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1 Introduction

In [1], with Kats, we explored techniques for studying the effects of self-interactions in

the conformal sector of an unparticle model. There, physics is encoded in the higher

n-point functions of the conformal theory. We studied inclusive processes and argued

that the inclusive production of unparticle stuff in standard model processes due to the

unparticle self-interactions can be decomposed using the conformal partial wave expansion

and its generalizations into a sum over contributions from the production of various kinds

of unparticle stuff, corresponding to different primary conformal operators. Such processes

typically involve the production of unparticle stuff associated with operators other than

those to which the standard model couples directly. Thus just as interactions between

particles allow scattering processes to produce new particles in the final state, so unparticle

self-interactions cause the production of various kinds of unparticle stuff. The resulting

picture, we believe, was a step towards understanding what unparticle stuff “looks like”

because it is somewhat analogous to the way we describe the production and scattering of

ordinary particles in quantum field theory, with the primary conformal operators playing

the role of particles and the coefficients in the conformal partial wave expansion (and its

generalization to include more fields) playing the role of amplitudes. We illustrated our

methods in the 2D Sommerfield model [2–6] that we discussed previously [7] in which the

Banks-Zaks theory is exactly solvable.

We also discussed explicitly how unparticle interactions at low energies evolve as the

energy increases and showed in detail how the underlying physics of the Banks-Zaks model

appears at high energy. The unparticle physics is always there, but as the energy increases,

more and more massive states in the Banks-Zaks model are produced, mocking up the

conventional scaling.

In this modest note, I continue with the study of the Sommerfield model, and make

more explicit the connection with the Schwinger model in the limit that the vector boson
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mass in the Lagrangian goes to zero. What I hope may be new in this note is the explicit

calculation of correlators involving straight Wilson lines which is possible using the operator

solution of the Sommerfield model. The literature on the Schwinger model is huge and

varied, and I would not be surprised to find that many or all of the calculations in the

paper have appeared in some form elsewhere. Because trying to find every example is a

hopeless task, I will put a preliminary version of the paper on the arXiv and encourage

readers to let me know of connections with this work that should be discussed and/or

included in the references. And even if some of the results are familiar, I hope readers will

find that I have a different way of talking about them that may be stimulating.

2 Sommerfield and Thirring

We will begin with a review of the Sommerfield model to set notation which will be slightly

different from that in Kats.1 The Sommerfield Lagrangian is

LS = ψ (i 6∂ − eA/)ψ − 1

4
FµνFµν +

m2
0

2
AµAµ (2.1)

It will be useful for comparison to consider the corresponding Lagrangian without the Aµ

kinetic energy term.

LT = ψ (i 6∂ − eA/)ψ +
m2

0

2
AµAµ (2.2)

In (2.2), Aµ is an auxiliary field proportional to the vector current

Aµ =
e

m2
0

ψ γµ ψ =
e

m2
0

jµ (2.3)

So (2.2) is equivalent to the Thirring model

LT = i ψ 6∂ ψ − λ

2
jµ jµ (2.4)

with

λ =
e2

m2
0

(2.5)

1Our conventions, as in [7], are: g00 = −g11 = 1, ε01 = −ε10 = −ε01 = ε10 = 1. From the defining

properties {γµ, γν} = 2gµν and γ5 = − 1
2
εµνγ

µγν , it follows that γµγ5 = −εµνγν and γµγν = gµν + εµνγ5,

and we will use the representation γ0 =

(
0 1

1 0

)
, γ1 =

(
0 −1

1 0

)
, γ5 = γ0γ1 =

(
1 0

0 −1

)
. Then the

components ψ1 and ψ2 describe a right-moving and left-moving fermion, respectively. Lightcone coordinates

are defined by

x± = x0 ± x1 ∂± =
∂0 ± ∂1

2

x+∂+ + x−∂− = (x0 + x1)
∂0 + ∂1

2
+ (x0 − x1)

∂0 − ∂1

2
= x0∂0 + x1∂1

A0 = ∂0V/m0 − ∂1A/m A1 = ∂1V/m0 − ∂0A/m
A0 = ∂0V/m0 + ∂1A/m A1 = ∂1V/m0 + ∂0A/m A± = ∂±V/m0 ± ∂±A/m .
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To solve these models, we decompose Aµ as

Aµ = ∂µV/m0 + εµν∂νA/m (2.6)

where

m2 = m2
0 + e2/π (2.7)

Then we can write

εµν∂
µAν = εµν∂

µενβ∂βA/m = ∂µ∂
µA/m ∂µA

µ = ∂µ∂
µV/m0 (2.8)

and the Sommerfield Lagrangian becomes

LS = iψ 6∂ ψ − eψγµψ (∂µV/m0 + εµν∂νA/m) +
1

2m2
A�2A+

1

2
∂µV∂µV −

m2
0

2m2
∂µA∂µA

(2.9)

while the Thirring Lagrangian is just missing the �2 term

LT = iψ 6∂ ψ − eψγµψ (∂µV/m0 + εµν∂νA/m) +
1

2
∂µV∂µV −

m2
0

2m2
∂µA∂µA (2.10)

If we change the fermionic variable to

Ψ = eie(V/m0+Aγ5/m)ψ (2.11)

the fermion becomes free:

LS = iΨ 6∂Ψ +
1

2
∂µV∂µV +

1

2m2
A�2A− 1

2
∂µA∂µA (2.12)

LT = iΨ 6∂Ψ +
1

2
∂µV∂µV +−1

2
∂µA∂µA (2.13)

In the last terms in both (2.12) and (2.13), m2
0/m

2 has been replaced by 1 in order to

account for the fact that the path integral measure is not invariant under the A part

of (2.11) [8].2

Focusing on A in (2.12), we can replace it with somewhat more normal looking fields

as follows.

