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in this context fuzzballs and highly excited little strings are one and the same. We explore

these ideas through an analysis of D-brane probes of fivebrane supertube backgrounds.

String theory dynamics on these backgrounds is described by an exactly solvable null-

gauged WZW model. We develop the formalism of null gauging on worldsheets with

boundaries, and find that D-branes wrapping topology at the bottom of the supertube

throat are avatars of the “long string” structure that dominates the thermodynamics of

the black hole regime, appearing here as excitations of supertubes lying near but slightly

outside the black hole regime.
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1 Introduction

1.1 Fivebrane dynamics

The dynamics of coincident fivebranes in string theory is governed by little string theory, a

somewhat mysterious non-gravitational, nonlocal theory in six spacetime dimensions [1, 2]

(for reviews, see [3, 4]). We understand the outlines of little string theory, but little

more. For instance, it is nonlocal on the scale n5α
′ ≡ α′little, where n5 is the number of

fivebranes and α′ is the inverse tension scale of the fundamental (F1) string. Sufficiently

supersymmetric backgrounds exhibit T-duality symmetry. Fivebrane thermodynamics at

sufficiently high energy density is dominated by a Hagedorn gas of little strings [5]. Yet

much more remains obscure.

The presence of fivebranes fractionates fundamental string charge and tension. One

can see this in the M-theory lift of type IIA, where the fundamental string is an M2-

brane wrapped around the circular 11th dimension. Upon encountering a stack of n5

coincident M5-branes (transverse to the circle), the wrapped membrane can split into

n5 strips stretching between successive M5’s around the circle, see figure 1. The charge

fractionates, and so does the tension of the effective “W-strings”, providing a heuristic

picture of the origin of the little string’s tension scale.

When the stack of fivebranes is wrapped around M× S1 (where M = T4 or K3),

sufficiently excited states are are microstates of black holes in the effective five-dimensional

supergravity, whose entropy matches the Hagedorn entropy of the little string [5],

S = 2π
√
NL + 2π

√
NR , (1.1)

where NL,R are the excitation levels of the little string.

If one binds n1 strings to n5 fivebranes (i.e. F1-NS5 or D1-D5 bound states), they will

fractionate into little strings in a superselection sector of total little string winding number

n1n5. Momenta on the little string can be fractionated by amounts up to n1n5 (if the

fivebranes have a suitable Zn5 twisted boundary condition around the S1), and entropy is

enhanced by a factor n5 over the entropy of Hagedorn fundamental strings in isolation. This
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Figure 1. Open M2-branes stretched between a stack of M5-branes. If the latter are separated

in their transverse space (not depicted here), in the type IIA limit this bound state reduces to

D2-branes stretched between NS5-branes.

effect plays an important role in the infrared scaling limit RS1 →∞ with the energy above

the ground state RS1E ≡ ε held fixed, which leads to an effective geometry AdS3×S3×M;

the associated BTZ black holes have entropy

S = 2π
√
n5n1(ε+ np)/2− J2

L + 2π
√
n5n1(ε− np)/2− J2

R . (1.2)

This expression is the specialization of the little string’s Hagedorn entropy (1.1) to this

scaling limit, using the Virasoro constraints on the little string [5]

M2 =

(
np
R
− mR

α′little

)2

+
4

α′little
(NL + J2

L) =

(
np
R

+
mR

α′little

)2

+
4

α′little
(NR + J2

R) (1.3)

with M ∼ (mR/α′little) + ε/R in the limit, and we work in the superselection sector where

the little string has m = n1n5 units of winding and np units of momentum on S1, and

left/right angular momenta JL,R in the space transverse to the fivebranes.

The little string is a highly quantum object living down at the bottom of the throat of

the n5 coincident fivebranes, with an effective coupling of order one, and so it is difficult to

translate the above heuristic picture into a systematic, quantitative computational strategy.

However, there may be properties that are robust against interactions from which to glean

further insights. Consider for instance the correspondence transition [6], first considered

in the context of bound states of fundamental strings and D-branes in asymptotically flat

spacetime. At low energies, the density of states is well-approximated by a gas of weakly

interacting strings on the D-brane (sometimes this is a Hagedorn gas of the fundamental

string, sometimes it is a gas of short open strings). At the correspondence point, the string

gas entropy matches the entropy of a black hole or black brane carrying the corresponding

charges, and above this point black holes dominate the density of states, see figure 2.

This behavior is a somewhat more sophisticated version of the dynamics of quantum-

mechanical particles interacting with gravity. One doesn’t treat an elementary particle as

a small black hole because its Compton wavelength is much larger than its Schwarzschild

radius; near the massive source, classical dynamics (and in particular, classical general

relativity) does not apply because the quantum wavefunction of the particle is spread over a
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Figure 2. The string/black hole correspondence principle: (a) In flat spacetime, the density of

states is dominated by excited strings at low energies; above the correspondence point, black hole

thermodynamics dominates. (b) In NS5 throats, black hole states are not normalizable if the slope

Q of the linear dilaton (which governs the effective string tension α′
eff) is too large, and perturbative

strings govern the asymptotic density of states.

region much larger than any possible horizon scale — the particle is not sufficiently localized

to be a black hole. Similarly, in a situation where string theory is below the correspondence

point, string wavefunctions extend well beyond what would be the classical Schwarzschild

radius, and string α′ effects dominate over classical GR. For instance, consider a large

circular string let go to collapse toward its center of mass; in classical general relativity

coupled to a classical string, a horizon would form and the final state would be a black hole,

but at sufficiently weak string coupling, the final state will be a highly excited fundamental

string — a horizon never forms.

The correspondence transition is somewhat different in the linear dilaton throat of

NS5-branes, and its AdS3 limit [7]. In the linear dilaton case, the transition point is a

function of Q`str instead of E`str, where Q is the slope of the linear dilaton, Φ = Qρ with

ρ the appropriate radial coordinate in the fivebrane throat. Similarly, in the AdS limit

RS1 → ∞, the transition point is a function of RAdS/`str , where RAdS is the AdS3 radius

of curvature. As one approaches the correspondence point in the fivebrane throat, the

wavefunctions of fundamental strings and D-branes near the bottom of the throat start to

delocalize [7, 8]. At the correspondence point, the asymptotic spectrum of fundamental

strings and black objects matches; beyond the correspondence point, RAdS/`str < 1 (for

AdS3 throats; Q`str > 1 for linear dilaton throats) and the density of states up to arbitrarily

high energy is dominated by the Hagedorn density of states of fundamental strings rather

than the Bekenstein-Hawking entropy of black objects. In fact black holes are thought to

be absent from the spectrum, having non-normalizable wavefunctions.

It is tempting to believe that this same dynamics of the correspondence point is at work

in little string theory. Hagedorn thermodynamics is largely kinematic in nature, charac-

terized by a statistical equilibrium between kinetic and stretching energy of the string gas.

One therefore might expect that the dominant effect of the large rate of joining/splitting

interactions of the little string is to ensure ergodicity and a rapid exploration of the phase
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space, rather than to dramatically alter the equation of state. The key distinction between

the correspondence transition dynamics of fundamental strings and that of little string

theory is that the little string is always at its correspondence point — the black fivebrane

entropy (1.1) equals the Hagedorn entropy of the little string. Indeed, the little string

correspondence point in the linear dilaton throat is (1.1), and in the AdS3 limit is (1.2);

comparing to the fundamental string correspondence points Q2 = 1/α′ for the linear dilaton

throat and R2
AdS = α′ in the AdS3 limit [7], one finds that the little string correspondence

points are precisely the same as the fundamental string correspondence points, with the

fundamental string tension replaced by the little string tension α′little = n5α
′. If the little

string behaves in the same way as the fundamental string, one expects the little string

wavefunction to be delocalized in the fivebrane throat, at least out to the horizon scale of

the relevant black hole.

Of course, little string holography is the statement that the entirety of the decoupled

fivebrane throat is dual to the non-gravitational little string theory, so in a sense the little

string wavefunction indeed extends over the entire throat and not just the horizon region.

However, outside the black hole horizon, the little string degrees of freedom are confined in

the same way that the nonabelian degrees of freedom of N = 4 SYM theory are confined

in AdS5 × S5 outside the horizon of AdS5 black holes. One expects that the bulk gravity

description of the wavefunction of these nonabelian degrees of freedom has its dominant

support persisting out to the horizon scale, with the exterior of the black hole being well-

described by the collective field theory of the singlet degrees of freedom, i.e. supergravity.

In this scenario, the highly excited little string is the embodiment of the “fuzzball”

in the context of linear dilaton and AdS3 black holes. The fuzzball paradigm [9] posits

that the black hole interior is supplanted by some nonsingular quantum structure, whose

underlying dynamics does not have a causal horizon. The horizon in the low-energy effective

theory is thought to arise from an inappropriate integrating out of the light IR degrees of

freedom that carry the entropy. Some discussions of the fuzzball proposal in the literature

have emphasized the importance of microstates described by supergravity solutions that

cap off smoothly without a horizon (see for instance [10]); however it has been argued [11–

15] that such capped geometries are highly coherent states which are quite non-generic

in the ensemble of microstates. Indeed, while there has been much recent progress in

constructing and studying three-charge “superstrata” [16–28] and related solutions [29–32],

it seems unlikely that the set of solutions that are realizable solely in terms of geometry can

account for the typical black hole microstate. However a more expansive characterization

of the fuzzball paradigm (c.f. [9, 33–37]) allows for the possibility that stringy and quantum

ingredients are essential, and it is this possibility which seems to be realized in the context

of fivebranes. The suggestion here is that in fivebrane throats and their AdS3 limits, the

interior structure of black holes consists of a little string condensate. The role of smooth,

capped geometries is to allow us a window into the black hole regime, as we now explain.

1.2 Emergence of long string structure “in the bulk”

The notion that fivebrane black holes consist of a “deconfined” phase of little strings

places this example of holography squarely in line with examples of gauge/gravity duality
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Figure 3. Two-charge supertubes occupy the (red) BPS line in the spectrum of states with left-

moving energy L0 and angular momentum JL. Spectral flow of these states moves them parallel to

the cosmic censorship bound where the BTZ black hole entropy formula (1.2) degenerates.

wherein the black hole phase involves liberation of nonabelian modes of a strongly coupled

Yang-Mills gauge theory [38]. If black hole formation involves such a deconfinement phase

transition, one should see the nonabelian degrees of freedom as virtual excitations which

are more and more easily excited as one approaches the threshold of black hole formation.

For instance, one can imagine keeping the branes apart, and then letting them approach

one another. From the effective field theory point of view, a horizon forms when the branes

are close enough that the nonabelian degrees of freedom start to become thermally excited,

see for example [39–43] (though in the full theory, this horizon of the low-energy effective

theory is not a fundamental barrier to information transport).

Much of this picture is based on intuitions derived from the weak-coupling regime of

the gauge theory, where the gravitational field (and in particular the effective horizon)

sourced by the branes is not part of the description; or from purely gravitational analyses

of horizon formation and dynamics, where the branes are strongly coupled and hidden

from view. One would like to fill in the gap. An important but hard problem is that of

extracting gravitational physics from strong coupling dynamics of the gauge theory dual.

Approaching from the opposite direction, one might look for the W-particles or W-strings

of the brane dynamics on the gravitational side of the duality, and to see what happens to

them as one approaches the black hole threshold from below by bringing the background

branes together.

Little strings have a number of avatars, depending on the duality frame. In a type

IIB frame, fractional instantons [44–46] in the U(n5) gauge theory on fivebranes (either

D5 or NS5) are 1+1 dimensional string-like objects whose tension is that of the little

string. In M-theory, M2-branes stretching between M5-branes behave as effective strings;

in the reduction to type IIA, these become (when the M5’s are suitably separated in their

transverse space) D2-brane strips stretching between NS5-branes, again a string-like object

when the branes are nearly coincident. The process of separating the branes transversely

and then reducing to type IIA has inverted the tension hierarchy between fundamental

strings and little W-strings, and allows the latter to be studied in perturbative string theory,

which is predicated on fundamental strings being the objects with the lowest tension. This

latter description, and ones related to it by perturbative dualities, will be our focus here.

