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1 Introduction

Since the emergence of the string theory landscape [1–3], its predictions (and even the

existence of phenomenologically viable vacua) have remained a matter of debate [4–6].

Over the years, several approaches including systematic scans of explicit constructions and

statistical analyses have been considered for exploring the landscape [7–21]. The heart of

the problem is that the enormous number of vacua in the landscape makes a straightforward

scan computationally infeasible. The discrete landscape can be viewed as the complement of

a continuum of seemingly consistent low-energy effective field theories (EFTs) that cannot

descend from a string compactification, deemed the swampland [22, 23], see [24] for a

review. While the latter has received much attention in recent years, progress in data

science might allow for systematic studies of the landscape itself, as demonstrated with a

variety of techniques such as topological data analysis [25] and machine learning [26–35].
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In this paper, we study the landscape of string vacua using Genetic Algorithms

(GAs) [36–41]. GAs search for optimal solutions to problems with huge input spaces via

a natural selection process. The population of potential solutions evolves according to the

fitness of individual members. Each individual is specified by its genotype, a string of data

that defines the member’s location in the input space. An individual’s phenotype char-

acterizes its properties as a solution, generally summarized by some fitness function. Via

dynamics motivated by natural selection, genetic information related to the fittest mem-

bers propagates to subsequent generations. Overall, the population adapts to the extrinsic

factors implemented by the fitness.

In the past few decades, genetic algorithms have proven useful in diverse areas of

physics including particle phenomenology [42–44], astrophysics [45–47] and cosmology [48,

49]. Applications of GAs to the landscape have so far been rather limited [28, 50–55].

This is surprising given that they are very successful in scanning large data sets for viable

solutions. Moreover, for deterministic algorithms, difficulties due to the large size of the

landscape are exacerbated by computational complexity, as can be seen in several toy

models [56–59]. We might hope to avoid some of these issues using stochastic search

methods based on natural selection processes, such as GAs. On the deep learning side, a

closely related technique is Reinforcement Learning (RL). GAs and RL are both used to

train machine agents to solve complex tasks in uncertain environments [60, 61].

Ultimately, we are interested in selecting vacua based on their phenomenological prop-

erties such as the cosmological constant or certain desirable low energy spectra and cou-

plings. As a first step, we focus in this paper on three such quantities: the string coupling,

the superpotential value in the stabilized vacua, and the moduli masses. Nonetheless,

it is straightforward to extend our GA analysis to other contexts. Methods along the

lines outlined in this paper can be used e.g. to test the WGC [62] (and its various strong

forms [63–68]). As a proof of concept, the problems addressed in this paper are not too

computationally intensive, so all the algorithms we used can be implemented in Mathe-

matica. However, it is worth mentioning that there are many publicly available packages

for GAs written for different platforms, see e.g. [69–72].1

In this paper, we explore the type IIB flux landscape, for which our genetic algorithms

are (mostly) based on the following identifications, see also table 1. The members of a

population are distinct string vacua, each determined by a choice of (integer-quantized)

fluxes. In other words, the chromosomes are flux vectors of maximal length 4(h(2,1) + 1)

characterizing the genotype of a vacuum. Solving the F-term constraints for these fluxes

determines the VEVs of the various moduli and gives the phenotype of a vacuum. The

corresponding fitness is a function of physical observables including masses and couplings.

Parent vacua are selected according to their fitness, and breed pairwise to construct child

vacua. Parents breed via a crossover procedure where parts of one chromosome are replaced

by the corresponding parts of a mate’s chromosome. Additionally, mutation modifies some

fluxes at random. After solving the F-flatness conditions and checking gauge inequivalence

1For a maintained list of packages for genetic programming in general, see http://geneticprogramming.

com/software/.
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Genetic Algorithms Landscape

individuals flux vacua

chromosome flux vector

alleles fluxes

phenotype masses, couplings, etc.

fitness function of masses, couplings, etc.

boundary conditions SUSY condition, gauge fixing, tadpole

Table 1. Dictionary relating terms used in the context of GAs and the flux landscape.

and the size of tadpoles, we can define a new population by choosing an appropriate number

of child vacua as our subsequent generation.

Repeating the above steps for many generations results in a population gathering

around a point of maximal fitness, i.e., vacua satisfying physical conditions specified by

the fitness. Moreover, we find that GAs are significantly more efficient at finding physical

solutions than randomly choosing fluxes. In other words, GAs are inherently superior

to brute force approaches. This is a hint that the algorithm exploits some underlying

structure of the flux landscape that is unknown at the outset of the search. This learning

of structure can be confirmed by studying the “shapes” of individual generations using

persistent homology, a technique previously applied to the landscape in [25]. Exploitation

of this structure leads to improved efficiency of a GA compared to simulated annealing,

see section 4.6.

GAs, or stochastic search algorithms in general, are not effective for “needle-in-a-

haystack” type problems. These problems do not allow for a distinction between incorrect

solutions. In other words, all incorrect solutions are equally bad, so the performance of a

GA is reduced to that of a random scan. Turning this around, it is important that a GA

is searching a fitness landscape that is pseudo-continuous. Stated differently, there should

exist a neighborhood around the optimal solution in which the fitness is well-behaved.

This can be quantified by considering the fitness-distance correlation [73, 74] with distance

measured in the input space.

In general, stochastic search algorithms are efficient when the fitness landscape exhibits

a funnel-like topography (see [75], and recently in the context of the landscape [76]), so

that the optimal solution can be approached via small steps. This encodes itself in a large

and negative fitness-distance correlation near the optimal solution, see section 3.3. Strictly

speaking, the viability of a given search algorithm is determined empirically. If a solution

or near-solution is found, the algorithm may be considered successful. If a solution is not

found, either it does not exist, or it is not readily accessible to the algorithm at hand. In

the latter case, computing the fitness-distance correlation can demonstrate the lack of a

favorable funnel topography. This can sometimes be ameliorated by an alternative choice

of problem encoding [77], but in general finding an efficient encoding requires solving

the problem itself (in which case no search algorithm is necessary) or finding successful

deterministic heuristics, which we aim to avoid due to its problem-specific nature.

– 3 –
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In the presence of a fitness landscape the flow of the population shows a strong pull on

certain observables so that the population quickly gathers around suitable solutions. This

behavior typically depends on the precise definition of the fitness itself, especially when

considering several search parameters. In contrast, “needle-in-a-haystack” situations can

only randomly sample the space of solutions since unwanted solutions cannot be distin-

guished. As we will see, all models considered in this paper do not belong to the class

of a “needle-in-a-haystack”. It has previously been argued that due to the structure and

correlations within the landscape GAs are expected to work well more generally [55]. It

seems therefore promising to us that GAs constitute valuable tools to systematically study

the landscape.

This paper is organized as follows. First, we review the construction of flux vacua

in type IIB compactifications in section 2. We then collect the basic principles of genetic

algorithms in section 3. Subsequently, we define an algorithm suitable for studying type

IIB flux compactifications. Afterwards, we apply our algorithm to two examples: a hy-

persurface in the weighted projective space WP4
1,1,1,1,4 (section 4) and the symmetric T 6

(section 5). We conclude in section 6.

2 Flux compactifications

In this section, we briefly review type IIB flux compactifications on Calabi-Yau orientifolds

in the presence of background fluxes, see [78, 79] for reviews. In these setups, 3-form fluxes

stabilize the axio-dilaton and complex structure moduli. Due to flux quantization and

tadpole cancellation, the resulting space of vacuum solutions is a discretuum distributed

over the moduli space [1, 80].

