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1 Introduction and outline

The S-matrix programme of the 1960s demonstrated that a number of very striking prop-

erties of scattering amplitudes arise from a few powerful principles, such as unitarity and

analyticity. A key insight that arose from the analysis of hadronic experiments around

1967 is the idea of duality in hadronic processes — the sum of an infinite number of reso-

nance poles in the s-channel reproduces the sum of an infinite set of poles in the t-channel.

This is the “dual resonance” realisation of the bootstrap programme and was an essential

feature of the Veneziano model [1], which evolved into the bosonic open-string theory, and

the Virasoro model [2], which evolved into the bosonic closed-string theory. It is also a

feature of large-N limit of SU(N) QCD [3]

In recent years there has been a revival of these ideas in the context of important de-

velopments in quantum field theories related to the Standard Model and quantum gravity,

as well as their supersymmetric counterparts. Unitarity together with analyticity lead to

nontrivial conditions on low-energy effective field theory that imply that Wilson coefficients

should respect certain positivity bounds [4]. Such positivity bounds have many important

applications ranging from ruling out phenomenological models [4] to proving the a-theorem

in four dimensions [5], and to a better understanding of the weak gravity conjecture [6] (see

e.g. [7–10]). The results of [4] have recently been extended to an infinite set of positivity
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conditions on these coefficients by Arkani-Hamed, Huang and Huang, as described in [11–

13].1 Recent applications of these ideas can be found in [16], which explores constraints

on low-energy spectrum of quantum field theory when coupled to gravity, as well as impli-

cations for the weak gravity conjecture. These ideas have also been applied to correlation

functions in conformal field theories [17] (see also [18]).

Some background material will be reviewed in section 2, following closely the ideas

in [11–13]. A general consequence of unitary and analyticity in the Mandelstam invariants

(s, t, u) that follows from simple dispersion relations is that coefficients in the low energy

expansion of the four-particle amplitude are constrained by ultraviolet properties of the

amplitude. These coefficients can be assembled into Hankel matrices2 that must generally

be totally non-negative — i.e. all minors of such matrices are non-negative. For theories

that exhibit duality, such as string theory or large-N QCD, which contain an infinite

number of particle states with unbounded masses and spins, the coefficients of the Hankel

matrices are necessarily totally positive. These constraints follow from the fact that the

low energy coefficients form a Stieltjes half-moment sequence [19]. The precise statement

of these constraints on the low-energy coefficients depends on properties of the ultraviolet

behaviour of the amplitude. Furthermore, there are particular subtleties in the general

analysis of theories with massless particles, which have massless threshold branch cuts in

the complex s-plane and are also singular in the forward direction [15].

This paper explores these constraints on the low-energy expansion of tree amplitudes

describing the scattering of four massless particles in open and in closed superstring theories

that illustrate these points. Since we restrict our considerations to tree amplitudes we will

avoid dealing with the subtlety of massless thresholds. Furthermore, we will see that there

is no problem in subtracting the massless exchange contributions that are singular in the

forward direction.

Clearly there is a limited amount of information that can be obtained by considering

only massless four-particle tree amplitudes. For example, in order to sample all the infor-

mation contained in the no-ghost theorem in string theory [20–22] it would be necessary to

consider amplitudes with arbitrary numbers of massless external scattering particles, or to

consider all four-particle amplitudes with arbitrary massless and massive external states.

Nevertheless the information in massless four-article tree amplitudes has some direct

connections with mathematical considerations. As is well-known, in the case of the open su-

perstring the coefficients in the low-energy expansion are rational polynomials in Riemann

zeta values. As will be seen in section 3, this leads to positivity conditions on determinants

of Hankel matrices of zeta values that extend those discussed in [23, 24].

In section 4 we will see that the situation is more subtle in the closed-string case. In

this case the Hankel matrix constraints do not apply to the low-energy expansion of the full

four-particle amplitude at fixed t due to negative contributions from the u-channel poles.

In order to analyse the unitarity constraints we will separate the fixed-t amplitude into the

1Different kinds of improved positivity bounds on low-energy coefficients of EFTs that generalise the

results of [4] were explored in [14, 15].
2A Hankel matrix is a m × n matrix H[a]ij in which aij depends only on i + j. For our purposes it is

sufficient to consider square Hankel matrices for which m = n.
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sum of the contribution of s-channel poles and the contribution of u-channel poles. The low

energy expansion of the contribution from the s-channel poles contains a combination of

irreducible Multiple Zeta Values (MZVs),3 which cancel in the full four-particle amplitude

(resulting in coefficients that are rational polynomials of odd zeta values). We will argue

that the unitarity conditions lead to total positivity of the Hankel matrices built out of these

MZVs. This gives a host of conditions on rational polynomials of particular combinations

of MZVs.

These results are summarised and discussed in section 5.

2 Unitarity constraints on low-energy expansion coefficients

In this section we will follow the discussion in [11–13] (see also [16]). We begin by reviewing

the general arguments that demonstrate some of the constraints of unitarity on four-particle

scattering amplitudes. If the scattering particles have equal masses, µ, their momenta kr
(r = 1, 2, 3, 4), areD-dimensional Minkowski vectors satisfying the mass-shell conditions kr·
kr = −µ2. Such amplitudes are functions of the Mandelstam invariants sij = −(ki+kj)

2 =

2µ2−2ki ·kj . As usual we will use the notation s12 = s34 = s, s14 = s23 = t, s13 = s24 = u,

and recall that momentum conservation
∑

r kr = 0 implies s+ t+u = 4µ2. In addition, the

external particles generally have non-zero spin and so the scattering data includes infor-

mation about their polarisations, although this will be suppressed in most of the following.

The amplitude A4(s, t) is an analytic function of s, t and u, apart from a very specific

set of singularities. The physical region for the elastic scattering process 1 + 2 → 3 + 4

with centre of mass energy 2E =
√
s and scattering angle cos θ = 1 + 2t/(s − 4µ2) is

s ≥ 4µ2, 4µ2 − s ≤ t ≤ 0, 4µ2 − s ≤ u ≤ 0. The amplitudes for other physical regions in

which 1 + 4 → 2 + 3 and 1 + 3 → 2 + 4 are related by appropriate analytic continuation

(or crossing symmetry). The singularities of the amplitude include poles corresponding

to intermediate bound states or resonances, normal threshold branch cuts corresponding

to the production of intermediate multi-particle states, and anomalous thresholds that lie

outside the physical scattering region.4

We will be concerned with theories that exhibit “duality”, such as string theory, or the

large-N expansion of SU(N) Yang-Mills theory. The tree-level contribution to four-particle

scattering amplitudes in such theories (i.e. the leading perturbative contributions in string

perturbation theory, or in the 1/N expansion in SU(N) Yang-Mills theory) necessarily

possess an infinite sequence of poles at positions m2
a (a = 1, . . . ,∞) along the positive real

s, t and u axes. In the full non-perturbative amplitude unitarity implies the presence of

branch cuts along the real s, t and u axes and almost all the poles are shifted below the

real s, t or u axes and are shielded from the physical sheet behind branch cuts.