1

2m2
A�2A− 1

2
∂µA∂µA → −

m2

2
B2 + B�A− 1

2
∂µA∂µA (2.14)

= −m
2

2
B2 +

1

2
∂µB∂µB −

1

2
∂µC∂µC (2.15)

where C = A + B, so B is a massive field and C is a massless ghost. In the Thirring

Lagrangian, A is already a ghost, so we can just replace A → C and the Lagrangians

become

LS = iΨ 6∂Ψ +
1

2
∂µV∂µV −

m2

2
B2 +

1

2
∂µB∂µB −

1

2
∂µC∂µC (2.16)

LT = iΨ 6∂Ψ +
1

2
∂µV∂µV −

1

2
∂µC∂µC (2.17)

2The same effect gives mass e/
√
π to the gauge boson in the Schwinger model. See also [9].
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and the original fermion and vector fields can be written in terms of free fields

ψS = e−ie(V/m0+(C−B)γ5/m)Ψ ψT = e−ie(V/m0+Cγ5/m)Ψ (2.18)

AµS = ∂µV/m0 + εµν∂ν(C − B)/m AµT = ∂µV/m0 + εµν∂νC/m (2.19)

Thus the Thirring model is just the Sommerfield model without the B field! This makes

sense because it is physically obvious that the Sommerfield model goes to the Thirring

model in the limit m0 →∞ with e/m0 fixed, but (2.3), (2.18) and (2.19) make the corre-

spondence very explicit.

We can use (2.18) and (2.19) straightforwardly to write down the Green’s functions of

both models. This is done in appendix A.

3 The Schwinger point

There a much less trivial limit of the Sommerfield model — the limit m0 → 0 with m fixed.

The m0 = 0 theory is the Schwinger model [10], invariant under gauge transformations:

ψ → eiθ ψ Aµ → Aµ − ∂θ

e
(3.1)

But the limit m0 → 0 is potentially singular because the formal gauge invariance of the

m0 = 0 theory means that there is no physical degree of freedom associated with the Aµ

field. This shows up in the factors of 1/m0 in the Aµ propagator. However, the singular

piece is a pure gauge. As long as we calculate only gauge invariant quantities (including

appropriate Wilson lines [11]), nothing will depend on this and the limit should makes

sense and go over smoothly to corresponding calculations in the Schwinger model [10].

We should be able to see that the fermions are confined — or “bosonized” [12] — and

understand how the unparticle sector disappears and a mass gap appears.

The first comment is that to have any hope of constructing a gauge invariant quantity,

we can only look at objects with fermion number zero. For these, it is easy to see how this

works for the V field part of Aµ where the contribution from a Wilson line can completely

cancel the V dependence and get rid of everything that is singular as m0 → 0, so the

limit should be well defined. Conversely, if the fermion number is not zero, there is no

way to cancel the V dependence and this implies that these things will not be well-defined

as m0 → 0.

The simplest interesting things to look at are the correlations of the local “unparticle”

operators

O21(x) ≡ ψ∗2(x)ψ1(x) and O12(x) ≡ ψ∗1(x)ψ2(x) (3.2)

These are gauge invariant and should make sense in the Schwinger limit. First consider

the 2pt function,

〈0|TO12(x1)O21(x2)|0〉 (3.3)
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We can read off (3.3) from figure 2 with C0 set equal to 1 and the result is

S1(x1−x2)S2(x1−x2)C(x1−x2)4 (3.4)

=
1

4π2
exp

(
2e2

πm2

(
K0

(
m
√
−(x1−x2)2+iε

)
+ln(ξm)

))( 1

−(x1−x2)2+iε

)1−(e2/π)/m2

(3.5)

where

ξ ≡ eγE/2 (3.6)

At short distances, C(x1−x2)→ 1 in (3.4) and the result goes to a product of free fermion

propagators. But in (3.5) at long distances you can see clearly the magic result of the

Schwinger limit of the Sommerfield model. When m2 = e2/π, the last term in (3.5) goes

to 1 and only the massive propagator survives. But for m2 > e2/π, we see the unparticle

contribution at long distances.

The magic at m2 = e2/π is responsible for one of the more confusing features of

the Schwinger point. If (3.5) is to satisfy cluster decomposition, the operators must have

non-zero vacuum expectation values, because it must be that

〈0|TO12(x1)O21(x2)|0〉 −→
−(x1−x2)2→∞

〈0|O12(x1)|0〉 〈0|O21(x2)|0〉 (3.7)

This means the vacuum at the Schwinger point must be degenerate with

〈0|O12(x1)|0〉 =
ξm

2π
eiθ 〈0|O21(x2)|0〉 =

ξm

2π
e−iθ (3.8)

where θ is the parameter that labels the vacuum state. [13–15] One might worry that

because these VEVs vanish in the Sommerfield model, there is something discontinuous

about the limits that we are studying that will cause problems. But in fact, unless some-

thing else is coupled to the unparticle operators, (3.2), such as a mass term, a source, or a

more complicated interaction, there is absolutely no physics in these VEVs. They must be

there for the theory to be consistent with cluster decomposition, but they have no other

consequences.