We follow the conventions of [81]. Consider a Calabi-Yau threefold M with h(2,1)

complex structure moduli. We take a symplectic basis {Aa, Bb} for the b3 = 2h(2,1) + 2

three-cycles, with a, b = 1, . . . , h(2,1) + 1. The dual cohomology elements αa, β
b satisfy∫

Aa

αb = δab ,

∫
Bb

βa = −δab ,
∫
M
αa ∧ βb = δba . (2.1)

From the unique holomorphic three-form Ω, we define the periods za ≡
∫
Aa Ω, Gb ≡

∫
Bb

Ω,

which form the b3-vector Π(z) ≡ (Gb, za). Additionally∫
M

Ω ∧ Ω = zaGa − zaGa = −Π† · Σ ·Π (2.2)

in terms of the symplectic matrix

Σ =

(
0 1

−1 0

)
(2.3)

whose entries are (h(2,1) + 1)× (h(2,1) + 1) matrices. The RR and NSNS 3-form fluxes are

quantized and can be expanded in the α, β basis as

F3 = −(2π)2α′(faαa + fa+h(2,1)+1β
a), H3 = −(2π)2α′(haαa + ha+h(2,1)+1β

a) . (2.4)

– 4 –
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Here, f and h are two integer-valued b3-vectors. From now on we set (2π)2α′ = 1 and

define

N =
(
f1, . . . , f2h(2,1)+2, h1, . . . , h2h(2,1)+2

)T
(2.5)

for later purposes. The fluxes induce a superpotential for the complex structure moduli

and axio-dilaton φ ≡ C0 + ie−ϕ, given by [82]

W =

∫
M
G3 ∧ Ω(z) = (f − φh) ·Π(z) . (2.6)

In type IIB supergravity the 3-form fluxes only appear in the combination G3 ≡ F3−φH3.

The tree-level N = 1 F-term scalar potential induced by 3-form fluxes is of no-scale

type, given by

V = eK
(
Kab̄DaW Db̄W +Kφφ̄DφW Dφ̄W

)
. (2.7)

Here, Kab̄ is the inverse Kähler metric on complex structure moduli space and DaW =

(∂za + (∂zaK))W the associated Kähler derivative (similarly for φ). The corresponding

mass matrix for the real scalar fields is given by

MIJ = ∂I ∂JV (2.8)

evaluated at a minimum of V with I, J ∈ {Re(za), Im(za),Re(φ), Im(φ)}.
We are interested in vacua with vanishing F-terms

DφW =
1

φ− φ
(f − φh) ·Π(z) = 0 , (2.9)

DaW = (f − φh) · (∂aΠ(z) + Π(z)∂aK) = 0 (2.10)

The Kähler potential for the axio-dilaton and complex structure moduli is given by

K = − log

(
i

∫
M

Ω ∧ Ω

)
− log

(
−i(φ− φ)

)
= − log(−iΠ† · Σ ·Π)− log(−i(φ− φ)) (2.11)

The F-flatness conditions (2.9) and (2.10) imply that the (3,0) and (1,2) parts of the fluxes

vanish, so that G3 is imaginary self-dual, ?6G3 = iG3.

The D3-brane charge induced by the fluxes can be written as

Nflux =

∫
M
F3 ∧H3 = f · Σ · h . (2.12)

One can show that Nflux > 0 for imaginary self-dual fluxes. Hence, negative D3-brane

charges have to appear to ensure tadpole cancellation. These negative charges can be

induced by orientifolding. In this paper, we will not be explicit about orientifolding. We

will rather take Lmax as an adjustable parameter and, along the lines of [7, 8, 81], consider

solutions with

0 < Nflux ≤ Lmax (2.13)

with remaining charge cancelled by mobile D3-branes. As shown in [25], Lmax sets the

scale at which interesting structure in the moduli space distribution appears.

– 5 –
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It is crucial that we fix gauge symmetries relating equivalent vacua when running our

GA. Otherwise, we might end up with redundancies in our population of vacua. In our

case, the symmetry group is given by G = SL(2,Z)φ × Γ where SL(2,Z)φ is the S-duality

group from type IIB and Γ is the modular group acting on the complex structure moduli

space. We choose a gauge-fixing prescription in which each vacuum is mapped to the

corresponding fundamental domain where we have to keep track of all fluxes. Throughout,

we will consider the evolution of stabilized VEVs for the axio-dilaton and complex structure

moduli, and functions thereof.

3 Genetic algorithms

In this section, we collect the necessary ingredients to study genetic algorithms in the con-

text of string compactifications, see also [39, 42, 55] for more pedagogical introductions. We

begin with a brief summary of GAs. Afterwards, we turn to applications to flux vacua and

describe the algorithm applied in the remainder of this paper. We also highlight novel com-

plications encountered when using GAs to search the landscape, namely that consistency

conditions are not necessarily preserved by the breeding process. Finally, we elaborate

further on the suitability and performance of GAs in the context of flux compactifications.

3.1 Generalities

A GA in the sense of [36, 38] can be described as follows. One begins with a population of

p randomly chosen individuals, each specified by a string of data referred to as the chromo-

some. The chromosome describes the defining input parameters of each individual, thereby

encoding the individual’s genotype. The chromosome consists of alleles whose number and

values depend on the model in question. Typically, for alleles taking values in a smaller

range, a smaller population size can be chosen, see the discussion in section 3.2. The

physical characteristics of a member, also called its phenotype, are obtained by computing

functions of the genotype. In a physics context, this typically corresponds to a set of phys-

ical observables like masses, couplings, or representations. Now, the algorithm proceeds by

repeating the following three steps.

First, the process of selection is introduced by declaring certain individuals to be more

competitive for breeding than others. This is typically achieved by collecting pairs where

the single members in a pair are referred to as parents. As in nature, specific individuals

have physical properties distinguishing them from the typical individual and making them

more likely to procreate. This preeminence can be taken into account by assigning to each

member a fitness based on the phenotype.

Several ways to define the fitness as well as various selection methods have been dis-

cussed in the literature, see e.g. [83–97]. In this paper, we mostly focus on the so-called

roulette-wheel selection, but see section 5.4. Here, one normalizes the fitness function to

be a probability distribution. Pairs are constructed by choosing individuals according to

this probability distribution. Note that this method of parent selection explicitly takes

self-reproduction into account.

– 6 –
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Secondly, individuals breed to construct a new population, made up of members called

children. This is achieved by splicing the two chromosomes of a single pair together. We

typically employ a two-point crossover where the parent chromosomes are both cut at the

same two randomly selected positions, swapping the middle sections. Afterwards, we pick

one of the two new chromosomes at random as the genotype of a new individual in the

descendant population.

Thirdly, and this is the major feature responsible for the efficiency of genetic algo-

rithms, the children’s chromosomes are altered by mutation. More specifically, for ran-

domly selected children, a fraction of random alleles, typically about 1%, are modified.

This is necessary to prevent the algorithm from stagnation. For example, the population

can cluster around a local maximum of the fitness, even though a better global maximum

is available. The algorithm might never gain knowledge of the latter without mutation.

In this sense, mutation should not be viewed as a tool to increase convergence, but more

crucially as an integral part of the algorithm itself. Along these lines, we will compare

different mutation rates within a simple example in section 4.2. Taking the population

size p to remain constant,2 the new population is obtained by taking all children, replacing

the least fit individual found after mutation with the fittest individual from the previous

population. This last step, called elitist selection, forces the maximum fitness to increase

monotonically with each generation.

The above three steps form a generation. We repeat them several times, until a limiting

rate of convergence is reached. In general, only a certain fraction of the population can

reach the optimal solution, see e.g. the discussion in section 1.2 of [55].

