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1 Introduction

Non-linear realisations of spontaneously broken symmetries are a central aspect of many

areas of physics. We now have a very good understanding about the connection between

non-linearly realised symmetries and the special infra-red (IR) behaviour of scattering

amplitudes [1]. The usual lore is that the symmetries are primary from which one can derive

the corresponding soft theorems. However, the opposite approach has also proven fruitful:

based on minimal assumptions regarding the linearly realised symmetries and soft theorems,

one can construct amplitudes with special soft behaviour and derive the corresponding

theories and symmetries. This soft bootstrap program has been applied to scalar effective

field theories (EFTs) [2–6], vector EFTs [7] and supersymmetric EFTs [8, 9] relying on

new ideas [5] based on on-shell recursion techniques [10–12]. In theories with constant shift

symmetries one encounters Adler’s zero [13, 14] while in theories with explicit coordinate

dependent symmetries one encounters enhanced soft limits where soft amplitudes depend

non-linearly on the soft momentum at leading order. This offers a very neat classification

of EFTs which does not require any reference to Lagrangians or field bases.

More specifically, if a theory is invariant under a symmetry transformation with a

field-independent part with σ − 1 powers of the space-time coordinates, then in the single

soft limit where a single external momentum p is taken soft, the amplitudes scale as pσ

to leading order with σ referred to as the soft weight.1 So theories with symmetries

1Note that this simple connection between symmetries and enhanced soft limits does not apply to

gauge theories, where gauge symmetries can be thought of as an infinite number of coordinate dependent

symmetries, but is certainly applicable to scalar and spin-1/2 fermions. We will comment on gauge theories

in section 5.
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involving many powers of the coordinates decouple very quickly in the IR. This makes

sense since the invariant operators would involve many derivatives which are suppressed

at long wavelength. Note that we are assuming that the field-independent part of the

symmetry transformation is compatible with a canonical propagator. This is important

when understanding the soft behaviour of a dilaton, for example, where once we canonically

normalise all terms in all transformation rules are field-dependent,2 see e.g. [15]. It does

therefore not fit into the above classification but it is known that the dilaton has σ = 0

soft behaviour [16–18].

However, the soft amplitude bootstrap is not the only way of classifying these special

EFTs without reference to Lagrangians. Any symmetries which are non-linearly realised on

the fields must form a consistent Lie-algebra with the assumed linearly realised symmetries.

One can therefore ask which Lie-algebras are consistent within the framework of the coset

construction for non-linear realisations [19–21] augmented with the crucial inverse Higgs

phenomenon3 [22]. For scalar EFTs Lie-algebraic approaches have been presented in [23, 24]

while in [25] these methods were used to prove that a gauge vector cannot be a Goldstone

mode of a spontaneously broken space-time symmetry without introducing new degrees of

freedom. This implies that the Born-Infeld (BI) vector is not special from the perspective

of non-linear symmetries and enhanced soft limits (the same result was found in [8] where

it was shown that the BI vector has a vanishing soft weight).

Recently, we presented an algorithm for an exhaustive classification of the possible

algebras which can be non-linearly realised on a set of Goldstone modes with linearly

realised Poincaré symmetries4 and canonical propagators in [26]. We illustrated this with

EFTs of multiple scalars and multiple spin-1/2 fermions. A key aspect of this algorithm

are inverse Higgs trees which incorporate the necessary requirements for the existence of

inverse Higgs constraints in a systematic manner. These constraints arise when space-time

symmetries are spontaneously broken and puts-into-practice the statement that Goldstone’s

theorem [29] does not apply beyond the breaking of internal symmetries [30]. Indeed, we can

realise space-time symmetries on fewer Goldstones than broken generators, which underlies

the existence of enhanced soft limits in special EFTs. The inverse Higgs tree can be seen

as the algebraic cousin to the on-shell soft data one provides in the soft bootstrap program.

Indeed, the tree encodes information about the massless states, linearly realised symmetries

and soft weights. Our algorithm allows one to establish in a simple manner which generators

can be included in a non-linearly realised algebra, given a set of Goldstone modes: only

generators which live in a Taylor expansion of the Goldstone modes are consistent while

the existence of canonical propagators restricts these generators further.

At the Lie-algebraic level there are two distinct types of algebras which are of in-

terest. The first possibility has vanishing commutators between all non-linear generators

2The dilaton EFT non-linearly realises the conformal algebra so the symmetry transformations we refer

to here are dilatations and special conformal transformations.
3We note that in contrast to the case for internal symmetries, there is no proof of coset universality

when space-time symmetries are spontaneously broken. In this work we will primarily be concerned with

space-time symmetry breaking and will therefore assume that universality does hold.
4See [27] for a discussion on non-linearly realised symmetries in AdS/dS space-time rather than

Minkowski space-time and [28] for cases where Lorentz boosts are non-linearly realised.
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(which correspond to spontaneously broken symmetries as opposed to linear generators

which generate linearly realised symmetries) which leads to field-independent extended

shift symmetries for the Goldstone modes [31]. These are simply shift symmetries which

are monomial in the space-time coordinates, with higher powers leading to quicker decou-

pling in the IR. In the resulting EFTs, the operators of most interest are the Wess-Zumino

ones since these have fewer derivatives per field than the strictly invariant operators, of

which the scalar Galileon interactions [32, 33] are an important example.

The other possibility is to have at least one non-vanishing commutator between a

pair of non-linear generators. This leads to field-dependent transformation rules for the

Goldstones and exceptional EFTs. These are particularly interesting since the symmetry

relates operators of different mass dimensions, most notably relating the propagator to

leading order interactions. In terms of Feynman diagrams, the exceptional EFTs exhibit

cancellations between pole and contact diagrams.

A very well known example of an exceptional EFT is the scalar sector of the Dirac-

Born-Infeld (DBI) action [34, 35] which describes the fluctuations of a probe brane in

an extra dimension. A second possibility is the Special Galileon [32, 36] which has been

studied from various directions [37, 38]. In our recent paper [26] we have demonstrated

from an algebraic perspective that these are the only two exceptional algebras and EFTs

for a single scalar field. Moreover, in the context of fermionic Goldstones, we proved that

the only exceptional EFT is that corresponding to Volkov-Akulov (VA) [39] and its multi-

field extensions which non-linearly realise supersymmetry (SUSY) algebras.5 This is a

completely general statement if each fermion is to have a canonical Weyl kinetic term and

illustrates the power of this algebraic analysis. The exceptional EFTs have the maximal

possible soft scaling for a given derivative power counting and therefore standout in the

space of all EFTs.6

However, this algebraic approach is by no means specific to theories with linearly

realised Poincaré symmetries. In this paper we adapt our approach to classify supersym-

metric theories i.e. we replace the linear Poincaré symmetries assumed in [26] with those

of N = 1 supersymmetry (SUSY). From now on we refer to [26] as part I and the present

paper as part II. The general question we wish to tackle is: which Lie-superalgebras can

be non-linearly realised on irreducible supermultiplets with canonical propagators and in-

teractions at weak coupling? Given the prominence of SUSY in both particle physics and

cosmological model building, an exhaustive classification in this regard would prove very

useful. Recently, this study has been initiated at the level of soft scattering amplitudes [8]

and our aim in this paper is to present a complementary, and extended, analysis at the

level of Lie-superalgebras.

We will demonstrate that this classification can be achieved by employing a neat gen-

eralisation of the distinction between essential and inessential Goldstones used in part I.

There the essential Goldstones are the ones which are necessary to realise all symmetries at

5Since the VA symmetry starts out with a constant shift, which is augmented with field-dependent pieces,

it has a σ = 1 soft weight. See e.g. [8, 40–42] for discussions on the VA scattering amplitudes, and [43, 44]

for further details on non-linear SUSY.
6See [45] for a discussion on the UV properties of some of these exceptional EFTs.
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low energies while the inessential ones can be eliminated by inverse Higgs constraints (they

could be a very important part of any (partial) UV completion [46], however). It is the

commutator between space-time translations and non-linear generators which distinguishes

between the two: if a non-linear generator commutes with translations into another non-

linear generator, its corresponding Goldstone is inessential and can eliminated by inverse

Higgs constraints.7 In this paper we will make use of superspace translations to provide a

further way of distinguishing between inessentials and essentials in SUSY theories. As we

will show, it will be possible to impose superspace inverse Higgs constraints which relate

inessentials to the SUSY-covariant derivatives of essentials. This SUSY generalisation of

inverse Higgs constraints will form a central ingredient in our analysis and will be presented

in detail in section 3.

In that section we also show how the generators of a non-linearly realised Lie-super-

algebra are related to the superspace expansion of the essential Goldstone modes, in direct

comparison to part I where we showed that the allowed generator structure is dictated

by Taylor expansions. This results in superspace inverse Higgs trees which arise from

satisfying super-Jacobi identities between two copies of (super)-translations and one non-

linear generator, up to the presence of linear generators. Again, these trees encode details

on the massless states in the EFT, the linearly realised symmetries, and the soft weights

of component fields in a given supermultiplet. Indeed, the trees also impose relations

between the soft weights of the component fields, reproducing the relations derived in [8]

using supersymmetric Ward identities [1, 47–49]. This very nicely illustrates how the two

independent methods are complementary and can be used to cross-check results. Given

that we do not assume anything about the form of the scattering amplitudes, our results

for the soft weights are valid to all orders in perturbation theory in comparison to the

SUSY Ward identities.

The existence of canonical propagators for the component fields of the essential Gold-

stone supermultiplets restricts the allowed generator content further. This leads to a sim-

plification of the inverse Higgs tree and makes exhaustive classifications possible, with the

only additional work requiring one to satisfy the remaining Jacobi identities. We keep

section 3 completely general without specifying the spin of the essential Goldstones then

in the subsequent sections we specialise to examples of interest: a single chiral, Maxwell

or real linear superfield in sections 4, 5 and 6 respectively.8 For the chiral and Maxwell

superfields we perform exhaustive classifications showing that exceptional EFTs can only

appear at low values for the soft weights and lead to the known theories of e.g. SUSY non-

linear sigma models and the VA-DBI system in the chiral case and the VA-BI system in

the Maxwell case. We will show that any EFTs with soft weights enhanced with respect to

7These inessential Goldstones are always massive and can therefore be integrated out of the path integral

for processes with energies below their mass. This is another way of seeing that they cannot play an essential

part in the low energy realisation.
8Let us emphasise that the existence of an exceptional algebra does not imply that there is a sensible

low energy realisation consisting of Goldstone modes. In part I we saw that every exceptional algebra one

can construct does indeed have a realisation but as we change the linear symmetries this may not be true.

We will comment on this as we go along.
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these cases cannot be exceptional i.e. the symmetries must be field-independent extended

shift symmetries. In the real linear case we restrict ourselves to σ ≤ 3 for the real scalar

lowest component field showing, for example, that this real scalar cannot be of the Special

Galileon form: the supersymmetrisation of the Special Galileon algebra does not exist (we

also see this in the chiral case).

Before moving on to the main body of the paper, in the following section we will briefly

review the basics of superspace and supermultiplets, primarily to fix notation. The main

body of the paper (sections 3–6) follows after and we end with our concluding remarks

including possible extensions of our work. In an appendix we illustrate some aspects of the

coset construction for SUSY theories by deriving the Maurer-Cartan form and superspace

inverse Higgs constraints for supersymmetric Galileons.

2 Superspace and superfields

Before we begin our discussion of exceptional EFTs, let us recall some basic facts about

linear supersymmetry. Our conventions are the same as Wess and Bagger [50]. The natural

framework to describe supersymmetric theories is superspace. This allows one to construct

superfields which are manifestly covariant under supersymmetry transformations. For N =

1 superspace we extend the usual space-time, described by coordinates xµ associated with

translations Pµ, with the anti-commuting Grassmann coordinates (θα, θ̄α̇) associated with

the fermionic generators (Qα, Q̄α̇). We will employ SU(2)× SU(2) notation for all indices,

using the Pauli matrices (σµ)αα̇ e.g. xαα̇ = (σµ)αα̇xµ and −2xµ = (σ̄µ)αα̇xαα̇.9 The

coordinates of superspace are then (xαα̇, θα, θ̄α̇), while the linearly realised generators of

N = 1 super-Poincaré are given by the translations (Pαα̇, Qα, Q̄α̇), as well as Lorentz

transformations (Mαβ , M̄α̇β̇) subject to the non-vanishing commutator

{Qα, Q̄α̇} = 2Pαα̇ , (2.1)

of the super-Poincaré algebra. The other commutators define the Lorentz representation

of each generator. Throughout this paper we will use the following convention for commu-

tators between a (n/2,m/2) tensor Tα1,...αnα̇1,...α̇m and the Lorentz generators Mβγ , M̄β̇γ̇ :

[Tα1...αnα̇1...α̇m ,Mβγ ] = 2n! iεα1(βTγ)α2...αnα̇1...α̇m ,

[Tα1...αnα̇1...α̇m , M̄β̇γ̇ ] = 2m! iεα̇1(β̇T|α1...αn|γ̇)α̇2...α̇m , (2.2)

where we have explicitly symmetrised in (β, γ) or (β̇, γ̇) with weight one, where neces-

sary. In these and all following equations, the symmetrisation with weight one of groups

of indices such as α1, . . . , αn will be implicit (and similarly for the dotted indices). Given

that in SU(2)× SU(2) notation traces are performed with the anti-symmetric tensors εαβ ,

εα̇β̇ , objects which are fully symmetric are irreducible representations, e.g. the (1, 1) ten-

sor Tα1α2α̇1α̇2 is a symmetric, traceless, rank-2 tensor. Note that when quoting and de-

scribing different algebras, we will often omit the commutators between generators and

Mα1α2 , M̄α̇1α̇2 but these are always implicitly understood.