– 5 –
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Our route to W-branes near the black hole threshold begins with backgrounds having

slightly separated fivebranes. The AdS3 limit, RS1 → ∞, of the string-fivebrane system

has the benefit of a large collection of half-BPS states, variously known as supertubes or

two-charge BPS fuzzballs, living on the BPS bound in the phase diagram of figure 3. From

the point of view of the BTZ solution, generically the geometries are spinning too rapidly

to be BTZ black holes; the angular momentum pries apart the underlying fivebranes, but

as one dials down the angular momentum one can approach the threshold of black hole

formation. The geometry sourced by the branes can be completely worked out in the

supergravity approximation [47–50]; there is a family of nonsingular geometries that cap

off in a structure of topological bubbles threaded by flux. The map between supergravity

solutions and coherent microstates of the branes is known explicitly [47, 48, 50, 51], and the

geometric quantization of the phase space of classical solutions reproduces the microstate

entropy [52, 53]. The topological bubbles arise because the string/fivebrane system with

angular momentum sources KK dipole charge; the local KK monopole (KKM) geometry

is nonsingular, up to orbifold loci where monopole cores coincide. As one descends the

fivebrane throat, the geometry “caps off” smoothly before a horizon forms. It might seem

that the underlying fivebranes have completely disappeared into geometry and fluxes; that

the notion of “where the fivebranes are” and how much they are separated has no precise

answer; and that therefore the notion of what happened to the nonabelian degrees of

freedom cannot be answered. However, by carefully tracing through the duality structure

one can see that these nonabelian degrees of freedom are in fact branes wrapping the KKM

topology at the bottom of the throat; for a related example, see [13], and for related earlier

work, see [54].

There has been some debate as to how one should interpret the two-charge solutions,

in particular how the entropy of the system arises in different duality frames (see [37]

for a recent discussion and further references). The fuzzball paradigm was to some extent

motivated by the idea that these two-charge solutions and the fact that they cap off without

a horizon might be a good model for what happens when one adds a third charge to obtain

a large black hole. However there are reasons to be cautious when asking how much of

this physics might carry over to large black holes. First of all, the geometry of the two-

charge solutions is typically quite stringy. For instance, in the NS5-F1 frame the KKM

structures shrink and develop orbifold singularities as the angular momentum is reduced.

In fact, for the typical two-charge fuzzball solution with angular momentum less than of

order
√
n1n5, the geometry in the vicinity of the cap of the geometry has curvatures of

order the string scale or more [55–57] in the local duality frame appropriate for the physics

of the cap. A supergravity analysis is thus not valid everywhere in the throat, and has

significant corrections in the region of interest near the cap. In light of the correspondence

principle discussion above, the two-charge BPS system is at or below its correspondence

point; regarding it as an ensemble of black hole microstates may not be the most useful

interpretation.

The semiclassical quantization of the BPS supertube moduli space outlined above

mirrors a similar quantization of the moduli space of multi-center brane bound states

using quiver quantum mechanics [11, 12, 58–65]. There, vector multiplets in the quantum

mechanics describe the locations of fiber degenerations in the geometry which cap it off;
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their expectation values characterize the depth of the throat and again relate it to the

angular momenta of the constituents. One has a similar structure in the onebrane-fivebrane

supertube, but with the degenerations happening along a one-dimensional submanifold in

five spatial dimensions rather than at discrete points in four spatial dimensions. Nonzero

angular momentum of the supertube is directly related to the formation of the topological

structures that cap off the geometry at a finite redshift.

In the quiver QM models, the capped geometries lie on the Coulomb branch side

of a Coulomb-Higgs phase boundary, with single-center black holes lying in the Higgs

phase [12, 59, 64, 65]. More precisely, upon integrating out the vector multiplets the

effective hypermultiplet QM on the Higgs branch captures all the BPS states, and the

Coulomb branch states can be described in either of the Coulomb or Higgs branch effective

theories. However, upon integrating out the hypermultiplets, the effective vector multiplet

QM on the Coulomb branch does not contain zero angular momentum states that are

intrinsic to the Higgs branch. Similarly, in the AdS3 limit of the onebrane-fivebrane system

there is a dual spacetime CFT in terms of Higgs branch hypermultiplets that captures all

the BPS states. The quantization of the BPS supertube moduli space described above is an

analogue of the effective Coulomb branch QM.1 In what follows, we will use this Coulomb-

Higgs language to describe the states at and near the BPS bound in the onebrane-fivebrane

system. Of particular interest are the additional degrees of freedom that are essential

for a complete characterization of the state space, beyond the collective modes of the

Coulomb branch.

Recently, new tools have become available [66, 67] that provide an exact worldsheet

description of a special class of two-charge BPS configurations where the fivebranes are at

the same time bound together, and slightly separated on their Coulomb branch, namely

the round NS5-P and NS5-F1 supertubes studied in [47, 48] (as well as three charge NS5-

F1-P bound states obtained from these supertubes by solution-generating transformations

known as spectral flow [68–72]). On the one hand, the gravitational effects of the fivebranes

are under control at the exact level in α′, and perturbatively in gs. Being solitonic objects,

the NS5-branes’ configuration is part of the classical background, with gravitational back-

reaction fully taken into account. On the other hand, this class of supertubes is rich

enough that one can dial discrete parameters of the background to approach the black

hole threshold and analyze the fluctuation spectrum. The spectrum of closed strings was

analyzed in [67]; our purpose here is to study in detail the D-brane spectrum. The latter is of

considerable interest in that, as discussed above, D2-branes stretching between NS5-branes

in type IIA are the Coulomb branch avatars of the little string. In the NS5-P supertube,

this structure will be readily apparent; and T-duality will convert that structure to that of

a D3-brane wrapping the bubbled geometry of the NS5-F1 supertube.2 All of this structure

is under precise control since we have access to an exactly solvable worldsheet CFT.

1Indeed, upon T-duality along S1 the half-BPS NS5-F1 bound states become half-BPS momentum

excitations of the NS5 branes. Excitations of the scalars describing the transverse location of the fivebranes

carry angular momentum and pry the fivebranes apart slightly onto their Coulomb branch.
2In this context, it is interesting to note that in the BPS states intrinsic to the Higgs branch in quiver

QM models, the hypermultiplets being turned on are U-dual to D-branes wrapping the topology of bubbled

solutions [13], and are thus similar in spirit to the W-branes being analyzed here.
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Figure 4. Source for the round NS5-P supertube. (a) A single BPS source with n5 = 2 and

k = 3; (b) Unrolling the circle of radius a reveals a fivebrane source moving transversely to its

worldvolume on the ỹ-φ torus. The fivebrane winds along the (n5, k) cycle of this torus.

The round NS5-P supertube is obtained by macroscopically exciting a single chiral

mode of the scalars Xi describing the embedding of the mth fivebrane worldvolume:

X1 + iX2 ≡ |X| eiφ = a exp

[
i
k

n5

(t− ỹ)

Rỹ
+

2πim

n5

]
(1.4)

where m = 1 . . . n5 labels the fivebranes, and ỹ parametrizes the S1 of radius Rỹ in the com-

pactification. The monodromy of the solution winds together the fivebrane worldvolumes,

into a single unit if k and n5 are relatively prime. The angular momentum of the branes

in the x1-x2 plane supports the branes at finite separation, preventing their collapse to the

origin and thus dynamically stabilizing the mass of W-branes at a finite value determined

by the radius a of the supertube,

a =

√
Q5QpRỹ

k`2str
, Q5 = n5`

2
str , Qp =

npg
2
s `

8
str

V4R2
ỹ

, (1.5)

where V4 is the volume ofM and np is the number of momentum quanta.3 The supertube

with n5 = 2 and k = 3 is depicted in figure 4.

In the T-dual NS5-F1 frame, Ry = `2str/Rỹ and Qp → Q1; the quantum numbers of

the family of round two-charge supertubes in the AdS3 limit are indicated by the blue dots

in figure 3, together with the effect of spacetime spectral flow which produces three-charge

supertubes. Note that as the mode number k increases, the supertube shrinks and coils

more and more; as k becomes macroscopic (bounded by n1n5), the state approaches the

black hole threshold from below. The W-brane tension becomes lighter and lighter as k

increases, due to the increasing redshift to the bottom of the throat where the supertube

source is located.

Figure 5 depicts a W-string stretched between neighboring strands of an NS5-P super-

tube, and extending along the fivebrane worldvolume until it wraps around enough times

3For the momentum charge to be part of the classical supergravity background, one must have Qp � `2str,

and so typically np ∝ g−2
s .
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Figure 5. An open D2-brane (gold) stretches between a spiraling stack of NS5-branes (blue). The

membrane only closes on itself after winding around the φ circle k times; here k = 4, n5 = 5.

to close on itself. In the process, it winds k times around the angular circle of the su-

pertube source in the transverse x1-x2 plane, and n5 times around the circle S1
ỹ wrapped

by the fivebranes. T-duality along S1
ỹ relates the NS5-P and NS5-F1 supertubes. From

figure 4(b), we see that the fivebrane worldvolume lies partly along and partly transverse

to the ỹ circle. This affects the result of the T-duality, which for a longitudinal circle pre-

serves NS5 charge, while for a transverse circle it transforms NS5 branes to Kaluza-Klein

monopoles. The coiled ring of NS5-branes thus becomes a coiled ring of KK monopoles

under T-duality. The local structure of nearly coincident KKM’s is a slightly resolved

Ak−1 singularity transverse to the ring. The monodromy on the NS5-P side, that winds

all the fivebranes together into a single strand, becomes on the NS5-F1 side a monodromy

that cyclically permutes the k two-cycles of the ring of Ak−1 singularities as one passes

once around the ring. The global topology of the KKM ring is thus S2 × S1 (with the S1

being a k-fold cover of the φ circle of (1.4)) rather than the (S2)k−1 × S1 that one might

have naively guessed from the effective local (AdS3 × S3)/Zk geometry at the bottom of

the throat.

The D2 W-brane stretching between strands of the NS5-P supertube helix transforms

under T-duality to a D3 W-brane wrapping this coiled S2 × S1. Under the T-duality, the

fivebranes seem to have totally disappeared into geometrical flux, however they are not

completely gone — the underlying source structure is diagnosed by stringy probes.

1.3 Expanding the toolkit for fivebrane dynamics

The tool that allows us to analyze these D-branes and the substringy structure they

probe begins with the Wess-Zumino-Witten (WZW) model for the 10+2 dimensional group

manifold4

G =
(
SL(2,R)× SU(2)

)
×
(
Rt × S1

y × T4
)
, (1.6)

and gauges a pair of null isometries so that the physical target spacetime geometry is 9+1

dimensional [66]. Roughly, the first factor in G lies largely transverse to the fivebranes but

4Here we choose the compactification M = T4; for M = K3 one can consider a point in moduli space

where the worldsheet theory is solvable, such as a torus orbifold or Landau-Ginsburg orbifold. Of course,

current algebra CFTs underly these constructions as well.
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has 5+1 rather than 4+0 dimensions; the role of the gauging is to eliminate the unwanted

directions. However, one has a choice to involve the second factor in the gauge current;

the freedom in the choice of this admixture comprises a set of discrete parameters which

determine the supertube shape, such as the parameter k in (1.4).

It will turn out that the well-understood spectrum of D-branes in the component

factors of G [73–80] and in gauged WZW models [81–91] allows us to describe W-branes in

these special supertube backgrounds, in a manner closely related to the work of [92]. We

begin in section 2 with a summary of the relevant supergravity solutions:

• NS5-branes on the Coulomb branch, distributed along a circle [93–95]

• NS5-P supertubes [47, 96]

• NS5-F1 supertubes [47]

• BPS fractional spectral flows of these supertubes [68–72].