The tools in the appendix (and [1]) can be used to show that the behavior we see

in (3.5) persists in correlation functions involving more than two of the local unparticle

operators, (3.2). In the free-field description of section 1, the local unparticle operators are

O21(x) = ψ∗2(x)ψ1(x) = Ψ∗2(x) Ψ1(x) e−2ieA/m = Ψ∗2(x) Ψ1(x) e−2ie(C−B)/m (3.9)

O12(x) ≡ ψ∗1(x)ψ2(x) = Ψ∗1(x) Ψ2(x) e2ieA/m = Ψ∗1(x) Ψ2(x) e2ie(C−B)/m (3.10)

In the Schwinger limit, the Ψ and C contributions conspire to give constant contribu-

tion to all long-distance correlators of these objects, so that all the physics (except the

VEVs, (3.8)), is in the exponentials involving the massive field, B,

e±2ieB/m (3.11)
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How does the magic result in the Schwinger model fit in with bosonization? It seems

that we can create perfectly well-defined operators out of the local fields in which the

massless degrees of freedom show up at short distances. In the local limit, there is nothing

fermionic about it, but the short distance limit of (3.5) looks like it arises from a pair

of massless fermions. Where does this come from in a theory with a mass gap? Clearly,

it is a large energy phenomenon. The large momentum behavior of the Källén-Lehman

representation is obtained asymptotically because the exponentials, (3.11), produce more

and more massive vector states as the energy increases.3

In more detail, what is happening is that the exponential of the unparticle ghost exactly

compensates for the bi-fermion contribution in (3.4). At smaller e2, the compensation is not

exact. The fermion wins and one has an anomalous dimension for the unparticle operator.

For larger e2, the ghost wins and the theory is not unitary.

Going in the other direction, from the Schwinger model to the Sommerfield model, this

discussion suggests that we might regard the unparticle sector as the result of “incomplete

bosonization.” In the Sommerfield model, for e2 < πm2, the ghost fields do not couple

strongly enough to completely eliminate the long-distance physics of the massless fermion

fields. The fermions are not confined into particle bound states. But neither do their

propagators have poles like normal particles. They are unparticles.

Although it is not the primary thrust of this paper, it is worth mentioning what

happens to this discussion of the local unparticle operators if we generalize the Schwinger

model to include n massless flavors (see [16]). This model has a classical chiral U(n)×U(n)

symmetry which is presumably broken by the chiral anomaly down to SU(n)×SU(n)×U(1).

At the Schwinger point, because the vector boson mass gets contributions from each of the

n flavors, e2/m2 is 1/n times what it is in the 1-flavor Schwinger model. The ghost

contributions to the anomalous dimensions of the (n, n) of unparticle operators (where the

first subscript on ψ is the fermion label and the second subscript indicates the chirality),

Ojk12 ≡ ψ
∗
j1ψk2 and Ojk21 ≡ ψ

∗
j2ψk1 (3.12)

are down by 1/n compared to what they are in the Schwinger model and so do not cancel

the free fermion contributions to the 2-point functions. But the cancellation does take

place in the 2-point function of the chiral SU(n)× SU(n) singlet operators

On−flavor
12 ≡

n∏
`=1

ψ∗`1ψ`2 and On−flavor
21 ≡

n∏
`=1

ψ∗`2ψ`1 (3.13)

for which

〈0|TOn−flavor
12 (x1)On−flavor

21 (x2)|0〉=
(
ξm

4π2

)2n

exp
(

2nπK0

(
m
√
−(x1−x2)2+iε

))
(3.14)

with ξ = eγE
2 as in (3.6). Thus cluster decomposition requires that these operators have

VEVs,

〈0|On−flavor
12 (x1)|0〉 = einθ

(
ξm

4π2

)n
〈0|On−flavor

21 (x2)|0〉 = e−inθ
(
ξm

4π2

)n
(3.15)

3There are lots of less trivial examples worked out in [1].
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4 Wilson lines

If the fermions and antifermions in our operators are separated in space-time, we need

Wilson lines [11] to make things gauge invariant. Thus, for example, we should be able to

look at the VEV

〈0|TO11(y, x)|0〉 (4.1)

O11(y, x) ≡ Tψ∗1(y) exp

(
−ie

∫ y

x
Aµ(z) dzµ

)
ψ1(x) (4.2)

I am particularly interested in space-like Wilson lines because they are the simplest thing

to look at, so (4.1) could be all at one time, but if we want to think about anything but

a straight path in 1+1, we need the time dimension as well, so we do the calculation in

general. Under the gauge transformation this goes to

〈0|Tψ∗1(y) e−iθ(y) exp

(
−ie

∫ y

x
Aµ(z) dzµ + i

∫ y

x
∂µθ(z) dzµ

)
eiθ(x) ψ1(x)|0〉 (4.3)

〈0|Tψ∗1(y) e−iθ(y) exp

(
−ie

∫ y

x
Aµ(z) dzµ + iθ(y)− iθ(x)

)
eiθ(x) ψ1(x)|0〉 (4.4)