9We remind the reader that (σµ)αα̇(σ̄µ)ββ̇ = −2δβαδ
β̇
α̇ which explains the factor of 2 in the second of

these expressions.
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A general function of superspace can be expanded as a series in the Grassmann co-

ordinates (θα, θ̄α̇), which terminates at bi-quadratic order in four dimensions due to their

anti-commuting nature. We have

Φ(x, θ, θ̄) = φ(x) + θαχα(x) + θ̄α̇ξ̄
α̇(x) + . . .+ θ2θ̄2F (x), (2.3)

where the expansion coefficients are referred to as component fields (here indicated for

a supermultiplet with a scalar field at lowest order, but taking the same form for other

Lorentz representations). Passive supersymmetry transformations are translations of the

Grassmann coordinates with an accompanying shift in xαα̇ i.e.

θα → θα + εα, θ̄α̇ → θ̄α̇ + ε̄α̇, xαα̇ → xαα̇ + 2iεαθ̄α̇ − 2iθαε̄α̇ , (2.4)

and realise the supersymmetry algebra. Note that the factor of 2 appearing in the shift of

the space-time coordinates is a consequence of SU(2)×SU(2) indices. We can reinterpret the

transformation of the coordinates as an active transformation on the superspace expansion

components of Φ(x, θ, θ̄). The result defines the transformation law of a superfield and its

components, which form a (generically reducible) representation. We refer the reader to [51]

if they are unfamiliar with passive vs active transformation rules and in the remainder of

this paper we will always refer to active transformations.

Turning to dynamics, given a superfield Φ its space-time derivative ∂αα̇Φ is also a

superfield. However, taking derivatives with respect to the Grassmann coordinates in

general does not yield a superfield. Instead, it needs to be paired up with a particular

space-time derivative

Dα =
∂

∂θα
+ iθ̄α̇∂αα̇ , D̄α̇ = − ∂

∂θ̄α̇
− iθα∂αα̇ , (2.5)

to form supercovariant derivatives Dα and D̄α̇ which satisfy {Dα, D̄α̇} = −2i∂αα̇ and

{Dα, Dβ} = {D̄α̇, D̄β̇} = 0. These are a crucial ingredient when building irreducible

superfields; they can be used to impose covariant constraints which project onto irreducible

representations. In this paper, we will consider the following irreducible superfields:

• The chiral superfield is defined by D̄α̇Φ = 0. This condition reduces the field content

to a complex scalar φ, a Weyl fermion χα and a complex auxiliary scalar F . The

chiral superfield has the following superspace expansion

Φ(x, θ, θ̄) = φ(y) +
√

2θχ(y) + θ2F (y) , (2.6)

where yαα̇ = xαα̇ − 2iθαθ̄α̇.

• The Maxwell superfield is a spinor Wα which satisfies the conditions DαWα+c.c. = 0

and the chirality condition D̄α̇Wα = 0. It contains a Weyl fermion χα, a gauge vector

Aαα̇ and a real auxiliary scalar D, and has the following superspace expansion

Wα = χα(y) + iθαD(y) + iθβFβα(y) + iθ2∂αα̇χ̄
α̇(y) , (2.7)

where again each component is a function of y due to the chirality condition. The

2-form Fαβ is the field strength of the vector.
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• The real linear superfield satisfies L = L̄, D2L = D̄2L = 0. Its field content is a

real scalar a, a Weyl fermion χα and a real vector Aαα̇ which satisfies the condition

∂αα̇A
αα̇ = 0. The latter implies that it can be seen as the Hodge dual of a 3-form

field strength H = dB. The full expansion in superspace is

L = a(x) + θχ(x) + θ̄χ̄(x)− θαθ̄α̇Aαα̇(x)− i

2
θ2θ̄α̇∂

αα̇χα(x)

+
i

2
θ̄2θα∂αα̇χ̄

α̇(x) +
1

2
θ2θ̄2�a(x) . (2.8)

When constructing algebras and exceptional EFTs, we will consider each of these cases

separately.

3 Goldstone modes in superspace

Superspace inverse Higgs constraints. In order to understand non-linear realisations

in superspace, it will be useful to recall what happens in ordinary space-time with Poincaré

invariant field theories. We refer the reader to part I for more details [26] but here outline

the general ideas.

Consider a theory with the symmetry group G, spontaneously broken down to a sub-

group H. This leads to the appearance of massless Goldstone modes. Each generator Gi
that lives in G/H induces a fluctuation φi(x) when acting on the vacuum field configura-

tion |0〉:
φi(x)Gi|0〉 . (3.1)

When the broken symmetries are internal, Goldstone’s theorem [29] tells us that each Gi
leads to an independent massless Goldstone mode. However, for space-time symmetry

breaking there may be degeneracies between the modes φi(x) even when the generators Gi
are independent. That is, there may be non-trivial solutions to the equation [30]

φi(x)Gi|0〉 = 0 . (3.2)

When such non-trivial solutions exist, we may impose this equation as a constraint to

consistently project out some Goldstone modes in terms of others. We refer to modes that

can be projected out as inessential Goldstone modes, and modes that cannot as essential.

Acting on (3.2) with the translation operator reveals a connection to the symmetry

algebra underlying the non-linear realisation of G/H. The translation operator acts on

both the space-time dependent Goldstone modes, on which it is represented as −i∂αα̇, as

well as on the generators Gi. With this understanding, the application of the one-form
i
2dx

αα̇Pαα̇ yields

0 = dxαα̇(∂αα̇φ
i − fαα̇jiφj)Gi|0〉, (3.3)

with the structure constants defined by

[Pαα̇, Gi] = ifαα̇i
jGj + linear generators . (3.4)

– 7 –
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Projecting (3.3) onto a particular generator, we can impose

∂αα̇φ
i − fαα̇jiφj +O(φ2) = 0 , (3.5)

i.e. we can eliminate a particular Goldstone mode φi(x) in terms of derivatives of φj(x)

as long as the generator Gj appears in the commutator between translations and Gi i.e

[Pαα̇, Gi] ⊃ ifαα̇i
jGj . Such a constraint is called an inverse Higgs constraint (IHC) [22].

The linear terms in these constraints follow from the above analysis for small fluctuations,

while additional terms non-linear in fields and derivatives can be calculated with the coset

construction for non-linear realisations [19–22].10

We now consider how these statements carry over from ordinary four dimensional

Poincaré space-time to N = 1 superspace. Consider a linearly supersymmetric theory with

symmetry group G broken to the sub-group H. Supersymmetry requires that each field

is accompanied by superpartners of the same mass. Since broken generators introduce

massless modes, they will at the same time introduce the appropriate superpartners. In

short, we must include a full superfield Φi(x, θ, θ̄), for each broken generator Gi, again with

any Lorentz indices suppressed. We represent the Goldstone mode in superspace as

Φi(x, θ, θ̄)Gi|0〉 , (3.6)

where |0〉 represents the supersymmetric vacuum field configuration. As before, not all

Goldstone modes have to be independent. Indeed, there may be non-trivial solutions to

the equation

Φi(x, θ, θ̄)Gi|0〉 = 0 . (3.7)

Similarly to the purely bosonic case, we can apply translations in superspace to reveal a

relation to the algebra underlying the non-linear realisation. The operator e−UdeU with

U = i(1
2x

αα̇Pαα̇ + θαQα + θ̄α̇Q̄
α̇) combines the space-time and spinor derivatives in a

covariant way. The exterior derivative in superspace, expressed in the supersymmetric flat

space basis of [50], becomes

d = −1
2e
αα̇∂αα̇ + eαDα + eα̇D̄

α̇ . (3.8)

Acting on (3.7), we obtain11[
−1

2
eαα̇(∂αα̇Φi − fαα̇jiΦj) + eα(DαΦi − fαjiΦj) + eα̇(D̄α̇Φi − f α̇j iΦj)

]
Gi|0〉 = 0 , (3.9)

where we have used the superspace algebra

[Pαα̇, Gi] = −ifαα̇ijGj + . . . , [Qα, Gi]± = ifαi
jGj + . . . [Q̄α̇, Gi]± = ifα̇i

jGj + . . . (3.10)

10Within the coset construction one can derive other constraints which must be satisfied by the algebra

if the inverse Higgs constraints are to exist [52, 53].
11In this expression, the supersymmetry generators Qα and Q̄α̇ act only on the generators, not on the

fields. The exterior derivative in e−UdeU acts on everything to the right, including the fields, yielding a

covariant expression. We also note that in our definition of U the coefficient of ixαα̇Pαα̇ is positive such

that we get the usual form of the covariant derivatives in (2.5). See [50] for more details.
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with the dots indicating unbroken generators that annihilate the vacuum. The ± sign in

the subscript of a bracket indicates that it is either a commutator or anti-commutator,

depending on whether the two arguments are fermionic or bosonic.

In complete analogy to the space-time case, we may project (3.9) onto a particular

generator yielding the following possibilities

∂αα̇Φi − fαα̇jiΦj = O(Φ2), DαΦi − fαjiΦj = O(Φ2), D̄α̇Φi − f α̇j iΦj = O(Φ2) , (3.11)

where again we have indicated that these constraints are valid to leading order in fields and

derivatives. The non-linear completions can again be derived using the coset construction.

We now see that it is the commutators (3.10) which lead to degeneracies between

Goldstone modes in superspace:12 one can solve for the Goldstone superfield Φi as the su-

perspace derivative of Φj , as long as the associated generator Gj appears in the commutator

of Gi and supertranslations Q or Q̄: [Qα, Gi] ⊃ fαi
jGj or [Q̄α̇, Gi] ⊃ fα̇i

jGj . These come

in addition to the usual inverse Higgs constraints which rely on the commutator between

generators and space-time translations as outlined above. Our strategy will be to classify

supersymmetric EFTs with non-linearly realised symmetries using these constraints to re-

duce to single Goldstone multiplets. From now on we refer to constraints of this type as

superspace inverse Higgs constraints.

Superspace inverse Higgs trees. In the previous subsection, we saw that a Goldstone

mode Φj can be eliminated in terms of Φi if the corresponding generators satisfy [Qα, Gj ] ⊃
fαj

iGi or [Q̄α̇, Gj ] ⊃ fα̇j
iGi. Of course, it may be the case that there is a third generator

Gk which satisfies [Qα, Gk] ⊃ fαk
jGj or [Q̄α̇, Gk] ⊃ fα̇k

jGj . This gives rise to a tree of

non-linearly realised generators whose corresponding Goldstones are related by superspace

inverse Higgs constraints. We refer to this generator structure as a superspace inverse Higgs

tree. It tells us the generator content of any algebra which can be non-linearly realised on

a single Goldstone supermultiplet. The inverse Higgs tree of any supermultiplet is fixed by

the Jacobi identities between two copies of supertranslations and one non-linear generator.

We now assume that there is always one non-linear generator G0 which satisfies

[Q,G0] = . . . and [Q̄,G0] = . . ., where the . . . contain only linear generators. The generator

G0 then corresponds to the essential Goldstone mode Φ0 which cannot be eliminated by

any inverse Higgs constraint. Under this assumption, we showed in part I that one can (by

performing the appropriate basis change) always introduce a level structure to the algebra

with the level of a generator fixed by how many times we must act with translations to

reach G0. This argument carries over trivially to superspace i.e. the organisation of gener-

ators into levels is always possible. However, here we have the full superspace translations

and therefore different levels can be connected by any of (P,Q, Q̄). Schematically we have

[P,Gn] = Gn−1 , [Q,Gn] = Gn− 1
2
, [Q̄,Gn] = Gn− 1

2
, (3.12)

12As in the space-time case this is a necessary condition for the constraints to exist but is not sufficient.

We will discuss this further in the next sections.
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i.e. Q and Q̄ take us from level-n to n− 1
2 while P takes us to n−1. We therefore label each

generator according to half the number of superspace inverse Higgs relations that separate

it from G0. This labelling works consistently due to the SUSY algebra (2.1).

Let us now see what this implies for the Goldstone modes Φi. At level-1/2 in the

inverse Higgs tree we find from (3.9), at linear order in fields, the following relations

DαΦ0 = fα 1
2

0Φ
1
2 , D̄α̇Φ0 = fα̇ 1

2

0Φ
1
2 , (3.13)

where we allow for the essential Φ0 to be a general (m,n) Lorentz representation. Clearly

this implies that if the essential is bosonic (fermionic), the generators at level-1/2 are

fermionic (bosonic). We therefore find that
(
m± 1

2 , n
)

and
(
m,n± 1

2

)
representations can

appear at this level in the tree. Including any other representations at this level would

mean that the corresponding Goldstones cannot be eliminated by inverse Higgs constraints

thereby increasing the number of essential modes. Moving onto level-1 in the tree, the

inessential Goldstones corresponding to these generators can be related to the essential,

via SUSY covariant derivatives, by

DαDβΦ0 = fα 1
2

0fβ1
1
2 Φ1 , DαD̄β̇Φ0 = fα 1

2

0fβ̇1

1
2 Φ1 ,

D̄α̇DβΦ0 = fα̇ 1
2

0fβ1
1
2 Φ1 , D̄α̇D̄β̇Φ0 = fα̇ 1

2

0fβ̇1

1
2 Φ1 . (3.14)

The derivative algebra {Dα, Dβ} = 0 implies that the l.h.s. of the first equation is anti-

symmetric and proportional to εαβ . This imposes a constraint on the product of struc-

ture constants on the r.h.s. This amounts to the Jacobi identity involving the generators

(Qα, Qβ , G1). Therefore, one finds that only the (m,n) representation can be eliminated

by a superspace inverse Higgs constraint using the D2 operator and similarly for D̄2. How-

ever, the DD̄ constraint opens up more possibilities. Indeed, there are in principle three

ways to eliminate
(
m± 1

2 , n±
1
2

)
representations: via DD̄, the opposite ordering, and by

using ∂ i.e.

∂αα̇Φ0 = fαα̇1
0Φ1 . (3.15)

The derivative algebra {Dα, D̄α̇} = −2i∂αα̇ implies that the first two of these equations adds

up to the third. This requires a relationship between the structure constants, corresponding

to constraints imposed by the Jacobi identity (Qα, Q̄β̇ , G1). There is only one of these

constraints and we therefore have two copies of the four possible Lorentz representations.

We have presented this superspace inverse Higgs tree in figure 1 up to level-1. The extension

to higher levels follows straightforwardly. Note that if one has EFTs with multiple essential

Goldstone modes then there will be multiple inverse Higgs trees. In this paper we will work

with single trees but considered multiple in part I.