3.2 Genetic algorithms for flux vacua

In this section we translate the general notion of GAs into the language of type IIB flux

compactifications. Throughout this section we employ a notation where 〈O〉A denotes the

vacuum expectation value of some quantity O computed by solving the F-flatness conditions

for the fluxes NA.

A population of size p is a set of flux vacua VA, A = 1, . . . , p, obtained by solving the

F-term constraints DaW = 0 = DφW, a = 1, . . . , h(2,1), and fixing the gauge redundancy.

Apart from intrinsic geometric quantities specified by the choice of a compactification space,

input parameters are only flux numbers NA =
(
N1
A, . . . , N

2b3
A

)T
(recall eq. (2.5)), i.e.,

VA = V (NA) = V
(
N1
A, . . . , N

2b3
A

)
. (3.1)

More specifically, VA encodes all elementary information about the vacuum which corre-

sponds in our case to the VEVs of all moduli fields 〈za〉A and the axio-dilaton 〈φ〉A. Hence,

each vacuum VA has physical attributes including

• VEVs 〈za〉A, 〈φ〉A

• the value of Nflux(NA)

• the value of W0(NA) = 〈W〉A, the string coupling and the moduli masses.

2Increasing p dynamically during the evolution comes at the expense of increased computational effort.

Moreover, the rate of convergence is not improved as long as we start with a large population, see also

section 3.2.

– 7 –
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These characteristics specify the vacuum’s location in moduli space, the tadpole as well

as various mass scales etc. Initially, we choose a certain number of fluxes at random,

whereas fluxes of any descendant population are determined through the pairing process

(see below). It is crucial that we restrict the tadpole such that Nflux ≤ Lmax, albeit we do

not fix it to a certain value. Otherwise, the population might be driven towards solutions

with arbitrarily large tadpole. Restricting the size of our tadpole may present limits to the

sorts of vacua accessible to our algorithm. For example, it has been noted that in some

examples F-term constraints force vacua at weak coupling, large complex structure, and

large volume to have large Nflux [98].

The fitness can be used to find vacua with certain values for the VEVs or functions

thereof, such asW0, which we collectively denote O(i) in this section. For a fixed compacti-

fication space, the fitness of some vacuum VA will be a function of the fluxes, FA = F (NA).

Say we are interested in vacua with values O(i),∗ for some observables O(i). (Throughout

this paper, we denote with the superscript ∗ the optimal solution within our GA.) We

write the value of the observable O(i) in the vacuum VA as O(i)
A = 〈O(i)〉A. We define the

associated fitness FA of VA as

FA =
1

N

[∑
i

wifi(O(i)
A ,O(i),∗, δO(i)) + b

]
. (3.2)

Here, we introduce weights wi and a normalisation factor N so that
∑

A FA = 1. We

typically choose fi to be a Gaussian of width δO(i), but other choices also work well. The

offset b is necessary to prevent FA from localizing around a local maximum of one of the fi.

In general, we have to keep in mind that several of the O(i) could be correlated. Thus, it also

has to be checked that the required values O(i),∗ are compatible with each other. Finally,

the dynamics of the algorithm is generically highly sensitive to the choice of weights wi.

Using the fitness, we generate a set of pairs (VA, VB) of vacua. We allow the two

vacua in a pair to be identical. We typically take some number P > p of random pairs,

large enough to guarantee enough gauge-inequivalent solutions after breeding satisfying

tadpole constraints. This is a minor setback compared to the general algorithm described

in section 3.1. There is typically no way to tell whether a pair leads to a viable solution

a priori. Still, random search algorithms face similar problems in this context, while they

do not benefit from the crucial interplay of selection, crossover and mutation. Thus, we

expect our algorithm to be more efficient than a Monte-Carlo procedure, notwithstanding

the aforementioned difficulties.

A child vacuum vC is constructed from a pair (VA, VB) in the following way. First, we

construct a new string of fluxes along the lines of section 3.1. That is, the new genotype

nC = (n1
C , . . . , n

2b3
C )T is given by

nC =
(
N1
A, . . . , N

k1
A , N

k1+1
B , . . . , Nk2

B , N
k2+1
A , . . . , N2b3

A

)T
(3.3)

where k1, k2 ∈ {1, . . . , 2b3}, k1 ≤ k2, are two randomly chosen integers. Mutations are

applied by replacing a certain number of fluxes by some new random value. We introduce

– 8 –
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the mutation rate qmut and perform a mutation on nmut flux numbers of a single individual

whenever q < qmut for a randomly chosen number q ∈ [0, 1].

Next, all newly obtained strings of fluxes are plugged into the F-term constraints to

judge whether they meet all relevant criteria. More specifically, we have to check the

existence of solutions, the size of the flux-induced D3-charge Nflux as well as gauge inequiv-

alence. Finally, the new genotype potentially results in a well-defined vacuum vC = V (nC).

A new population is defined as a random choice of p children vC . As mentioned above,

it is hence mandatory that the previous step leads to more than p inequivalent vacua by

initially generating P > p pairs. Having defined the population of the next generation, we

can continue by computing the associated fitness of each member and going through the

same steps again.

We also have to think about the initial population size. We typically restrict to tadpoles

smaller than some flux scale Lmax and compute the relevant quantities. Since genetic

algorithms are designed to find the global maximum of the fitness function, it is necessary

to have access to all the parameter space. This means that every allele should include every

possible flux choice. We restrict to fluxes in the interval [−Lmax, Lmax] for simplicity.3 If

we take the population size to satisfy

p ≥ (2Lmax + 1) 4(h(2,1) + 1) , (3.4)

then this is most certainly true. This is obviously a very naive estimate, but we expect it

to be sufficient for the level of our discussion.

3.3 Schemata and fitness distance correlation

We call the space parametrized by the Oi the search space, in contrast to the parameter

space of fluxes N. A GA converges in search space, but not necessarily in parameter space.

By this we mean that the final population is dominated by members for which O(i)
A is close

to the optimal solution. More specifically, for two solutions we find

|O(i)
A −O

(i)
B | . 2δO(i) , (3.5)

while the distance in parameter space can be arbitrarily large. (This is because the mapping

from fluxes to fitness is not one-to-one.) However, a notion of convergence in parameter

space also turns out to be useful. As explained in [55], convergence in parameter space

occurs for some variables which form so-called schemata, as introduced by Holland [36].

Although Holland’s idea has been criticized over the years,4 it gives a nice understanding of

the generic evolution within a GA, albeit being incomplete. Schemata are characterized by

a prototypical behavior of GAs which is that certain parameters quickly converge towards

3This is typically sufficient for the examples considered here since there are almost no solutions beyond

these limits, cf. the discussion at the end of section 4.3.2 and the second paragraph of section 5.4 in [81].
4Based on a more mathematical formulation of GAs, it appears misleading to regard static building

blocks as being an intrinsic part of the algorithm’s evolution, rather than an artefact of the fitness function.

In general, these building blocks change dynamically from one generation to the next, cf. chapters 3 and

10 of [96] for a comprehensive discussion. Nonetheless, we generically observe frozen subsets of fluxes

characterizing certain regions in moduli space.

– 9 –
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one unifying value. To be more precise, schemata represent the crucial features being

favorable characteristics of the optimal solution. This can be interpreted as the fact that

a small collection of alleles dominate the fitness. As soon as their values are adjusted

correspondingly for the majority of the population, the breeding procedure does not affect

them anymore. The formal study of schemata results in the following two conclusions.

First, the entire population never quite reaches the optimal solution. This is related to

the observation that schemata never touch every single individual, see section 1.2 in [55].