A general feature of unitarity that plays a key rôle in the following is the optical

theorem, which states

ImA4(s, 0) =
√

s(s− 4µ2)σtot(s) > 0 , (2.1)

3An irreducible MZV is one that cannot be expressed as a rational polynomial in single zeta values.
4A basic review of the singularity structure of the S-matrix is given in [25]. However, this is restricted

to the amplitudes with massive scattering particles with zero angular momenta.
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where σtot is the total cross section, which is positive. A stronger set of positivity conditions

of the form

∂n
t ImA(s, t)

∣
∣
t=0

> 0 , ∀n > 0 (2.2)

can be deduced from properties of the partial wave expansion.

In this paper we will restrict attention to tree-level expressions in dual resonance

theories. In such cases a scalar amplitude can be written in the s-channel partial wave form5

A4(s, t) = A
(s)
4 (s, t) +A

(u)
4 (u, t) , (2.3)

where

A
(s)
4 (s, t) =

∑

a

paG
D−3
2

ℓa
(cos θa)

m2
a − s

, A
(u)
4 (u, t) =

∑

a

paG
D−3
2

ℓa
(cos θa)

m2
a − u

, (2.4)

and

cos θa = 1 +
2t

m2
a

. (2.5)

These expressions are sums of poles describing intermediate states with masses ma

and angular momenta ℓa in the s and u channels. The residue of a given pole of angiular

momentum ℓ is proportional to the Gegenbauer polynomial G
D−3
2

ℓ (cos θa) (which is equal to

the Legendre polynomial Pℓ(cos θa) when D = 4).6 The s-channel and u-channel centre of

mass scattering angles are evaluated at the poles, so cos θa = 1+2t/m2
a. The proportionality

constants pa denote the squares of the coupling between a pair of external scalar states and

the intermediate states of masses ma and angular momenta ℓa, and so they are positive for

a unitary theory. Sincer ∂n
y G

D−3
2

ℓ (y)
∣
∣
y=1

> 0 for all n, the positivity conditions (2.2) are

satisfied if the couplings satisfy pa > 0 for all a.

The expression (2.4) is appropriate for describing the physical amplitude 1+2 → 3+4

with s > 0 and fixed −s ≤ t ≤ 0. However, it is defined for all values of s, t, u (with

s+ t+ u = 0) by analytic continuation. The presence of poles at t ≥ 0 that contribute to

the crossed process 1+4 → 2+3 requires the index a in (2.4) to take an infinite number of

values so there is an infinite number of s-channel and/or u-channel poles with unbounded

masses, ma →
a→∞

∞. Indeed, the requirement of an infinite number of tree-level poles is the

hallmark of dual resonance models and the gauge-singlet sectors of large-N QCD.

The structure of A4(s, t) differs from that of a tree contribution to a conventional

quantum field theory with a finite number of fields, in which there would be explicit pole

contributions in the t channel, as well as in the s, and u channels. Adding t-channel

poles would lead to an additional polynomial in s in (2.3), which would markedly affect its

large-|s| behaviour.
5We are imposing the mass-shell condition u = −s − t appropriate for scattering of massless states, in

the following.
6A generating function for Gegenbauer polynomials may be defined by

1

(1− 2xt+ t2)m
=

∞∑

ℓ=0

G
(m)
ℓ (x) tℓ . (2.6)

– 4 –



J
H
E
P
1
1
(
2
0
1
9
)
0
7
9

More generally, the external states may have spin and this will be reflected by spin-

dependent factors that complicate these expressions. For the purpose of this paper, we will

focus on the amplitudes where external states are scalars, This is sufficient for our later con-

siderations of maximally supersymmetric superstring amplitudes since in such theories a su-

permultiplet of massless states is described in terms of a Lorentz-scalar on-shell superfield.

An important technical point is that the amplitude is generally singular at the bound-

aries of the physical region when s > 0 and t = 0 or t = −s, i.e. when θ = 0 or θ = π.

In Yang-Mills theory and gravity this is due to the exchange of a massless gauge boson

or graviton. In order to discuss the low-energy expansion of the amplitude it is therefore

important to subtract the singular term, which we denote Asing(s, t). Thus we may define

a subtracted amplitude

Ã4(s, t) = A4(s, t)−Asing(s, t) , (2.7)

which is finite in the forward and backward limits, t = 0 and t = −s.

The low energy expansion of Ã4(s, t) in powers of s and t is given by

Ã4(s, t)
∣
∣
s/m2,t/m2≪1

=
∑

p,q=0

gp,q s
ptq . (2.8)

The coefficients in this expansion are related to ultraviolet physics by virtue of the ana-

lyticity of the S-matrix by considering the Cauchy integral around a small circle enclosing

the point s = 0. For a fixed t,

∑

q

gp,qt
q =

1

2πi

∮
ds

sp+1
Ã4(s, t)

=
1

π

∫ ∞

s=0

ds

sp+1
Im Ã

(s)
4 (s, t) +

1

π

∫ ∞

s=−t

ds

sp+1
Im Ã

(u)
4 (−s− t, t)

+
1

2πi

∫ 2π

0
dϕ

ds

sp+1
Ã4(s, t)

∣
∣
|s|→∞

, (2.9)

where the integration contour in the first line is a circle around the origin. In passing

to the second line the contour has been deformed to pick up the contribution from the

discontinuity DiscA(s, t) = limǫ→0(A(s+ iǫ, t)−A(s− iǫ)) = 2iIm Ã(s, t). If the subtracted

amplitude behaves as Ã4(s, t) < |s|w as s → ∞ the contribution from the contour at infinity

(the third line in (2.9)) vanishes for all p ≥ w (where we have defined s = |s| eiϕ). From

hereon we will assume that w < 0 so this contribution can be dropped. This will be shown

to be true in the explicit examples that we will consider later although it is not true in

most conventional field theory examples.

In the tree-level examples of the form (2.3) Im Ã
(s)
4 (s, t) is a sum of delta functions of

the form7

Im Ã
(s)
4 (s, t) = π

∑

a

paG
D−3
2

ℓa

(

1 +
2t

m2
a

)

δ(s−m2
a) , (2.10)

7Note that the discontinuity of a pole at the origin in the complex z-plane is given by Disc1/z =

−2πiδ(|z|).
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and so the contribution from the s-channel poles in (2.9) is given by

∑

q

g(s)p,qt
q =

1

π

∫ ∞

s=0

ds

sp+1
Im Ã

(s)
4 (s, t) =

∑

a

pa

m2p+2
a

G
D−2
2

ℓa

(

1 +
2t

m2
a

)

. (2.11)

It is important to note that (2.10) implies that ∂n
t Im Ã

(s)
4 (s, t)|t=0 > 0.