The resulting set of possibilities for generators in addition to G0 is directly related to

the superspace expansion of the essential supermultiplet (2.3). This is in direct analogy to

Taylor expansions in the Poincaré case. Here the superspace expansion provides a blueprint

for the possible algebras that can be realised on a single essential supermultiplet. For

example, the representations of modes which can be eliminated by D2 and D̄2 correspond
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(m,n)

(
m± 1

2 , n
) (

m,n± 1
2

)

(m,n) 2x
(
m± 1

2 , n±
1
2

)
(m,n)

Figure 1. The non-linear generators that can be realised on a generic (m,n) supermultiplet

thanks to superspace inverse Higgs constraints, and their relations under superspace and space-

time translations. The block blue lines heading north-west and north-east denote connections by

Q̄ and Q respectively while the red dashed lines denote connections by space-time translations.

to the θ2 and θ̄2 components. Similarly, the two copies of the
(
m± 1

2 , n±
1
2

)
irreps at

level-1 are identical to the combination of the θθ̄ component of the superfield, as well as

the x-expansion of its lowest (m,n) component.13 This pattern continues at higher levels

in the tree and will be illustrated in specific cases later on.

The inverse Higgs tree also has important implications for the transformation laws of

the essential Goldstone mode. The coset construction tells us that each generator shifts

its own Goldstone mode by a constant, in addition to possible field-dependent terms.

Schematically we have

δGnΦn = εn + . . . . (3.16)

The inverse Higgs relations then fix the field-independent part of all transformation rules.

For example, since we have DαΦ0 = fα 1
2

0Φ
1
2 , any G 1

2
generator will generate a transforma-

tion rule on Φ0 which starts out linear in θ. However, one must be careful when extending

this argument to higher levels in the tree since, for example, there is no θ3 or higher compo-

nent in the superspace expansion. This does not imply that there are no generators in the

inverse Higgs tree connected to G0 by three or more actions of Qα, rather Jacobi identities

impose that at least one Q̄α̇ connection sits in between. This, in turn, implies that the

inverse Higgs constraint involves at least one D̄α̇ on top of the three unbarred derivatives.

Upon inserting {Dα, D̄α̇} = −2i∂αα̇, it is clear that the essential Goldstone mode obtains

an extended shift that is (at least) linear in the space-time coordinates. This indicates

that the generators are connected by a regular space-time inverse Higgs relation on top of

the superspace inverse Higgs relations. Indeed, Jacobi identities demand that sequential

connections by Q and Q̄ be paired up with a connection by P as illustrated in figure 1.

While here we have outlined the most general superspace inverse Higgs trees that

can arise, in practice we will only consider truncated versions for two reasons. The first is

related to irreducibility; a generic superspace expansion forms a reducible representation of

supersymmetry, and we would like to restrict ourselves to Goldstone irreps. This imposes a

further restriction on the trees. The second condition follows from demanding the existence

13The latter are identical to the four possibilities that we encountered in the Poincaré case at first level

in those trees [26].
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of a canonical propagator for each component within a superfield. Indeed, we demand

invariance of canonical kinetic terms under the field-independent part of every non-linear

transformation since this is the operator with the fewest powers of the field given that we

omit tadpoles in favour of Poincaré invariant vacua.14 This restricts the trees even further

and allows us to perform exhaustive classifications. We will comment on these additional

constraints in a moment and see in practice how they are implemented in sections 4–6.

The coset construction in superspace. Let us now outline the coset framework in

superspace and connect it to our above discussion. In the standard coset construction,

i.e. without SUSY, one introduces a Goldstone field for each broken generator Gi. Then,

by computing the Maurer-Cartan form, we can read off a metric and a set of covariant

derivatives which can be used to build invariant actions. We refer readers not familiar with

the coset construction to the original papers [19–21] and more recent work where details are

given e.g. [52, 54, 55].15 As outlined above, when [Pαα̇, Gj ] ⊃ fαα̇j
iGi the Goldstone field

φj(x) can be eliminated by an inverse Higgs constraint. In terms of the coset construction

the relevant constraint is D̂αα̇φ
i = 0 where D̂αα̇φ

i is the covariant derivative derived from

the coset construction. This relates φj(x) to the space-time derivative of φi(x) and is

simply the non-linear completion of the constraint discussed above.

In the SUSY case, one assigns a full Goldstone superfield to each broken generator in

the coset element Ω i.e.

Ω = ei(
1
2
xαα̇Pαα̇+θαQα+θ̄α̇Q̄

α̇)ei(Φ
0(x,θ,θ̄)G0) . . . ei(Φ

N (x,θ,θ̄)GN ) , (3.17)

where as usual we also include (super)-translations in the coset element since they act

non-linearly on the superspace coordinates. From this definition of the coset element,

we deduce transformation laws, a supervielbein and a set of covariant (with respect to

supersymmetry and all the non-linear symmetries) derivatives. In addition to covariant

space-time derivatives D̂αα̇, we obtain modified covariant Grassmann derivatives D̂α, ˆ̄Dα̇.

These arise from the product of Maurer-Cartan components and the fermionic parts of the

supervielbein.

These covariant derivatives can now be used to impose constraints on the Goldstone

superfields. The constraints separate into two classes: irreducibility constraints, which

impose relations between the component fields of a particular multiplet; and superspace

inverse Higgs constraints, which impose relations between multiplets i.e. in the case of a

single essential are used to eliminate Φ
1
2 , . . . ,ΦN . We refer the reader to e.g. [56–58] for

more details on the superspace coset construction and to illustrate these points we present

a simple example in appendix A within the context of supersymmetric Galileons which will

be discussed in more detail in section 4.

14There are exceptions to this rule which rely on the presence of a dilaton and non-linear realisations of

superconformal algebras which we will discuss.
15There are also Wess-Zumino terms which as we described above play an important role in the context

of extended shift symmetries. These don’t follow directly from the coset construction and their derivation

requires more work. See [54] for a very illustrative example of finding Wess-Zumino operators for Galileons.
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Covariant irreducibility conditions. As we outlined above, imposing irreducibility

can constrain the structure of superspace inverse Higgs trees. Given a particular symmetry

breaking pattern G/H, the coset construction provides a set of derivative operators D̂α,
ˆ̄Dα̇ that are compatible with all linear and non-linear symmetries. One should impose

irreducibility in terms of these operators rather than the ordinary superspace derivatives.

However, simply imposing the naive covariantised version of the canonical constraints is

not always consistent, and determining which combination of the covariant derivatives

corresponds to the relevant constraint can be non-trivial [56, 57]. We hope to clarify this

issue with the following observation.

The canonical irreducibility conditions have many different symmetries. In particular,

all of the symmetry algebras we classify in this paper must be realised as field transfor-

mations that preserve the irreducibility condition, and must therefore be present in the

modified constraint equations for the non-linear realisation G/H as well. We can make

these symmetries manifest by inspecting the covariant derivatives of an extended algebra

G′/H, which contains G/H as a sub-algebra but goes up to a higher level in the super-

space inverse Higgs tree. Each additional generator that we add to our algebra removes

one building block for covariant constraints. Extending the algebra further and further,

we eventually expect to end up with a unique building block at a particular level in the

tree, which then gives rise to the covariant irreducibility condition. The correct constraint

equation for G/H is then also given by this covariant derivative of the extended G′/H,

evaluated on the solution of the superspace inverse Higgs constraints. When written out

in terms of the covariant derivatives of G/H, such a constraint can look very complicated

(see [57]). However, it has a simple origin in the covariant derivatives of an extended

algebra. We will come across a concrete example of this in section 5.

Finally, irreducibility sometimes imposes additional constraints on the component

fields. For example, the vector in the real linear multiplet satisfies ∂αα̇A
αα̇ = 0. Any

symmetry transformation realised on Aαα̇ must respect this constraint. We will examine

the implications of such constraints case-by-case in the following sections.

Canonical propagators. Before diving into classifying algebras and exceptional EFTs,

let us mention the second constraint on the superspace inverse Higgs tree, following from

demanding canonical propagators for each component field. We recall from part I [26] that

this requirement imposes very strong constraints. For example, if the essential Goldstone

is a single scalar field π(x), all non-linear transformation rules take the form

δnπ = sµ1,...,µnx
µ1 . . . xµn , (3.18)

where n labels the level at which the generator corresponding to the symmetric, symme-

try parameter sµ1,...,µn appears in the scalar’s tree. Note that only for n ≤ 2 can the

transformations can be augmented with field-dependent pieces [26]. Now it is very easy to

show that only the traceless part of s is compatible with a canonical propagator for π i.e.

the trace part transforms the kinetic term π�π in a way that cannot be cancelled by any
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other term in the Lagrangian.16 We must therefore only include traceless generators in the

scalar’s tree.

A similar reduction in the possible generators of course occurs for fermions and vectors.

In the supersymmetric setup, we require that each physical field in the supermultiplet

simultaneously has a canonical propagator. Additionally, we require that the field equations

for the auxiliary fields remain algebraic and contain a linear piece. In other words, we

require compatibility with the following canonical superspace kinetic terms

• Lfree =
∫
d4θΦΦ̄ for the chiral superfield,

• Lfree =
∫
d2θWαWα for the Maxwell superfield,

• Lfree =
∫
d4θ L2 for the real linear superfield.

Some of the algebras that we will encounter contain generators which induce a shift

symmetry on the auxiliary fields. As auxiliary fields have algebraic field equations, the shift

symmetry is broken explicitly on-shell. Therefore, the physical theory will not contain any

remnant of the auxiliary field shift symmetry and we will not include the corresponding

generators in our classification. Note, however, that some of the symmetry algebras we

consider may be augmented by including the auxiliary shift generators if they are auto-

morphisms. We will discuss this point in more detail as we go along.

4 Chiral supermultiplet

Irreducibility condition. We begin by illustrating the above discussion with a chiral

supermultiplet Φ defined by the chirality condition D̄α̇Φ = 0. In component form the chiral

superfield reads

Φ(x, θ, θ̄) = φ(y) +
√

2θχ(y) + θ2F (y) , (4.1)

where yαα̇ = xαα̇ − 2iθαθ̄α̇ in order to satisfy the chirality condition and with φ a complex

scalar, χ a Weyl spinor and F an auxiliary scalar. The latter has no propagating degrees

of freedom in ordinary actions (as its field equation is algebraic) but is necessary to close

the supersymmetry algebra off-shell.

Any non-linearly realised algebra must contain a (0, 0) complex scalar generator G

associated with the chiral supermultiplet Φ. This follows straightforwardly from the coset

construction for SUSY theories as discussed above. This generator will act non-linearly

on the superfield, starting out with a constant shift and augmented with possible field-

dependent pieces depending on the form of the algebra. However, the canonical superspace

derivative Dα and its complex conjugate are not compatible with this non-linear symmetry

transformation and we therefore need to make use of the modified covariant derivatives D̂α

and ˆ̄Dα̇ as derived from the coset construction. By Lorentz symmetry, the most general

form of the new irreducibility condition reads

Tα̇β̇(D̂Φ, ˆ̄DΦ, . . .) ˆ̄Dβ̇Φ = 0 , (4.2)

16As we mentioned earlier, this assumes that no other operators exist at this order or below in the fields.

As we explained in [26], the only way to violate this assumption is by adding a dilaton.
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for some covariant operator Tα̇β̇ . In the following we therefore impose

ˆ̄Dα̇Φ = 0 , (4.3)

for irreducibility regardless of the form of the non-linearly realised algebras. This clearly

has important implications for the chiral field’s inverse Higgs tree, since we cannot use
ˆ̄Dα̇Φ to impose superspace inverse Higgs constraints. We refer the reader to [56] for more

details.

Superspace inverse Higgs tree. We now turn to the chiral superfield’s superspace

inverse Higgs tree. We denote different levels in the tree by n with half-integer levels

corresponding to fermionic generators and integer levels corresponding to bosonic ones.

At every level, n denotes the maximum spin of an allowed generator since the essential is

a scalar.

The tree starts off at n = 0 with a complex scalar generator. Since it gives rise

to an essential Goldstone, its commutator with (super)-translations can only give rise to

linear generators which for now remain unconstrained. At the next level we can only add

generators which live in the same representation as D̂αΦ since ˆ̄Dα̇Φ is used to impose

irreducibility. So at level n = 1/2, we can add a single
(

1
2 , 0
)

Weyl fermionic generator Sα,

and its complex conjugate of course, with

{Qα, Sβ} = 2εαβG+ . . . , (4.4)

where the . . . allow for possible linear generators but not other non-linear generators. This

new fermionic generator can be seen as corresponding to the component field χ in the chiral

superfield, once we have imposed the relevant inverse Higgs constraint. At lowest order in

fields it shifts Φ linearly in θ thereby generating a constant shift on χ. Note that [Pαα̇, Sβ ]

and {Q̄α̇, Sα} can give rise to linear generators but not non-linear ones.

At level n = 1 we can add a (0, 0) generator R, which is connected to Sα by Qα, and

a
(

1
2 ,

1
2

)
complex vector generator17 Gαα̇ which is connected to the essential G by Pαα̇ and

to Sα by Q̄α̇. The possible 2-form generator which could be connected to Sβ by Qα is not

consistent with Jacobi identities. In other words, the 2-form does not live in the superspace

expansion of the chiral superfield. We therefore have

[Qα, R] = Sα + . . . , [Pαα̇, Gββ̇ ] = iεαβεα̇β̇G+ . . . , [Q̄α̇, Gββ̇ ] = iεα̇β̇Sβ + . . . (4.5)

The generator R corresponds to a shift in Φ at quadratic order in θ and therefore generates

a constant shift on the auxiliary scalar F . Note that the (Qα, Q̄α̇, Gββ̇) Jacobi identity

requires the complex vector to have a non-vanishing commutator with both Pαα̇ and Q̄α̇.