Secondly, mutation plays a crucial role in identifying the best schema. As we will see

further below, it forces the algorithm to pick out one schema associated to the “global”

maximum of F . It is important to note that in our case we may not reach the true global

maximum, since we typically restrict to certain corners of flux space.

One string-theoretic example where we might expect the domination of various schema

is the toy problem of generating fluxes satisfying the tadpole cancellation condition (2.13).

For large flux integers (relative to Lmax), satisfying (2.13) requires cancellations between

various flux contributions. The various ways flux contributions can cancel represent differ-

ent (approximate) schema for a search for tadpole-satisfying configurations.

To study the efficiency of GAs for our problems, we consider the `1-distance from an

individual to the fittest individual of a generation in flux space,

DA =

4(h(2,1)+1)∑
k=1

|Nk
A −Nk

ref| . (3.6)

Here Nref is the flux associated to a generation’s fittest individual. Recall that this member

is carried over to the next generation due to elitist selection. Thus, Nref is only replaced

if there appears a member of even greater fitness. In the literature on GAs [73, 74],5 the

utility of a GA for a given problem can be quantified by the fitness distance correlation

(FDC)6

FDC =
1

p

p∑
A=1

(FA − F̄ )(DA − D̄)

σFσD
. (3.7)

Here, F̄ is the average fitness, D̄ is the average distance, and σF , σD are the corresponding

standard deviations. One infers that models with

• 0.15 ≤ FDC ≤ 1 are GA-hard. This class of models is not tackled well by GAs since

the fitness correlates with the distance, i.e., the fitness grows with distance.

• −0.15 ≤ FDC ≤ 0.15 are difficult, that is, there is (almost) no correlation between

fitness and distance.

5See also [55] for a discussion of FDC in a physics context.
6Notice however that in the present context establishing the FDC in the original sense seems out of

reach. This is because DA is in the literature assumed to be the distance to the nearest global maximum.

To compute DA in this case, we would have to know about the position of every solution in advance. If this

were the case, we would have started with a deterministic approach right from the beginning. As previously

noted, models motivated by string compactifications are most probably NP-hard. We are therefore using a

different definition of DA which will allow us to judge whether certain questions are GA-hard or GA-easy.
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• −1 ≤ FDC ≤ −0.15 are GA-easy. The anti-correlation of fitness and distance implies

that the fitness is maximized as the global optimum is approached. Hence, these tasks

are suitable for running a GA.

When using the algorithm described in section 3.2, it can be useful to fix certain

parameters, while keeping others dynamical. For instance, the width or support of our

fitness function can be chosen to decrease to force the population to adapt more and more

to a certain value. This is especially helpful when trying to find vacuum solutions sharing

certain properties at a given level of accuracy.

To summarize, we can expect the initial population to quickly approach the optimal

solution due to the emergence of schemata. Subsequently, there is period of minor adjust-

ments of the remaining flux parameters.

4 Calabi-Yau hypersurface

In this section, we first review the definition of the hypersurface in question. Next, we

explain the general characteristics of our GA. We compare the results to GAs with different

breeding mechanisms and to a Metropolis algorithm. We perform only a single search here

before we come to more interesting applications in the upcoming section.

4.1 Expansion around the conifold locus

In this section we investigate a Calabi-Yau threefold arising as a hypersurface in the

weighted projective space WP4
1,1,1,1,4, defined by

4∑
i=1

x8
i + 4x2

0 − 8ψx0x1x2x3x4 = 0 . (4.1)

Its Hodge numbers are given by h(1,1) = 1 and h(2,1) = 149. We focus on the orientifold

taking x0 → −x0, ψ → −ψ along with worldsheet parity reversal, which arises from F-

theory compactified on a Calabi-Yau fourfold defined as a hypersurface in WP5
1,1,1,1,8,12.

This amounts to tadpole with Lmax = 972 [99]. As described in [81, 99, 100], (4.1) has a

discrete symmetry group Γ = Z2
8 × Z2, and any complex structure deformation except the

ψ-term is charged under Γ. By working in a regime where only fluxes consistent with Γ

are turned on, we can neglect these charged moduli and consistently solve for the periods

for the axio-dilaton φ and uncharged modulus ψ.

We are particularly interested in flux vacua near the conifold point ψ = 1, for which

the periods can be written in terms of x = 1− ψ, |x| � 1, as [100]

G1(x) = (2πi)3
[
a0 + a1x+O(x2)

]
,

G2(x) =
z2(x)

2πi
ln(x) + (2πi)3

[
b0 + b1x+O(x2)

]
,

z1(x) = (2πi)3
[
c0 + c1x+O(x2)

]
,

z2(x) = (2πi)3
[
d0 + d1x+O(x2)

]
. (4.2)
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Here, the constants b0, d0 ∈ R, a0, a1, d1 ∈ iR and b1, c0, c1 ∈ C can be found in section 5.1

of [100]. To first order in x ≡ 1− ψ, the F-flatness conditions result in

φ =
f1a0 + f2b0 + f3c0

h1a0 + h2b0 + h3c0

+O(|x| ln |x|) , (4.3)

ln(x) = −2πi

d1

[
(f1 − φh1)(a1 − µ1

µ0
a0) + (f2 − φh2)(b1 − µ1

µ0
b0)

f2 − φh2
+

(f3 − φh3)(c1 − µ1
µ0
c0) + (f4 − φh4)d1

f2 − φh2

]
− 1 . (4.4)

Using Monte Carlo simulations, the authors of [100] explicitly showed that vacua cluster

near the conifold point, confirming the expectation from the continuous flux approximation

of [7].

In the remainder of this section, we perform all algorithms with

Lmax = 972 , L = 100 . (4.5)

Since we work in the conifold regime, the VEV of the complex structure modulus x is

typically driven towards tiny values. This is because the flux vacua cluster around the

conifold point.

4.2 Analyzing different mutation rates

Let us now find flux vacua with a certain value of the superpotential W0. This can be

relevant when, e.g., looking for vacua that are applicable for any of the three branches of

Kähler moduli stabilisation, namely KKLT [101], LVS [102] or Kähler uplifting [103], which

generically require |W0| � 1, |W0| & 1 and |W0| ∼ O(1 . . . 10) respectively. For simplicity,

we only search for a specific absolute value of |W0|, although fixing real and imaginary

separately is also within the capabilities of our GA. In the following, we use W0 to denote

the absolute value of the superpotential. We run the algorithm with the parameters

W∗0 = 50000 , δW = 2000 , p = 1000 , Ngen = 50 . (4.6)

Here, we choose not to apply any crossover, but restrict to the effects of selection and

mutation. As we will see in the remainder of this paper, this is already sufficient to find

(presumably local) fitness maxima. We discuss the impact of crossover on these results

in section 4.4. To guarantee the optimal outcome for a GA, it is necessary to adjust the

number of mutations as well as the mutation rate. Here, we run our algorithm several

times with nmut mutations per mutated child and mutation rate qmut.

In order to find the optimal mutation scheme, we compare the convergence around

a fixed neighborhood around W∗0 , cf. figure 1. First of all, we observe that applying two

mutations per child (purple line) results in an insufficient convergence rate. This behavior

is no surprise because, having only 8 independent fluxes to begin with, two mutations

overshadow the underlying structure of the optimal solution. In contrast, one mutation

results in a seemingly stable evolution over all generations with high convergence rate.
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Figure 1. Number of members in neighborhoods of radius r = 500 around W∗
0 for zero, one or two

mutations and different mutation rates.

Moreover, by comparing the yellow and green line in figure 1 we deduce that the search for

W0 considered in this section does not seem to strongly depend on qmut. Nonetheless, we

emphasize that it is crucial to scan over different mutation rates in all examples discussed

below. Otherwise, the GA’s ability to find certain schemata associated to the optimal

solution is undermined.