By contrast, the contribution of the u-channel poles is

∑

q

g(u)p,q t
q =

1

π

∫ −∞

s=−t

ds

sp+1
Im Ã

(u)
4 (s, t) =

∑

a

(−1)ppa
(t+m2

a)
p+1

G
D−2
2

ℓa

(

1 +
2t

m2
a

)

. (2.12)

It follows that ∂n
t Im Ã

(u))
4 (s, t)|t=0 has indefinite sign as do the coefficients g

(u)
p,q . The full

coefficient of sptq is given by gp,q = g
(s)
p,q + g

(u)
p,q and therefore in general it has indefinite sign

when there are u-channel poles, but in special cases gp,q is positive.

2.1 The Stieltjes half-moment sequence

It is useful to consider the n × n Hankel matrices composed of the expansion coefficients

gp,q. Thus, we may define a (n + 1) × (n + 1) Hankel matrix, which depends on n + 1

sequential coefficients for a given value of q, gq = {gm,q, gm+1,q . . . , gm+n,q}

H(m)
n [gq] =









gm,q gm+1,q · · · gm+n,q

gm+1,q gm+2,q . . . gm+n+1,q
...

...
...

...

gm+n,q gm+n+1,q · · · gm+2n,q









. (2.13)

The following theorem concerning positivity conditions on Hankel matrices (an abbre-

viated version of Theorem 2.8 in [19]) is of central importance in the following:

Given a sequence of real coefficients, a = (a0, a1, . . . , a∞) then the following statements

are equivalent.

• The infinite dimension Hankel matrix of the coefficients, H
(0)
∞ (a) is totally positive,

so all its n× n minors are positive for all n.

• The leading principal minors detH
(0)
n (a) and detH

(1)
n (a) are positive definite for all

n.

• There is a positive measure µ on [0,∞) whose support is the infinite set

ak =

∫ ∞

0
yk dµ(y), ∀k ≥ 0 . (2.14)

This means that (a0, a1, . . . , a∞) form a Stieltjes half-moment sequence.

This theorem is relevant if, for example, we make the identifications ap → gp,q, y → 1/s

and dµ(y) → ∂q
t ImA(s)(s, t)

∣
∣
t=0

ds/s, where ImA(s)(s, t) is given in (2.10).
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2.2 Positivity conditions on moments of the amplitude

We will now consider the first few terms in the expansion of Ã4(s, t) in powers of t, which

leads to expressions for the individual entries of the matrix gp,q.

Terms of order t0. The terms of lowest order in t are the coefficients of t0, which form

the vector gp,0 that is associated with the forward limit t = 0 in (2.9). In this case we have

g
(s)
p,0 = g

(u)
p,0 , which results in

gp,0 =
∑

a

2pa

m2p+2
a

G
D−2
2

ℓa
(1) , (2.15)

which is equivalent to









g0,0
g1,0
g2,0
...









=
∑

a

2pa
m2

a

G
D−2
2

ℓa
(1)









xa
x2a
x3a
...









, (2.16)

where xa = m−2
a ∈ R+. The set of coefficients, g0 = {g0,0, g1,0 . . . , gn,0} (for any n) defines

a (n+ 1)× (n+ 1) Hankel matrix

H(0)
n [g0] =











g0,0 g1,0 g2,0 · · · gn,0
g1,0 g2,0 g3,0 . . . gn+1,0

g2,0 g3,0 g4,0 · · · gn+2,0
...

...
...

...
...

gn,0 gn+1,0 gn+2,0 · · · g2n,0











. (2.17)

In this case we identify ap = gp,0 in (2.14) and the measure has the form
∑

a 2paG
D−2
2

ℓa
(1)/m2

a δ(y − xa)dy. This is equivalent to the statement that the coefficients

gp,0 in (2.16) reside in the convex hull of points of a half moment curve with components

xna . According to the theorem stated above this property implies that the Hankel matrices

built out of the coefficients gm,0 are totally positive so all the minors of the Hankel matrix

are positive definite.8

Using the expressions for gm,0 in (2.16) it is straightforward to show explicitly that

detH(0)
n [g0] =

∑

P

∏

i∈P

pi
m2

i

∏

i<j∈P

(xi − xj)
2 ≥ 0 , (2.18)

where P is any length n subset of {1, 2, . . . , L}, with L being the upper limit of the sum

in (2.16). If L is finite then it follows that detH
(0)
n [g0] = 0 for n > L, and H

(0)
n [g0] is

non-negative, i.e, detH
(0)
n [g0] ≥ 0. In theories such as string theory or large-N QCD the

8Notational comments: a minor of a n× n matrix is the determinant of a k × k sub-matrix with k < n

obtained by deleting n− k rows and n− k columns. A principal minor is the determinant of a k × k sub-

matrix obtained by deleting n − k columns and the n − k rows that have the same numbering. A leading

principal minor is the determinant of a sub-matrix obtained by deleting the last n− k columns and rows.
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number of tree-level poles is infinite (L = ∞) and H
(0)
∞ [g0] is totally positive. Analogously,

one can show the positivity of detH
(0)
n [g0] with g0 = {gm,0, gm+1,0 . . . , gm+n,0}. The

result is simply given by (2.18) with pi
m2

i

→ pi
m2

i

xmi . As stated previously, the positivity of

detH
(0)
n [g0] and detH

(1)
n [g0] is equivalent to the fact that the Hankel matrix H

(0)
∞ [g0] is

totally positive.

Terms of higher order in t. In order to consider the low energy expansion of tree

amplitudes to higher powers of t we first expand the propagators in (2.3) and (2.4) to all

orders in s, giving

A
(s)
4 (s, t) =

∑

a

pa
m2

a

G
D−3
2

ℓa

(

1 +
2t

m2
a

) ∞∑

n=0

sn

m2n
a

, (2.19)

A
(u)
4 (s, t) =

∑

a

pa
m2

a

G
D−3
2

ℓa

(

1 +
2t

m2
a

) ∞∑

n=0

(−s− t)n

m2n
a

. (2.20)

Notice that the terms of order s2n+1 t0 cancel in the sum of A
(s)
4 (s, t) and A

(u)
4 (s, t), whereas

the terms of order s2n t0 double, giving the positive definite coefficients discussed earlier.

However, the expansion of A
(u)
4 (s, t) in (2.20) in powers of s for a fixed power tq with q > 0

has negative contributions that do not cancel with the terms in A
(s)
4 (s, t). Therefore the

positivity condition for A4(s, t) is more involved, although more subtle positivity statements

can still be obtained as in [11–13] and [14, 15]. For our purposes it will be sufficient to

consider properties of the low-energy expansions of A
(s)
4 (s, t) and A

(u)
4 (s, t) contributions

separately.

In the case of open-string amplitudes or large-N QCD meson amplitudes the building

blocks (such as the colour-stripped amplitudes) only have s-channel poles (or u-channel

poles) for a fixed value of t. In such cases only A
(s)
4 (s, t) (or A

(u)
4 (u, t)) contributes to the

low-energy expansion, and has an expansion of the form

A
(s)
4 (s, t) =

∞∑

p,q=0

∑

a

pa
2q

q!m2
a

∂q
yG

D−3
2

ℓa
(y)

∣
∣
y=1

(
sp

m2p
a

)(
tq

m2q
a

)

. (2.21)

Noting the property of Gegenbauer polynomials ∂q
yG

D−3
2

ℓa
(y)

∣
∣
y=1

> 0 and recalling that

pa > 0 the coefficients in (2.21) satisfy

2q pa

m2+2q
a

∂q
yG

D−3
2

ℓ,a (y)
∣
∣
y=1

> 0 . (2.22)

So we see that, at any given order tq, the low-energy expansion again defines a half moment

curve, so the Hankel matrices formed by the low-energy coefficients are totally non-negative.