This tells us that it generates a shift linear in the space-time coordinates, fitting into the

17Note that here we are assuming that both scalar degrees of freedom contained in φ have identical inverse

Higgs trees. This doesn’t have to be the case, however. For example, we could have allowed for only a real

vector generator at n = 1 which is connected to only the real part of φ. Situations like this are indeed

possible. For example, we can couple a Galileon to an axion without breaking supersymmetry [8, 9]. We

consider examples of such situations in section 6. We leave an exhaustive classification for future work, but

will give further comments in our conclusions.
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Figure 2. The non-linear generators that can be realised on a chiral supermultiplet (left) and the

subset that is consistent with canonical propagators (right).

Taylor expansion of the complex scalar φ. At level θθ̄ we have ∂αα̇φ which indeed makes

sense since this transformation is accompanied by a constant shift in θθ̄.

The structure at higher levels follows straightforwardly with only certain representa-

tions allowed and with the connections to lower levels via (super)-translations related by

Jacobi identities. On the l.h.s. of figure 2 we present the tree up to level n = 5/2.

Canonical propagators. We now consider the constraints imposed on the tree by de-

manding that the resulting EFT has a sensible perturbation theory: canonical propagators

for physical fields augmented with weakly coupled interactions. We begin by considering

the auxiliary field F which in healthy theories obeys an algebraic field equation. Since the

generator R imposes a shift symmetry on F , the physical on-shell action will explicitly

break this symmetry. This is telling us that we should not include this generator and in-

deed other generators at higher levels which are connected to R by (super)-translations18

e.g. the vector at level n = 2.

We can constrain the tree further by demanding canonical kinetic terms for φ and χ

in any resulting EFT. As explained in section 3, we can only add symmetric, traceless

generators in the bosonic sector since these are all related to the essential complex scalar

by space-time translations. For example, at n = 2 we omit the (0, 0) complex generator

leaving us with only the (1, 1) irrep. Similarly for the fermionic component field, the

generators at n = 3/2 impose a shift linear in the space-time coordinates however only

the
(
1, 1

2

)
generator imposes a symmetry which is consistent with the Weyl kinetic term.

Again the story at higher levels is very similar to the scalar case: only a single generator is

allowed and it is the one with the highest spin. Imposing these constraints on the inverse

Higgs tree reduces it to the r.h.s. of figure 2 with a neat zig-zag structure. We essentially

have a scalar tree and a fermion tree, both with only a single branch, with the generators

connected by linear SUSY. Since only a single generator appears at each level, adding a

18As we will discuss in the next subsections, in some cases we can include the R generator in a consistent

manner but it is never a necessary part of the algebra. This further motivates us to omit it from the tree.
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generator at say level n = i requires the full tree to be present for all levels n < i. In the

following we will denote all fermionic generators by S and all bosonic ones by G with the

number of indices distinguishing between different levels in the tree. The complete inverse

Higgs tree is therefore defined by the following (anti)-commutation relations

{Qγ , Sα1...αN α̇1...α̇N−1} = 2εγα1Gα2...αN α̇1...α̇N−1 + . . . ,

[Q̄γ̇ , Gα1...αN α̇1...α̇N ] = iεγ̇α̇1Sα1...αN α̇2...α̇N + . . . ,

[Pγγ̇ , Sα1...αN α̇1...α̇N−1 ] = iεγα1εγ̇α̇1Sα2...αN α̇2...α̇N−1 + . . . ,

[Pγγ̇ , Gα1...αN α̇1...α̇N ] = iεγα1εγ̇α̇1Gα2...αN α̇2...α̇N + . . . . (4.6)

Relationship between soft weights. Ultimately we are interested in exceptional EFTs

with special IR behaviour i.e. enhanced soft limits. This tree structure already teaches

us something about the relationship between the soft weights of the complex scalar and

fermion component fields. For example, truncating the tree at n = 1/2 means that there

are no inverse Higgs constraints involving Pαα̇ and therefore both the scalar and fermion

have σ = 1 soft behaviour since both have transformation rules which start out with a

constant shift. However, if we terminate the tree at n = 1, the scalar transformation rule

induced by Gαα̇ starts out linear in the space-time coordinates with possible field-dependent

additions. The fermion can indeed transform under Gαα̇ but the transformation rule will

only contain field-dependent pieces and so will not enhance the fermion’s soft behaviour.

Therefore at this level the scalar will have σφ = 2 soft behaviour whereas the fermion will

have σχ = 1. This clearly extends to higher levels: the soft weights can either be equal,

if the tree terminates at a half-integer level, or the scalar’s can be one higher if the tree

terminates at an integer level:

σφ = σχ = n+ 1/2 , for half-integer n ,

σφ = σχ + 1 = n+ 1 , for integer n . (4.7)

This structure is dictated by linear SUSY and is exactly what was derived in [8] using the

SUSY Ward identities. It is neat to see that the superspace inverse Higgs tree captures

all this non-trivial information about the SUSY EFTs. We remind the reader that when

constructing the tree we explicitly assumed that both components of the complex scalar

have equivalent soft weights.

We note that when constructing theories there are possibilities of symmetry enhance-

ments. For example, it could be that there is no realisation at a given level and by deriving

invariants via the coset construction or otherwise, one finds that all operators have addi-

tional symmetries meaning that the theory really sits at a higher level. This happens with

the dilaton EFT: it is not possible to write down a dilaton theory which is scale invariant

but not invariant under special conformal transformations.19 In both cases we are required

to build invariants operators out of diffeomorphism invariant combinations of the same

effective metric gµν = e2πηµν where π is the dilaton, which is easy to prove using the coset

19It is however possible to have a scale invariant theory which is not fully conformal if we allow for Lorentz

boosts to be spontaneously broken as in e.g. cosmology [28].
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construction for the two symmetry breaking patterns. We will comment on symmetry

enhancements where necessary in the following analysis.

Exceptional EFTs. We are now in a position where we can perform an exhaustive

analysis of the possible algebras which can be non-linearly realised by the single chiral su-

perfield. We remind the reader that the superspace inverse Higgs tree is merely a necessary

structure to i) reduce the EFT to the single chiral superfield by incorporating the necessary

superspace inverse Higgs constraints and ii) satisfy Jacobi identities involving two copies of

(super)-translations, up to the presence of linear generators. If there are no linear genera-

tors on the r.h.s. of commutators between (super)-translations and a non-linear generator,

and all commutators between a pair of non-linear generators vanish, then all Jacobi identi-

ties have been satisfied. Algebras of this type were discussed in the introduction; they lead

to extended shift symmetries for each component field. However, these are very easy to

construct and indeed always exist at every level in the tree. We will be primarily interested

in the other type of possible algebras where transformation rules can be field-dependent,

thereby leading to exceptional EFTs.

n = 0. We begin with the most simple case: n = 0 without any additional generators.

Given our above discussion on soft limits, here the complex scalar will have σφ = 1 be-

haviour while the fermion has σχ = 0. The fermion can therefore be seen as a matter field

whose presence is only required to maintain linear SUSY. This of course includes the case

where G commutes with all other generators thereby simply generating a constant shift

on the complex scalar component φ. This leads to supersymmetric P (X) theories [59].

Just as a standard P (X) theory is the most simple Goldstone EFT one can write down

arising when a global U(1) symmetry is spontaneously broken, this is the most simple

supersymmetric Goldstone EFT (in terms of algebras and symmetries that is; the leading

order operators can be somewhat complicated [59]).

There are also slightly more complicated algebras at this level corresponding to super-

symmetric non-linear sigma models characterised by the non-vanishing [G, Ḡ] commutator.

In contrast to the purely shift symmetric case, the resulting EFTs can have field-dependent

transformation rules and are therefore exceptional EFTs given our definition in this work.

Indeed, the power counting in these theories is different to the naive expectation: even

though we have σφ = 1, the complex scalar can enter the action with fewer than one deriva-

tive per field. A simple example is the two-derivative action, which can be interpreted as

a metric on the two-dimensional manifold spanned by the components of the scalar field.

The non-linear generators G and Ḡ imply that this manifold has two transitively acting

isometries. The only such manifolds are the maximally symmetric ones, i.e. the hyperbolic

manifold SU(1, 1)/U(1) or the sphere SO(3)/SO(2), which are well-known non-linear sigma

models. We refer the reader to [8] and references therein for more details.

n = 1/2. We now consider the case where the tree terminates at n = 1/2 with a

single additional non-linear generator Sα. The most general form of the commutators in

addition to those of the linear realised super-Poincaré and the ones which define the Lorentz
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representation of the non-linear generators is

[Pαα̇, G] = a1Pαα̇, [Qα, G] = a2Qα, [Q̄α̇, G] = a3Q̄α̇,

[Pαα̇, Sβ ] = a4εαβQ̄α̇, {Qα, Sβ} = 2εαβG,+a5Mαβ ,

[G, Ḡ] = a6G+ a7Ḡ, [Sα, G] = a8Sα + a9Qα, [S̄α̇, G] = a10S̄α̇ + a11Q̄α̇,

{Sα, Sβ} = a12Mαβ , {Sα, S̄α̇} = a13Pαα̇. (4.8)

Note that we didn’t allow for a commutator of the form {Q̄α̇, Sα} = a14Pαα̇ since it can

be set to zero by a change of basis. Now the Jacobi identities are very constraining, fixing

all parameters to zero other than a13 ≡ s which is unconstrained. If s 6= 0 we can set

it to 2 by rescaling generators such that the algebra is that of N = 2 SUSY augmented

with the only inverse Higgs constraint.20 In this case the component field χ takes the

Volkov-Akulov (VA) form [39]. This is an exceptional algebra by virtue of having a non-

vanishing commutator between non-linear generators. On the other hand, if s = 0 then

Sα generates a constant shift on χ as studied in [60]. This is simply a contraction of the

s 6= 0 algebra. In both cases G generates a constant shift on the complex scalar component

field φ since by Jacobi identities G must commute with (super)-translations and with Ḡ.

We therefore have a shift symmetric complex scalar field coupled to either a VA or shift

symmetric fermion field with the couplings fixed by linear SUSY. The soft weights at this

level are σφ = σχ = 1. This discussion is unchanged if we add linear scalar generators:21

they do not allow for additional exceptional algebras.

In terms of the low energy EFTs which can non-linearly realise these algebras, when

s = 2 it is not clear if they are independent from those which sit at level n = 1 i.e. there

could be symmetry enhancement. It was suggested in [56] that the symmetry is indeed

enhanced to the case where the complex scalar has an additional symmetry but much more

work is required to arrive at a definitive answer. However, for s = 0 there are invariants we

can write down which do not exhibit symmetry enhancement. For example, the operator∫
d4θ ∂αα̇Φ∂ββ̇Φ∂αα̇Φ̄∂ββ̇Φ̄ , (4.9)

for the chiral superfield Φ has a shift symmetry for its scalar and fermion components but

does not exhibit enhancement to level n = 1.

n = 1. We now also include the complex vector Gαα̇ taking us to level n = 1. Here the

soft limits are σφ = 2 and σχ = 1. We play the same game as before: write down the

most general commutators consistent with the superspace inverse Higgs tree and impose

Jacobi identities to derive the algebras which can be non-linearly realised on the chiral

20We keep s ≥ 0 to ensure positivity in Hilbert space. This is a necessary requirement in any linear

realisations of the symmetry algebra, but not in non-linear realisations as the currents don’t integrate into

well-defined charges in the quantum theory. Here we still assume the requirement of positivity in Hilbert

space. This is a reasonable assumption if one anticipates that the non-linear realisations have a (partial)

UV completion to a linearly realised theory, or to be a particular limit of such a theory.
21Linearly realised scalar generators commute with the Poincaré factor but can appear on the r.h.s. of the

above commutators, can form their own sub-algebra and can have non-zero commutators with non-linear

generators and super-translations.
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superfield. This is a simple generalisation of the n = 1/2 case but since the full Ansatz

for the commutators is quite involved, here we will just describe the results. As in the

previous case, we allow for linear scalar generators which now turn out to be crucial in

deriving exceptional algebras and EFTs. Note that in the Ansatz we do not allow for

G or Ḡ to appear on the r.h.s. of a commutator between a pair of non-linear generators

which correspond to inessential Goldstones (Sα and Gαα̇). This is necessary to ensure that

the relevant superspace inverse Higgs constraints exists i.e. that the inessential Goldstones

appear algebraically in the relevant covariant derivatives. We refer the reader to [52] for

more details.

Given that in all cases the bosonic generators form a sub-algebra, we can use the results

of part I to fix these commutators. We refer the reader to [26] for more details but let us

briefly outline the allowed structures. As in the n = 1/2 case, we find that the essential com-

plex scalar cannot contain a component which transforms like a dilaton so the sub-algebra

must correspond to that of the six-dimensional Poincaré group or contractions thereof. We

can perform two distinct contractions thereby yielding three inequivalent algebras with

their defining features the commutators between non-linear generators. The non-zero com-

mutators which involve non-linear generators in the uncontracted six-dimensional Poincaré

algebra are

[Pαα̇, Gββ̇ ] = iεαβεα̇β̇G, [Gαα̇, Ḡββ̇ ] = −i(εαβM̄α̇β̇ + εα̇β̇Mαβ) + 2εαβεα̇β̇M,

[Ḡ,Gαα̇] = 2iPαα̇, [G,M ] = G, [Gαα̇,M ] = Gαα̇, (4.10)

where M is a real, linearly realised scalar generator. The non-linear realisation of this

algebra is the two-scalar multi-DBI theory which has a neat probe brane interpretation [61].

The obvious contraction we can do leads to the trivial algebra where all non-linear

generators commute leaving only the commutators required by superspace inverse Higgs

constraints (and the linearly realised bosonic sub-algebra). The low energy realisation of

this algebra is that of bi-Galileons [62] and can be seen as taking the small-field limit for

both components of the complex scalar. However, there is also a less obvious contraction

we can perform where we retain non-vanishing commutators between non-linear generators.