The VEV in (4.1) is gauge invariant for any path in the Wilson line, but the value may

depend on the path. For simplicity, we will calculate it for a straight path from x to y,

which should give a Lorentz covariant quantity:

z(α)µ = (1− α)xµ + αyµ dzµ = (yµ − xµ) dα (4.5)

z(α)µ − xµ = α(yµ − xµ) z(α)µ − yµ = (1− α)(xµ − yµ) (4.6)

and we can use

ψ1(x) = e−ie
(
V(x)/m0+A(x)/m

)
Ψ1(x) (4.7)

and (2.6) to calculate the contribution of the Wilson line. The general argument above

shows that the Wilson line simply cancels the 1/m0 dependence in the anomalous dimension

that come from the V fields. So we set these to zero in calculating (4.1). Thus the Wilson

line is

exp

(
−ie

∫ z(1)

z(0)
Aµ(z(α)) dz(α)µ

)∣∣∣∣∣
V=0

= exp

(
−i e
m

∫ z(1)

z(0)
εµν ∂

ν
z(α)A (z(α)) dz(α)µ

)
(4.8)

To calculate the contribution of the A fields to the Wilson line, we will do the Wick

expansion of all the A fields in (4.1). This is much easier than it looks for the straight

paths, because the εµν in (2.6) causes many terms to vanish. For example, all the terms in

which an A in the Wilson line is contracted with an A in ψ or ψ∗ vanish because all the

coordinate dependence is in the same direction, proportional to yµ − xµ. For example, if

the A
(
z(α)

)
in (4.8) is contracted with A(x), the result is a function of (z(α) − x)2 and

the derivative with respect to z(α)ν is porportional to z(α)ν − xν = α(yν − xν) which is

orthogonal to εµν dz(α)µ. Thus for the straight path (4.5), the VEV (4.1) is simply the

– 7 –



J
H
E
P
1
1
(
2
0
1
9
)
0
5
7

usual contribution to the 2-pt function with the 1/m0 terms removed multiplied by the

vacuum value of the Wilson line.

We will now evaluate the Wilson line contribution explicitly. Lorentz invariance is

crucial here and I want to look at space-like Wilson lines so we will use F (−x2) = F (−xµxµ)

for the A 2-pt function which is

F (−x2) =
1

2π

[
K0

(
m
√
−x2 + iε

)
+ ln

(
eγEm

√
−x2 + iε/2

)]
(4.9)

Now look at the Wick contractions of the Wilson line, which is

W (x− y) = exp

(
− e2

m2
Y (x− y)

)
(4.10)

where

Y (x− y) =
1

2

∫
εµ1ν1 dz(α1)µ1εµ2ν2 dz(α2)µ2∂ν1

z(α1)∂
ν2

z(α2)F
(
− (z(α1)− z(α2))2

)
(4.11)

To evade annihilation by the εs, the partial derivatives must both act on the same factor

of (z(α1)− z(α2))2, so this is

=

∫
εµ1ν1 dz(α1)µ1εµ2ν2 dz(α2)µ2gν1ν2 F ′

(
− (z(α1)− z(α2))2

)
(4.12)

= −(y − x)2

∫
dα1 dα2 F

′ (−(α1 − α2)2(y − x)2
)

(4.13)

where

F ′
(
−x2

)
= −

1−m
√
−x2K1

(
m
√
−x2

)
4πx2

(4.14)

For a space-like Wilson line, (4.13) is

Y (x− y) = `2
∫

dα1 dα2 F
′ ((α1 − α2)2`2

)
(4.15)

where ` is the invariant length,
√
−(x− y)2. Now do the α2 integration for fixed α = α1−α2

α2 = α1 − α

{
≥ max (−α, 0)

≤ min (1− α, 1)
(4.16)

• If α > 0, this is [0, 1− |α|].

• If α < 0, this is [|α|, 1].

So the integral is always 1− |α| so it is

= `2
∫ 1

−1
dα (1− |α|)F ′

(
α2`2

)
(4.17)

= 2`2
∫ 1

0
dα (1− α)F ′

(
α2`2

)
=

∫ 1

0
(1− α)

1− αlK1(lα)

2πα2
dα (4.18)
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Figure 1. 1− αK1(α) versus α.

It is straightforward to get a qualitative understanding of the large ` behavior of (4.18)

from the graph in figure 1. For α � 1, the numerator factor 1 − αK1(α) goes to zero

because of the cancellation between the ghost and the massive gauge boson contribution.

For α� 1 it goes to 1 because the massive gauge boson contribution vanishes exponentially.