More generally, amplitudes have both s-channel and u-channel poles so both A
(s)
4 (s, t)

and A
(u)
4 (s, t) contribute. In such cases the coefficients in the low energy expansion are not

necessarily positive and do not reside on a moment curve (apart from the special t0 case)

and there is no straightforward condition on the Hankel matrices. However the coefficients

of the low-energy expansion of the term with s-channel poles, A
(s)
4 (s, t) do satisfy positivity
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conditions that again generally lead to totally non-negative Hankel matrices. As before,

when the range of a is infinite (as is the case with closed-string amplitudes and glueball

amplitudes in large-N QCD) the Hankel matrices are totally positive. The term with u-

channel poles, A
(u)
4 (u, t), satisfies the same conditions when expanded in powers of u for

a fixed power of t. We will see that in the closed-string case this leads to totally positive

Hankel matrix determinants with entries that are rational linear combinations of MZVs.

3 Four-particle open superstring tree amplitudes

In the rest of this paper we will consider critical superstring theory amplitudes, which

have massless sectors describing maximally supersymmetric Yang-Mills theory in the case

of open strings and maximally supersymmetric gravity in the case of closed strings.

After stripping off the colour factors the amplitude that describes the scattering of any

four massless particles in the Yang-Mills supermultiplet has a term of the form

Aop(s, t) = P4Aop(s, t) , (3.1)

that contains poles in the s and t channels. The factor P4 is a dimension-four kinematic pref-

actor that is determined by maximal Yang-Mills supersymmetry and contains the informa-

tion about which particular states are being scattered. For example, in the case of the four-

gluon amplitude this prefactor is given by P4 = F 4, where F is the linearised field strength.9

The amplitude (3.1) contains the stringy corrections to the field theory tree-level am-

plitude, which is P4/(st). In order to obtain an expression that is well-defined at t = 0, we

will again consider the amplitude after subtraction of the super Yang-Mills tree-level term,

Ãop(s, t) := Aop(s, t) +
1

st
= − 1

st

(
Γ(1− s)Γ(1− t)

Γ(1− (s+ t))
− 1

)

= − 1

s t

(

exp

[
∞∑

k=2

ζ(k)

k
(sk + tk − (s+ t)k)

]

− 1

)

. (3.2)

From the expression in the second line it is obvious that Ãop(s, t) has a low energy expansion

in powers of s and t with coefficients that are rational polynomials in Riemann zeta values.

The amplitude Ãop(s, t) can also be written as a sum of s-channel poles by using the integral

representation for the Euler beta function,

Ãop(s, t) =
1

t

∫ 1

0
dxx−1−s (1− x)−t +

1

st

=
1

t

∫ 1

0

dx

x

∞∑

m=1

x−s+m (−1)m
(−t

m

)

=
∞∑

m=1

1

m− s

Γ(m+ t)

Γ(1 + t)Γ(1 +m)
=

∞∑

m=1

m−1∑

ℓm=0

pℓmm G
D−3
2

ℓm

(
1 + 2t

m

)
)

m− s
. (3.3)

9The manifestly supersymmetric amplitude from which the component expression (3.1) arises can be

expressed as δ8(Q4)Aop(s, t), where Q4 is the supercharge for the four scattering states.
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Writing the amplitude in this manner exhibits the infinite set of poles at positive integer

values of s, but obscures the s−t symmetry of the amplitude and, in particular, obscures the

presence of an infinite set of poles at positive integer values of t. The last equality of (3.3)

expresses the amplitude in the form of a partial wave sum over Gegenbauer polynomials

of the same form as A
(s)
4 (s, t) in (2.4) (where m2

a takes integer values, m, and the angular

momentum of states at mass m takes the values, 0 ≤ ℓm ≤ m+1). The identity in the last

line only implies pℓmm ≥ 0 when D ≤ 10, which is consistent with the no-ghost theorem.

A more complete derivation of the amplitude (3.2) requires the condition D = 10 of the

critical superstring.

The asymptotic behaviour of Ãop(s, t) as |s| → ∞ with ǫ < arg(s) < 2π− ǫ , and t ≤ 0,

can be obtained by using Stirling’s approximation, giving

Ãop(s, t) ∼
s→∞

1

s t
− (−s)t−1

(
Γ(−t) +O(s−1)

)
, (3.4)

so the last term in (2.9) (the large-s contour integral) can be dropped.

3.1 Low-energy expansion of the four-particle open superstring tree amplitude

The expansion of the expression (3.3) in powers of s and t is straightforward and has the

form

Ãop(s, t) =

∞∑

p,q=0

gopp,q s
ptq . (3.5)

The coefficients in this expansion, gopp,q, are rational polynomials in Riemann zeta values

with weights w = p+ q + 2. The terms up to order t3 and order s5 are shown in (A.1).

The (p, 0) terms. The leading power of t is picked out by considering the forward limit,

t = 0, in which case the amplitude reduces to the simple form

Ãop(s, 0) =
∞∑

n=0

ζ(n+ 2) sn

= −1

s
(γ + ψ(1− s))

=
∞∑

n=1

1

n(n− s)
=

1

s

∞∑

n=1

(
1

n− s
− 1

n

)

, (3.6)

where the digamma function is defined by ψ(z) = Γ′(z)/Γ(z) and the Euler-Mascharoni

constant is defined by γ = −ψ(1) = −Γ′(1). It follows that in this case the coefficients,

gopp,0 are simply given by

gopp,0 = ζ(p+ 2) . (3.7)

We also see from (3.6) that the t = 0 contribution may be expressed as an infinite

sum of poles with positive residues in accord with unitarity. It follows from our previous

discussion that the determinants of the n× n Hankel matrices with ζ(i+ j) entries (where

i is even or odd) are all positive, as are all the minors of these matrices.
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Such determinants of Hankel matrices with ζ-value entries have been considered in

the mathematics literature [23, 24]. These references considered the behaviour of the

determinants of the 2n× 2n Hankel matrices

detH(0)
n [ζ]ij = det (ζ(i+ j)) , i, j = 1, 2, . . . , n , (3.8)

and

detH(1)
n [ζ]ij = det (ζ(i+ j + 1)) , i, j = 1, 2, . . . , n , (3.9)

which were both argued to be positive. This follows from the fact that detH
(1)
n [ζ]ij is a

principal minor of H
(0)
n+1[ζ]ij . In fact, as we commented previously, it is a property of the

Stieltjes moment coefficients that if two such Hankel matrices are known to have positive

determinants, all other minors are positive [19].