The original construction of string dynamics in the background of NS5-branes on the

Coulomb branch [94, 95] used a noncompact version [97] of the Calabi-Yau/Landau-

Ginsburg correspondence [98, 99] to describe the transverse space of the fivebranes in

terms of WZW coset models (
SL(2,R)

U(1)
× SU(2)

U(1)

)
/Zn5 . (1.7)

The reorganization of the gauge and orbifold groups into the gauging of a pair of left- and

right-moving null isometries (introduced in [100, 101]),

G
H

=

(
SL(2,R)× SU(2)

)
×
(
Rt × S1

y × T4
)

U(1)L ×U(1)R
, (1.8)

provides the freedom necessary to describe the remaining backgrounds by generalizing the

embedding of H from lying strictly in the first factor of G to involving a mixture of both

SL(2,R)×SU(2) and Rt×S1
y.

In section 3, we review the gauged nonlinear sigma model, following the general for-

malism of [102, 103]. The presence of antisymmetric tensor flux complicates matters, in

particular there is an intricate interplay between gauge invariance and the Wess-Zumino

term, especially in the presence of worldsheet boundaries. We then specialize the discus-

sion to group manifolds G, using the symmetry analysis of [73, 77, 82, 83, 85–88] and

especially the work of Quella and Schomerus [89–91] to determine both the shape of the

brane in simple examples as well as the two-form ω2 = B+F that solves the DBI equations

of motion.

Section 4 reviews the results of [66], showing how the choice of gauged null isometries

in (1.8) yields the fivebrane backgrounds of interest. Various D-branes in the SL(2,R) and

SU(2) WZW models are then reviewed in section 5. The canonical examples of D-branes on

group manifolds preserve the maximum group symmetry, lying along a (twisted) conjugacy

class of the group G; in addition, there are branes that preserve only a subgroup H ⊂ G
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of the full symmetry [81–91]; their “symmetry breaking” worldvolumes lie along products

of conjugacy classes of G and H. Since we will be gauging H = (U(1)L ×U(1)R) ⊂ G, we

only need such a subgroup to be preserved, and the symmetry-breaking branes are indeed

an essential ingredient of our construction. We then assemble these component D-branes

into W-branes in various situations: NS5-branes separated onto their Coulomb branch in

section 6; round NS5-P and NS5-F1 supertubes in section 7; and spectral flows of these

supertubes carrying all three charges in section 8.

The analysis of section 6 reproduces within the formalism of null gauging the results

of Israel et al. [92], which used the coset orbifold description. The W-branes of interest are

constructed by starting with D-branes in G, whose worldvolumes are specified by conjugacy

classes of the various group factors SL(2,R), SU(2), etc; this D-brane core is then smeared

along the orbits of H to obtain a brane invariant under the gauge symmetry. In sections 7

and 8 we apply this method to the more general gaugings that yield supertubes as the

effective geometry. A key aspect of the construction is the non-factorized nature of the

smearing procedure. The gauge orbits combine motion in the various factors of G, and

so the resulting brane after smearing is not a factorized product of D-branes in SL(2,R),

SU(2), etc. We will also use the same smearing procedure to generate the spiraling W-brane

geometry of figure 5, whose worldvolume lies along a diagonal combination of the physical

(i.e. gauge invariant) directions φ and ỹ in (1.4) (see figure 4). This spiral trajectory,

multiply covering a circle in the effective geometry, allows the W-brane to capture aspects

of the long string structure of the black hole phase in a regime amenable to analysis in

perturbative string theory. We conclude with a discussion of our results in section 9.

2 Review of supergravity solutions

The simplest background of interest here is that of n5 nearly coincident NS5-branes

wrapped around S1 × T4. In the decoupling limit gs → 0, the geometry of coincident

fivebranes can be written as (choosing conventions where `str = 1)

ds2 =
(
−du dv + ds2

T4

)
+ n5

[
dρ2 + dθ2 + sin2θ dφ2 + cos2θ dψ2

]
B = n5 cos2 θ dφ ∧ dψ , Φ = −ρ . (2.1)

where u = t + y, v = t − y. The nonlinear sigma model on this background is exactly

solvable [104] — the directions along the brane are described by free fields, while the radial

direction in the transverse space is a free field with linear dilaton, and the angular directions

in the transverse space yield an SU(2) Wess-Zumino-Witten (WZW) model whose SU(2)L×
SU(2)R current algebra symmetry has level n5. While it is nice that the free string dynamics

is exactly solvable, the S-matrix has no perturbative expansion — string wave packets sent

down the throat inevitably reach the region of arbitrarily large string coupling near the

fivebrane source at ρ→ −∞.

Coulomb branch NS5’s: the cure for this problem is to slightly separate the fivebranes

onto their Coulomb branch moduli space [93–95]. Neveu-Schwarz fivebranes separated in
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a Zn5 symmetric array on their Coulomb branch source a background

ds2 =
(
−du dv + ds2

T4

)
+ n5

[
dρ2 + dθ2 +

1

Σ0

(
cosh2ρ sin2θ dφ2 + sinh2ρ cos2θ dψ2

)]
,

B =
n5 cos2 θ cosh2 ρ

Σ0
dφ ∧ dψ , e−2Φ =

Σ0

g2
sn5

, Σ0 ≡ sinh2ρ+ cos2θ . (2.2)

String theory on this background remains exactly solvable — it is a non-compact version

of the Calabi-Yau/Landau-Ginsburg (CY/LG) correspondence [98, 99], in this case given

by the coset orbifold [93–95] (
SL(2,R)

U(1)
× SU(2)

U(1)

)
/Zn5 , (2.3)

whose low-energy S-matrix is perturbatively well-defined. While it may appear that the

geometry still has a strong coupling singularity at ρ = 0, θ = π/2, this is an artifact of

the classical approximation to the sigma model; at the full quantum level, the coset sigma

models are entirely well-behaved.

The gauge orbit in SL(2,R)/U(1) is a timelike circle of size
√
n5 `str; likewise the gauge

orbit in SU(2)/U(1) is a spacelike circle of the same size. The effect of the Zn5 orbifold

is to rearrange the gauge group into H = U(1)L × U(1)R where the tangents to the gauge

orbits are null directions in sl2 ⊕ su2.5

NS5-P supertubes: the realization that there is a more direct presentation of the coset

orbifold in terms of null gauging leads immediately to generalizations describing supertubes.

A boost-like transformation on the fivebranes imparts momentum and angular momentum

to the fivebranes, resulting in the NS5-P supertube. In the null-gauged WZW description

above, this amounts to tilting the orientation of the null vector so that it points partly

along the Rt × S1
ỹ directions [66]. Doing this symmetrically on left and right leads to the

NS5-P supertube

ds2 =
(
−du dv + ds2

T4

)
+ n5

[
dρ2 + dθ2 +

1

Σ0

(
cosh2ρ sin2θ dφ2 + sinh2ρ cos2θ dψ2

)]
+

1

Σ0

[
2k

Rỹ
sin2θ dv dφ+

k2

n5R2
ỹ

dv2

]
, (2.4)

B =
n5 cos2 θ cosh2 ρ

Σ0
dφ ∧ dψ +

k cos2 θ

Rỹ Σ0
dv ∧ dψ , e−2Φ =

npΣ0

n5k2V4
.

Again, although it might look as though the string is propagating in a geometry with

a strong-coupling singularity, low-energy string dynamics is perturbatively well-behaved

and consistent.

5More precisely, as discussed in [67] the global structure of the gauge group is non-compact in the

timelike direction and thus RL+R ×U(1)L−R. The distinction, while important, will not affect our consid-

erations here.
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NS5-F1 supertubes: T-duality of the NS5-P supertube along S1
ỹ leads to the NS5-F1

supertube. Introducing the notation ν ≡ kRy, the NS5-F1 solution is

ds2 =
(
−dudv + ds2

T4

)
+ n5

[
dρ2 + dθ2 +

1

Σ

(
cosh2ρ sin2θ dφ2 + sinh2ρ cos2θ dψ2

)]
+

2ν

Σ

(
sin2θ dt dφ+ cos2θ dy dψ

)
+
ν2

n5Σ

[
n5 sin2θ dφ2 + n5 cos2θ dψ2 + dudv

]
,

B =
cos2θ(ν2 + n5 cosh2ρ)

Σ
dφ ∧ dψ − ν2

n5Σ
dt ∧ dy

+
ν cos2θ

Σ
dt ∧ dψ +

ν sin2θ

Σ
dy ∧ dφ ,

e−2Φ =
n1Σ

k2R2
y V4

, Σ =
ν2

n5
+ Σ0 . (2.5)

where now u, v are defined in terms of the T-dual coordinate y, i.e. u, v = t± y, and where

we have divided some terms into two parts for later convenience. This geometry has a local

Zk orbifold singularity at ρ = 0, θ = π/2 that identifies the angles according to

(y/Ry, ψ) ∼ (y/Ry, ψ) +
2π

k
(1,−1) . (2.6)

NS5-F1-P supertubes: fractional spectral flow of the above two-charge supertubes

(i.e. a particular large diffeomorphism of the angular coordinates) yields a larger set of

backgrounds carrying three charges — NS5 along S1 ×M as well as both string winding

and momentum along S1 the fivebrane decoupling limit, the solutions take the form:

ds2 = − f0

Σ
dudv +

∆p

Σ
dv2 + n5

(
dρ2 + dθ2

)
+
n5

Σ

(
sinh2ρ− s+ ∆1

)
cos2θ dψ2

+
n5

Σ

(
sinh2ρ+ (s+ 1) + ∆1

)
sin2θ dφ2 (2.7)

− 2n5∆1

kRyΣ

(
s cos2θ dψ − (s+ 1) sin2θ dφ

)
dv

+
2n5∆1η

kRyΣ

(
cos2θ dψ + sin2 θ dφ

)
dy + dza dz

a ,

B2 = − ∆1

Σ
dt ∧ dy +

n5 cos2θ

Σ

(
sinh2ρ+ (s+ 1) + ∆1

)
dφ ∧ dψ (2.8)

− n5∆pη

kRyΣ
dy ∧

(
cos2θ dψ + sin2θ dφ

)
+
n5∆1 cos2θ

kRyΣ

(
(s+1) dt− s dy

)
∧ dψ

− n5∆1 sin2θ

kRyΣ

(
s dt− (s+1) dy

)
∧ dφ ,

e−2Φ =
n1ηΣ

k2R2
yV4

, (2.9)
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where

∆1 =
k2R2

y

n5`2str
+ s(s+ 1) , ∆p =

s(s+ 1)n5`
2
str

k2R2
y

∆1 , η =
k2R2

y

k2R2
y + s(s+ 1)n5`2str

,

f0 =
[
sinh2ρ− s sin2θ + (s+1) cos2θ

]
, Σ = f0 + ∆1 . (2.10)

All of these backgrounds can be obtained [66] by gauging null isometries in the WZW

model on the group manifold

G =
(
SL(2,R)× SU(2)

)
×
(
Rt × S1

y ×M
)

; (2.11)

the motion along these isometries is generated by left- and right-moving null currents

J = `iJi , J̄ = riJ̄i , (2.12)

where the index i runs over the Lie algebra of G, and the null conditions are

〈`, `〉 = 〈r, r〉 = 0 . (2.13)

Starting with a 10+2 dimensional group manifold G and generating physical (9+1)-d space-

time as the set of gauge equivalence classes under the orbits of H, all the above backgrounds

are obtained by varying the embedding H ↪→ G. Thus we turn now to a discussion of gauged

nonlinear sigma models.

3 The gauged nonlinear sigma model

We now discuss gauged nonlinear sigma models, following [102, 103], and then specialize

the analysis to group manifolds. We will mostly follow the presentation in [103], and we will

generalize the considerations of that paper to include more general boundary conditions as

considered in [81–91].

3.1 Gauging target space isometries

The 2d nonlinear sigma model on a worldsheet Σ with target manifold M with metric G

and three-form flux H has an action consisting of a kinetic term and a Wess-Zumino (WZ)

term, as follows. (To reduce clutter in equations, we suppress some overall normalization

factors in this section; we shall give the precise normalizations in (4.5)–(4.6).)

