2)3 + (4− 1/2)3

)))
log q

+

(
− 1

48
+

7π2
(
1− e8iu

)
5760N2

)
log q̄ +O(1/N5) (3.27)

M log Λ
(+)
2,3 +

NM

2
fbulk =

=

(
− 1

48
+ 4 +

π2
(
1− e−8iu

)
N2

(
7

5760
+

1

3

(
(2− 1/2)3 + (3− 1/2)3

)))
log q

+

(
− 1

48
+

7π2
(
1− e8iu

)
5760N2

)
log q̄ +O(1/N5) (3.28)

The expressions (3.27), (3.28) are in perfect agreement with (3.26), since the relations

577969

11520
g =

π2
(
1− e−8iu

)
N2

(
7

5760
+

1

3

(
(1− 1/2)3 + (4− 1/2)3

))
=

82567

5760

π2
(
1− e−8iu

)
N2

,

255409

11520
g =

π2
(
1− e−8iu

)
N2

(
7

5760
+

1

3

(
(2− 1/2)3 + (3− 1/2)3

))
=

36487

5760

π2
(
1− e−8iu

)
N2

,

49

11520
ḡ =

7π2
(
1− e8iu

)
5760N2

(3.29)

in view of (3.12), are satisfied identically.
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4 Summary and discussion

To summarize let us quote the main results of this paper:

• The leading irrelevant perturbation (3.4), which controls the deviation of critical

lattice Ising model with periodic boundary conditions from its continuous CFT analog

is identified. The relation (3.12) between anisotropy parameter and the coupling

constant is established

• Next to leading ∼ 1/N2 corrections to the spectrum are calculated independently

from lattice theory and from the perturbed CFT for several classes of states always

finding exact agreement (subsections 3.2–3.4).

• It is expected that to mimic higher order corrections, one should add to unperturbed

Hamiltonian terms, proportional to the higher integrals of motion in Ising CFT. In

this way the integrable structure of the lattice theory gets related to the integrable

structure of CFT.

Besides square lattice, 2d Ising model is exactly solvable also on a number of other lattices

with different symmetries. It would be interesting to identify the corresponding perturbing

fields also in these cases. Clearly, it is expected that the spin of a perturbing field should

be consistent with the order of discrete rotations allowed by respective lattice symmetry.

It must be also possible to extend our analysis to the entire spectrum and higher orders

in 1/N expansion, but this is left for future work.
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