This contraction is somewhat difficult to understand in terms of these complex generators

but is simple when using the more familiar generators PA, MAB where A,B, . . . are SO(1, 5)

indices. In this case the linear scalar is M45 ≡ M and the non-linear four-dimensional

vectors are Mµ4 ≡ Kµ and Mµ5 ≡ K̂µ, where µ is an SO(1, 3) index, which are related to

the complex generators by

G = P4 + iP5, Gαα̇ = Kαα̇ + iK̂αα̇. (4.11)

The relevant contraction corresponds to sending P5 → ωP5, K̂µ → ωK̂µ and M45 → ωM45

with ω → ∞. This contracted algebra is non-linearly realised by a DBI scalar coupled

to a Galileon and can be seen as taking a small field limit for only one component of the

complex scalar.22 If we now switch back to the complex generators, since [P5,Mµ5] = 0 we

22This algebra also appeared in [24] and let us note that it is not clear if there exists a sensible realisation

where both scalars have canonical kinetic terms. However, we will see in a moment that even if this theory

existed, it cannot be supersymmetrised.
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now have [G,Gαα̇] 6= 0 in contrast to the fully uncontracted case. This will be important in

what follows. We now take each of these sub-algebras in turn and ask which are consistent

with linear SUSY and the required non-linear fermionic generator Sα.

If the bosonic sub-algebra is given by (4.10) then we find, perhaps unsurprisingly, that

the most general algebra is that of six-dimensional super-Poincaré. In addition to the

linearly realised super-Poincaré algebra and (4.10), the non-zero commutators are

{Qα, Sβ}= 2εαβG, {Sα, S̄α̇}= 2Pαα̇, [Qα, Ḡββ̇ ]= iεαβS̄β̇ , [Sα, Ḡββ̇ ]= −iεαβQ̄β̇ . (4.12)

In the resulting low energy realisation, the complex scalar takes the multi-DBI form while

the fermion takes the VA form. This theory has been very well studied in various contexts,

see e.g. [56, 63].

If the bosonic algebra is the bi-Galileon one i.e. where the only non-vanishing commuta-

tors are those required by inverse Higgs constraints, we find that the supersymmetrisation

also requires all commutators between non-linear generators to vanish. The only non-

trivial commutators are therefore those required by superspace inverse Higgs constraints.

This is simply a contraction of the six-dimensional Poincaré algebra and results in the six-

dimensional supersymmetric Galileon algebra. Here the fermion is shift symmetric and a

quartic Wess-Zumino interaction for this algebra was constructed in [64] (for more details

see [8, 9, 60]). We present the coset construction for this symmetry breaking pattern in

appendix A.

Turning to the final bosonic sub-algebra, we find that it is impossible to supersym-

metrise the theory of a DBI scalar coupled to a Galileon. Indeed, the Jacobi identities

involving (Qα, Q̄α̇, Gββ̇) and (Qα, Sβ , Gγγ̇) fix [G,Gαα̇] = 0 which is incompatible with this

partly contracted algebra. We therefore conclude that there is only a single exceptional

EFT for a chiral superfield with σφ = 2, σχ = 1 soft limits which is the VA-DBI system

which non-linearly realises the six-dimensional super-Poincaré algebra.

n ≥ 3/2. When n ≥ 3/2 we find that no exceptional EFTs are possible: the only non-

trivial commutators are the ones required by superspace inverse Higgs constraints and lead

to extended shift symmetries for the component fields. The situation for n = 3/2 is slightly

different than for n ≥ 2 so we will discuss these in turn but the results are qualitatively

the same.

At n = 3/2, the bosonic sub-algebra must again be that of six-dimensional Poincaré, or

contractions, since i) the fermionic generators do not allow for a dilaton as one component

of the chiral superfield and ii) compared to n = 1 we haven’t added any additional bosonic

generators. However, we very quickly establish that this sub-algebra must be the fully

contracted one i.e. both components of the complex scalar must transform as Galileons as

opposed to DBI scalars.

To arrive at this conclusion we first use the (Pαα̇, Pββ̇ , Sγ1γ2γ̇) Jacobi identity to fix

[Pαα̇, Sβ ] = 0 and the (Pαα̇, Sβ , S̄β̇) Jacobi identity to eliminate Gαα̇ and Ḡαα̇ from the r.h.s.

of {Sα, S̄α̇}. From the Jacobi identities involving two copies of (super)-translations and

Sα we fix G to commute with all (super)-translations and remove the possibility of adding
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Lorentz generators to the r.h.s. of {Qα, Sβ}. The Jacobi identities involving one (super)-

translation, G and either of the fermionic non-linear generators, and the (Qα, Sβ , S̄β̇) Ja-

cobi, ensures that G commutes with these fermionic generators. From the (G,Qα, Sβ1β2β̇)

and (Ḡ,Qα, Sβ1β2β̇) Jacobi identities we then see that [G,Gαα̇] = [Ḡ,Gαα̇] = 0 thereby

telling us that the bosonic sub-algebra must be the fully contracted one. The remaining

Jacobi identities tell us that all other commutators between non-linear generators must

vanish leaving us with only extended shift symmetries. We have checked that this conclu-

sion is unaltered if we allow for linear scalars generators beyond the one in the bosonic

sub-algebra. So for σφ = σχ = 2 there are no exceptional EFTs.

The cases with n ≥ 2 are slightly more straightforward given our results in part I. There

we showed that if the essential Goldstone is a complex scalar, there are no exceptional

EFTs with σφ ≥ 3. That is, if we include the
(

1
2 ,

1
2

)
complex generator Gαα̇ and the

(1, 1) complex generator Gβ1β2β̇1β̇2 , all non-linear generators must commute and give rise

to only extended shift symmetries. In particular, there is no complex version of the Special

Galileon, the algebra simply doesn’t exist. Taking this as a starting point, we add the

necessary superspace inverse Higgs commutators and use Jacobi identities to show that

all non-linear generators, bosonic and fermionic, must commute amongst themselves. The

calculation follows in a similar spirit to those described above and is valid for any finite n≥2.

Brief summary. Just like in part I, we have seen that exceptional EFTs are hard to

come by: there are only a small number of non-linearly realised algebras which allow for

field-dependent transformation rules on a chiral superfield. Here we summarise the main

results of this section:

• The structure of the chiral superfield’s superspace inverse Higgs tree tells us that the

soft weights of the component fields are either equal or the complex scalar’s can be

one higher. The soft weights are fixed by the level of the inverse Higgs tree and given

by (4.7).

• The most simple exceptional EFTs are non-linear sigma models characterised by

[G, Ḡ] 6= 0. Here the scalar has a σφ = 1 soft weight whereas the fermion must have

σχ = 0. Indeed, whenever we include the generator Sα, which is necessary for σχ ≥ 1,

we find [G, Ḡ] = 0.

• In addition to non-linear sigma models, the only possible exceptional EFTs have

σχ = 1 and σφ = 1 or 2. Even though an exceptional algebra exists at level n = 1/2,

we expect that there is no realisation with the corresponding properties, i.e. all EFTs

one can derive will actually realise the unique n = 1 exceptional algebra of six-

dimensional super-Poincaré. The contraction of this algebra gives rise to supersym-

metric Galileons.

• All other algebras, at any other finite level in the tree, lead to field-independent

extended shift symmetries. In particular, when both parts of the complex scalar have

equivalent inverse Higgs trees, it is impossible to realise superconformal algebras on

the single chiral superfield. We will relax the assumption of equivalent inverse Higgs
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trees in section 6. Furthermore, one cannot supersymmetrise the Special Galileon, at

least in four dimensions.

• For leading values of the soft weights our results are completely compatible with the

on-shell approach of [8].

5 Maxwell supermultiplet

Irreducibility condition I. We now investigate the case where the zeroth order gener-

ator in the tree is a spin-1/2 fermion. The essential Goldstone mode is therefore a spinor

superfield Wα. After imposing irreducibility conditions, Wα becomes a Maxwell super-

field.23,24

The Maxwell superfield is defined by two separate irreducibility conditions, whose

discussion we will split up. For the moment we only consider the chirality condition

D̄α̇Wα = 0 , (5.1)

telling us that the Maxwell superfield has the usual expansion with yαα̇ = xαα̇ − 2iθαθ̄α̇
dependent coefficients. The component fields are a spin-1/2 fermion at lowest order, a

complex scalar and 2-form at order θ, and a second fermion at order θ2.

The correct generalisation of the chirality constraint in the presence of non-linear

symmetries is the obvious covariantisation which we have discussed previously

ˆ̄Dα̇Wα = 0 , (5.2)

where the hat indicates derivatives covariantised with respect to the non-linear symmetry

algebra which one can derive from the coset construction. Similar to the chiral multiplet

discussed in section 4, this constraint is fixed by Lorentz symmetry [57] and extends to all

levels in the inverse Higgs tree, with the derivative replaced by the appropriately extended

one. To see this, note that we look for a
(

1
2 ,

1
2

)
equation built out of covariant derivatives

of Wα. The most general such equation is proportional to ˆ̄Dα̇Wα i.e.

Tαα̇ββ̇
ˆ̄Dα̇Wα = 0 . (5.3)

The relevant solutions to this equation will also satisfy ˆ̄Dα̇Wα = 0.

23There is another way to obtain an irreducible multiplet from a chiral spinor superfield φα. The inverse

Higgs tree of the chiral spinor allows for a gauge symmetry parametrised by a real superfield K = K̄:

δφα = D̄2DαK. After gauge fixing, the field content coincides with the real linear multiplet. As this

amounts to a reordering of the symmetry algebras of the previous section, we will not consider this possibility

further.
24The Maxwell multiplet is ordinarily introduced as a real superfield V = V̄ , which contains a large

amount of gauge redundancy. After fixing to Wess-Zumino gauge, leaving only the ordinary gauge freedom

of the vector, the superfield has the same content as Wα. The relation between the two is Wα = − 1
4
D̄2DαV .
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Figure 3. The non-linear generators that can be realised on the chiral spinor (left) and the subset

that is consistent with canonical propagators and all irreducibility conditions (right).

Superspace inverse Higgs tree. Starting with a chiral
(

1
2 , 0
)

fermionic generator at

zeroth order, we go up in the tree using the super-translations (Qα, Q̄α̇). As before, the

level n of a generator is half the number of steps it takes to reach zeroth order. We will

initially derive the tree’s structure by only assuming the chirality condition D̄α̇Wα = 0 and

will constrain the tree further in the next section by imposing the remaining irreducibility

conditions and the existence of canonical propagators for the component fields.

At level n = 1/2, we can add a complex scalar (0, 0) generator and a 2-form (1, 0)

generator which are related to zeroth order by Qα. Indeed, each of these irreps fit into the

superspace expansion of the chiral spinor superfield. We cannot include a
(

1
2 ,

1
2

)
generator

at this level since the barred covariant derivative is used to impose the chirality condition.

At n = 1, only a single
(

1
2 , 0
)

generator can be connected to the n = 1/2 generators

by Qα even though there are two generators at that level. Indeed, Jacobi identities impose

that a single spinor is connected to both n = 1/2 generators. Using Q̄α̇ to connect to

n = 1/2, we can include
(
0, 1

2

)
and

(
1, 1

2

)
representations with Jacobi identities ensuring

that they are also connected to zeroth order by space-time translations Pαα̇. Here the

presence of the
(
0, 1

2

)
requires the (0, 0) at n = 1/2 while the

(
1, 1

2

)
requires the (1, 0) at

n = 1/2. The extension to higher levels then follows straightforwardly in a similar fashion

to what we have seen in previous sections with all generators fitting into the superspace

expansion of the chiral spinor. We present this inverse Higgs tree on the l.h.s. of figure 3.

Irreducibility condition II. We now turn to the remaining irreducibility condition

DαWα + D̄α̇W̄
α̇ = 0 , (5.4)

which imposes another set of constraints on the different components of this multiplet.

Firstly, it reduces the complex scalar to only contain an imaginary part. Secondly, the

2-form at level θ is subject to a Bianchi identity and hence should be read as the field

strength Fα1α2 of a U(1) gauge vector Aαα̇. Finally, the fermion at level θ2 becomes the

– 24 –



J
H
E
P
1
1
(
2
0
1
9
)
0
7
7

derivative of the fermion at the lowest level. As a superspace expansion we therefore have

Wα = χα(y) + iθαD(y) + iθβFβα(y) + iθ2∂αα̇χ̄
α̇(y) , (5.5)

with a propagating fermion, the vector field strength and the real auxiliary scalar D.

The covariant generalisation of the second irreducibility condition in (5.4) is harder

to construct. We now very briefly review [57] and offer some new perspective on the

uniqueness of the constraint equation found in their paper (following the general discussion

in section 3). Consider the anti-commutation relation {Sα, S̄α̇} = 2Pαβ̇ , with no other non-

linearly realised generators. For this algebra, the naive covariantisation (placing hats on

derivatives) has only the solution Wα = 0. The correct generalisation, unique to fifth order

in the fields, is given by

D̂αWα −
1

2
D̂γWγD̂(αWβ)D̂

(αW β) + c.c. + . . . = 0 , (5.6)

which involves both the real and imaginary parts of the trace DαWα and the symmetric

part of the same tensor. As explained in section 3 (and alluded to in [57]), the origin

of this peculiar constraint equation lies in its hidden covariances. To clarify its form, we

have to extend the non-linear symmetry algebra to the next level in the inverse Higgs tree

discussed in the previous subsection, i.e. include the generators at level-1/2 and impose the

corresponding superspace inverse Higgs constraints.

Including only the (0, 0) generator a at this level, we must impose the superspace

inverse Higgs constraint

D̂αWα − ¯̂
Dα̇W̄

α̇ = 0 . (5.7)

This combination of covariant derivatives cannot appear in the irreducibility condition.

Combining this with the observation that the constraint (5.6) only has odd terms in the

superfield, the possible combinations that one can write down in terms of the real trace

and the symmetric part25 are very limited. Lorentz invariance dictates that all such terms

are proportional to the real trace of the covariant derivative. This implies that imposing

D̂αWα + c.c. = 0 , (5.8)

with respect to the extended algebra (including the (0, 0) generator) is the correct covariant

irreducibility condition. As a non-trivial check of this, we have calculated that the following

expression coincides with the constraints of [57]

(D̂αWα + ˆ̄Dα̇W̄
α̇)(1 + D̂(αWβ)D̂

(αW β) + c.c.) = 0 , (5.9)

where the hats now indicate derivatives covariantised with respect to the extended algebra

including a. We therefore conclude that the complicated equation of [57] has its origin in

a simple constraint equation of a larger symmetry algebra.