S = SK + SWZ =
1

2

∫
Σ
Gij(ϕ) dϕi ∧ ?dϕj +

∫
B
H , (3.1)

where the three-manifold B has boundary Σ. Suppose M admits Killing vectors ξa under

which H is invariant, d(ıaH) = 0 where ıa denotes contraction along ξa; then one can try to

gauge translations along ξa. The kinetic term gains a minimal coupling to the gauge field

dϕi −→ Dϕi = dϕi −Aaξia(ϕ) (3.2)
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while the WZ term can be gauged via

SgWZ =

∫
B
H +

∫
ϕ(Σ)

(
Aa∧ θa +

1

2
ıaθbA

a∧Ab
)

(3.3)

where the target space one-forms θa satisfy

ıaH = dθa , ıaθb = −ıbθa . (3.4)

Consistency of gauge transformations along the ξa requires that the Lie derivative of θb
along ξa satisfy

Laθb = f c
ab θc (3.5)

where f c
ab are the structure constants of some Lie algebra h.

Including worldsheet boundaries. The WZ term on a worldsheet Σ with boundary

must be defined with care, since the WZ term itself asks for a three-manifold B whose

boundary is Σ, so naively the latter cannot have a boundary. We consider for simplicity a

single boundary component lying along a D-brane worldvolume C. We let i : C → G denote

the canonical embedding, so i∗ is the pull-back to the brane worldvolume. The general

sigma-model action is written

S =

∫
Σ
Lkin +

∫
B
H −

∫
D
ω2 (3.6)

where D ⊂ C is a disk in spacetime whose boundary coincides with the worldsheet boundary

∂Σ, B is a three-dimensional submanifold of spacetime with boundary ∂B = Σ ∪ D, H is

the standard Wess-Zumino term, and ω2 is a two-form on the D-brane worldvolume C in

spacetime satisfying

dω2 = i∗H . (3.7)

The idea is to “fill in the hole” in Σ with a disk D ⊂ C so that there is a proper closed

surface that bounds B. In string theory one identifies H as the field strength of the NS

two-form potential B, and ω2 = B + F , the combination of B and the field strength F
of the gauge field on the D-brane worldvolume C which is invariant under antisymmetric

tensor gauge transformations δB = dΛ, δF = −dΛ.

Gauging the Wess-Zumino term in the presence of a boundary involves an extension of

these forms in the formal tensor product of forms on M and on Σ (for details, see [103]):

ΩWZ
3 = H + θaFa , Ω2 = ω2 + ıaω2A

a − 1

2
ıaıbω2 A

a ∧Ab + haF
a (3.8)

where F is the field strength of A, and in addition to (3.7) one imposes the constraint that

i∗θa + ıaω2 is exact, i.e. [103]

i∗θa + ıaω2 = dha . (3.9)

The resulting modification of the gauged WZ term is

SWZ =

∫
B
H −

∫
D
ωC2 +

∫
ϕ(Σ)

(
Aaθa +

1

2
ıaθbA

a ∧Ab
)

+

∫
ϕ(∂Σ)

haA
a . (3.10)

The first and third terms comprise the gauged WZ term without boundary (3.3), while the

second term is the boundary term in (3.6); the last term is a boundary gauge interaction

that ensures gauge invariance as a consequence of the property (3.9).
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3.2 Specialization to group manifolds

In the following, we will be interested in the situation where M is a Lie group G. We will

ultimately be interested in matrix Lie groups, and so we will record expressions for matrix

groups along the way.

We thus now apply this general formalism of gauged nonlinear sigma models to the

specific case of the Wess-Zumino-Witten model on a group G, with the metric on G given by

the Cartan-Killing metric and the H flux given by the three-form in group cohomology. The

constraint (3.5) means that we are gauging a subgroup H ⊂ GL×GR of the isometries of G.

We begin by setting up some notation and conventions. For a Lie group G and corre-

sponding Lie algebra g, identified with the tangent space Te(G) at the identity e, we define:

• λg and ρg are the left- and right-multiplication maps: λg(g0)=gg0 , ρg(g0)=g0g .

• θL and θR are the left and right Maurer-Cartan one-forms, θL
∣∣
g

= λ∗g−1 id , θR
∣∣
g

=

−ρ∗g−1 id . For matrix Lie groups, one can write

θL
∣∣
g

= g−1dg , θR
∣∣
g

= −dg g−1 . (3.11)

Note that θL and θR are maps from Tg(G)→ Te(G) — they are one-forms on G with values

in g. In general for any vector v, we have by definition

θL
∣∣
g
(v|g) ≡ (λg−1)∗(v|g) (3.12)

which is an element of g ≡ Te(G). The minus sign in the definition of θR in and above

eq. (3.11) follows the conventions of [103] and are chosen as such since the group action we

will consider will be of the form6

g0 7→ g` g0 g
−1
r . (3.13)

We denote the left-invariant vector field corresponding to X ∈ g by XL, similarly XR

for the right-invariant vector field. Note that the action of θL on XL (θR on XR) is simply

θL(XL) = X , θR(XR) = X . (3.14)

The Maurer-Cartan equation, for matrix groups, is

dθL = −θL ∧ θL = −Tr
[
(g−1dg)2

]
, (3.15)

where matrix multiplication is implied in the wedge. Similarly the standard bi-invariant

metric is

ds2 =
1

2
dθL = − 1

2
Tr
[
(g−1dg)2

]
(3.16)

and the standard bi-invariant three-form is7

H = − 1

3
Tr(θL ∧ θL ∧ θL) = −1

3
Tr
[
(g−1dg)3

]
. (3.17)

6Since near the identity, (eX)−1 = e−X becomes (1 + X)−1 = (1 − X), the push-forward of the map

I(g) = g−1 , at the identity e, is simply minus the identity map id, that is I∗
∣∣
e

= −id.
7The minus signs in eqs. (3.16) and (3.17) are calibrated for SU(2); for SL(2) we will have a relative

minus sign once we introduce all appropriate normalizations in (4.5)–(4.6).
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In general, one can gauge any subgroup H of the GL × GR isometries of G, subject

to the constraints of anomaly cancellation. The action of H is specified by left and right

embedding homomorphisms, which we denote by ` : H ↪→ G and r : H ↪→ G respectively,

such that the action to be gauged is

g 7→ `(x) g r(x)−1 , x ∈ H . (3.18)

The group embeddings ` and r induce corresponding Lie algebra homomorphisms, which

we also denote by ` and r.

We now review the constraints for a consistent gauging, following [103]. Let Xa be a

basis of H. For each Xa there is a corresponding Killing vector field given by

ξa ≡ − `(Xa)
R − r(Xa)

L . (3.19)

For matrix groups, for each Killing vector field ξa, there corresponds a tangent matrix field

ξag, given by

ξag = `(Xa)g − g r(Xa) . (3.20)

For instance, given a coordinate ψ, if ξa is the vector field ∂
∂ψ , then ξag is the matrix field

∂g
∂ψ . One then has ıaH = dθa, where

θa ≡ 〈`(Xa), θR〉 − 〈r(Xa), θL〉 , (3.21)

where 〈·, ·〉 is the inner product given by the Killing form on g, taking into account the

normalization of the inner product given by the level k of the current algebra. For matrix

groups, we take for now the canonical normalization 〈A,B〉 = Tr(AB); at the beginning of

the next section we will be more specific about conventions for SL(2,R) and SU(2), which

will involve a relative minus sign between the two groups. The constraints of anomaly

cancellation ıaθb + ıbθa = 0 then evaluate to〈
`(Xa), `(Xb)

〉
=
〈
r(Xa), r(Xb)

〉
. (3.22)

Consider a D-brane with worldvolume C ⊂ G with associated two-form ω2 satisfy-

ing (3.7); such a D-brane descends to a brane in the coset theory G/H if in addition the

constraint (3.9) is satisfied. Worldvolumes C associated to (products of) twisted conjugacy

classes of G satisfy these properties, with the added bonus that the equations of motion

derived from the DBI effective action are satisfied; and if enough of the chiral algebra of

the WZW model is preserved by the worldsheet boundary conditions, one may be able

to construct an exact CFT boundary state for the D-brane [81, 82, 84, 105, 106]. A gen-

eral method for constructing such branes is laid out in [89, 91]; we will now review some

of this technology, beginning with the simplest branes that preserve the maximal chiral

algebra symmetry.

3.3 Symmetry-preserving branes

So-called symmetry-preserving branes set Ja = ΩG(−J̄a) on the worldsheet boundary, for

all the currents of G; here ΩG is a group automorphism (which induces a corresponding
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automorphism of g that we also denote by ΩG). The GL × GR symmetry

g(z, z̄)→ γL(z)g(z, z̄)γR(z̄) (3.23)

is then broken to the subgroup γR = ΩG(γ
−1
L ) on the boundary; a subgroup of GL ×

GR isomorphic to G is the maximum amount of symmetry that can be preserved by the

boundary conditions. Thus if fG ∈ G is an allowed boundary value for the sigma model

fields, so is gfGΩG(g
−1) for any g ∈ G; the allowed boundary values thus lie in a twisted

conjugacy class of G
C(fG ,ΩG)
G ≡

{
gfG ΩG(g

−1) , g ∈ G
}

(3.24)

where fG is a fixed group element. The worldvolume flux is given by the formula [73]

ω2 = Tr
[
ΩG(g

−1dg) f−1
G (g−1dg) fG

]
. (3.25)

One can show that the property (3.7) is satisfied.

Let us now consider gauging the H action g 7→ `(x) g r(x)−1, with left and right

embeddings (`, r) satisfying (3.22). If the automorphism ΩG is such that r = ΩG ◦ ` for

a subgroup H then one can gauge H; the constraint (3.9) is satisfied, and the symmetry-

preserving brane descends to a brane8 on G/H.

We shall not review the details of these facts here; the steps can be found in [83, 86, 89–

91, 103] and are parallel to those in the following subsection which treats in more detail

the more involved example of symmetry-breaking branes.

3.4 Symmetry-breaking branes

Symmetry-breaking branes are constructed by taking the D-brane worldvolume to lie along

a product of “generalized twisted conjugacy classes”, following the terminology of [91].

Symmetry-breaking branes are valid D-branes regardless of whether we choose to gauge H;

however, they allow that possibility, or for that matter the gauging of any subgroup of H.

We will of course be interested in branes that preserve the chosen null gauging (2.11)–(2.13).

Suppose we want to preserve only a subgroup H of G; in the simplest case, such a

symmetry breaking brane worldvolume is given by the following product. Let

CG = C(fG ,ΩG)
G =

{
g fG ΩG(g

−1) , g ∈ G
}
,

CH =
{

ˆ̀(h)fH r(h
−1) , h ∈ H

}
, (3.26)

where
ˆ̀ ≡ ΩG ◦ ` . (3.27)

then the boundary is9

C = CG · CH =
{
cG cH

∣∣ cG ∈ CG , cH ∈ CH} . (3.28)

8Denoted an “A-brane” in [81].
9Note that while at first glance it may seem as if we are smearing CG by the right group action of H,

the action of H on G is specified in (3.18), and the ordering in (3.28) is simply a matter of convention: one

could equally choose the opposite ordering and adjust (3.26)–(3.27) appropriately.
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An important special case sets CH to be the embedding of a conjugacy class of H; here

one relates the left and right embeddings via

r = ˆ̀◦ ΩH (3.29)

where ΩH is an automorphism of H. Writing fH = ˆ̀(f̂H) we then have

CH = ˆ̀
(
hf̂HΩH(h−1)

)
= ˆ̀

(
C(f̂H,ΩH)
H

)
. (3.30)

For the moment however, we will work with the more general boundary condition (3.28),

and we will return to this point later.

The boundary condition (3.28) breaks the symmetry preserved from G to the H ac-

tion (3.18). More precisely, if f ∈ G is an allowed boundary value of the sigma model fields,

then so also is `(h) f r(h) for any h ∈ H. Loosely speaking, one has taken a symmetry-

preserving brane and smeared it along a generalized conjugacy class of H embedded in G.

We now write down the flux on the branes specified by the symmetry-breaking boundary

condition, and then demonstrate the gauge invariance, as done in [91], generalizing the

presentation of [103] to this boundary condition.