All in all, we conclude that mutation really is an essential ingredient for the success of

our algorithm. For our purposes at most one flux mutation per individual seems to be a

good guess. However, the mutation rate has to be adjusted accordingly to guarantee the

optimal outcome. As we will see below, this typically depends on the specific task.

4.3 Genetic algorithm dynamics

After having investigated different mutation rates, we describe the generic features of a

GA’s evolution. We proceed by running the algorithm using

W∗0 = 50000 , δW = 2000 , p = 1000 , Ngen = 100 , qmut = 0.5 . (4.7)

In practice, we are interested in solutions that approximately satisfy W0 ≈ W∗0 up to small

deviations. We therefore decrease δW after 50 generations by 50% every 20 generations.

In doing so, we change the fitness landscape and induce an additional force on the flow of

the population. As we will see below, this allows us to find about 93% of the flux vacua

localized in the range [W∗0 − 50,W∗0 + 50].

Figure 2 shows the number of individuals in neighborhoods of different sizes r around

the optimal solution. During the first 50 generations with δW = 2000, we observe a sharp

incline of the blue and orange curve corresponding to r = 1000 and r = 750 respectively.

Hence, the population quickly moves towards the optimal solution, but remains mostly

outside a neighborhood with r = 500. After decreasing δW, we observe another sharp

incline, but this time in the green (r = 500) and red (r = 250) curve. In the final

population about 93% of individuals have the optimal value of W0 to an accuracy of 0.1%.

We show the distribution of our population in the gs-W0-plane on the left of figure 3.

At the beginning, the population (blue dots) is randomly scattered across random values

ofW0 and gs. After 40 generations, the distribution of W0 and gs exhibits a clear structure
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Figure 2. Number of individuals within different ranges around W∗
0 .

in the sense that the individuals around W∗0 form almost straight lines in gs-direction. As

expected for GAs, a certain fraction of individuals is found far away from the optimal

solution. However, the majority of vacua strongly clusters around W∗0 which is clearly

visible from figure 3. After having decreased δW, the distribution of the final population

leaves only one of the previous gs-lines present which is closest to W∗0 . We interpret this

behavior as an indication of improved convergence related to the reduction of δW. The

FDC (3.7) averaged over all generations results in FDC = −0.53 which is within the GA-

easy regime. This is in good agreement with the above qualitative observations. Thus,

we find reason to believe that our definition of an approximate notion of FDC (3.6) is

well-suited for our purposes.

Next, let us consider the distribution of φ in the fundamental domain as depicted on the

right hand side of figure 3. Interestingly, after 40 generations the flux vacua mostly align

with straight lines pointing towards the origin. These lines seemingly form a symmetric

pattern. On top of that, short vertical lines appear at the outer region of the fundamental

domain. This pattern survives until the termination of the algorithm and, even more

importantly, is enforced during the evolution. We interpret this result as the manifestation

of the schemata associated to the optimal value of W0. That is, the chromosomes of

individual fluxes share specific properties that result in the observed alignment of φ-VEVs.

This interpretation is further supported by comparing different crossover and breeding

mechanisms in the next two sections.

To understand these results further, we use persistent homology to analyze the topo-

logical structure of the distribution in flux space, applying the methods used in [25, 104],

see also [105–110] for more elaborate introductions. Persistent homology has previously

been used to characterize distributions of string vacua, and identify loci in moduli space

related to phenomenologically interesting properties.

Applied to the scenario under consideration, we compare the flux distributions of

populations at different generations during the GA’s evolution. We specifically consider

the persistence diagrams associated to the data set of fluxes for a single generation. These
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Figure 3. Distribution of gs, W0 and φ for three generations.

diagrams encode the two scales at which certain higher-dimensional topological features in

the set of fluxes first emerge and vanish. In figure 4, we compare the flux configurations

of the initial (top) and the final (bottom) population.7 The plot on the top shows a lot

7More specifically, we consider the distribution of constrained fluxes, cf. section 4.5 for details. These

fluxes are eventually fixed by evolution of the GA. Restricting to the constrained fluxes allows one to

observe the emergence of schemata during the GA’s evolution.
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Figure 4. Persistence diagram for the population in the initial (left) and final (right) generation

in flux space.

of structure in terms of the presence of various k-cycles, albeit most die very quickly.

Randomly choosing the initial fluxes results in regions of non-trivial topology. In contrast,

the distribution of the final population on the bottom of figure 4 does not show much

topologically interesting structure. Moreover, the majority of observed features are very

short-lived in terms of the associated scales. This indicates that (most) fluxes form a cluster

which does not exhibit any non-trivial topological properties at large scales.

4.4 The role of crossover

The takeaway message of the previous section is that a GA can be applied even without

performing any crossover. The true power of GAs typically comes only to light when having

a dynamical interaction of selection, crossover and mutation. In the remainder of this

section, we would like to contrast different choices for running the GA. For instance, one

can consider various crossover operators at the same time to increase the GA’s performance.

This is necessary since different tasks generally require the application of suitable crossover

procedures. Here, we restrict to a 2-point crossover operator as explained in section 3.2.

Using the same initial population as previously, we find the evolution depicted as

the orange line in figure 5. If we compare the blue (no crossover) and orange (2-point

crossover) line, we observe that applying a non-trivial crossover operator leads to a more

stable evolution, especially at early stages. Recall that we reduce the support of the fitness

at generation 50. At this point of the GA’s evolution without crossover the population

seemingly feels a strong pull towards the optimal solution. In contrast, the convergence rate

with 2-point crossover increases almost monotonically. Thus, although the final population

is qualitatively the same, we find significant difference in the overall evolution.

The previously mentioned structures in figure 3 emerge with 2-point crossover as well

which is a strong indication for a characteristic feature associated to the optimal solution,

see the discussion in the upcoming section. We also analyzed the resulting distribution of
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Figure 5. The number of individuals within a range of 500 around W∗
0 for the algorithms of

sections 4.3, 4.4 and 4.5.

constrained fluxes in the spirit of the previous section. Indeed, the persistence diagram for

the final population mirrors the results of figure 4.

4.5 Comparing different breeding mechanisms

There is another way of implementing a genetic algorithm which might be useful when

large input parameters appear. Recall that, in order to guarantee that the algorithm can

access most of the landscape, we have to ensure that the whole range of alleles appears

within each individual locus of a chromosome. This means that the necessary population

size scales with the maximally allowed allele. Hence, it might be useful to interpret each

flux as a single chromosome by encoding it in a binary form. As opposed to the breeding

and crossover mechanism explained in section 3.2, we now perform crossovers for each

individual flux. That is, we act on 8 strings of zeros and ones. It is expected that the

necessary population size is drastically reduced in this way. In fact, one finds that for a

chromosome of length ` [55]

pmin ≈ 1 +
1

log(2)
log

(
−`

log(P∗)

)
(4.8)

with P∗ being the probability with which every allele should appear at each locus at least

once. This is generally much smaller than the minimum population size for alleles taking

values in [−Lmax, Lmax].

In this section, we compare the performance of both methods, applying 0- and 2-point

crossover for the same population size p = 1000.8 First, the overall evolution is very alike to

the distribution shown in figure 3. It is worth mentioning that the observed pattern in the

distribution of φ-VEVs also emerges here independently of whether we perform 0- or 2-point

crossover. Thus, we are convinced that this linear structure is not related to the applied

crossover procedure, but rather a property of the vacua close to the optimal solution.