It is easy to see that detH
(i)
n [ζ] (i = 0, 1) approaches zero rapidly as n increases. More

explicitly, it was reported in [23, 24] that the asymptotic values of these determinants at

large n are given by the expressions10

detH(0)
n [ζ] = d(0)

(
2n+ 1

e
√
e

)−(n+1/2)2 (

1 +
1

24

1

(2n+ 1)2
+ . . .

)

, (3.10)

and

detH
(1)
n−1[ζ] =

e9/8√
6
d(0)

(
2n

e
√
e

)−n2+3/4(

1− 17

240

1

(2n)2
+ . . .

)

, (3.11)

It is easy to check these expressions with help from Mathematica, although we find the

numerical constant d(0) = 0.66367 rather than the value attributed to Zagier in [23], which

is d(0) = 0.35147.

The (p, 1) terms. It is also easy to see that the q = 1 terms (terms of order t1) are

given by

∂tÃ
(1)
op (s, t)|t=0 =

∞∑

p=0

gopp,1 s
p , (3.12)

with

gopp,1 =
p+ 2

2
ζ(p+ 3)− 1

2

p
∑

i=1

ζ(i+ 1)ζ(p+ 2− i) . (3.13)

In this case one may construct Hankel matrices H
op (0)
n [gop

1 ] of the form (2.17) with entries

{gop0,1, . . . , g
op
n,1} in the first row. The determinants of such matrices and all their minors

again satisfy positivity conditions. Since gopp,1 is quadratic in zeta values such bounds now

imply more complicated bounds on rational polynomials of zeta values.

10The constants d(0) was denoted A(0) in [23].
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All (p, q) terms. It is tedious to extract the complete set of coefficients for q > 1 simply

by expanding the expression in (3.2). However, it was shown recently [26] (see also [27])

that the coefficient gopp,q is given by the special multiple zeta values11 (which can also be

expressed as special kinds of Mordell-Tornheim sums)

gopp,q = ζ(1, · · · , 1
︸ ︷︷ ︸

q

, p+ 2) . (3.14)

These expressions can be reduced to rational polynomials in single zeta values of total

weight p + q + 2 by comparing the coefficient of sptq in the low energy expansion of the

open-string amplitude (3.2) with (3.14). In this manner we have been able to determine

the following expressions for the coefficients with q = 0, . . . , 3 for all p ≥ 0,

q = 0 : ζ(p+ 2) , (3.15)

q = 1 : ζ(1, p+ 2) =
p+ 2

2
ζ(p+ 3)− 1

2

p
∑

i=1

ζ(i+ 1)ζ(p+ 2− i) ,

q = 2 : ζ(1, 1, p+ 2) =
(p+ 2)(p+ 3)

3!
ζ(p+ 4)−

p
∑

i=1

i+ 1

2!
ζ(i+ 2)ζ(p+ 2− i)

+
1

3!

p
∑

i,j=1
i+j≤p

ζ(i+ 1)ζ(j + 1)ζ(p+ 2− i− j) ,

q = 3 : ζ(1, 1, 1, p+ 2) =
(p+ 2)(p+ 3)(p+ 4)

4!
ζ(p+ 5)

−
p

∑

i=1

(i+ 1)(i+ 2)

3!
ζ(i+ 3)ζ(p+ 2− i)

− 1

2!

p
∑

i=1

i+ 1

2!

p+ 2− i

2!
ζ(i+ 2)ζ(p+ 3− i)

+
1

2!

p
∑

i,j=1
i+j≤p

j + 1

2!
ζ(i+ 1)ζ(j + 2)ζ(p+ 2− i− j)

− 1

4!

p
∑

i,j,k=1
i+j+k≤p

ζ(i+ 1)ζ(j + 1)ζ(k + 1)ζ(p+ 2− i− j − k) .

The class of n×n Hankel matrices that is generated from the low-energy expansion of

the open-string four-particle amplitudes at a given order tq is given by

Hop
n [ζq]ij = ζ(1, · · · , 1

︸ ︷︷ ︸

q

, i+ j) , i, j = 1, 2, . . . , n , (3.16)

where the matrices with n = 1, 2, 3, · · · . are sub-matrices of the infinite-dimensional matrix

Hop
∞ [ζ]ij . The notation Hop

n [ζq] denotes the Hankel matrix with the first row defined by

11A general multiple zeta value of depth r and weight w =
∑r

i=1 ki is defined by ζ(k1, k2, , . . . , kr) =∑
0<n1<···<nr

n−k1

1 . . . n−kr

r .
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the sequence {ζ(1, · · · , 1
︸ ︷︷ ︸

q

, 2), . . . , ζ(1, · · · , 1
︸ ︷︷ ︸

q

, n+1)}. For example, the Hankel matrices with

n = 3 and general q have the form

Hop
3 [ζq] =












ζ(1, · · · , 1
︸ ︷︷ ︸

q

, 2) ζ(1, · · · , 1
︸ ︷︷ ︸

q

, 3) ζ(1, · · · , 1
︸ ︷︷ ︸

q

, 4)

ζ(1, · · · , 1
︸ ︷︷ ︸

q

, 3) ζ(1, · · · , 1
︸ ︷︷ ︸

q

, 4) ζ(1, · · · , 1
︸ ︷︷ ︸

q

, 5)

ζ(1, · · · , 1
︸ ︷︷ ︸

q

, 4) ζ(1, · · · , 1
︸ ︷︷ ︸

q

, 5) ζ(1, · · · , 1
︸ ︷︷ ︸

q

, 6)












. (3.17)

The unitarity constraints again imply that

detHop
n [ζq] > 0 , (3.18)

for all n ≥ 1 and q ≥ 0, as well as similar positivity constraints on all the minors. The

simplest example of many such constraints comes from the positivity of the upper left 2×2

minor

ζ(1, · · · , 1
︸ ︷︷ ︸

q

, 2) ζ(1, · · · , 1
︸ ︷︷ ︸

q

, 4)− (ζ(1, · · · , 1
︸ ︷︷ ︸

q

, 3))2 > 0 . (3.19)

This is just one of an infinite number of positivity constraints that can be reduced to

inequalities on polynomials of positive zeta values. It is straightforward to check these

numerically and to check that detHop
n [ζq] decreases rapidly to zero as n grows. However,

we have not obtained expressions analogous to (3.10) and (3.11), which would give the

asymptotic dependence of detHop
n [ζq] on n.