A general method for computing the two-form ω2 has been formulated in [89, 91]. To

write the flux, it is convenient to introduce the notation (in what follows h ∈ H and g ∈ G)

ϑG ≡ dgg−1 , ϑH ≡ dhh−1,

αG ≡ Adc−1
G
, αH ≡ Adc−1

H
ˆ̀ , (3.31)

ᾱG ≡ AdcG
ΩG , ᾱH ≡ AdcH

r ,

so that for example αHϑH = c−1
H

ˆ̀(ϑH)cH.

The worldvolume flux for the product of these generalized conjugacy classes is given by

ω2 = ω2(G) + ω2(H) + ω2(H,G) (3.32)

where

ω2(G) =
〈
ΩGϑG , αGϑG

〉
,

ω2(H) =
〈
rϑH , αHϑH

〉
, (3.33)

ω2(H,G) =
〈
c−1
G dcG , dcHc

−1
H

〉
=
〈
(αG − ΩG)ϑG , (ˆ̀− ᾱH)ϑH

〉
.

One can directly verify that i∗H = dω2: i∗H is computed by simply evaluating the three-

form H in (3.17) on the boundary C in (3.48), and one uses (3.22) and (3.27).

For matrix groups, the flux evaluates to

ω2(G) = Tr
[

ΩG
(
g−1dg

)
f−1
G

(
g−1dg

)
fG

]
,

ω2(H) = Tr
[
r
(
h−1dh

)
f−1
H

ˆ̀
(
h−1dh

)
fH

]
, (3.34)

ω2(H,G) = Tr
[(
c−1
G dcG

)(
dcHc

−1
H

)]
.
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Before gauging we note that ω2, and therefore the action (3.6), is invariant under the global

H-action (3.18). To see this, it is convenient to note that the H-action (3.18) corresponds

to the following action at the level of CG and CH (here (3.27) is important):

cG 7→ c̃G = cG
∣∣
g 7→ `(x)g

, cH 7→ c̃H = cH
∣∣
h 7→xh

. (3.35)

One can then proceed to gauge this symmetry, whereupon one must ensure that the

constraint (3.9) is solved. This can be done as follows, generalizing the calculation per-

formed in [103] for the symmetry-preserving boundary condition. We have

i∗θL = g−1dg
∣∣
g=cGcH

= Adc−1
H

(c−1
G dcG) + c−1

H dcH ,

= Adc−1
H

(αG − ΩG)ϑG + (αH − r)ϑH , (3.36)

i∗θR = −dg g−1
∣∣
g=cGcH

= −dcGc−1
G −AdcG (dcHc

−1
H ) ,

= −(id− ᾱG)ϑG −AdcG (ˆ̀− ᾱH)ϑH . (3.37)

Then from (3.21) we have

i∗θa = 〈`(Xa), i
∗θR〉 − 〈r(Xa), i

∗θL〉 . (3.38)

Next, to compute ıaω2, we employ the method used in [103] and apply this to the gauge

action expressed as a simultaneous action on cG and cH in eq. (3.35). The Killing vector

field corresponding to the gauge action is the sum of the Killing vector fields for the

individual actions,

ξa = ξGa + ξHa . (3.39)

Here ξHa is the Killing vector corresponding to the action h 7→ xh in H. So ξHa generates

h 7→ e−tXah , (3.40)

so ξHa corresponds to the right-invariant vector field XR
a on H. Furthermore, ϑH is equal to

minus the right Maurer-Cartan one-form on H, i.e. ϑH = −θHR. Since the interior product

is linear, and ξGa acts only on cG, we have

ıaϑH = ıξHa ϑH = −ıξHa θ
H
R = θHR(XR

a ) = −Xa . (3.41)

Similarly, we have

ıaϑG = ıξGa ϑG = −ıξGa θ
G
R = θGR(`(Xa)

R) = −`(Xa) . (3.42)

Applying these expressions to the flux in the form (3.33), one can directly verify that

i∗θa + ıaω2 = 0 . (3.43)

This establishes the classical consistency of the gauging, given eq. (3.22). Note that to show

this we did not need to use the special relation r = ˆ̀◦ ΩH (3.29), we worked generally.

Thus the action is classically gauge invariant without imposing this constraint [90, 91].

However, there can be additional requirements on the D-brane worldvolume in order that

the quantum theory is consistent, and eq. (3.29) is one such constraint. We will return to

this point in section 6.1.
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More general symmetry-breaking branes: one can generalize the construction of

symmetry-breaking branes to worldvolumes specified the product of multiple conjugacy

classes, corresponding to a chain of embeddings [89, 91]

H ≡ UN ↪→ UN−1 ↪→ · · · ↪→ U0 ≡ G . (3.44)

The boundary condition is a product of N + 1 conjugacy classes, generalizing (3.47)–

(3.48), and the flux on the branes contains a contribution from each of the N + 1

groups in the embedding chain as well as a contribution from each pair of groups,

generalizing (3.32)–(3.34).

In section 8 we will use an embedding chain of length three; for use there we record

some expressions for such a chain. We denote the intermediate group by I ≡ U1. A

priori we could consider independent left and right embeddings of H into I and I into G,

generalizing (3.47), however we shall restrict attention to the simpler case in which the

left and right embeddings are related by a generalization of (3.29). Explicitly, we consider

the embeddings

H ↪−→
εH

I ↪−→
εI
G , (3.45)

together with automorphisms ΩG, ΩI, ΩH of the respective groups. The action to be gauged

is as before, g 7→ `(x) g r(x)−1 for x ∈ H , (3.18), and we have

` = εI ◦ εH , r = ΩG ◦ εI ◦ ΩI ◦ εH ◦ ΩH . (3.46)

The generalized conjugacy classes are then embeddings of twisted conjugacy classes of the

respective groups:

CG = C(fG ,Ω)
G =

{
g fG ΩG(g

−1) , g ∈ G
}
,

CI = ΩG ◦ εI
(
C(fI ,ΩI)
I

)
,

CH = ΩG ◦ εI ◦ ΩI ◦ εH
(
C(fH,ΩH)
H

)
, (3.47)

and the boundary is given by

C = CG · CI · CH =
{
cG cI cH

∣∣ cG ∈ CG , cI ∈ CI , cH ∈ CH} . (3.48)

The flux on the brane is the appropriate generalization of (3.32)–(3.34), with six parts in

total, three from each of the groups separately ω2(G), ω2(I), ω2(H), and three from the

pairs of groups, ω2(H,G), ω2(H, I), ω2(I,G).

4 Gauged WZW models for supertubes

The supergravity backgrounds of section 2 have an exact worldsheet description as gauged

WZW models. The construction of [66] gauges left and right null isometries on the

group manifold

G = SL(2,R)× SU(2)× Rt × S1
y × T4 ; (4.1)

– 21 –



J
H
E
P
1
1
(
2
0
1
9
)
0
1
9

in this way one builds, in incremental stages, worldsheet string theory for each of the

backgrounds of section 2. We thus specialize in the following to the WZW model on G,

and specify the Killing vectors ξa to be gauged in each case.

We begin by specifying our conventions for the worldsheet sigma models on SU(2)k
and SL(2,R)k, which introduce some additional overall factors with respect to the general

presentation above. For the SL(2,R) factor we will find it convenient to use the equivalent

SU(1, 1) description, though we will still denote elements by gsl. The sigma models that

we will consider, before gauging, will contain elements

(gsl, gsu) ∈ SU(1, 1)× SU(2). (4.2)

We use Euler angle group parameterizations as follows:

gsl = e
i
2

(τ−σ)σ3eρσ1e
i
2

(τ+σ)σ3 , gsu = e
i
2

(ψ−φ)σ3eiθσ1e
i
2

(ψ+φ)σ3 . (4.3)

In order to have one timelike and five spacelike directions, the metric involves a relative

sign between the two group factors. To ease the notation we write the expressions in the

absence of the worldsheet boundary, as this suffices to specify the overall normalizations.

We then have

Skin = Skin + SWZ(g) , (4.4)

where

Skin =
1

π

∫
Gij(ϕ) dϕi ∧ ?dϕj

=
k

2π

∫
Tr
[
(∂gsl)g

−1
sl (∂̄gsl)g

−1
sl

]
− k

2π

∫
Tr
[
(∂gsu)g−1

su (∂̄gsu)g−1
su

]
,

(4.5)

and where

SWZ(g) =
1

π

∫
M
H =

k

2π

∫
M

1

3
Tr
[
(g−1

sl dgsl)
3
]
− k

2π

∫
M

1

3
Tr
[
(g−1

su dgsu)3
]
. (4.6)

We work in the large n5 limit, in which to leading order k = n5, giving the line element

ds2 = Gijdϕ
idϕj = n5

(
−cosh2ρdτ2 +dρ2 +sinh2ρdσ2 +dθ2 +sin2θ dφ2 +cos2θdψ2

)
, (4.7)

and the H-flux

H = n5

(
sinh 2ρ dρ ∧ dτ ∧ dσ + sin 2θ dθ ∧ dψ ∧ dφ

)
. (4.8)

Correspondingly, the expressions for the fluxes (and related quantities such as the one-

forms θa) in the previous section should be scaled by a factor of n5/2 in our explicit

applications below.
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4.1 Fivebranes on the Coulomb branch

As mentioned above, the original description of NS5-branes on the Coulomb branch in a

circular Zn5-symmetric configuration used the Landau-Ginsburg orbifold(
SL(2,R)

U(1)
× SU(2)

U(1)

)
/Zn5 , (4.9)

stressing their relation to non-compact Calabi-Yau manifolds [94, 95] near a singular point

in their moduli space through the Calabi-Yau/Landau-Ginsburg correspondence [98, 99].

We shall work instead with an alternative description using the gauging of null isome-

tries [100] in the SL(2,R)×SU(2) part of the 10+2 dimensional “upstairs” group G in (1.6),

with parametrization as described in eqs. (4.2)-(4.8).

The group we wish to gauge is U(1)L × U(1)R,10 so a basis of generators of the Lie

algebra u(1)L ⊕ u(1)R is simply given by a pair of real numbers,

Xa = (α, β). (4.10)

Given α ∈ u(1)L, β ∈ u(1)R, we gauge the action

(gsl, gsu) 7→
(
eiασ3 gsl e

iβσ3 , e−iασ3 gsu e
iβσ3

)
. (4.11)

Let us translate this into the notation of [103]. We have homomorphisms `, r describing

the embedding of the above action — we use the same notation for the group action and

the induced Lie algebra action. We have

`(X1) = `(α) =
(
iασ3 , −iασ3

)
≡
(
`sl(α) , `su(α)

)
, r(X1) = 0 ,

r(X2) = r(β) =
(
− iβσ3 , −iβσ3

)
≡
(
rsl(β), rsu(β)

)
, `(X2) = 0 ,

(4.12)

so that the separate actions to be gauged are

(gsl, gsu) 7→
(
e`sl(α)gsl , e

`su(α)gsu

)
, (gsl, gsu) 7→

(
gsl e

−rsl(β), gsu e
−rsu(β)

)
. (4.13)

The Killing vectors ξa corresponding to the two basis elements Xa are

ξ1 =
(
∂τ + ∂φ

)
−
(
∂σ + ∂ψ

)
, (4.14)

for the left action, and for the right action one has

ξ2 =
(
∂τ + ∂φ

)
+
(
∂σ + ∂ψ

)
. (4.15)

Note that if we were to set α = β we would be gauging away

ξ1 + ξ2 = 2
(
∂τ + ∂φ

)
, (4.16)

10More precisely, as discussed in [67], the global structure of the gauge group is R × U(1), where R is

generated by the (timelike) vector combination of the left and right null vectors, and U(1) is generated by

the (spacelike) axial combination. Here we will be interested in the local structure of the gauge group, and

will therefore ignore such subtleties.
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that is a (timelike) combination of axial gauging in SL(2,R) and vector gauging in SU(2).

Similarly, if we set α = −β we would be gauging away

ξ2 − ξ1 = 2
(
∂σ + ∂ψ

)
, (4.17)

that is a (spacelike) combination of vector gauging in SL(2,R) and axial gauging in SU(2).