The leading term from the 1 in the (1− α) factor grows linearly with ` because the linear

divergence from the denominator at small α is cut off for α ≈ 1/`. The integral can be

done explicitly for the α term in 1− α. It grows more negative like a log at long distances

because the log divergence at small α is again cut off for α ≈ 1/`. Putting the two together

and putting the factors of m back gives for the large ` behavior of the integral

m`

4
− 1

2π
(log(eξm`)) + · · · (4.19)

which means that (4.1) goes to zero exponentially for large `, like

exp

(
− e

2`

4m

)
`e

2/(2πm2) (eξm)e
2/(2πm2)

= exp

(
−π(m2 −m2

0)`

4m

)
`e

2/(2πm2) (eξm)e
2/(2πm2)

(4.20)

so

W (x− y) = exp

(
−
e2
√
−(x− y)2

4m

) (
−(x− y)2

)e2/(4πm2)
(eξm)e

2/(2πm2) (4.21)

The contribution of the Wilson line simply gets multiplied by the usual contribution

from the fermion 2-point function, without the C0 terms. This can be read off from figure 2

and (A.11)–(A.14) with C0 set equal to 1 and the result is

S1(x−y)C(x−y) (4.22)

=
x+−y+

2π
exp

(
e2

2πm2

(
K0

(
m
√
−(x−y)2+iε

)
+ln(ξm)

)) ( 1

−(x−y)2+iε

)1−e2/(4πm2)

(4.23)
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Putting this all together with ` =
√
−(x− y)2 gives

x+ − y+

2π
exp

(
− e

2`

4m

)
(`)−2+e2/(πm2) (eξ2m2)e

2/(2πm2) + · · · (4.24)

or

1

2π

√
−x

+−y+

x−−y−
exp

(
−
e2
√
−(x−y)2

4m

) (
−(x−y)2

)−1/2+e2/(2πm2)
(eξ2m2)e

2/(2πm2)+· · ·

(4.25)

where the unwritten terms have additional exponential suppression at large `. In the

Schwinger limit, e2 = πm2, there is only exponential scaling at long distances. Thus the

Wilson line effectively screens the fermion charges in the Schwinger limit. But as for the

correlation functions of the unparticle operators, O12 and O21, for e2 < πm2, there is

power-law dependence with anomalous dimensions at long distances.

Now for something more complicated.

O21(y, x) ≡ Tψ∗2(y) exp

(
−ie

∫ y

x
Aµ(z) dzµ

)
ψ1(x) (4.26)

O12(y, x) ≡ Tψ∗1(y) exp

(
−ie

∫ y

x
Aµ(z) dzµ

)
ψ2(x) (4.27)

O22(y, x) ≡ Tψ∗2(y) exp

(
−ie

∫ y

x
Aµ(z) dzµ

)
ψ2(x) (4.28)

The interesting case is the object

〈0|TO12(x1, y1)O21(x2, y2)|0〉 (4.29)

Now we have two Wilson lines on two straight paths,

zj(α)µ = (1−αj)xµj +αyµj dzµj (αj) = (yµj −x
µ
j )dαj (4.30)

zj(αj)
µ−xµj =αj(y

µ
j −x

µ
j ) zj(αj)

µ−yµj = (1−αj)(xµj −y
µ
j ) for j= 1 or 2 (4.31)

The two Wilson lines are the same as before, but now there is a contraction between the

two and between each of them and the ψs on the other operator.

Before tackling this in general, let’s look at the simpler situation in which we keep

y2 = x2. Now there is only one Wilson line, and to avoid subscripts I will take

x1 = x y1 = y x2 = y2 = z (4.32)

〈0|TO12(y, x)O21(z, z)|0〉 (4.33)

Without the Wilson line we have

Ψ∗1(y) eiA(y)/mΨ2(x) eiA(x)/mΨ∗2(z) Ψ1(z) e−2iA(z)/m (4.34)

which gives

C(x− y)−1 S1(x− z)C(x− z)2 S2(z − y)C(y − z)2 (4.35)
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Now we can define the Wilson line exactly as in (4.5)–(4.8). Again the contractions of an

A in the Wilson line with A(x) or A(y) give no contribution, and the contractions within

the Wilson line give W (x − y), given by (4.21), (4.11), and (4.18). The new piece is the

contribution of contractions from the Wilson line to A(z), which is Z(x, y, z)2 where

Z(x, y, z) = exp

(
e2

m2
X(x, y, z)

)
(4.36)

with F given by (4.9) as usual this is

X(x,y,z) =

∫
εµν dz(α)µ∂νz(α)F

(
−(z(α)−z)2

)
(4.37)

= 2εµν (yµ−xµ)(zν−xν)

∫
dαF ′

(
−(z(α)−z)2

)
(4.38)

=
1

2π
εµν (yµ−xµ)(zν−xν)

∫
dα

1−m
√
−(z(α)−z)2K1

(
−m(z(α)−z)2

)
(z(α)−z)2

(4.39)

The denominator of (4.39) is

(z(α)− z)2 = (1− α)2(x− z)2 + α2(y − x)2 − α(1− α)
(

(x− y)2 − (x− z)2 − (y − z)2
)

(4.40)

= (1− α)(x− z)2 + α(y − z)2 − α(1− α)(x− y)2 (4.41)

In this case, if we take all the distances large compared to 1/m, the numerator of the

integrand goes to 1 and the denominator is integrable and gives

log

(
(x−y)2−(x−z)2−(y−z)2+

√
((x−y)2)2−2(x−y)2((x−z)2+(y−z)2)+((x−z)2−(y−z)2)2

(x−y)2−(x−z)2−(y−z)2−
√

((x−y)2)2−2(x−y)2((x−z)2+(y−z)2)+((x−z)2−(y−z)2)2

)
√

((x− y)2)2 − 2(x− y)2((x− z)2 + (y − z)2) + ((x− z)2 − (y − z)2)2

(4.42)

Note that the square root in the denominator of (4.42) is the absolute value of the numerator

factor, εµν (yµ − xµ) (zν − xν),4 so for large distances, (4.38) can be written as

1

2π
log

(
(x− y)2 − (x− z)2 − (y − z)2 + εµν (yµ − xµ) (zν − xν)

(x− y)2 − (x− z)2 − (y − z)2 − εµν (yµ − xµ) (zν − xν)

)
(4.43)

and therefore for large distance

Z(x, y, z) =

(
(x− y)2 − (x− z)2 − (y − z)2 + εµν (yµ − xµ) (zν − xν)

(x− y)2 − (x− z)2 − (y − z)2 − εµν (yµ − xµ) (zν − xν)

)e2/(2πm2)

(4.44)

Note that a parity transformation interchanges Z and Z−1. Clearly, while there is some

dependence on the directions of the 2-vectors, the result is constant as we go to long

distance for fixed angles.