25One might (correctly) expect that extending the algebra to also include the representation (1, 0) makes

this even easier, but we will find in the next subsection that this is not always possible.
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Canonical propagators. We now consider the implications on the superspace inverse

tree of the second irreducibility condition (5.4) and the presence of canonical propagators

in any resulting realisation. The combination of both of these requirements implies that the

complex scalar generator at n = 1/2 must be omitted (its real part due to the irreducibility

condition and its imaginary part to ensure that this scalar remains auxiliary). We must

therefore also omit any generators which relied on its presence e.g. the
(

1
2 , 0
)

and
(
0, 1

2

)
at n = 1.

Continuing to higher levels we again find that only a single irrep is allowed at each level

which is the one with the maximum possible spin with the spin fixed by the level n. For the

fermion this is what we have already seen, but it also holds for the vector as discussed in

part I [26]: the only generators which do not correspond to gauge symmetries but leave the

Maxwell kinetic term invariant have one pair of anti-symmetric indices with the rest fully

symmetric and traceless. This corresponds to e.g. a
(

3
2 ,

1
2

)
hook tensor at n = 3/2 which

generates a shift on the field strength linear in the space-time coordinates. Therefore, it

must act on the vector with a transformation which is quadratic in the coordinates. The

full tree has again reduced to two different space-time trees, one for the fermion and one

for the vector, connected by supersymmetry transformations. The vector is represented in

terms of its field strength.

In the following we again denote the fermionic generators by S and the bosonic ones

by G. The number of indices indicate where they appear in the tree. In conclusion, the

superspace inverse Higgs tree is determined by the following (anti)-commutators

[Qγ , Gα1...αn+3/2α̇1...α̇n−1/2
] = −iεγαn+3/2

Sα1...αn+1/2α̇1...α̇n−1/2
+ . . . ,

{Q̄γ̇ , Sα1...αn+1α̇1...α̇n} = −εγ̇α̇nGα1...αn+1α̇1...α̇n−1 + . . . ,

[Pγγ̇ , Gα1...αn+3/2α̇1...α̇n−1/2
] =

i

2
εγαn+3/2

εγ̇α̇n−1/2
Gα1...αn+1/2α̇1...α̇n−3/2

+ . . . ,

[Pγγ̇ , Sα1...αn+1α̇1...α̇n ] =
i

2
εγαn+1εγ̇α̇nSα1...αnα̇1...α̇n−1 + . . . , (5.10)

with the ellipses indicating linearly realised generators. We remind the reader that the

bosonic generators only appear at half-integer levels whereas the fermionic ones appear at

integer levels. This explains the otherwise peculiar labelling of indices in these equations.

This truncated version of the tree is given on the r.h.s. of figure 3. Note that the gauge

symmetries of the vector Aαα̇ are not included in the tree. This is because the Maxwell su-

perfield contains the invariant field strength in its expansion rather than the gauge potential

itself. Indeed, this is why we consider the gauge multiplet in the guise of the constrained

chiral superfield Wα rather than the vector superfield. Crucially, this allows us to restrict

to a finite number of generators thereby making the tree a useful construct.

Relationship between soft weights. We are interested in exceptional EFTs for the

Maxwell superfield which have special IR behaviour in soft amplitudes. The superspace

inverse Higgs tree fixes the relationship between the soft weights of the fermionic and

bosonic component fields which we denote respectively as σχ and σA. These are again very

easy to read off from figure 3. As we start with a fermion at lowest order, in this case the
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soft weights are either equal or the fermion is one higher:

σχ = σA + 1 = n+ 1 for integer n, (5.11)

σχ = σA = n+
1

2
for half-integer n , (5.12)

which is equivalent to the relationships derived via Ward identities and soft amplitudes

in [8]. We remind the reader that these results are valid to all orders in perturbation

theory, not just at tree level, given that we have not assumed anything about the form of

the amplitudes; our analysis is based purely on symmetries.

Exceptional EFTs. With the superspace inverse Higgs tree at hand, we can now classify

the possible exceptional algebras. We will separate our discussion into three sections: the

lowest level case n = 0 with no superspace inverse Higgs constraints, n = 1/2, and finally

any finite n ≥ 1. As it turns out, the Maxwell superfield allows for only one exceptional

algebra: the non-linear realisation of N = 2 supersymmetry by a VA fermion coupled to a

BI vector described by Bagger and Galperin in [57].

n = 0. When n = 0, the only non-linearly realised generator is the spinor Sα and

therefore the Ansatz for the commutators is very simple. Jacobi identities tell us that the

only non-trivial commutator involving non-linear generators is

{Sα, S̄α̇} = sPαα̇ , (5.13)

which for s = 2 leads toN = 2 supersymmetry when combined with the other commutators.

This is an exceptional algebra and is non-linearly realised by the exceptional EFT of a VA

fermion coupled to a BI vector. As is now well-known [8, 25], the BI vector has a vanishing

soft weight and can therefore be considered as a mater field required to maintain linear

SUSY. This is in comparison to the role of the fermion in P (X) theories of the chiral

superfield discussed in section 4. The coset construction for this case was worked out

in [57]. The s = 0 case is simply a contraction of the N = 2 algebra and is non-linearly

realised by a shift symmetric fermion coupled to a gauge vector in a linearly supersymmetric

manner. The transformation rules here are now field-independent.

n = 1/2. At level n = 1/2, we find the real scalar generator a and the 2-form Gα1α2 .

The real scalar generator is projected out by the requirement of canonical propagators, but

we will relax this assumption for a moment and include this automorphism generator. If

we only include a and omit Gα1α2 , Jacobi identities tell us that the only extension of the

N = 2 algebra has

[Qα, a] = Sα, [Sα, a] = Qα , (5.14)

whereas if we include Gα1α2 as well, no exceptional algebras exist.26 That is, in the presence

of Gα1α2 , the only non-trivial commutators are those required by superspace inverse Higgs

26At the purely bosonic level there is a consistent exceptional algebra where the 2-form generator com-

mutes with itself, into itself, just like the Lorentz generators. However, this algebra is not compatible with

the Bianchi identity for the field strength and so cannot be realised on the gauge vector. One can see

this by working out the transformation rules using the coset construction, or by reintroducing the gauge

symmetries in the algebra computation as an infinite set of generators, realised on an essential vector, then

checking closure of the algebra. See also [25].
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constraints i.e.

{Qα, a} = Sα, [Qα, Gβ1β2 ] = εαβ1Sβ2 . (5.15)

Here the field strength transforms with a constant shift under the 2-form parameter and

therefore the vector has a Galileon type symmetry: a shift linear the space-time coordinates

without field dependence. Interestingly, unlike for the scalar Galileon, there are no self-

interactions for this Galileon gauge vector which do not introduce additional degrees of

freedom [65].

n ≥ 1. We will now proceed further in the inverse Higgs tree, to level n = 1 and

beyond. We make use of the superspace inverse Higgs relations (5.10) and write down a

general Ansatz for the remaining (anti)-commutators. Again the answer is very long and

complicated so to keep things readable we will outline how we did the calculation.

As we have done for the chiral superfield, we will start with just the bosonic sub-

algebra which is spanned by the Poincaré generators and the non-linear generators

Gα1...αn+3/2α̇1...α̇n−1/2
. For n = 1 we have already seen that the bosonic sub-algebra must be

trivial but there are possible exceptional structures at higher levels. In [25] it was shown

that any vector symmetry of the form δAα1α̇ = bα1
α2xα2α̇ cannot be augmented with

field-dependent pieces in the presence of the U(1) gauge symmetry. Since this symmetry

therefore only generates a constant shift on the field strength we will take [Pγγ̇ , Gβ1β2 ] = 0

as a starting point. Jacobi identities then tell us that the commutators between transla-

tions and any non-linear bosonic generator are fixed by the inverse Higgs relations i.e. the

third equation in (5.10) with ellipses equal to zero, up to a basis changes.

Following the general recipe outlined in part I, we now inspect the Jacobi identities in-

volving one translation and two bosonic non-linear generators: (P,Gn, Ḡm) and (P,Gn, Gm)

where again m,n are half-integer. The former implies that the commutator [Gm, Ḡn] = 0

for any m and n while the latter reduces the commutators schematically to

[Gzb , Gzb ] = cM, [Gzb , Gzb−1] = cP, (5.16)

where zb indicates the finite level at which the bosonic part of the tree terminates, M

and P refer to Lorentz generators and space-time translations respectively, and c is an

unconstrained coefficient. These structures are very familiar from part I [26], for example

the DBI algebra has precisely this structure. Note that Jacobi identities also allow for the

2-form generator Gαα̇ to appear on the r.h.s. of the first of these commutators, however its

presence would spoil the inverse Higgs constraints since they would no longer be algebraic

in the relevant inessential Goldstones. We encountered a similar scenario in section 4.

We now consider the Jacobi identity involving three non-linear generators (Gzb , Gzb−1, Ḡn)

which fixes c = 0 since for n > 1 there is always at least one bosonic generator which does

not commute with translations due to the inverse Higgs relations. The only non-trivial

commutators involving non-linear generators in the bosonic sub-algebra are therefore those

required by inverse Higgs.

We now include the fermionic generators with the superspace inverse Higgs rela-

tions (5.10). It is easy to see that the Jacobi identities involving two (super)-translations
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and one non-linear generator ensure that the ellipses in these commutators vanish i.e. we

cannot include linearly realised generators on the r.h.s. We also see that other commuta-

tors between (super)-translations and fermionic generators, which are not required by the

superspace inverse Higgs constraints, i.e. {Q,Sn} must also vanish.

The only other commutators we need to fix involve two non-linear generators with at

least one of these being fermionic. There is a natural way to proceed through the remaining

Jacobi identities, making use of the result that the bosonic sub-algebra is trivial. We begin,

for example, with the (Q̄,Gn, Sm) Jacobi identity which contains a single non-trivial term

given by

{Q̄α̇, [Gα1...αn+3/2α̇1...α̇n−1/2
, Sβ1...βm+1β̇1...β̇m

]} = 0 , (5.17)

which is very constraining of the r.h.s. of [Gn, Sm]. Proceeding in a similar fashion with

the other Jacobi identities involving one supertranslation we find that schematically we

can only have

{Szf , S̄zf } = aP, {Szf , Szf } = bM, {Szf , Szf−1} = bP , (5.18)

where zf is the finite level at which the fermionic part of the tree terminates. Again we

have also imposed the extra condition that all inessential Goldstones appear algebraically

in the relevant covariant derivatives. Now we see that the Poincaré factor and the fermionic

generators form a sub-algebra. Therefore, we can use our results of part I [26] where we

showed that the only exceptional algebra was that of the VA theory, i.e. only the zeroth

order generator can form an exceptional algebra. This requires the tree to terminate at

this level. Indeed, in the presence of any other fermionic generators no exceptional algebras

are possible. Since in this part we are concentrating on n ≥ 1 where we have at least two

non-linear fermionic generators, we must now set a = b = 0.

We have therefore proven, to arbitrarily high finite level in the inverse Higgs tree, that

the only exceptional linearly supersymmetric EFT that can be realised on a single Maxwell

superfield is the VA/BI theory which non-linearly realises N = 2 SUSY [57] with σχ = 1,

σA = 0 soft weights.

Brief summary. Let us very briefly summarise the main results for the Maxwell super-

field:

• The superspace inverse Higgs tree allows us to read off the soft weights of the fermion

and gauge vector of the Maxwell superfield. The results are given in equations (5.11)

and (5.12).

• The only exceptional EFT in this case corresponds to a non-linear realisation of

N = 2 SUSY and is realised by a VA fermion coupled to a BI vector. The soft

weights are σχ = 1 and σA = 0.

• All other algebras lead to field-independent non-linear symmetries i.e. extended

shift symmetries. We have shown this to all finite levels in the superspace inverse

Higgs tree.
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• The covariant irreducibility constraints that have been imposed on the Maxwell su-

permultiplet can be understood via superspace inverse Higgs constraints in terms

of algebras which live at a higher level in the tree. The constraints then take a

simple form.

6 Real linear supermultiplet

Irreducibility conditions. We now investigate the case where the zeroth order gen-

erator is a real scalar, having considered the complex scalar and spin-1/2 possibilities in

the previous two sections. This choice naturally picks out the real linear superfield L as

the essential Goldstone mode with L defined by the irreducibility constraints L = L̄ and

D2L = D̄2L = 0. The real linear supermultiplet has a real scalar a as its lowest component

and a fermion χ at order θ. To complete the supermultiplet, a second bosonic degree of

freedom Aαα̇ appears at order θθ̄ and satisfies the condition

∂αα̇A
αα̇ = 0 . (6.1)

The full expansion reads

L = a(x) + θχ(x) + θ̄χ̄(x)− θαθ̄α̇Aαα̇(x)− i

2
θ2θ̄α̇∂

αα̇χα(x)

+
i

2
θ̄2θα∂αα̇χ̄

α̇(x) +
1

2
θ2θ̄2�a(x) . (6.2)

The condition (6.1) can be interpreted as the Bianchi identity of a 3-form field strength

H = dB = ?A. This component therefore describes a 2-form gauge potential. It is

sometimes possible (depending on the non-linear symmetries of the 2-form) to dualise the

2-form on-shell into a pseudoscalar, after which one obtains the same propagating degrees

of freedom as the chiral supermultiplet: two scalars and one spin-1/2 fermion. Indeed,

the dualisation can be performed on the entire supermultiplet at once, transforming a

real linear superfield into a chiral superfield. This dualisation, however, does not imply

equivalence between the real linear and chiral superfields. In particular, the real linear

superfield cannot break the U(1) R-symmetry of N = 1 supersymmetry. This means that

the chiral supermultiplet cannot be dualised when the R-symmetry is broken spontaneously.

We will keep our discussion of the real linear inverse Higgs tree completely general.

However, for exceptional algebras we will focus on those cases where the real linear mul-

tiplet describes two scalar degrees of freedom. As we will show, this amounts to centrally

extending the non-linear symmetry algebra. Our main interest in the real linear multiplet

is that it naturally describes algebras where the scalar degrees of freedom have inequivalent

space-time inverse Higgs trees which we didn’t allow for in section 4. Examples of such

systems are coupled Galileon-axions and, as we will show, the superconformal algebra.