The background H before gauging is given in (4.8); from (3.21), the θa are

θ1 = n5

[
−
(
cosh2ρ dτ + sinh2ρ dσ

)
−
(
cos2 θ dψ − sin2 θ dφ

) ]
θ2 = n5

[ (
cosh2ρ dτ − sinh2ρ dσ

)
−
(
cos2 θ dψ + sin2 θ dφ

) ]
. (4.18)

From (4.12) we see that the anomaly cancellation constraint (3.22) is satisfied.

The kinetic terms in the sigma model action involve the covariant derivative (3.2) with

a gauge potential Aa for gauging each Killing vector ξa. We have two independent gauge

fields (A1, Ā1) and (A2, Ā2); the kinetic terms involve

DϕiGij Dϕj = (∂ϕi −Aaξia)Gij (∂̄ϕj − Āaξja) . (4.19)

Compared to the analysis of [66], this seems twice too many, however the fact that the

currents being gauged are null results in the absence of the left component of the gauge

field for the left null current in the action, and similarly for the right component of the

right current. This happens as follows.

The kinetic term (4.19) can be written in matrix notation as

− n5

2
Tr
[(
g−1Dg

)(
g−1Dg

)]
, (4.20)

where the group element g and the trace run over the various factors in G, and where there

is a minus sign to be understood in the definition of the SL(2) trace, see (4.4)–(4.7). The

terms quadratic in gauge fields are

n5

2

(
A1Ā2 +A2Ā1

)
Tr
[(
g−1(ξ1g)

)(
g−1(ξ2g)

)]
(4.21)

=
n5

2

(
A1Ā2 +A2Ā1

)
Tr
[
`(X1)g r(X2)g−1

]
where we have used (3.20); the terms involving A1Ā1 and A2Ā2 have vanished since the

embeddings are chiral (`(X2) = r(X1) = 0), eq. (4.12). The Wess-Zumino term involves

ıaθb − ıbθa; using (3.12), (3.19), (3.21), one has for our chiral embeddings

n5

2

(
−A1Ā2 +A2Ā1

)
Tr
[
`(X1)g r(X2)g−1

]
. (4.22)

As a result, the sum of the gauge kinetic terms and Wess-Zumino terms that are quadratic

in gauge fields depends only on A2, Ā1, with the contributions from A1, Ā2 cancelling

between the two. The terms linear in the gauge fields reinforce/cancel similarly, so all

together, the gauge kinetic terms and the WZ terms in (3.1)–(3.3) combine in such a way

that the gauge field components A1, Ā2 simply drop out completely and do not appear at
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all in the action. The resulting action is that of the asymmetrically gauged models given

in [90, 107]. Relabelling A = A2, Ā = Ā1, the full Lagrangian becomes

L = LWZW + 2Ā
(
J sl

3 + J su
3

)
+ 2A

(
J̄ sl

3 − J̄ su
3

)
− 4n5(sinh2 ρ+ cos2 θ)AĀ (4.23)

where LWZW is the ungauged Lagrangian and where the conventions for the J3 currents

are given in the appendix, eqs. (A.9), (A.14). Thus we recover the action for fivebranes

on the Coulomb branch of [66, 100], which upon integrating out the gauge fields gives the

background (2.2).

The absence of half the gauge field components is a direct consequence of the gauging

of null isometries, and is not specific to this choice of group manifold. In holomorphic

worldsheet coordinates, the sigma model Lagrangian has the form

(Gij +Bij)∂ϕ
i∂̄ϕj ; (4.24)

the left and right null Killing vectors mean that the matrix G + B has left and right null

vectors, and when these isometries are gauged, the gauge field components related to these

null vectors are absent from the action. When the worldsheet has a boundary, this property

will extend to the matrix G+ B + F , where F is the field strength of the D-brane gauge

field associated to the boundary. This feature will have consequences for the DBI effective

action, as we will see in the following.

We now proceed to the more general null gaugings that lead to supertubes and spectral

flowed supertubes; we pause here to note that a potentially interesting extension of the

present work could be to investigate connections with recent work on integrable deforma-

tions of asymmetrically gauged WZW models [108] (see also [109]).

4.2 NS5-P and NS5-F1 supertubes

More general null embeddings of U(1)×U(1) can be specified through the gauge currents

U(1)L : J = l1J
sl
3 + l2J

su
3 + l3P̂t,L + l4P̂y,L , (4.25)

U(1)R : J̄ = r1J̄
sl
3 + r2J̄

su
3 + r3P̂t,R + r4P̂y,R ,

where

P̂t,L ≡ ∂t , P̂t,R ≡ ∂̄t , P̂y,L ≡ ∂y , P̂y,R ≡ ∂̄y , (4.26)

and where the SL(2,R) and SU(2) currents are given in (A.14), (A.9) respectively. The

null conditions

0 = 〈`, `〉 = n5(−l21 + l22)− l23 + l24 , 0 = 〈r, r〉 = n5(−r2
1 + r2

2)− r2
3 + r2

4 (4.27)

ensure anomaly cancellation and independence of the left and right gaugings.

The gauged action is then

L = LWZW + 2ĀJ + 2AJ̄ − 4n5ΣAĀ , (4.28)
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where

n5Σ =
1

2

[
n5

(
l1r1 cosh 2ρ− l2r2 cos 2θ

)
+ l3r3 − l4r4

]
. (4.29)

The double-null choice |l1| = |l2|, |l3| = |l4| (and similarly for the right coefficients ri)

tilts the null isometry into the Rt × S1
y direction, leading to NS5-P and NS5-F1 supertube

backgrounds [66]. Specifically, letting

l1 = l2 = 1 , l3 = −l4 = − k

Rỹ
, r1 = −r2 = 1 , r3 = −r4 = − k

Rỹ
(4.30)

leads to an NS5-P supertube that (for n5, k relatively prime) wraps together the n5 five-

branes into a single source that coils k times around the φ circle in the transverse angular S3.

T-duality to the NS5-F1 supertube simply amounts to flipping the sign of l4, and relabelling

the radius of the S1, Rỹ = `2str/Ry, so that l4 = l(P)

4 = k/Rỹ becomes l4 = l(F1)

4 = −kRy. For

future reference, we can combine the gauge transformations for both these possibilities into

δτ = l1α+ r1β = (α+ β) , δσ = −l1α+ r1β = −(α− β) ,

δφ = l2α− r2β = (α+ β) , δψ = −l2α− r2β = −(α− β) ,

δt = l3α+ r3β = −kRy (α+ β) , δy = −l(F1)

4 α− r4β = kRy (α− β) ,

δỹ = −l(P)

4 α− r4β = −kRy (α+ β) . (4.31)

Note that T-duality, which interchanges the value of l4 between l(P)

4 and l(F1)

4 , is equivalent

to interchanging y and ỹ in this expression.

The form of the currents (A.14) makes clear why the geometry of the NS5-F1 supertube

is asymptotically that of the linear dilaton fivebrane throat, and in the cap locally AdS3×S3.

For large ρ� 1
2 log(kRy/n5`str), the largest contribution to the current comes from motions

along SL(2,R), and so a good approximation to the physical spacetime comes from fixing

a reference point along the gauge orbit τ = σ = 0 and examining the geometry along the

other directions. There is not so much difference between the tilted null gauging of the

supertube and that of fivebranes on the Coulomb branch, or for that matter the linear

dilaton throat (2.1) of coincident fivebranes.11 On the other hand, in the cap region ρ �
1
2 log(kRy/n5`str), the gauge current lies mostly along t and y, thus a good approximation

to the geometry in this region fixes these coordinates, largely leaving alone SL(2,R)×SU(2),

and the geometry is thus well-approximated locally by AdS3 × S3.

The Zk orbifold structure of the NS5-F1 supertube arises from a discrete residual

gauge symmetry remaining after fixing the y coordinate. The factor of k in the gauge

transformation of y in (4.31) means that while asymptotically a spatial gauge orbit (α−β) ∈
(0, 2π) covers the range δσ = 2π of the SL(2,R) spatial coordinate being fixed, in the cap

the range (α − β) ∈ (0, 2π/k) is sufficient to cover the entire range δy = 2πRy. Thus in

gauge fixing y in the cap, one should decompose the axial gauge orbit as

(α− β) = 2π

(
η

k
+
m

k

)
, η ∈ (0, 1) , m = 0, 1, . . . , k − 1 (4.32)

11The CHS geometry (2.1) fits within the null gauging framework — it is obtained by gauging the null

currents that generate the Borel subgroup of SL(2,R), leaving the remaining factors in G untouched.
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and use η to fix a point in the y circle; the residual discrete Zk gauge group parametrized

by m keeps y fixed and yields an orbifold identification of AdS3 × S3.

4.3 Three-charge NS5-F1-P supertubes

Further generalization to more generic null vectors yields worldsheet sigma models for the

three-charge backgrounds of [69, 72] obtained by a spacetime spectral flow transformation

of these supertubes.

The null current directions are given in the parametrization (4.25) as

l1 = 1 , l2 = 2s+ 1 , l3 = −kRy (1 + ϑ) , l4 = −kRy(1− ϑ) ,

r1 = 1 , r2 = −1 , r3 = −kRy (1 + ϑ) , r4 = +kRy(1 + ϑ) , (4.33)

where s is the left-moving spectral flow parameter, and

ϑ =
1− η
η

=
s(s+ 1)n5`

2
str

k2R2
y

. (4.34)

Note that for s = 0, we recover the NS5-F1 supertube. There is a further generalization to

the non-supersymmetric “JMaRT” solutions with both left and right spectral flow param-

eters s, s̄; however, since the closed string background is already unstable to rapid decay

via perturbative string radiation when we couple it to asymptotically flat spacetime, we

will not consider the D-brane spectrum here (most of its structure differs little from the

supersymmetric backgrounds above).

The gauge orbits are now

δτ = (α+ β) , δσ = −(α− β) , δt = (−kRy − k̃Rỹ) (α+ β) , (4.35)

δφ = (s+ 1) (α+ β) + s (α− β) , δψ = −s (α+ β)− (s+ 1) (α− β) ,

δy = −k̃Rỹ (α+ β) + kRy (α− β) , δỹ = −kRy (α+ β) + k̃Rỹ (α− β) ,

where

Rỹ =
`2str
Ry

, k̃ =
s(s+ 1)

k
n5 . (4.36)

Note the manifest T-duality of (4.35) under y ↔ ỹ, k ↔ k̃, Ry ↔ Rỹ .

The gauge orbit structure once again determines an orbifold identification in the cap

when we use the gauge freedom to fix y (or ỹ in the T-dual geometry, where spectral flow

has induced an F1 charge proportional to s leading to a structure similar to the NS5-F1

cap). We can parse the spatial gauge parameter as

(α− β) = 2π

(
η

q
+
p

q

)
(4.37)

where η ∈ (0, 1) and p ∈ {0, 1, . . . , q − 1}. Also, following the analysis in [67, 72] let

k = `1`2 , s = m1`1 , s+ 1 = m2`2 , k̃ = m1m2n5 . (4.38)

There are now two canonical choices:
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1. We can use η to gauge fix y if we are working in the “mostly NS5-F1” frame (i.e. the

frame where s = 0 leads to the NS5-F1 supertube). Then q = k, since all we need is

the (0,1/k) interval of the gauge parameter circle to fix a point on the y circle. There

is then the residual discrete Zk part of the gauge group parametrized by p. Now that

we have gauge fixed y, the remaining spatial coordinates ρ, σ, θ, φ, ψ are the spatial

directions of AdS3 × S3. There is the additional identification above. Thus things

look exactly like the discussion in section 2.4 of [67], and we conclude that there is a

Z`1 orbifold singularity at θ = π/2 and a Z`2 orbifold singularity at θ = 0.