4The combination is cyclic. εµν (yµ − xµ) (zν − xν) = εµν (xµ − zµ) (yν − zν) = εµν (zµ − yµ) (xν − yν).
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Thus the long-distance behavior of (4.33) is (4.44) times (4.35) multplied by the Wilson

line, (4.10) —

∝ Z(x, y, z)2W (x− y)C(x− y)−1 S1(x− z)C(x− z)2 S2(z − y)C(y − z)2 (4.45)

If we go to the Schwinger point, m2 = e2/π, we can use cluster decomposition as we

did in (3.7) to find the VEV of O12(y,x)

〈0|TO12(y, x)O21(z, z)|0〉 −→
−(x−z)2→∞
(x−y)2 fixed

〈0|O12(x, y)|0〉 〈0|O21(z)|0〉 (4.46)

Comparing (4.45) with (3.4) and (3.8) and noting that

Z(x, y, z) −→
−(x−z)2→∞
(x−y)2 fixed

1 (4.47)

we see that

〈0|O12(x, y)|0〉 = W (x− y)C(x− y)−1 ξm

2π
eiθ (4.48)

As x→ y, this goes to (3.8) (as it must) and for large distances, this is

√
e exp

(
− e2

4m

√
−(x− y)2

)
ξm

2π
eiθ (4.49)

which at the Schwinger point goes to

√
e exp

(
−πm

√
−(x− y)2/4

) ξm

2π
eiθ (4.50)

Now back to the fully non-local situation, (4.29). The contribution without the Wilson

lines is

C(x1−y1)−1C(x2−y2)−1C(x1−x2)C(y1−y2)S2(x1−y2)C(x1−y2)S1(x2−y1)C(x2−y1)

(4.51)

Now we have two Wilson lines, which give a factor of

W (x1 − y1)W (x2 − y2) (4.52)

There are four contractions in which an A in one of the Wilson lines gets contracted with

an A associated with one of the fermions in the other operator. This is the calculation we

just did, so there are two Zs and two Z−1,

Z(x1, y1, x2)Z(x1, y1, y2)Z(x2, y2, x1)−1 Z(x2, y2, y1)−1 (4.53)

The new piece is the contraction of an A in the Wilson line from x1 to y1 with an A
in the Wilson line from x2 to y2. This gives a contribution that looks familiar in terms of

the function F of (4.9):

H(x1, y1;x2, y2) = exp

(
− e2

m2
Y12

)
(4.54)

Y12 =

∫
εµ1ν1 dz1(α1)µ1εµ2ν2 dz2(α2)µ2∂ν1

z1(α1)∂
ν2

z2(α2)F
(
− (z1(α1)− z2(α2))2

)
(4.55)
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where

(z1(α1)− z2(α2))µ =
(

(x1 − x2) + α1(y1 − x1)− α2(y2 − x2)
)µ

(4.56)

For simplicity, we will consider the case in which z1(α1) − z2(α2) is space-like for all α1

and α2.

(z1(α1)− z2(α2))µ (z1(α1)− z2(α2))µ for 0 ≤ α1, α2 ≤ 1 (4.57)

This is a rather restrictive condition in 1+1 dimensions, as we will see.

Y12 = 2

∫
εµ1ν1 dz1(α1)µ1εµ2ν2 dz2(α2)µ2∂ν1

z1(α1) (z1(α1)−z2(α2))ν2 F ′
(
−(z1(α1)−z2(α2))2

)
(4.58)

= 2

∫
εµ1ν1 dz1(α1)µ1εµ2ν2 dz2(α2)µ2

(
gν1ν2F ′

(
−(z1(α1)−z2(α2))2

)
−2(z1(α1)−z2(α2))ν1 (z1(α1)−z2(α2))ν2 F ′′

(
−(z1(α1)−z2(α2))2

)) (4.59)

= 2

∫
εµ1ν1 (y1−x1)µ1 dα1 εµ2ν2 (y2−x2)µ2 dα2

(
gν1ν2F ′

(
−(z1(α1)−z2(α2))2

)
−2(z1(α1)−z2(α2))ν1 (z1(α1)−z2(α2))ν2 F ′′

(
−(z1(α1)−z2(α2))2

)) (4.60)

=−2

∫
dα1 dα2

(
(y1−x1)µ(y2−x2)µF ′

(
−(z1(α1)−z2(α2))2

)
−2(gµ1µ2gν1ν2−gµ1ν2gν1µ2)(y1−x1)µ1 (y2−x2)µ2

(z1(α1)−z2(α2))ν1 (z1(α1)−z2(α2))ν2 F ′′
(
−(z1(α1)−z2(α2))2

)) (4.61)