8The precise value of a minimal population size does not matter in our simple models. However, for

applications with more degrees of freedom the advantage of a reduced minimal p from binary encoding can

be substantial. For our purposes, this way of encoding crossovers gives similar results.
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In figure 5, we see that there are only minor differences in the overall performance.

Hence, this way of performing crossovers and mutations might be advantageous in higher-

dimensional models than considered here. The point is that solving the equations of motion

in high-dimensional spaces is computationally very costly. Thus, working with smaller

population sizes provides a welcome reduction in computational expense.

As before, we observe a strong clustering also for the case of binary crossover. This

becomes apparent by performing a Principal Component Analysis (PCA) on the final pop-

ulation. In general, PCA is useful for determining sets of linearly uncorrelated variables.

Applied to the flux distribution of our population we gain information about the effective

dimensionality of the resulting (discrete) hypersurface. That is, some fluxes will take spe-

cific values as we argued previously in the context of schemata in section 3.3, while others

remain arbitrarily distributed over some range of flux values [−L,L]. PCA organizes the

full flux space into orthogonal dimensions of decreasing variance. The intuition is that most

data actually lives on a hyperplane of smaller dimension than the naive dimensionality of

the data set. This can be quantified by examining the percentage of the data’s variance

that is retained when the data is projected onto a particular hyperplane.

One subtlety is that our gauge-fixing condition forces different flux components to

take values in ranges of different scales. Naive application of PCA would then artificially

inflate the importance of fluxes taking values in a large range. To remove this artifact,

we first rescale the flux components in the initial population so that each component has

zero mean and unit variance. The same scaling transformation is then applied to the final

transformation.

For the final population obtained in section 4.3 and section 4.4, we find that the fluxes

live on an effectively 1-dimensional hypersurface, with 92.84% (no crossover) and 89.57%

(2-point crossover) of the variance in the first component. Similarly, binary encoding leads

to significantly more clustering with 99.63% (no crossover) and 92.96% (2-point crossover)

variance in the first component. Qualitatively, both crossover procedures give rise to a very

similar evolution of the variance.

4.6 Comparison to a Metropolis algorithm

In this section, we compare the results of our genetic algorithm to those of random walk

approaches. More specifically, we consider a Metropolis algorithm [111] or rather its re-

lated variant of simulated annealing [112]. As before, we start with a randomly sampled

generation of flux vacua. In contrast to the GA, we take a random step from each point in

flux space until we find a new solution to the F-term equations with small enough tadpole.

Explicitly, if N ∈ Z8 is some chromosome in our population, then a new flux M ∈ Z8 is

chosen as

M = N + rq (4.9)

where q ∈ Z8, |qi| ≤ 1, is a random vector and r ∈ N some fixed step size. The vector

q must be chosen such that M also leads to a solution of the F-term constraints with

Nflux(M) ≤ Lmax. Practically, this means that we have to perform many such steps and

test the criteria for a viable physical flux choice.
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Figure 6. The distribution for gs and W0 obtained from a Metropolis algorithm.

In order to define a new population, we evaluate an energy functional E given by the

difference in fitness

E = F (N)− F (M) . (4.10)

If E ≤ 0, the new configuration M is energetically favorable. In this case, M is carried

over to the new population. If E > 0, we define a probability

PT (E) = e−E/T (4.11)

with some “temperature” T and draw a random number q ∈ [0, 1]. If q < PT (E), M is

chosen as a member of the next generation.

Again, we use the same initial flux choices and let the algorithm run for 1000 steps for

each individual. We choose r = 1 and determine the initial temperature T for each vacuum

solution individually. That is, we fix an initial acceptance rate of about 20% by considering

100 random steps q before starting the evolution. We decrease the temperature by a factor

of 10 every 100 steps. In total, we find that 96% of individuals can be found within the

range [W∗0 − 50,W∗0 + 50]. If we compare the overall evolution of the distribution of gs and

W0 in figure 6 with the one for the GA in figure 3, it becomes clear that this method, with

each individual walking independently of the others, does not exploit correlations between

different vacua. Although the population gets close to the optimal solution, it shows less

structure than the equivalent plots in figure 3. Similarly, we checked that the distribution

of φ-VEVs does not exhibit the symmetric pattern of figure 3. Qualitatively, this can be

understood as follows. After some generations within a GA, all vacua are in a sense related

to each other due to the applied selection process. On the contrary, the random walk
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Figure 7. The persistence diagram for the final population obtained with the Metropolis algorithm.

There is significantly more large scale structure to be observed than in the analogous plot on the

bottom of figure 4.

approach does not link solutions in a similar fashion. Thus, there is no reason for them to

share characteristics, albeit the population gathers around the optimal value W∗0 .

Since the final population is randomly distributed around the optimal solution, there

should be less clustering in flux space. By this reasoning, we should expect the distribution

of fluxes in the final distribution to have a much richer structure than for a GA. This can

be seen by comparing the persistence diagrams. Recall that in figure 4 we observed that

the final population resembles a cluster in flux space. In contrast, the persistence diagram

of the final population associated to the Metropolis algorithm in figure 7 exhibits more

long-lived higher-dimensional features. That is, there are a greater number of long-lived 1-

and 2-cycles.

As before, we performed PCA on the flux distribution. Here, the variance in the

first component increases to only 54.6% in contrast to & 89% for the previous algorithms.

That is, the final population obtained via the Metropolis algorithm is less constrained in

flux space. This is to be expected from dynamics of the algorithm and already confirmed

via TDA.

Finally, we note that in our experiments, Metropolis was less efficient than GAs in

two senses. First, the random steps taken by Metropolis were less efficient in finding

physical vacua than our GA. As previously argued, crossover should be more efficient in

finding physical vacua than taking random steps. Second, even in terms of physical steps,

Metropolis took longer than our GAs. We found that it took Metropolis an average of 336

physical steps to match the performance of a GA after 80 generations.

5 Symmetric T 6

In this section we consider compactifications on a symmetric T 6. One interesting feature of

the symmetric T 6 is the existence of vacua with vanishing tree-level superpotential. These

special vacua give rise to the opportunity to study their emergence within GAs. A major

issue with finding such vacua is that they are quite scarce in comparison to generic vacua.
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Hence, we cannot take for granted that GAs can identify these exceptional cases within

the landscape.

5.1 Generic and special vacua

We follow the conventions of [81]. The symmetric torus can be viewed as a direct product

of three T 2 setting the modular parameters τ ≡ τ1 = τ2 = τ3 all equal. The moduli space

has two complex dimensions, so we have upon gauge fixing 8 independent flux parameters.

Let us first parametrize a general T 6 before we specialize to the symmetric case further

below. We define coordinates xi, yi for i = 1, 2, 3 with periodicity xi ≡ xi + 1, yi ≡ yi + 1

such that the three holomorphic 1-forms can be written as dzi = dxi + τ ij dyj . We take

the orientation ∫
dx1 ∧ dx2 ∧ dx3 ∧ dy1 ∧ dy2 ∧ dy3 = 1 (5.1)

and choose a symplectic basis for H3(T 6,Z), namely

α0 = dx1 ∧ dx2 ∧ dx3 , αij =
1

2
εilm dxl ∧ dxm ∧ dyj ,

βij = −1

2
εjlm dyl ∧ dym ∧ dxi , β0 = dy1 ∧ dy2 ∧ dy3 . (5.2)

The holomorphic 3-form can be written as

Ω = dz1 ∧ dz2 ∧ dz3 . (5.3)

We can expand the 3-form fluxes in terms of the symplectic basis (5.2)

F3 = a0α0 + aijαij + bijβ
ij + b0β

0

H3 = c0α0 + cijαij + dijβ
ij + d0β

0 . (5.4)