4 Four-particle closed superstring tree amplitudes

The four-particle closed-string tree amplitude has the form

Acl(s, t) = P8Acl(s, t) , (4.1)

where P8 is a dimension-eight kinematic factor that is determined by supersymmetry,

such as R4 in the case of the four-graviton amplitude (where R is the linearised Riemann

curvature).12 The factor Acl(s, t) is given by

Acl(s, t) = − 1

st(s+ t)

Γ(1− s)Γ(1− t)Γ(1 + (s+ t))

Γ(1 + s)Γ(1 + t)Γ(1− (s+ t))

= − 1

st(s+ t)
exp

[
∞∑

k=2

2ζ(2k + 1)

2k + 1
(s2k+1 + t2k+1 − (s+ t)2k+1)

]

, (4.2)

where the second expression is useful for exhibiting the low-energy expansion. It follows

that the first term in this expansion is P8/(stu), which contains the tree-level supergravity

12The prefactor P8 is the component expression corresponding to the manifestly supersymmetric prefactor

δ16(Q4) that enters the superamplitude that describes the scattering of any four massless states in the gravity

supermultiplet with maximal supersymmetry.
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four-particle amplitudes. Once again we will avoid the t = 0 singularity by subtracting the

classical term by defining

Ãcl(s, t) := Acl(s, t) +
1

st(s+ t)
. (4.3)

In this case the amplitude not only has poles on the positive real s axis but also on the

positive u (i.e., negative s) axis and is a special case of the general structure in (2.3). It

is easy to see that for t ≤ 0 this expression has the asymptotic behaviour Ãcl(s, t) ∼
s→−∞

(−s)−2 at fixed t, which means that the boundary term in (2.9) can be dropped.

We will now express Ãcl(s, t) as a sum of s-channel and u-channel poles in the form

Ãcl(s, t) = Ã
(s)
cl (s, t) + Ã

(u)
cl (u, t) , (4.4)

making use of the integral representation (which was used in the original paper by

Shapiro [28])

∫

C

d2w|w|−2−2s|1− w|−2t = − πt

s(s+ t)

Γ(1− s)Γ(1− t)Γ(1 + (s+ t))

Γ(1 + s)Γ(1 + t)Γ(1− (s+ t))

= πt2Acl(s, t) . (4.5)

Dividing the integration domain into the regions (1) |w| ≤ 1 and (2) |w| ≥ 1 and using the

fact that ∫

|w|≥1
d2w|w|−2−2s|1− w|−2t =

∫

|w|≤1
d2w|w|−2−2u|1− w|−2t , (4.6)

it follows that region (2) is equivalent to region (1) with s → u.

We now isolate the contributions from the s-channel and u-channel poles in

Ã
(s)
cl (s, t) :=

1

πt2

∫ 1

0

dr

r

∫ 2π

0
dθ r−2s(1− reiθ)−t(1− re−iθ)−t +

1

t2s

=
2

t2

∫ 1

0

dr

r

∞∑

m=1

r−2s+2m

(−t

m

)2

=
∞∑

m=1

1

m− s

(
Γ(m+ t)

Γ(1 + t)Γ(1 +m)

)2

, (4.7)

and

Ã
(u)
cl (u, t) :=

1

πt2

∫ 1

0

dr

r

∫ 2π

0
dθ r2s+2t(1− reiθ)−t(1− re−iθ)−t +

1

t2u

=
∞∑

m=1

1

s+ t+m

(
Γ(m+ t)

Γ(1 + t)Γ(1 +m)

)2

, (4.8)

where we have used the fact that

1

ts(s+ t)
=

1

t2s
+

1

t2u
. (4.9)
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Comparing the expressions (4.7) and (4.8) with (3.3), it is apparent that the closed string

tree amplitude can be obtained from the open string amplitude by squaring the residue of

each pole. This is closely related to the Kawai, Lewellen and Tye (KLT) relation [29] and

is the string generalization of the Bern, Carrasco and Johansson (BCJ) double copy [30]

relation between gauge theory and gravity.

The positivity conditions on the s-channel contribution ∂q
t Ã

(s)
cl (s, t)

∣
∣
t=0

, follow from

the fact that the residues of the massive poles have positive coefficients when expanded in

terms of Gegenbauer polynomials. We now need to check the asymptotic forms of A
(s)
cl (s, t)

and A
(u)
cl (u, t) when t is fixed and |s| → ∞. We have (setting r = e−y),

A
(s)
cl (s, t) =

1

πt2

∫ ∞

0
dy

∫ 2π

0
dθ e2sy(1− e−yeiθ)−t(1− e−ye−iθ)−t

=
1

πt2

∫ ∞

0
dy

∫ 2π

0
dθ e2sy(1 + e−2y − 2e−y cos θ)−t

→
s→∞

2−t

πt2s

∫ ∞

0
dŷ

∫ 2π

0
dθ e−2ŷ

(

(1− cos θ)

(

1 +
ŷ

s

))−t

=
2−2t Γ

(
1
2 − t

)

π
1
2 s t2 Γ(1− t)

+O(s−2) , (4.10)

where we have rescaled y → ŷ/(−s) to account for the limit s → −∞. We have then

expanded the factor of e−y = eŷ/s ∼ 1 + ŷ/s + O(s−2) in the two brackets. We therefore

deduce that

Ã
(s)
cl (s, t) = A

(s)
cl (s, t)−

1

st2
→

s→∞

1

st2

(

2−2t Γ
(
1
2 − t

)

π
1
2 Γ(1− t)

− 1

)

+O(s−2) . (4.11)

More generally, the large-|s| expansion of the amplitude has the form Ã
(s)
cl (s, t) →

s→∞∑

q=0 cqt
q s−1 with q ≥ 0, where cq is constant. Therefore, the contour integral at |s| → ∞

in (2.9) vanishes. The 1/s behaviour in (4.10) cancels with the leading term in A
(u)
cl (u, t)

in the complete amplitude. The full amplitude is Regge behaved and behaves as (−s)t−2

as |s| → ∞.

4.1 The closed-string low-energy expansion coefficients

In order to discuss the low-energy expansion of the closed-string tree amplitude we first note

that the terms of lowest-order in t, i.e. the expansion of the t = 0 amplitude, have the form

Ãcl(s, 0) = Ã
(s)
cl (s, 0) + Ã

(u)
cl (s, 0) = 2

∞∑

n=0

ζ(2n+ 3) s2n

= −1

s
(2γ + ψ(1− s) + ψ(1 + s))

=
1

s2

∞∑

k=1

(
1

k − s
+

1

k + s
− 2

k

)

, (4.12)
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which is simply a constant plus the sum of s-channel and u-channel poles. In this case

the coefficient of s2n is g2n,0 = 2 ζ(2n + 3). The relevant Hankel matrices can be viewed

as sub-matrices of the open-string Hankel matrixes, with the even zeta values set to zero

and with ζ(2n + 1) → 2ζ(2n + 1). This is the result of the single-valued projection [31],

which also reflects the KLT relation between open and closed string tree amplitudes

(see e.g. [32–34] for recent applications to superstring amplitudes). The positivity of the

determinant of the Hankel matrices formed from these coefficients provides no further

constraints on products of zeta values beyond those deduced from the open-string case.

4.2 Low-energy expansion of Ã
(s)
cl

(s, t)

Unlike the colour-ordered open string amplitudes, the coefficients of low-energy expansion

Ãcl(s, t) are generally not positive definite due to the u-channel contribution, Consequently,

they do not reside on a moment curve, apart from the t0 term discussed earlier. To deal

with this issue, we will consider the unitarity constraints on the s-channel contribution,

Ã
(s)
cl (s, t), in (4.7). As we will show below, the coefficients of the low-energy expansion of

Ã
(s)
cl (s, t) are not only positive, but also satisfy the Hankel matrix constraints, just as in the

case of open superstring amplitudes. Interestingly, even though the low-energy expansion

of Ãcl(s, t) only contains powers of single odd zeta values, individually the low-energy

coefficients of Ã
(s)
cl (s, t) and Ã

(u)
cl (u, t) include irreducible MZVs as well as even zeta values.