Define

L(α1, α2) ≡ − (z1(α1)− z2(α2))2

= −
(

(1− α1)(1− α2)(x1 − x2)2 − α1(1− α1)(x1 − y1)2 − α2(1− α2)(x2 − y2)2

+ α1α2(y1 − y2)2 + α1(1− α2)(y1 − x2)2 + α2(1− α1)(x1 − y2)2
)

(4.62)

∂L

∂α1
= −2

∂z1(α1)µ

∂α1
(z1(α1)− z2(α2))µ = −2(y1 − x1)µ (z1(α1)− z2(α2))µ (4.63)

∂L

∂α2
= 2

∂z2(α2)µ

∂α2
(z1(α1)− z2(α2))µ = 2(y2 − x2)µ (z1(α1)− z2(α2))µ (4.64)

∂2L

∂α1∂α2
= 2(y1 − x1)µ(y2 − x2)µ (4.65)

∂2F

∂α1∂α2
=

∂

∂α1

(
∂L

∂α2
F ′(L)

)
=

∂L

∂α1

∂L

∂α2
F ′′(L) + 2(y1 − x1)µ(y2 − x2)µ F

′(L) (4.66)
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Then we can rewrite (4.61) as

Y12 =

∫ (
−2(y1−x1)µ(y2−x2)µ

(
F ′(L)+2LF ′′(L)

)
+
∂L

∂α1

∂L

∂α2
F ′′(L)

)
dα1 dα2 (4.67)

=

∫ (
−4(y1−x1)µ(y2−x2)µ

(
F ′(L)+LF ′′(L)

)
+

∂2F

∂α1∂α2

)
dα1 dα2 (4.68)

The structure of (4.68) is remarkably simple, and the consequences of this simple form

are even simpler and more remarkable. As long as L is bounded away from zero in the

integral (4.67) (which follows from (4.57)), the term proportional to (y1−x1)µ(y2−x2)µ is

exponentially suppressed for distances larger than 1/m because the two terms cancel the

log term in F , leaving only the Bessel function term. For the second term, the integral can

done trivially (and, in fact, is independent of the path), and the final result is

Y12 =
(
F (L(0,0))+F (L(1,1))−F (L(1,0))−F (L(0,1))

)
+· · ·

=
(
F (−(x1−x2)2)+F (−(y1−y2)2)−F (−(x1−y2)2)−F (−(y1−x2)2)

)
+· · ·

(4.69)

If all the distances are large and space-like, this is

1

4π

(
log

(x1 − x2)2(y1 − y2)2

(x1 − y2)2(y1 − x2)2

)
+ · · · (4.70)

where the unwritten terms come from the Bessel function and are exponentially supressed

if (4.57) is satisfied and thus at long distances

H(x1, y1;x2, y2) =

(
(x1 − y2)2(y1 − x2)2

(x1 − x2)2(y1 − y2)2

)e2/(4πm2)

(4.71)

But it is useful to remember (4.69) in its general form, which gives

H(x1, y1;x2, y2) =

(
eF (−(x1−y2)2) eF (−(y1−x2)2)

eF (−(x1−x2)2) eF (−(y1−y2)2)

)e2/m2

+ · · · (4.72)

because we can use this form to calculate this contribution even if we put n Wilson lines

together end-to-end. The n Wilson lines are

W (xj − yj) = W (zj − zj+1) (4.73)

where we have labeled xj = zj , yj = zj+1 for j = 1 to n. In addition to the n Wilson lines,

we have n(n−1)/2 H factors — one for each pair of Wilson lines. So the result should be n∏
j=1

W (zj − zj+1)

∏
j<k

H(zj , zj+1; zk, zk+1)

 (4.74)

– 14 –



J
H
E
P
1
1
(
2
0
1
9
)
0
5
7

Naively substituting this into (4.71) would give factors of (−(zj − zj)2)e
2/(4πm2). However,

from (4.72) we see that these factors should all be replaced by 1, because they arise from

the exponential of F (0) = 0. Interestingly, when this is done, the result is rather simple

exp
(
e2F (−(z1 − zn+1)2)/m2

) n∏
j=1

 W (zj − zj+1)e
2/(4πm2

exp
(
e2F (−(zj − zj+1)2)/m2

)
 (4.75)

If each of the segments is very long compared to 1/m, this becomes

exp

− e2

4m

n∑
j=1

√
−(zj − zj+1)2

 (
−(z1 − zn+1)2

)e2/(4πm2)
(enξm)e

2/(2πm2) (4.76)

The factors are suggestive when compared to the result for a straight Wilson line, (4.21).