For a symmetric T 6, we take

τ ij = τδij . (5.5)

This is equivalent to taking the T 6 to be factorizable as three two-tori with equal modular

parameter. Similarly, the fluxes get reduced to

aij = aδij , bij = bδij , cij = cδij , dij = dδij . (5.6)

The superpotential takes the simple form

W = P1(τ)− φP2(τ) (5.7)

where Pi are cubic polynomials in τ , i.e.,

P1(τ) = a0τ3 − 3aτ2 − 3bτ − b0 , (5.8)

P2(τ) = c0τ3 − 3cτ2 − 3dτ − d0 . (5.9)

The Kähler potential for τ and φ reads

K = −3 log(−i(τ − τ))− log(−i(φ− φ)) (5.10)

and the D3-brane charge induced by fluxes corresponds to

Nflux = b0c
0 − a0d0 + 3(bc− ad) . (5.11)
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The F-term constraints can be written in the form

P1(τ)− φP2(τ) = 0 , (5.12)

P1(τ)− φP2(τ) = (τ − τ)(P ′1(τ)− φP ′2(τ)) (5.13)

For non-zero VEV of the superpotential W0 6= 0, the axio-dilaton can be obtained us-

ing (5.12) so that

φ =
P1(τ)

P2(τ)
. (5.14)

Plugged into (5.13), one finds for τ = x+ iy

q1(x)y2 = q3(x) , (5.15)

q0(x)y4 = q4(x) . (5.16)

The qi are polynomials in x which have for instance been computed in the appendix of [81].

Surprisingly, multiplying both (5.15) and (5.16) to eliminate y, a cubic (rather than sextic)

equation in x remains so that x can be found by solving

α3x
3 + α2x

2 + α1x+ α0 = 0 . (5.17)

The coefficients αi are combinations of flux integers and can again be found in [81].

Solutions with W0 = 0 satisfy

P1(τ) = P2(τ) = 0 . (5.18)

Thus, the solution for φ simply reads

φ =
P ′1(τ)

P ′2(τ)
. (5.19)

As shown in [113], these solutions obey the special property that P1 and P2 must factorize

over the integers, cf. section 4.3.3 in [81]. Recently, it was shown in [25] using persistent

homology that the solutions with W0 = 0, when combined with flux quantization and

tadpole cancellation, exhibit a different structure in the moduli space than generic vacua.

We will see in section 5.3 that this also plays an important role when applying GAs to

minimizing W0.

5.2 Searching for gs — emergence of multiple schemata

In this section, we discuss the emergence of various correlations and schemata within the

GA’s evolution. For the sake of simplicity, let us first look for solutions with a certain value

of gs. We begin with the following choice of parameters

g∗s = 0.3 , δgs = 0.05 , p = 10000 , Ngen = 100 , Lmax = 500 , qmut = 1 . (5.20)

We use a Gaussian to define the fitness, but e.g. a combination of Heaviside-functions

works equally well. After half of the generations, we divide δgs by a factor of 2 every 10
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Figure 8. Evolution of the distribution of φ (top) and τ (bottom) for three generations.

generations. We employ no crossover within this search since it appears to be more efficient

than employing a 2-point crossover operator.

Using the algorithm described in section 3.2, we find an evolution of the initial pop-

ulation as depicted in figures 8 and 9. Even though we only promoted gs to be a search

parameter, y = Im(τ) also accumulates around a value of approximately given by y ≈ 10.68,

cf. the bottom plot of figure 8. As described in the introduction, this is a generic obser-

vation for GAs during which the evolution exerts a strong pull on some components of
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Figure 9. Evolution of the distribution of gs and W0 for three generations.

Figure 10. Number of members in neighborhoods of different radius around g∗s .

the moduli. In contrast, the values of Re(φ) and Re(τ) remain equally scattered across

the fundamental domain. Remarkably, we detect a correlation between gs and W0, see

figure 9. For small values of W0, the value of gs is almost perfectly pinned to g∗s , whereas

the solutions tend to diverge away from g∗s for large W0. This clearly raises the question

whether we can improve on our findings by simultaneously minimizing W0.

To quantify convergence, we count the number of members within neighborhoods of

different sizes. The progress of convergence from one generation to another is shown in

figure 10. We observe that decreasing δgs after generation 50 clearly pushes the population
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Figure 11. The distribution of b for generation 10 (left) and 30 (right).

Figure 12. The distribution of vacua in the W0-gs-plane for generation 10 (left) and 30 (right).

closer to g∗s . Moreover, around 90% of the population can be found within the interval

[g∗s − 0.1, g∗s + 0.1] after only 10 generations.

As discussed in section 3.3, the initial population evolves rapidly towards a region

close to the optimal solution. The drop in blue and orange line observed in figure 10

is associated to the fact that the population gathers around two local fitness maxima.

However, the algorithm picks out a global maximum over the course of a few generations.

This can also be understood by looking at the distribution of certain fluxes forming the

schemata. For simplicity, we only look at one dominating flux. Figure 11 shows that there

are two dominating peaks in the distribution of the flux number b at generation 10 (left),

recall eq. (5.6). Once the dominating schema wins, the population is pulled towards the

peak on the right as depicted on the right hand side of figure 11. This can also be supported

by considering the distribution of vacua in the W0-gs-plane as shown in figure 12. Notice

that briefly the total number of members in the 1σ-region decreases, cf. figure 10. It is

therefore important to keep in mind that the purpose of the algorithm is not to find as

many suitable members as possible, but to maximize the fitness function.

Finally, let us comment on the distribution of fluxes. By performing PCA on the fluxes

we observe that there are essentially only two free unconstrained directions in flux space,

namely b0 and d0. The evolution of the corresponding distribution is shown in figure 13.

We observe a triangular shape with two dominating horizontal lines for fixed d0. All in all,
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Figure 13. Flux distribution for the two (almost) unconstrained fluxes b0, d0 in the final population.

we find that for about 80% of the population

a0 = 1 , b0 ∈ [−250, 250] , c0 = 0 , d0 ∈ [370, 390] ,

a ∈ [−1, 1] , b ∈ [−36,−33] , c = −1 , d ∈ [−3, 3] . (5.21)

5.3 Minimizing W0

Here, we try to find solutions with W0 = 0. As discussed previously, these solutions have

special properties in terms of the fluxes and VEVs. Notice that we do not implement these

analytic properties by hand, but simply look for solutions with P1(τ)=P2(τ)=0 for τ and

physical VEVs. So the algorithm does not know in advance about these special character-

istic features associated to W0 = 0 solutions. We would like to understand whether this

has any impact on our genetic algorithm. We consider the parameters

W∗0 = 0 , δW = 20 , p = 10000 , Ngen = 180 , Lmax = 500 , qmut = 0.8 . (5.22)

We decrease the support of the fitness function by 50% at generation 50, 70 and 90.

As shown in figure 14, the populations quickly converge towards small values of W0.

However, the rate of convergence is significantly less than in e.g. figure 10. This becomes

even more apparent when investigating the FDC of this task. Indeed, the evolution of

the FDC in figure 15 shows that, while minimizing itself is not problematic at all, finding

W0 < 2.5 is GA-difficult. For one thing, the lack in convergence is related to the scarcity

of W0 = 0-solutions in comparison to those with W0 6= 0. As derived in [81], the number

Nvac(L,W0 = 0) of W0 = 0-solutions for given flux scale L ≤ Lmax

Nvac(L,W0 = 0)

Nvac(L)
∼ 9

8π2

log(L)

L
(5.23)
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Figure 14. Top: the number of members in neighborhoods of different radius aroundW∗
0 . Bottom:

the evolution of the distribution of gs and W0 for four generations.

in terms of the total number of vacua Nvac(L). On top of that, at small L discretization

effects overshadowW0 = 0 solutions (see for example figure 3 in [81]) which is why we have

to go to comparatively large L. In any case, we observe that special solutions with W0 = 0

are difficult for our algorithm to identify. Notwithstanding, we note that a small fraction

of individuals do satisfy W0 = 0.