Therefore, the unitary of Ã
(s)
cl (s, t) leads to Hankel matrix constraints on irreducible MZVs.

The low energy expansion coefficients. The expansion of Ã
(s)
cl (s, t) and Ã

(t)
cl (u, t) can

be obtained to any given order in the low energy expansion by explicit expansion of (4.7)

and (4.8). Motivated by the expressions in [26] we obtain this expansion in the form

Ã
(s)
cl (s, t) =

∞∑

n=1

1

n− s

(
Γ(n+ t)

Γ(1 + t)Γ(1 + n)

)2

=
∞∑

p=0

sp
∞∑

n=1

1

np+1

(
Γ(n+ t)

Γ(1 + t)Γ(1 + n)

)2

=
∞∑

p=0

sp
∞∑

q=0

Z(p+ 3, q) tq . (4.13)

The quantity Z(p+ 3, q) is defined by the generating function

∞∑

q=0

Z(p+ 3, q) tq =

∞∑

n=1

1

np+1

(
Γ(n+ t)

Γ(1 + t)Γ(1 + n)

)2

=

∞∑

n=1

1

np+3

∏

0<m<n

(

1 +
t

m

)2

, (4.14)

and can be expressed as a linear sum of elements of a particular class of MZVs of weight

q + r,

Z(r, q) :=
∑

q∈{1,2}j , j≥0
q1+···+qj=q

2#{i:qi=1} ζ(q, r) . (4.15)

In this expression the components of the j-component vector q = (q1, q2, . . . , qj) are

summed over values qi = 1, 2, subject to the condition
∑j

i=1 qi = q. Furthermore,
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#{i : qi = 1} in the coefficient 2#{i:qi=1} denotes the numbers of components with qi = 1.

It follows from (4.13) that the closed-string coefficients are simply given by

gclp,q = Z(p+ 3, q) . (4.16)

Interestingly, as stressed in [26], the quantities Z(r, q) not only arise in the expansion of

the tree-level closed-string amplitude, but also in the evaluation of the low-energy expansion

of the genus-one four-graviton amplitude [35]. In that context certain multiple sums arise

in considering the coefficients in the Laurent polynomial of the large-Im τ expansion of the

two-point functions, Dℓ(τ), on a genus-one surface of complex structure τ . These multiple

sums have the form

S(m,n) ≡
∑

k1,...,km 6=0

δ(
∑

1≤i≤m ki)

|k1 · · · km|(|k1|+ · · ·+ |km|)n . (4.17)

In appendix A.3.2 of [35] authored by Don Zagier it was proved that

S(q + 2, r − 2) = (q + 2)! 22−r Z(r, q) , (4.18)

with Z(r, q) given by (4.15). The interesting fact that Z(r, q) arises in the low-energy

expansion of the genus-one amplitude as well as the expansion of the tree amplitude was

emphasised in [26].

The expressions for the coefficients of t0 and t1 are the following combinations of

polynomials in zeta values

Z(r, 0) = ζ(r) ,

Z(r, 1) = 2 ζ(1, r) = r ζ(r + 1)−
r−2∑

i=1

ζ(i+ 1) ζ(r − i) . (4.19)

We see that the coefficients of the low-energy expansion of Ã
(s)
cl (s, t) bear a very close

resemblance to the coefficients in the expansion of the open-string amplitude in (3.15). The

q = 0 (i.e. t0) terms are identical whereas the q = 1 (i.e. t1) terms have an additional factor

of 2. This fact can be understood from the double copy structure of (4.7) so that the residue

of each pole of closed-string amplitude is the square of that of the open string amplitude.

When q = 2, we have

Z(r, 2) = ζ(2, r) + 4 ζ(1, 1, r) , (4.20)

where ζ(1, 1, r) can always be reduced to zeta values as given in (3.15), and ζ(2, r) can

also be reduced to a polynomial in zeta values when r < 6. However, when r = 6 the

MZV ζ(2, 6) is irreducible. Indeed, Z(r, q) generally contains irreducible MZVs when q > 1

and r + q ≥ 8. The Ã
(u)
cl (u, t) part of the complete closed-string amplitude has the same

structure as above, but with s replaced by u = −s−t. All the even zeta values as well as all

the irreducible MZVs cancel in the sum of Ã
(s)
cl (s, t) and Ã

(u)
cl (u, t) so the full four-particle

closed-string tree amplitude can be expressed in terms of odd zeta values only.
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It follows from the earlier discussion that the n×n Hankel matrix associated with the

coefficients of the low-energy expansion of Ã
(s)
cl (s, t) has elements given by

Hcl (s)
n [Zq]ij = Z(i+ j + 1, q) , i, j = 1, 2, . . . , n , (4.21)

An example of a 3× 3 Hankel matrix for any q is given by

H
cl (s)
3 [Zq] =






Z(3, q) Z(4, q) Z(5, q)

Z(4, q) Z(5, q) Z(6, q)

Z(5, q) Z(6, q) Z(7, q)




 . (4.22)

Much as before, the positivity conditions lead to conditions of the form

det Hcl (s)
n [Zq] > 0 , (4.23)

as well as a host of such inequalities expressing the positivity of any minor of H
cl (s)
n,q [Z]ij

for all n ≥ 3. As discussed earlier, when q ≥ 2, Z(i+ j+1, q) generally contains irreducible

MZVs. For example, in the q = 2 case (4.22) becomes

H
cl (s)
3 [Z2] (4.24)

=






5ζ(5)
2 −ζ(2)ζ(3) 53ζ(6)

12 −3ζ(3)2 9ζ(7)−3ζ(2)ζ(5)−3ζ(3)ζ(4)

. . . . . . ζ(2, 6)+61ζ(8)
6 +2ζ(2)ζ(3)2−12ζ(3)ζ(5)

. . . . . . 113ζ(9)
6 −5ζ(2)ζ(7)−5ζ(3)ζ(6)−5ζ(4)ζ(5)+2ζ(3)3

3






where the ellipsis represent entries that are identified by the fact that the matrix is sym-

metric. In this case the positivity conditions (4.23) lead to conditions on polynomials that

contain the irreducible MZV ζ(2, 6).

5 Discussion

As discussed by Arkani-Hamed, Huang and Huang [11–13], general considerations of uni-

tarity and asymptotic behaviour of four-particle scattering amplitudes lead to very inter-

esting geometric constraints on low-energy physics. As a consequence the coefficients in

the low-energy expansion must reside inside a cyclic polytope, which is determined by the

Gegenbauer polynomials. This leads to a large number of positivity constraints on polyno-

mials of the low energy coefficients that are encoded in the positivity of Hankel matrices

and their minors.

In this paper we have explored these positivity constraints on the coefficients of the

low-energy expansions of tree-level amplitudes in open and in closed superstring theories.