The first factor is just the exponential of minus the (now jagged) path length times e2/(4m),

as in the single Wilson line. The power-law factor in the middle also appears in the Wilson

line at long distances, (4.21). There are some issues however. The last factor of (4.76)

differs from the corresponding factor in (4.21) by e(n−1)e2/(2πm2). This difference is related,

I believe, to failure of the condition (4.57) at the n − 1 points where there Wilson lines

are joined together. When y1 = x2 in H(x1, y1;x2, y2), L vanishes in the corner of the

integration region, for α1 = 1 and α2 = 0. Thus we cannot conclude that the contribution

from the first term in (4.68) is exponentially suppressed. And in fact, if all the Wilson

lines are parallel, it is easy to see analytically that this provides the missing factors (as it

must in this case because we could have calculated the result for the straight Wilson line

by breaking it up in pieces). In general, the last factor gets replaced by

(eξm)

n−1∏
j=1

exp

(
e2

2πm2
(1− θj coth θj)

)
(4.77)

where

θj = ArcCosh

(
−(zj+2 − zj+1)µ(zj+1 − zj)µ√

(zj+2 − zj+1)µ(zj+2 − zj+1)µ (zj+1 − zj)ν(zj+1 − zj)ν

)
(4.78)

is a measure of the change of direction in 1+1D between the jth and (j+1)st Wilson lines.

Thus one may think of this as some kind of “curvature correction.” The θj dependence

cancels the n−1 extra factors of ee
2/(2πm2) in (4.76) when all the θj vanish, and gives

additional suppression for non-zero θj .

Finally, one may be tempted to take zn+1 = z1 in (4.74) and create a gauge invariant

Wilson loop. Unfortunately, in 1+1D, this is not consistent with (4.57), which requires that

− (zj+2 − zj+1)µ(zj+1 − zj)µ > 0 for all j = 1 to n− 1. (4.79)

Thus because a loop in 1+1 requires a change in the spacial direction and/or time-like

Wilson lines, there is always a region in the α integration for some of the Wilson lines in

which L changes sign, so the result and the calculation become complex (in different ways).

The explicit calculation of entire Wilson loops in this model have been studied in a very

different way by Falomir, Gamboa Saravi, and Schaposnik in [17]
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5 Comments

I hope that focusing on the relationship between the Sommerfield model and the Schwinger

model as I have in this paper may provide a slightly different approach to some of the

fascinating physics of these models. I hope also that the simple, explicit calculations done

here may find applications in other areas.
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A Correlation functions

From [1], we find the non-zero fermion correlators (which must have equal numbers, n1, of

ψ1 and ψ∗1 and equal numbers, n2, of ψ2 and ψ∗2)〈
0

∣∣∣∣∣∣T
 n1∏
j=1

ψ1(x1j)ψ1(y1j)
∗

 n2∏
j=1

ψ2(x2j)ψ2(y2j)
∗

∣∣∣∣∣∣0
〉

(A.1)

=

 n1∏
j,k

C0(x1j−y1k)C(x1j−y1k)S1(x1j−y1k)

 (A.2)

×

 n2∏
j,k

C0(x2j−y2k)C(x2j−y2k)S2(x2j−y2k)

 (A.3)

×

 n1∏
j<k

C0(x1j−x1k)
−1C(x1j−x1k)

−1S1(x1j−x1k)
−1

 (A.4)

×

 n2∏
j<k

C0(x2j−x2k)
−1C(x2j−x2k)

−1S2(x2j−x2k)
−1

 (A.5)

×

 n1∏
j<k

C0(y1j−y1k)
−1C(y1j−y1k)

−1S1(y1j−y1k)
−1

 (A.6)

×

 n2∏
j<k

C0(y2j−y2k)
−1C(y2j−y2k)

−1S2(y2j−y2k)
−1

 (A.7)

×

n1,n2∏
j,k

C0(x1j−y2k)C(x1j−y2k)
−1

n2,n1∏
j,k

C0(x2j−y1k)C(x2j−y1k)
−1

 (A.8)

×

n1,n2∏
j,k

C0(x1j−x2k)
−1C(x1j−x2k)

n1,n2∏
j,k

C0(y1j−y2k)
−1C(y1j−y2k)

 (A.9)
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Figure 2. Pictorial representation of the fermion correlation functions.

where for the Sommerfield model

C0(x) = exp

[
i
e2

m2
0

[D(x)−D(0)]

]
∝
(
−x2 + iε

)−e2/4πm2
0 (A.10)

C(x) = exp

[
i
e2

m2
[(∆(x)−∆(0))− (D(x)−D(0))]

]
= exp

[
e2

2πm2

[
K0

(
m
√
−x2 + iε

)
+ ln

(
ξm
√
−x2 + iε

)]]
(A.11)

with ξ = eγE
2 as defined in (3.6)

Sα0 (x) =

∫
d2p

(2π)2
e−ipx

p0 − (−1)αp1

p2 + iε
= − 1

2π

x0 − (−1)αx1

x2 − iε
(A.12)

S1(x) =

∫
d2p

(2π)2
e−ipx

p0 + p1

p2 + iε
= − 1

2π

x0 + x1

x2 − iε
(A.13)

S2(x) =

∫
d2p

(2π)2
e−ipx

p0 − p1

p2 + iε
= − 1

2π

x0 − x1

x2 − iε
(A.14)

and for the Thirring model, the massive ∆ propagator is absent.

Many 1+1 miracles go into making this work. The most miraculous is that we can

write the sum of all the ways of contracting the fermions as a single term∑
P

(−1)s(P )
n∏
j=1

S`(xj−yP (j))

= (−1)n(n−1)/2
n∏

j,k=1

S`(xj−yk)/
∏
j<k

S`(xj−xk)/
∏
j<k

S`(yj−yk)

(A.15)

for ` = 1 or 2. The factors in (A.1)–(A.9) are summarized in the diagram in figure 2.
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