2. We can use η to gauge fix ỹ if we are working in the T-dual “mostly NS5-P” frame (i.e.

the frame that reduces to an NS5-P supertube when s = 0). Then q = s(s+1)n5/k =

m1m2n5 ≡ k̃ since we only need a 1/q fraction of the gauge orbit to fix a point on

the ỹ circle. We see that we have exactly the same structure, but with k replaced by

k̃ = m1m2n5. This is exactly what [70] found by performing T-duality on y, and we

find it here rather directly through an analysis of the gauged WZW model. There is

a Zm1 orbifold singularity at θ = π/2 and a Zm2 orbifold singularity at θ = 0.

Note that the gauge orbits never degenerate in the target space G, because y and ỹ never

pinch off, and the gauge group acts effectively on both for s 6= 0. When present, such

a degeneration causes the curvature and dilaton to diverge in the classical sigma model

effective geometry (though of course such divergences are an artifact of the supergravity

approximation and are absent in the exact tree-level string theory, as discussed above); but

here, the geometry is regular apart from the orbifold singularities specified above.

For further details, we refer to [66, 67].

5 Review of D-branes in SU(2) and SL(2,R)

We now survey known results for D-branes in SL(2,R) and SU(2), as they will be useful

ingredients in our analysis — smearing them along the U(1)×U(1) gauge orbits will yield

examples of D-branes in supertube backgrounds. In this section, we suppress all factors of

the level k = n5 of the WZW models, to reduce clutter in formulae. They may be restored

easily, for instance all the fluxes are proportional to n5.

5.1 SU(2) D-branes

We begin by describing D-branes in the SU(2) group manifold, following the geometric

approach outlined in section 3.

5.1.1 Symmetry-preserving branes

Symmetry-preserving branes are described by the twisted conjugacy classes (3.24)

CG = C(fG ,ΩG)
SU(2) = {gfsu ΩG(g

−1) , g ∈ SU(2)} . (5.1)

If fsu = ±id these worldvolumes are just points, while nontrivial fsu describes D-branes

wrapping an S2 ⊂ SU(2). Nontrivial automorphisms ΩG in SU(2) are always inner auto-

morphisms, and correspond to a rotated orientation of the S2 within SU(2). For instance,
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(a) (b)

Figure 6. SU(2) branes. The SU(2) group manifold is depicted in Euler angles as the φ-ψ torus

fibered over the polar θ interval (the torus at fixed θ has been cut open to a rectangle with opposite

sides identified for visualization purposes). (a) Symmetric S2 brane (in blue); the torus identification

makes the azimuthal circle, and the S2 is this circle fibered over an embedded interval that begins

and ends at θ = π/2. (b) Symmetry-breaking brane obtained by smearing the S2 brane along φ;

the brane fills a finite region of SU(2) given by θ > θ0.

in section 6 we will be interested in a rotation automorphism Ω−G that locates the N/S

poles of the S2 at θ = π/2; this brane is depicted in figure 6(a). The untwisted brane with

ΩG = id is the same shape but with φ ↔ ψ, θ → π/2 − θ, and so has its poles anchored

at θ = 0.

For simplicity, we consider first the untwisted S2 brane; setting fsu = eiµσ3 and taking

the trace, we find the defining relation

cos θ cosψ = cosµ . (5.2)

These branes are puffed up by a worldvolume flux ω2 given by (3.25), with an additional

prefactor n5/2 (see comment below eq. (4.8)). Since we are currently suppressing factors

of n5, we write

ω2 =
1

2
Tr
[
(g−1dg)f−1

su (g−1dg)fsu

]
. (5.3)

In order to compute this form it is useful to use a parametrization for g such that the

boundary locus takes the form [87]

CG =

(
cosµ+ iX3 iX1 +X2

iX1 −X2 cosµ− iX3

)
(5.4)

which is related to the Euler angle parametrization (4.3) by

X1 = sin θ cosφ , X2 = sin θ sinφ , X3 = cos θ sinψ . (5.5)

For example we can take

g =
1√

2 sinµ(sinµ−X3)

(
−X1 + iX2 −X3 + sinµ

X3 − sinµ −X1 − iX2

)
. (5.6)
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The form ω2 is then given by the following expression

ω2 =
cosµ

X3
dX1 ∧ dX2 , (5.7)

which can be expressed using the embedding equation (5.2) variously as

ω2 = cos2 θ dφ ∧ dψ =
sin θ cosµ

sinψ
dθ ∧ dφ = ±1

2

cosµ sin 2θ√
cos2 θ − cos2 µ

dθ ∧ dφ . (5.8)

Note that in the Hopf parametrization (A.6) ω2 has the form

ω2 =
1

2
sin 2χ sinϑ dϑ ∧ dϕ . (5.9)

It is straightforward to check that this result agrees with a DBI analysis. If we

parametrize the worldvolume of the S2 brane as follows:

φ = ξ0 , ψ = ξ1 , θ = θ(ξ1) , (5.10)

the DBI action is

L = e−Φ
√

det(G+B + F) =

√
(θ̇2 + cos2 θ) sin2 θ + (Bφψ + Fφψ)2 , (5.11)

where θ̇ = ∂ξ1θ(ξ1). From the first equality in (5.8) we have

(ω2)φψ = Bφψ + Fφψ = cos2 θ , (5.12)

so the DBI action becomes

L =

√
cos2 θ + θ̇2 sin2 θ . (5.13)

The embedding equation (5.2) is a solution of the resulting equations of motion.

5.1.2 Symmetry breaking branes

We now consider symmetry-breaking branes in SU(2) obtained by smearing the D-branes

described above along a twisted conjugacy class of a U(1) subgroup H:

C(fH,Ω±)
H = {hfHΩ±(h−1) , h ∈ H} , (5.14)

where the automorphisms Ω± act on h = eiλ as

Ω±(eiλ) = e±iλ . (5.15)

Note that C(fH,Ω+)
H reduces to a point, so by using the automorphism Ω+ one recovers the

symmetry-preserving branes. On the other hand, the inversion automorphism leads to CH
isomorphic to H = U(1), embedded in G. The worldvolume of the symmetry breaking

branes is then given by

CG · ε(C(fH,Ω−)
H ) , with CG = C(fsu)

SU(2) , (5.16)
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and where we take the embedding map ε to be

ε(eiα) = eiασ3 . (5.17)

From (5.16) we see that the brane is described by the relation

cos θ cos(ψ − α) = cosµ , (5.18)

namely cos θ ≥ cosµ. The branes fill part of the SU(2) group (see figure 6(b), where we have

again depicted the brane twisted by the automorphism that sends θ → π/2−θ, and φ↔ ψ;

this twisted brane is relevant to the constructions in sections 6–8). The worldvolume flux

ω2 is given by (3.32). Note that in the present case ω2(H) vanishes. In order to evaluate

the forms ω2(G) and ω2(H,G) we can parameterize CG as in (5.4)–(5.6), with

X1 = sin θ cos(φ− α) , X2 = sin θ sin(φ− α) , X3 = cos θ sin(ψ − α) . (5.19)

The form ω2(G) is given by (5.7), while we find

ω2(H,G) =
(
X2 dX1 −X1 dX2 − cosµdX3

)
∧ dα. (5.20)

By using (5.19) and the embedding equation (5.18) we find

ω2 = ± cosµ tan θ√
cos2 θ − cos2 µ

dθ ∧ dφ− sin2 θ dφ ∧ dψ , (5.21)

where the ± arises from the sign of X3, similarly to eq. (5.8). We will see a similar structure

in the following subsection.

The same result can be obtained from a DBI computation. If we smear the S2 brane

along ψ we can parametrize the worldvolume by

φ = ξ0 , ψ = ξ1 , θ = ξ2 . (5.22)

Turning on a non-zero flux F = Fθφ dθ ∧ dφ we find that the matrix G+B + F is

G+B + F =

 sin2 θ Bφψ −Fθφ
−Bφψ cos2 θ 0

Fθφ 0 1

 , (5.23)

where we choose the gauge Bφψ = − sin2 θ in order to agree with (5.21). The effective

action is thus

L =
√
F2
θφ cos2 θ + sin2 θ . (5.24)

Demanding that
∂L
∂Fθφ

=
Fθφ cos2 θ√

F2
θφ cos2 θ + sin2 θ

= const = cosµ , (5.25)

we find

Fθφ = ± cosµ tan θ√
cos2 θ − cos2 µ

. (5.26)

This solution agrees with (5.21), taking into account ω2 = B + F .
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(a) (b) (c)

Figure 7. Symmetry-preserving SL(2,R) branes: (a) AdS2; (b) dS2; (c) H2.

5.2 SL(2,R) D-branes

We now review both symmetry-preserving and symmetry-breaking branes in SL(2,R). As

the discussion closely parallel the one for SU(2) we will be brief; see for example [73, 77, 82–

91] for additional details.

5.2.1 Symmetry-preserving branes

The generic twisted conjugacy classes for SL(2,R) are depicted in figure 7; we now consider

them in turn.

AdS2 brane: if Ω in (3.24) is outer, we can take (up to group conjugation)

Ω(g) = σ1gσ1 . (5.27)

The defining relation for this conjugacy class is Tr(gσ1) = Tr(fslσ1). Taking fsl = eµσ1 this

reduces to

sinh ρ cosσ = sinhµ . (5.28)

This defines AdS2 sections of SL(2,R). The worldvolume flux is given by (3.25); this can

be evaluated by using coordinates adapted to such AdS2 slicing of SL(2,R). Mapping to

Euler angle coordinates one finds

ω2 = ±1

2

sinhµ sinh 2ρ√
sinh2 ρ− sinh2 µ

dρ ∧ dτ . (5.29)

The two signs correspond to the two different branches of the embedding (5.28). It is

straightforward to show that the embedding equation (5.28), together with the worldvolume

flux (5.29), provide a solution of the DBI equations.

dS2 brane: taking Ω = id and fsl = eµσ3 we find the brane defined by the embedding

cosh ρ cos τ = coshµ , (5.30)

which defines a dS2 world-volume. These branes have a super-critical worldvolume flux

given by

ω2 = ±1

2

coshµ sinh 2ρ√
cosh2 ρ− cosh2 µ

dρ ∧ dσ . (5.31)
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(a) (b) (c)

Figure 8. Symmetry-breaking SL(2,R) branes: the worldvolume obtained by smearing (a) the

AdS2 brane along σ; (b) the dS2 brane along τ ; (c) the H2 brane along τ . Note that the smeared

H2 brane fills SL(2,R), and that although the worldvolumes for the smeared AdS2 and dS2 branes

are similar, they are foliated differently and carry different two-form fluxes ω2.

H2 brane: finally, for Ω = id and f = eiµσ3 we get

cosh ρ cos τ = cosµ , (5.32)

which defines a two-sheeted hyperboloid. Such H2 branes are formally a solution of the

DBI equations with a worldvolume density of D-instantons. We now find:

ω2 = ±1

2

cosµ sinh 2ρ√
cosh2 ρ− cos2 µ

dρ ∧ dσ . (5.33)

Note that at µ = 0 the H2 and dS2 world-volumes degenerate to a light-like brane.

5.2.2 Symmetry-breaking branes

We now describe the symmetry-breaking branes obtained by smearing the branes described

above along a non-trivial conjugacy class of an abelian subgroup.

Smeared AdS2 brane: starting from an AdS2 brane, taking the trace we see that the

condition following from (3.28) is

sinh ρ cos(σ + α) = sinhµ , (5.34)

namely sinh ρ ≥ sinhµ. The AdS2 worldvolume has been smeared along the σ direction

and the brane is filling the AdS3 space outside the radius ρµ = µ (see figure 8). For µ = 0

the whole space is filled. Since α in (5.34) is generically double valued, each element of the

group is covered twice. The worldvolume flux can be determined from (3.32)–(3.33) [87, 89],

following the same procedure discussed for the SU(2) branes. The result is

ω2 = ± sinhµ coth ρ√
sinh2 ρ− sinh2 µ

dρ ∧ dτ − cosh2 ρ dσ ∧ dτ . (5.35)

Smeared dS2 brane: similarly, for the dS2 brane we find

ω2 = ± coshµ tanh ρ√
cosh2 ρ− cosh2 µ

dρ ∧ dσ − sinh2 ρ dσ ∧ dτ . (5.36)

Note that the smearing cures the large ρ divergence of the flux of the symmetry-

preserving branes.
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Smeared H2 brane: starting from an H2 brane, one can construct a non-trivial

symmetry-breaking brane by smearing the worldvolume along the τ direction:

cosh ρ cos(τ − α) = cosµ . (5.37)

The brane fills all the space. The worldvolume flux is now

ω2 = ± cosµ tanh ρ√
cosh2 ρ− cos2 µ

dρ ∧ dσ − sinh2 ρ dσ ∧ dτ . (5.38)

Smeared identity brane: while we have not mentioned it so far, there is a special

conjugacy class in SL(2,R), namely the conjugacy class of the identity. This describes a

pointlike brane sitting at the origin ρ = τ = 0 in SL(2,R). For our applications, we then

want to smear this brane along the orbits of the gauge group. In particular we can smear

along τ to arrive at a symmetry-breaking brane whose worldvolume is the worldline of

a particle sitting at ρ = 0 and extended along the timelike direction parametrized by τ .