Despite the fact that considerations of the four-particle amplitude with massless external

states can only probe a limited amount of information this nevertheless leads to a host

of interesting inequalities involving coefficients in the low energy expansion, which are ra-

tional polynomials of multiple zeta values. These constraints follow from positivity of the

determinants of the Hankel matrix (and any of its minors) formed from these coefficients.

The simplest version of these inequalities reproduces the known results in math litera-

ture [23, 24]. Our consideration from unitarity of superstring amplitudes not only provides
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a physical interpretation of the known inequalities among single zeta values, but also leads

to a host of new relations among single zeta values as well as more general MZVs. These

inequalities are the necessary conditions for superstring amplitudes being unitary, it would

be of interest to prove these inequalities by other means.

Another aspect of the positivity properties of the amplitude that was stressed in [11–13]

involves reorganising the low-energy expansion so that it takes the form
∑

∆,q g̃∆,qs
∆−q tq,

where ∆ = p + q. This leads to positivity conditions on the vector of coefficients, g∆ =

{g∆,0, . . . , g∆,n} that imply that this vector (for arbitrary n) must reside inside the cyclic

polytope generated by expanding the Gegenbauer polynomials in powers of t [11–13]. It

might be interesting to study the implications of these constraints on the MZV coefficients

of open and closed string theories.

It is of note that in the case of the closed-string amplitude, the positivity constraints

are constraints on rational polynomials of irreducible MZVs. These follow from the in-

troduction of the quantities Z(r, q) (introduced in [26] and defined in (4.15)) that are

combinations of MZVs that arise as intermediate coefficients in the low energy expan-

sion of the closed-string four-particle amplitude. Although the irreducible MZVs cancel

in the expansion of the full four-particle amplitude, they contribute to the portion of the

amplitude that has s-channel poles and satisfy the conditions contained in (4.23).

The inequalities satisfied by polynomials in MZVs implied by unitarity of superstring

tree amplitudes generalise results in the mathematics literature [23, 24] on determinants

of Hankel matrices of single zeta values. The determinants of these n× n Hankel matrices

approach zero very rapidly as a function of n. This is easily verified by direct numerical es-

timation and in the cases with single zeta values the explicit expressions for the asymptotic

behaviour are known [23, 24] (and are quoted in (3.10) and (3.11)). It would be of interest

to determine analogous expressions for the n-dependence of the asymptotic behaviour of

the determinants of Hankel matrices of MZVs that arise in this paper. It would also be of

obvious interest to develop an interpretation of the asymptotic behaviour of such matrices

in terms of asymptotic properties of superstring scattering amplitudes.

We know that in order to resolve the full content of the no-ghost theorem [20–22]

it is necessary to consider massless N -point amplitudes for all values of N . This should

be possible, given the explicit expressions for such amplitudes in both open and closed

superstring theories [36, 37]. The study of higher-point massless amplitudes or four-point

amplitudes with more general massive external states should lead to more general unitarity

conditions on the MZVs. Furthermore, the generalisation to amplitudes of higher genus

raises interesting new issues relating to the presence of massless threshold singularities that

arise in the low energy expansion (such as those discussed in the genus-one case in [35, 38]).
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A Four-particle superstring tree amplitudes at higher orders in t

For completeness, we here present the expansion of the tree-level four-point functions at

the first few orders in s and t. In the case of the open string expression (3.3) this expansion

has the form (up to O(t3) and O(s5))

Ãop(s, t)= ζ(2)+sζ(3)+s2ζ(4)+s3ζ(5)+s4ζ(6)+s5ζ(7)+O(s6) (A.1)

+ t

(

ζ(3)+
ζ(4)

4
s+(2ζ(5)−ζ(2)ζ(3))s2+

(
3ζ(6)

4
− ζ(3)2

2

)

s3

+(3ζ(7)−ζ(4)ζ(3)−ζ(2)ζ(5))s4+

(
5ζ(8)

4
−ζ(3)ζ(5)

)

s5+O(s6)

)

+ t2
(

ζ(4)+(2ζ(5)−ζ(2)ζ(3))s+

(
23ζ(6)

16
−ζ(3)2

)

s2

+

(

5ζ(7)− 5ζ(4)ζ(3)

4
−2ζ(2)ζ(5)

)

s3+

(
61ζ(8)

24
+
ζ(2)ζ(3)2

2
−3ζ(5)ζ(3)

)

s4

+

(
ζ(3)3

6
− 7

4
ζ(6)ζ(3)− 9

4
ζ(4)ζ(5)−3ζ(2)ζ(7)+

28ζ(9)

3

)

s5+O(s6)

)

+ t3
(

ζ(5)+

(
3ζ(6)

4
− ζ(3)2

2

)

s+

(

5ζ(7)− 5

4
ζ(4)ζ(3)−2ζ(2)ζ(5)

)

s2

+

(

ζ(2)ζ(3)2−4ζ(5)ζ(3)+
499ζ(8)

192

)

s3+

(
ζ(3)3

2
− 35

16
ζ(6)ζ(3)− 7

2
ζ(4)ζ(5)−5ζ(2)ζ(7)

+14ζ(9))s4+

(
9

8
ζ(4)ζ(3)2+3ζ(2)ζ(5)ζ(3)−8ζ(7)ζ(3)−4ζ(5)2+

973ζ(10)

160

)

s5+O(s6)

)

.

The expansion of the closed-string expression Ã
(s)
cl (s, t) up to O(t2) and O(s4) has the

form

Ã
(s)
cl (s,t)=ζ(3)+sζ(4)+s2ζ(5)+s3ζ(6)+s4ζ(7)+O(s5) (A.2)

+2t

(
ζ(4)

4
+(2ζ(5)−ζ(2)ζ(3))s+

(
3ζ(6)

4
− ζ(3)2

2

)

s2

+(3ζ(7)−ζ(4)ζ(3)−ζ(2)ζ(5))s3+

(
5ζ(8)

4
−ζ(3)ζ(5)

)

s4+O(s5)

)

+t2
(
5ζ(5)

2
−ζ(2)ζ(3)+

(
53ζ(6)

12
−3ζ(3)2

)

s+(9ζ(7)−3ζ(2)ζ(5)−3ζ(3)ζ(4))s2

+

(

ζ(2,6)+
61ζ(8)

6
+2ζ(2)ζ(3)2−12ζ(3)ζ(5)

)

s3

+

(
113ζ(9)

6
−5ζ(2)ζ(7)−5ζ(3)ζ(6)−5ζ(4)ζ(5)+

2ζ(3)3

3

)

s4+O(s5)

)

.
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The low-energy expansion of Ã
(u)
cl (u, t) is the same with s and u = −t−s interchanged. Each

of these expressions contains even zeta values and irreducible MZVs — for example, the

coefficient of t2s3 in (A.2) contains the weight-8 irreducible MZV ζ(2, 6). These cancel out

in the low-energy expansion of the total closed-string tree amplitude, Ãcl(s, t) = Ã
(s)
cl (s, t)+

Ã
(u)
cl (u, t), which has coefficients that are rational polynomials of odd zeta values.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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