Examples of the coset construction using the real linear multiplet, including discussions

of covariant constraints, can be found in [63, 66].
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Superspace inverse Higgs tree. At zeroth order in the tree we have the real (0, 0)

generator D. At level-1/2 we can add spin-1/2 Weyl fermions since at this level we can use

D̂αΦ = 0 and ˆ̄Dα̇Φ = 0 to eliminate the level-1/2 inessential Goldstones. However, due

to the reality of the essential we can only include one of these which we denote Sα. The

relevant inverse Higgs commutator is

{Qα, Sβ} = −εαβD (6.3)

and the effect of this generator is to shift the superfield linearly in θ i.e. it generates a

constant shift on χ.

Now moving onto level-1, we can use the space-time derivative of the essential to

eliminate an inessential at this level and the SUSY covariant derivative ˆ̄Dα̇ of the level-

1/2 inessential. We cannot use the unbarred covariant derivative due to the irreducibility

condition of the essential superfield. Another way of seeing this is that there is no θ2 term

in the real linear superfield expansion. It then turns out that we can add two different

real
(

1
2 ,

1
2

)
vector generators at this level which we denote as Kαα̇ and K̃αα̇. They are

connected to the lower levels by

[Pαα̇,Kββ̇ ] = −iεαβεα̇β̇D , [Q̄α̇,Kββ̇ ] = iεα̇β̇Sβ , [Q̄α̇, K̃ββ̇ ] = εα̇β̇Sβ (6.4)

where the possibility of adding linear generators is implied as always. Also, any other com-

mutators between the vectors and supertranslations can give rise to linear generators only.

The first of these vectors Kαα̇ shifts the superfield linearly in the space-time coordinates

which fits into the Taylor expansion of the lowest scalar component field, while the other

vector K̃αα̇ generates a constant shift symmetry on the constrained vector at θθ̄ in the

superspace expansion. Of course we can combine these two into a single complex vector

generator where the real and imaginary parts have different connections to lower levels e.g.

only the real part is connected to D by Pαα̇.

We now move to level-3/2 where the allowed generators must fit into the representations

of the SUSY covariant derivatives of the complex vector. We find that we can add a single

spin-3/2 generator and a single spin-1/2 generator. Both need to be connected to Sα by

space-time translations Pαα̇ and the full complex vector by Q̄α̇ or Qα. If we include this

level in the tree we therefore need both the real and imaginary parts of the complex vector at

level-1. For example, for the spin-3/2 generator ψα1α2α̇ the inverse Higgs commutators are

[Pαα̇, ψβ1β2β̇ ] = iεαβ1εα̇β̇Sβ2 , [Qα, ψβ1β2β̇ ] = εαβ1(Kβ2β̇
+ iK̃β2β̇

). (6.5)

Of course if we truncate the tree at level-1 we can include only the real or only the imaginary

part of the complex vector. This pattern extends to higher levels: if we truncate the tree at

a half-integer level where the highest level generators are fermionic, all bosonic generators

other than the zeroth order must be complex with the real parts connected to the zeroth

order generator by translations, whereas if we truncate at an integer level, the generators

at the final level can also be real. This tree is presented on the l.h.s. of figure 4 up to level-2

where in comparison to the chiral case we find (0, 0) and (1, 1) generators as dictated by

the Taylor expansion of the lowest component field, and a (1, 0) generator which lives in
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(0, 0)

(
1
2
, 0

)

(
1
2
, 1
2

)

(
0, 1

2

)
⊕

(
1, 1

2

)

(0, 0) ⊕ (1, 1) ⊕ (1, 0)

(0, 0)

(
1
2
, 0

)

(
1
2
, 1
2

)

(
1, 1

2

)

(1, 1)

Figure 4. The non-linear generators that can be realised on a real linear supermultiplet (left)

and the subset that is consistent with the presence of physical theories with canonical propagators

(right). In general, the bosonic generators at non-zero levels are complex but with only the real

part connected to the zeroth level by space-time translations.

the Taylor expansion of the constrained vector at level θθ̄. It is connected to the imaginary

part of the complex vector at level-1 whereas the other two generators are connected to

the real part.

Canonical propagators. As we have seen previously, we can constrain the form of the

superspace inverse Higgs tree by demanding a canonical kinetic term Lfree =
∫
d4θL2.

Written out in component fields, this Lagrangian includes a Weyl kinetic term for the

spinor χα, the Klein-Gordon kinetic term for the real scalar φ, and H2 for the 2-form

which is dual to the constrained vector.

As we have seen previously, we should omit the
(

1
2 , 0
)

at level-3/2 and the (0, 0) at

level-2. In addition, we should eliminate the (1, 0) at level-2 to be compatible with the

2-form field strength. Up to level-2, the tree has now reduced to the one on the r.h.s. of

figure 4. Note that it differs from the inverse Higgs tree of the chiral superfield in only

one subtle way: the chiral case has a central extension extension {Qα, Sβ} = . . . + iεαβZ,

with Z and D combining into a complex scalar generator. This simultaneously implies that

[Pαα̇, K̃ββ̇ ] = . . .+ iεαβεα̇β̇Z due to Jacobi identities. In the end, the most general inverse

Higgs tree for the real linear multiplet has

{Qγ , Sα1...αN α̇1...α̇N−1} = −εγα1Gα2...αN α̇1...α̇N−1 + . . . ,

[Q̄γ̇ , Gα1...αN α̇1...α̇N ] = −iεγ̇α̇1Sα1...αN α̇2...α̇N + . . . ,

[Pγγ̇ , Sα1...αN α̇1...α̇N−1 ] =
1

2
iεγα1εγ̇α̇1Sα2...αN α̇2...α̇N−1 + . . . ,

[Pγγ̇ , Gα1...αN α̇1...α̇N ] =
1

2
iεγα1εγ̇α̇1Gα2...αN α̇2...α̇N + . . . , (6.6)

with the ellipses indicating linearly realised generators. In general, only the scalar generator

at n = 0 is real.

Note that the inverse Higgs tree does not include the gauge symmetries associated

to the Hodge dual 2-form either. This indicates that the 2-form gauge symmetries will
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never combine with the other non-linear symmetries in a non-trivial way. After imposing

irreducibility conditions, again the tree only includes generators which correspond to global

symmetries for the 2-form.

Exceptional EFTs. In contrast to the previous two cases, here we will not perform a

general analysis. Rather we will study certain cases of interest to illustrate that our general

techniques can indeed be applied to a real linear superfield. Below we consider two cases:

i) tree truncated at level n = 1 with a real vector generator and ii) tree truncated at level

n = 2 with the complex vector generator at n = 1 (as required by Jacobi identities) and

a real symmetric, traceless rank-2 generator (in addition to the fermionic generators in

between). In the following, we only consider systems which can be dualised to the chiral

superfield (or rather, those cases where the algebra does not rule out the dualisation). We

leave an exhaustive classification that relaxes this assumption to future work.

n = 1. We begin at level n = 1 where the non-linear generators are (D,Sα,Kαα̇), with

K Hermitian.27 In addition to generators that define the Lorentz representation of each

generator, the most general form of the commutators is

{Qα, Q̄α̇} = 2Pαα̇, {Sα, S̄α̇} = sPαα̇ + a1Kαα̇, {Sα, Sβ} = a2Mαβ

{Qα, Sβ} = −εαβD + a3Mαβ + iεαβM
′, [Qα,Kββ̇ ] = iεαβS̄β̇ + a4εαβQ̄β̇ ,

[Pαα̇, Sβ ] = a5εαβQ̄α̇, [Pαα̇, D] = ia6Pαα̇, [Qα, D] = a7Qα,

[Kαα̇,Kββ̇ ] = a8εαβM̄α̇β̇ − ā8εα̇β̇Mαβ + iεαβεα̇β̇M
′′,

[Pαα̇,Kββ̇ ] = −iεαβεα̇β̇D + iεαβεα̇β̇M
(3) + a9εαβM̄α̇β̇ − ā9εα̇β̇Mαβ ,

[D,Sα] = a10Qα + a11Sα, [D,Kαα̇] = ia12Pαα̇ + ia13Kαα̇,

[Sα,Kββ̇ ] = a14εαβQ̄β̇ + a15εαβS̄β̇ . (6.7)

Note that we allow for the most general linear internal symmetries by introducing the scalar

generators M ′, M ′′, and M (3) and again we have set {Q̄α̇, Sα} = 0 without loss of generality

by a basis change. Now Jacobi identities allow for only the M ′ linear scalar to exist and

reduce the number of free parameters to two which we denote as s and m. We have

{Qα, Q̄α̇} = 2Pαα̇, {Sα, S̄α̇} = sPαα̇ − 2mKαα̇,

{Qα, Sβ} = −εαβD +mMαβ + iεαβM
′, [Qα,Kββ̇ ] = iεαβS̄β̇

[Pαα̇, Sβ ] = −imεαβQ̄α̇, [Pαα̇, D] = imPαα̇, [Qα, D] = i
m

2
Qα,

[Kαα̇,Kββ̇ ] = i
s

2
εαβM̄α̇β̇ + i

s

2
εα̇β̇Mαβ , [Sα,Kββ̇ ] = −i s

2
εαβQ̄β̇ ,

[Pαα̇,Kββ̇ ] = −iεαβεα̇β̇D + i
m

2
εαβM̄α̇β̇ + i

m

2
εα̇β̇Mαβ ,

[D,Sα] = i
m

2
Sα, [D,Kαα̇] = −isPαα̇ + imKαα̇

[M ′, Qα] = −3m

2
Qα, [M ′, Sα] =

3m

2
Sα. (6.8)

27After dualising to the chiral superfield, this is an example of an algebra where the two parts of the

complex scalar zeroth order generator have different inverse Higgs trees.
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Let us now discuss these algebras in terms of s and m.

First of all, when m 6= 0 this is the AdS5 superalgebra. In this case the parameter s

turns out to be unphysical. Indeed we can make a simple change of basis from (K,P ) to

(K̂, P ) where K̂αβ̇ = Kαβ̇−
s

2mPαβ̇ to set s = 0. When s 6= 0 this basis is usually referred to

as the “AdS” basis while with s = 0 we have the “conformal basis” [67]. Therefore, the only

actual parameter is the AdS radius R = 1/m. In terms of the bosonic sector these two bases

were considered in [15] where it was shown that the two different realisations in terms of a

single scalar degree of freedom (the vector associated to special conformal transformations

is removed by an inverse Higgs constraint) are equivalent EFTs, as expected. The scalar in

these theories has a vanishing soft weight [16–18]. As we explained in the introduction, this

is compatible with our superspace inverse Higgs tree since in this case once we canonically

normalise the scalar, all transformation rules become field-dependent.

The coset construction for this symmetry breaking pattern i.e. the AdS5 superalge-

bra broken down the four-dimensional super-Poincaré algebra was studied in [58, 68] (see

also [69] for a curved space generalization). The authors constructed the leading action for

a supersymmetric 3-brane in AdS5, utilising a real linear superfield L. Their Lagrangian

transforms as a total derivative under a subset of the non-linear symmetries. After dualis-

ing the 2-form in L to a scalar, their Lagrangian realises an additional shift symmetry that

is not visible in the inverse Higgs tree. This allows for a different starting point where the

essential generator is a complex scalar, but only its real part realises non-linear symmetries

in addition to the constant shift symmetries. This is because there is only a real vector

generator at level-1 and therefore only a single scalar degree of freedom can support addi-

tional transformations. This reflects the fact that the real linear superfield can be dualised

to a chiral superfield. The bosonic sector is then a dilaton (which realises the conformal

symmetries) coupled to an axion.

The flat limit of the bulk space-time corresponds to taking m = 0. In this case

we cannot perform the aforementioned basis change and hence the second parameter s

distinguishes between two different algebras. The case s = 2 is the flat limit of the AdS

superalgebra and hence corresponds to the super-Poincaré algebra in D = 5. However,

in this limit one often has symmetry enhancement to D = 6 super-Poincaré rather than

D = 5 thanks to the dualised 2-form field which obtains a field-dependent transformation,

see [56, 63]. This is related to the fact that no supersymmetric scalar 3-brane exists in

D = 5 [70, 71]. The resulting EFT is equivalent to the scalar DBI-VA system we discussed

in section 4.

Finally, we have the m = s = 0 case which yields the D = 5 supersymmetric Galileon

algebra. The authors of [9] conjectured that this algebra has non-trivial quartic and quintic

Wess-Zumino terms (in addition to the interaction constructed in [64]), which also realise

a second shift symmetry. It is clear from our analysis that this Galileon/axion (the axion

comes from dualising the 2-form) system is naturally described by a real linear superfield.

We see from the algebra that when s = m = 0 we have {Sα, S̄α̇} = 0 and therefore the

fermion is no longer of the VA type but becomes shift symmetric.
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n = 2. We now consider level n = 2 where the non-linear generators are

(D,Sα,Kαα̇, K̃αα̇, ψα1α2α̇, Gα1α2α̇1α̇2). As we saw above, in the presence of ψ we need to

include both K and K̃ however we keep G real. Rather than performing a full analysis, we

ask if the lowest component of the superfield can be a Special Galileon [36] with a σφ = 3

soft weight and a field-dependent transformation rule. We find, thanks to our results in

part I [26], that this is not possible. Indeed, since we are forced to include the full complex

vector, after dualisation both scalar degrees of freedom must be Galileons i.e. both have a

connection to a vector at level n = 1 by space-time translations. This implies that both

have a transformation rule which starts out linear in the space-time coordinates. Now

we are also asking for the lowest component to be a Special Galileon. However, we have

already showed in part I that we cannot couple a Special Galileon to a Galileon: there is

no corresponding symmetry breaking pattern. Now since the bosonic sector is always a

sub-algebra this conclusion is robust against adding the relevant fermionic generators. We

therefore conclude that the lowest component of the real linear superfield cannot be of the

Special Galileon form.28 The only remaining possibility is that a Special Galileon exists,

but that this algebra is not compatible with dualisation (i.e. the central extension). This

would imply that the 2-form forms an integral part of the Goldstone EFT. We leave the

classification of such possibilities to future work.