In the light of the ongoing discussion about KKLT and related dS-vacua construc-

tions [114, 115], it is crucial to search the landscape for suitable flux vacua, see e.g. [99, 116]

for previous attempts. In order to safely ignore perturbative corrections, it is necessary to

haveW0 � 1 [101, 117]. One can infer the existence of such vacua by employing statistical

arguments [8]. However, it is generally true that these vacua are less common than those

with W0 & O(1) using similar arguments to the one above [10].
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Figure 15. Fitness distance correlation as a function of generation.

In our case, the smallest value found via the above algorithm is W0 ∼ 10−2. Here it is

important to keep in mind that the symmetric T 6 is only a simple toy example. General

Calabi-Yau orientifolds with many moduli are expected to have a more involved structure

within their flux landscape. Therefore, it would be interesting to see whether smaller values

of W0 are obtainable within such geometries utilizing GAs and extensions thereof.

5.4 Fixing mass scales

To conclude our survey of applications, we investigate a more difficult problem in the

context of GAs. Namely, we elaborate on the idea of specifying several observables within

our search. As we will see further below, it is necessary to try different selection methods

in order to guarantee the success of our GA. We restrict our analysis to the case of no

crossover which allows us to study the impact of different selection methods more easily.

The question of finding flux configurations with certain values of the mass scales is

ubiquitous in the context of model building in string theory. For simplicity, we compute

the diagonal entries of the mass matrix (2.8) for the canonically normalized fields evaluated

at the SUSY minimum DφW = DτW = 0 which we denote MRe(φ) etc. We fix all four

masses at the same value, i.e., we consider

M∗ = 5000 , δM = 1000 , p = 10000 , Ngen = 120 , qmut = 1 . (5.24)

We determined the associated weights and the offset in (3.2) by trial and error, giving

wRe(φ) = 6.8 , wIm(φ) = 1.0 , wRe(τ) = 1.3 , wIm(τ) = 0.4 , b = 0 . (5.25)

We decrease δM only once at generation 60.

Figure 16 summarizes the results obtained by running the GA. The left plot shows that

certain quantities are treated differently from the others during the algorithm’s evolution.

The right hand side of figure 16 depicts the number of individuals that satisfy the search

criteria for all four mass scales at the same time. In comparison to the results obtained in

the previous section, we conclude that it is significantly harder to get closer to the optimal

solution whenever several parameters are taken into account. However, this might simply

be related to a bad choice of selection methods. As mentioned previously, many of such
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Figure 16. Top: the number of individuals having a single mass matrix entry within a neighbor-

hood of r = 500. Bottom: the number of individuals having all four masses within neighborhoods

of different radii.

methods have been discussed in the literature, but we restricted mainly to the so-called

roulette-wheel selection so far where the fitness itself is used as a measure of probability to

procreate. This typically leads to premature convergence towards a local fitness maximum.

This is not really problematic in the case of one GA-parameter. In the context of several,

however, this is a serious issue.

Therefore, we tested different selection techniques such as

• rank-weighted selection where each member is ranked by a number 1, . . . , p according

to its fitness. This ranking is used to determine the probability for procreation which

is chosen to be a linear mapping here. In comparison to roulette-wheel selection this

means that individuals with high fitness do not dominate the crossover procedure too

early during evolution.

• tournament selection where so-called tournaments between a subset of members are

performed. That is, we pick k < p individuals from our population and take only

the fittest for breeding. Since we need to make several of such tournaments, the

diversity of fit individuals in the descendant population is enhanced. In other words,

the population does not localize too early around a local fitness maximum.
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Figure 17. Top: the number of individuals having a single mass matrix entry within a neighbor-

hood of r = 500 using tournament selection. Bottom: the number of individuals having all four

masses within different neighborhoods.

The first does not lead to any better results, but is significantly slower in terms of conver-

gence around the optimal solution. In contrast, tournament selection is really efficient in de-

termining a global fitness maximum that satisfies the constraints on all search parameters.

Starting with the same initial population as above, we use the parameters

wRe(φ) = wIm(φ) = wRe(τ) = wIm(τ) = 1.0 , b = 0 (5.26)

and consider only Ngen = 60 generations. The results for tournament selection are sum-

marized in figure 17. A crucial advantage of using tournament selection is that one can

achieve significantly better results compared to figure 16 with only half the number of gen-

erations. Even though performing several tournaments is computationally more expensive,

this selection method is therefore more efficient in the scenario under consideration.

Finally, we would like to discuss tasks that are hard to tackle with GAs. In the context

of this section, we observed some difficulty trying to arrange mass hierarchies. We believe

that this is related to the more general circumstance that, whenever observables are strongly

correlated, it is hard to fix them simultaneously. In the worst case, certain parameter values

might be incompatible with each other, in the sense that no such pair exists in the fitness
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landscape. Alternatively, such solutions are very scarce. Identifying these limitations is

typically beyond the GA’s (or any stochastic search algorithm’s) capabilities.

6 Conclusions

In this paper, we demonstrated that genetic algorithms are a helpful tool for searching for

specific phenomenological features in the landscape of flux vacua. This is possible due to the

underlying structure of the landscape, which is crucial for the success of GAs. We showed

that GAs may be used not only to speed up the search for phenomenologically interesting

models, but also to uncover unknown structures and correlations in the landscape.

In the present work, we discussed various properties of GAs that allow for a systematic

and efficient study of the flux landscape. Specifically, we proposed a dictionary between

concepts in these two respective fields that could be useful for future applications of GAs

to string theory.

Applying our dictionary, we first considered the example of a Calabi-Yau hypersurface

in a weighted projective space close to a conifold point. We observed the important effect

the mutation rate has on the algorithm’s performance, and the need to adjust it for various

applications. We also studied the general dynamics of the GA, with an initial period of

strong pull towards a local optimum followed by slower convergence to the global optimum.

Along these lines, we used TDA and PCA to study the “shape” of the distribution of

fluxes as a function of generation. These methods confirmed our ideas regarding clustering

in the final population. We showed that distinct crossover operations typically lead to

different evolutionary properties of the GA, albeit the final population turns out to be

almost equivalent. In addition, we compared various breeding mechanisms which could

be useful in scaled-up versions of the models investigated in this paper. In contrast to a

Metropolis algorithm, the GA identifies links between various vacua due to the applied

crossover procedure, enabling it to exploit the landscape’s structure. On the other hand,

a Metropolis algorithm features no such benefits.

We also applied the GA to a symmetric T 6. While searches for values of the string cou-

pling are GA-easy, we showed that finding solutions satisfyingW0 = 0 is difficult in the con-

text of GAs. Although these solutions emerged within our searches, their scarcity seems to

counteract the formation of associated schemata. This behavior can be quantified in terms

of the fitness distance correlation. Finally and most importantly, we demonstrated that

GAs are capable of finding vacua with several properties, namely specifying several masses.

This success is encouraging as we look towards phenomenologically-viable constructions.

We emphasize that the applications of GAs are diverse and can easily be translated

into other promising setups of, e.g., model building in string theory. In the future, we

would like to turn to phenomenologically interesting questions such as testing the WGC

or other statements about the landscape. We would also like to investigate different se-

lection methods and other GA-relevant techniques allowing for an improved version of the

algorithm applied in this paper.
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