Brief summary. Again let us provide a brief summary of our main results with regards

to the real linear superfield:

• The superspace inverse Higgs tree becomes particularly simple after imposing both

irreducibility conditions and the existence of canonical propagators, and differs from

the chiral case only by having a real (instead of a complex) scalar generator at the

lowest level. If we truncate the tree at a half-integer level, all bosons other than

the zeroth order must be complex. However, if we truncate at an integer level, the

highest generator can also be real. Moreover, the gauge symmetry of the 2-form

gauge potential sitting inside the constrained vector decouple from the tree.

• We have not performed an exhaustive classification, but demonstrated that the alge-

bras up to and including n = 1 correspond to super-AdS in D = 5 and super-Poincaré

in D = 6. We can perform a contraction of the latter leading to a supersymmetric

Galileon algebra.

• At n = 2 we have shown that the lowest order scalar cannot be a Special Galileon

with a field-dependent transformation rule if we dualise the 2-form. Indeed, then the

second scalar would be a Galileon which cannot be coupled to a Special Galileon [26].

The only way out, which is an interesting avenue for future work, is to not dualise

the 2-form.

28Note that we can couple a Special Galileon to an axion but we see from the tree that this theory cannot

be supersymmetrised since the presence of ψ demands that the axion becomes a Galileon.
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7 Conclusions

The IR behaviour of EFTs is strongly restricted by any non-linearly realised symmetries

they might have. This is manifest in soft scattering amplitudes and has sparked the fruitful

soft bootstrap program, aiming to build theories from the bottom up using on-shell soft

data. This leads to a neat classification of EFTs which is interesting from both formal and

phenomenological perspectives.

In our previous paper [26] we have outlined a complementary approach to classifying

EFTs with special soft behaviours based on a Lie-algebraic analysis with the resulting EFTs

corresponding to Poincaré invariant QFTs of Goldstone modes. In that work we classified

all possible exceptional EFTs for multi-scalar or multi-spin-1/2 fermion Goldstones. From

the point of view of algebras and transformation rules, the exceptional EFTs non-linearly

realise algebras with non-vanishing commutators between non-linear generators. These,

in turn, lead to field-dependent transformation rules for the Goldstones. In terms of soft

amplitudes, the special soft behaviour of these EFTs is thanks to cancellations between

contact and pole Feynman diagrams. These exceptional EFTs stand out in the space of

all QFTs which is why we are motivated to classify them. In the current paper, we have

extended this classification to theories with a linearly realised N = 1 SUSY.

In our algebraic approach, a key role is played by the translations of the linearly realised

(super-)Poincare algebra. Commutators between non-linear generators and translations

dictate whether generators give rise to internal symmetries with essential Goldstone modes

(i.e. massless excitations in the IR) or to space-time or superspace symmetries. For the

latter, a number of the Goldstone modes can be inessential, i.e. can attain a mass and

therefore be integrated out of the path integral or eliminated by inverse Higgs constraints.

We have extended these constraints to superspace, enabling one to reduce the number of

Goldstone modes in SUSY theories in a covariant manner.

More specifically, we have shown how the triplet of translations with {Q, Q̄} = P can

be used to realise larger symmetry algebras without increasing the number of Goldstone

modes. Starting from a specific supermultiplet, the non-linearly realised symmetries can

be organised in a superspace inverse Higgs tree. This tree is fully determined by the

commutators between non-linear generators and the triplet of translations. Jacobi identities

restrict the spin of generators in these trees to correspond exactly to the (x, θ, θ̄) expansion

of the original supermultiplet. This provides both a conceptually clear and calculationally

simple perspective on how to build the most general algebras that can be realised. We find

it useful to think of the trees as the algebraic cousin to the on-shell soft data one provides

for soft bootstraps since it encodes the details of the massless states, the linearly realised

symmetries and soft theorems. As an illustration of this last point, the trees allow us to

read off the soft weights of the component fields of an essential Goldstone supermultiplet.

An important ingredient in order to achieve a full classification entails a trimming down

of the superspace inverse Higgs trees to only those generators that give rise to symmetry

transformations compatible with canonical propagators for the component fields. In the

absence of a dilaton, this is a necessary requirement for the existence of a sensible EFT

with a standard perturbation theory. This requirement imposes stronger constraints on the
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algebras than one might originally expect and in most cases reduces the trees to contain

only a single generator at each level. With these highly constrained trees at hand, one can

look for exceptional algebras and EFTs by imposing the remaining Jacobi identities.

We have considered the cases of a single chiral, Maxwell or real linear supermultiplet

to illustrate the power of our techniques in sections 4, 5 and 6. The exceptional possibilities

in the chiral case are limited to SUSY non-linear sigma-models, the six-dimensional super-

Poincaré algebra as well as an intermediate case which we expect doesn’t actually have

any realisations. This super-Poincaré algebra is non-linearly realised by the scalar DBI-VA

theory which couples a scalar to a fermion. In the Maxwell case, the only exceptional

algebra is that of N = 2 four-dimensional super-Poincaré which is non-linearly realised by

the BI-VA system and couples a gauge vector to a fermion. Remarkably, we found that

there is no exceptional algebra that includes a generator that shifts the 2-form field strength

of the vector component field. In contrast to all other components, the Maxwell vector can

therefore not be interpreted as the Goldstone mode of some symmetry breaking pattern, in

line with the conclusions of [8, 25]. In both of these cases our analysis is exhaustive under

the assumption that in the chiral case each component of the complex scalar has the same

inverse Higgs tree.

In the real linear case, we have not performed an exhaustive classification but rather

studied cases of interest. We have shown that at level n = 1 in the real linear’s inverse

Higgs tree, the algebra is the AdS5 superalgebra from which we can make two distinct

contractions such that we have three different algebras. The bosonic sectors in these the-

ories are described by a conformal Galileon (i.e. the dilaton with higher order corrections)

coupled to an axion, multi-DBI or a Galileon-axion system. At level n = 2 we have shown

that the real scalar at lowest order in the superfield cannot take the Special Galileon form

if we dualise the 2-form. Indeed, the allowed algebra can only give rise to field-independent

transformation rules at this level meaning that we cannot supersymmetrise the Special

Galileon. We found the same conclusion in section 4 for the chiral superfield where the

bosonic sector of the theory cannot take the required form of a complex Special Galileon.

All-in-all we have seen both in part I and this paper that exceptional EFTs are rare and

only appear when the soft weights of the Goldstone modes are relatively small. This further

emphasises that they are very special EFTs which certainly deserve further attention.

Because we only make use of algebraic methods and the theory of non-linear realisations,

our statements are valid without making assumptions on the structure of interactions in

the theory and for an arbitrary finite number of generators. We anticipate that reaching

the same conclusions would be very difficult using amplitude methods.

Our analysis could be extended in a number of directions by altering the linearly

realised symmetries. For example, we could consider spontaneous breaking of Lorentz

boosts as relevant for condensed matter physics and cosmology. Here the linearly realised

symmetries would correspond to space-time translations and rotations. Systems of this

type have been considered in [28, 72]. We could also allow for extended SUSY. In that case

at least one exceptional EFT is known which combines the full DBI (with a scalar and a

gauge vector) with a VA fermion. A simple generalisation of our analysis would allow one

to confirm if this is the only possibility.
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A Coset construction for supersymmetric Galileons

As a concrete example of the general arguments we presented in section 3, we now present

the coset construction for supersymmetric Galileons. The bosonic sub-algebra is non-

linearly realised by bi-Galileons with the coset construction worked out in [54]. To this

bosonic sub-algebra we add the appropriate fermionic generators for supersymmetrisation.

All in all this algebra lives at level n = 1 in the chiral superfield’s superspace inverse

Higgs tree and so the non-linear generators are G, Gαα̇ and Sα. The generators G and Sα
generate constant shift symmetries on the complex scalar and spin-1/2 fermion component

fields respectively, while Gαα̇ generates the Galileon symmetry on the complex scalar which

is linear in the space-time coordinates. This is not an exceptional algebra but highlights the

important parts of the SUSY coset construction. We remind the reader that an interesting

Wess-Zumino term for this algebra appears in [64] while the soft amplitudes were discussed

in [8, 9]. For an interpretation of the algebra as an Inönu-Wigner contraction, see [60].

The only non-trivial commutators of the algebra are those required by the superspace

inverse Higgs constraints. We have, in addition to the linearly realised super-Poincaré

algebra and the commutators which define the Lorentz representation of the non-linear

generators,

{Qµ, Sν} = 2εµνG, [Pµµ̇, Gνν̇ ] = iεµνεµ̇ν̇G, [Q̄µ̇, Gνν̇ ] = iεµ̇ν̇Sν . (A.1)

Introducing a Goldstone superfield for each non-linear generator, and including super-

translations as usual, we parametrise the coset element for this symmetry breaking pat-

tern as

Ω = eUeV , (A.2)

where

U =
i

2
xµµ̇Pµµ̇ + iθµQµ + iθ̄µ̇Q̄

µ̇,

V = iΦG+ iΦ̄Ḡ+ iΨµSµ + iΨ̄µ̇S̄
µ̇ − i

2
Λµµ̇Gµµ̇ −

i

2
Λ̄µµ̇Ḡµµ̇ . (A.3)

Here the Greek letters from the middle of the alphabet (µ, ν, etc.) indicate space-time

spinor indices (as opposed to the tangent space indices to be introduced in a moment).

The Maurer-Cartan form from which we can derive the superspace inverse Higgs con-

straints and the building blocks of invariant Lagrangians is given by

ω = −iΩ−1dΩ = −ie−V (e−UdeU )eV − ie−V deV . (A.4)
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We begin by computing e−UdeU which, by using the SUSY algebra {Qα, Q̄α̇} = 2Pαα̇, is

given by

e−UdeU =
i

2
Pµµ̇dx

µµ̇ + idθµQµ + idθ̄µ̇Q̄
µ̇ − Pµµ̇(dθµθ̄µ̇ + dθ̄µ̇θµ) . (A.5)

In the supersymmetric flat space basis, the exterior derivative is expressed as (see [50] for

more details)

d = −1

2
eαα̇∂αα̇ + eαDα + eα̇D̄

α̇ , (A.6)

so that each basis one-form eA multiplies a covariant object such that when d acts on

a superfield we get back another superfield. Note that deA 6= 0 in general. Expressing

e−UdeU in terms of these basis one-forms, we obtain

e−UdeU =
i

2
eαα̇Pαα̇ + ieαQα + ieα̇Q̄

α̇ . (A.7)

It is then simple to show that

e−V (e−UdeU )eV =
i

2
eαα̇Pαα̇ + ieαQα + ieα̇Q̄

α̇ +

(
2eαΨα +

i

4
eαα̇Λαα̇

)
G

+

(
2eα̇Ψ̄α̇ +

i

4
eαα̇Λ̄αα̇

)
Ḡ+

i

2
eβ̇Λββ̇Sβ −

i

2
eαΛ̄αα̇S̄

α̇. (A.8)

The other part of the Maurer-Cartan form we need to compute is trivial since all non-

linear generators commute amongst themselves. Indeed we have e−V deV = dV . The full

Maurer-Cartan form is then given by

iω =
i

2
eαα̇Pαα̇ + ieαQα + ieα̇Q̄

α̇

+

[
− i

2
eαα̇

(
−1

2
Λαα̇ + ∂αα̇Φ

)
+ eα(2Ψα + iDαΦ) + ieα̇D̄

α̇Φ

]
G

+

[
− i

2
eαα̇

(
−1

2
Λ̄αα̇ + ∂αα̇Φ̄

)
+ ieαDαΦ̄ + eα̇(2Ψ̄α̇ + iD̄α̇Φ̄)

]
Ḡ

+

[
− i

2
eαα̇∂

αα̇Ψβ + ieαDαΨβ + eβ̇

(
i

2
Λββ̇ + iD̄β̇Ψβ

)]
Sβ

+

[
− i

2
eαα̇∂

αα̇Ψ̄β̇ + eβ
(
i

2
Λ̄β

β̇ + iDβΨ̄β̇

)
+ ieα̇D

α̇Ψ̄β̇

]
S̄β̇

+

[
i

4
eαα̇∂αα̇Λββ̇ − i

2
eαDαΛββ̇ − i

2
eα̇D̄

α̇Λββ̇
]
Gββ̇

+

[
i

4
eαα̇∂αα̇Λ̄ββ̇ − i

2
eαDαΛ̄ββ̇ − i

2
eα̇D̄

α̇Λ̄ββ̇
]
Ḡββ̇ . (A.9)

Now as we mentioned in the main body, the coset covariant derivatives come from the

product of the supervielbein and the Maurer-Cartan components, and since here the su-

pervielbein is trivial we can simply read off the full coset covariant derivatives D̂A. The

ones relevant for the superspace inverse Higgs constraints are

D̂µµ̇Φ = ∂µµ̇Φ− 1

2
Λµµ̇, D̂µΦ = DµΦ− 2iΨµ,

¯̂
Dµ̇Ψν = D̄µ̇Ψν +

1

2
Λµ̇ν , (A.10)
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which when set to zero yield the solutions

D̂µµ̇Φ = 0→ Λµµ̇ = 2∂µµ̇Φ, D̂µΦ = 0→ 2Ψµ = −iDµΦ,
¯̂
Dµ̇Ψν = 0→ Λνµ̇ = −2D̄µ̇Ψν .

(A.11)

Upon inserting these solutions back into the Maurer-Cartan form, we have the building

blocks of invariant Lagrangians.

Turning to the chirality condition for the superfield, from these solutions we find

D̄µ̇DµΦ = −2i∂µµ̇Φ which, given the algebra of ordinary N = 1 covariant derivatives

{Dµ, D̄µ̇} = −2i∂µµ̇, we find that we must have D̄µ̇Φ = 0. This is a covariant condition

since the ordinary barred spinor covariant derivative D̄µ̇Φ coincides with the hatted version
ˆ̄Dµ̇Φ. This is precisely the irreducibility condition for the chiral superfield which we see as

a consistency condition following from imposing the superspace inverse Higgs constraints.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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