Because the orbit is one-dimensional, the two-form ω2 is trivial.

6 NS5-branes on the Coulomb branch

In the null gauging formalism, a D-brane with a p+1 dimensional worldvolume downstairs

in 9+1 dimensions gains another 1+1 dimensions in the group manifold upstairs in 10+2

dimensions, since the brane upstairs must be invariant under the U(1)×U(1) gauge trans-

lations. One can accomplish this using the technology of section 3, arbitrarily lifting the

brane upstairs to 10+2 and then smearing it along the gauge orbits.

Let’s first think about NS5-branes on the Coulomb branch. In the supergravity ap-

proximation, the geometry of n5 NS5 branes on their Coulomb branch is characterized by

a single harmonic function

ds2 = −du dv + ds2
M + Z5 dx

idxi , H3 = −εlijk∂lZ5 , e2Φ = g2
sZ5 , (6.1)

with

Z5 = 1 +

n5∑
a=1

`2str

|xi − xia|
2 . (6.2)

The decoupling limit scales gs → 0 with xi/(gs`str) held fixed, and amounts to dropping

the constant term in Z5.

Consider a D1-brane probe lying in the directions transverse to the NS5 worldvol-

ume. These are in fact trivial to describe downstairs in 9+1d at the level of the DBI

effective action

S =

∫
e−Φ

√
det
(
G+B + F

)
; (6.3)

for a static D1 in the transverse space, the warp factor Z5 in the metric pulled back to

the D1 worldvolume cancels exactly against the contribution e−Φ of the dilaton. As a

result, the brane shape does not see the warp factor Z5 and is thus a straight line in the

transverse R4.
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We can characterize such a straight line in part via an equation cix
i = C. Let us use

spherical bipolar coordinates on R4, related to the Cartesian coordinates xi via

x1 + ix2 = cosh ρ sin θ ei(φ−τ) , x3 + ix4 = sinh ρ cos θ ei(ψ−σ) . (6.4)

We have used the same coordinate labels as the Euler angles of SL(2,R)×SU(2) in order to

facilitate the lift to 10+2 dimensions. Note that these coordinates parametrize the physical

transverse space to the fivebranes, in coordinates invariant under the gauge transformations

generated by the Killing vectors (4.16)–(4.17). With this embedding, the ring of fivebranes

lies along the unit circle in the x1-x2 plane and at the origin in the x3-x4 plane, which is

the locus ρ = 0, θ = π/2 (absorbing the factor a in (1.4) in a rescaling of coordinates).

We note that it is often easier to visualize the structure by taking the vector and axial

combinations of the gauge parameters above, rather than the left/right parametrization of

the gauge transformations, for the purpose of visualizing the shape of the brane upstairs at

fixed time(s). We will concentrate on the spatial shape of the brane, and thus the smearing

along the axial gauge motion (4.17).

The branes described in this section were considered in [92] using the coset orbifold

description; here we recast their work in the formalism of null gauging, in preparation for

the generalization to supertubes.

6.1 Factorized branes

Special cases of the straight-line D1-branes in the Coulomb branch NS5 background can

be understood as coming from the gauging of branes that start off as factorized boundary

conditions in SL(2,R) × SU(2), using the formalism of section 3. To this end, we want a

brane in the “upstairs” group G of equation (4.1) that projects to the above 1+1d brane

“downstairs” in 9+1d physical spacetime upon gauging of H = U(1)L × U(1)R, where for

the moment we restrict ourselves to H embedding in SL(2,R)× SU(2). As in section 3, we

denote the embeddings of the left and right null U(1)’s into G as (`(hL), r(hR)). For NS5

branes on the Coulomb branch, the gauge motion is given in (4.11), which shifts the Euler

angles as in (4.31) (with the tilt parameter k set to zero). It will prove convenient to work

with the linear combinations ζ = α + β that parametrize temporal gauge transformations

shifting the Euler angles τ and φ, and η = α−β parametrizing spatial gauge transformations

shifting σ and ψ. The left and right embeddings are then12

(
gsl, gsu

)
−→ `(ζ, η)

(
gsl, gsu

)
r(−ζ,−η) =

(
e
i
2

(ζ+η)σ3gsle
i
2

(ζ−η)σ3 , e−
i
2

(ζ+η)σ3gsue
i
2

(ζ−η)σ3
)
.

(6.5)

To specify a brane in the formalism of [90, 91] reviewed in section 3, in addition to the

embeddings (`, r) of H into G one needs a pair of group automorphisms ΩG and ΩH, with

the constraint

r = ΩG ◦ ` ◦ ΩH . (6.6)

12We will ignore global issues involving the U(1) gauge groups; and notationally rewrite U(1) quantities

in terms of the arguments of the phase circle, e.g. Ωε(eiξ) = eiεξ will be written Ωε(ξ) = εξ.
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In [90, 91], this condition guarantees the preservation of an enlarged chiral algebra for

the boundary states considered. It seems to be necessary within the class of branes we

are considering in order to preclude the appearance of manifestly unphysical branes, for

instance a D1-brane that terminates at a point in space where there is no NS5-brane.13

We note the useful identities for the Euler angles (4.3)

Ω−sl (gsl) = Γsl gsl(ρ, τ, σ) Γ−1
sl = gsl(ρ,−τ,−σ) , Γsl = σ1

Ω−su(gsu) = Γsu gsu(θ, φ, ψ) Γ−1
su = gsu(θ,−φ,−ψ) , Γsu = −iσ1 . (6.7)

For SL(2,R) this is a nontrivial outer automorphism, while for SU(2) one has an inner

automorphism. In particular, for U(1) embeddings into SU(2) and SU(1, 1) lying along the

σ3 direction, ε(η) = exp[iησ3], one has the properties

Ω+
sl,su ◦ ε ◦ Ω±(η) = exp

[
±iησ3

]
Ω−sl,su ◦ ε ◦ Ω±(η) = exp

[
∓iησ3

]
(6.8)

where Ω+
sl,su = id are the corresponding identity automorphisms, and Ω± are the identity

and inversion automorphisms of U(1) defined in (5.15).

Let us parametrize

ΩH(ζ, η) = (εζ,−εη) , ΩG(gsl, gsu) =
(
Ωεsl(gsl),Ω

εsu(gsu)
)

(6.9)

with ε, εsl, εsu = ±. The constraint (6.6) is then satisfied provided

εεsl = −1 , εεsu = +1 . (6.10)

We are considering branes that are factorized products of conjugacy classes CG =

Csl · Csu; the relation εslεsu = −1 correlates the choices, so that untwisted conjugacy classes

in SL(2,R) are associated to twisted conjugacy classes in SU(2), and vice versa. Consider

first the choice εsl = +; then one has ε = − and therefore εsu = −. The SL(2,R) conjugacy

classes with εsl = + are dS2 and H2, which are extended along both spatial directions ρ

and σ of SL(2,R); nontrivial conjugacy classes in SU(2) are S2 branes, also extended in two

spatial dimensions. With ε = −, the conjugacy class CH smears CG along temporal gauge

orbits parametrized gauge orbits and is pointlike along spatial gauge orbits. All told, the

product CG · CH has four spatial dimensions, and gauges down to a D3 brane downstairs

in 9+1d. While such branes are of interest, our focus here is on D1-brane probes.14 We

can reduce the dimensionality by taking one of the two conjugacy classes Csl or Csu to be

trivial. Thus we set

1

2
Tr
[
gsu Γsu

]
= sin θ cosφ = Csu , Γsu = −iσ1 ,

1

2
Tr
[
gsl

]
= cosh ρ cos τ = Csl (6.11)

13A generalization of this formalism is suggested in appendix A of [90] (see also appendix D of [91]) that

drops this constraint, however while such boundary conditions may be allowed at the semiclassical level,

there may be further constraints needed to ensure the absence of quantum anomalies.
14The D3 branes are bound states of the D1’s, puffed up in the SU(2) directions by the Myers effect [110].
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with the choice Csu = 1 so that the SU(2) component collapses to a point brane at θ = π/2

and φ = 0. From the bipolar coordinates (6.4), we see that the brane lies in the x1-x2

plane. The SL(2,R) conjugacy class is extended in the radial direction ρ and along σ,

which is the only coordinate acted on nontrivially by spatial gauge transformations; all

points along the σ circle at fixed ρ are identified under the gauge projection, and the brane

upstairs descends to a D1 probe in the x1-x2 plane that extends out to spatial infinity.

The temporal smearing implemented by CH is a simultaneous translation along φ and

τ , so that the brane locus CG · CH upstairs is

sin θ cos(φ− ζ) = 1 , cosh ρ cos(τ − ζ) = Csl . (6.12)

The choice of relative rotation has fixed φ−τ = 0 and thus x1 = Csl; this can be adjusted to

any desired angle by generalizing the choice of inner automorphism to Γsu = cos ν(−iσ1) +

sin ν(−iσ2). For Csl > 1, one has a dS2 brane upstairs, which drops down from ρ = ∞,

reaches a minimum radius cosh ρ = Csl, and then runs back out to infinity. Correspondingly,

the D1 probe downstairs is a straight line at fixed x1 that passes outside the ring of

fivebranes, which lie along the unit circle in this plane. On the other hand, for Csl < 1 the

H2 brane upstairs has two components, each describing a segment of D1-brane downstairs

that “ends” on the unit circle (which in bipolar coordinates is ρ = 0, θ = π/2), at x1 = Csl,

where the ring of fivebranes is located. Upstairs, the brane geometry is perfectly smooth;

the “ending” of the brane is simply a smooth degeneration of the spatial gauge orbit

parametrized by σ. Note that it is the embedding constraint (6.6) that imposes the relation

εslεsu = −1 that relates the choices of conjugacy classes in SL(2,R) and SU(2). Without

this relation, one could for instance choose an H2 brane together with an untwisted brane

in SU(2); the D1-brane would end on the unit circle in the x3-x4 plane where there are no

fivebranes, which is manifestly unphysical.

The two components of the H2 brane describe the segments of a straight line D1 brane

lying outside the unit circle at fixed x1 = Csl < 1. Define the “impact parameter” b = Csl

of this probe. The complementary segment lying inside the unit circle at x1 = b sits at

ρ = 0 and varying θ, and describes a D1 brane stretching between fivebranes. Upstairs it is

described as a point brane in SL(2,R) and a nontrivial S2 brane in SU(2) (again smeared

along the timelike gauge orbit by CH), i.e. the locus (6.11) with Csl = 1 and Csu = b.

The various components upstairs of this fractionated D-string are depicted in figure 9.

The two component H2 branes are depicted in yellow and green, with the S2 component

depicted as a blue sphere filling in the gap in between in the figure. It should be emphasized

that this sphere occupies a factor of the spacetime group manifold orthogonal to that

occupied by the H2 brane. Sadly our world hasn’t enough macroscopic dimensions to

faithfully depict the plumbing-fixture structure at the juncture of the two components of

the D-brane worldvolume, so we have simply inserted the S2 ⊂ SU(2) brane into the gap

left by the pair of H2 branes in SL(2,R) to indicate how the segments are joined together.

Thus factorized branes can describe an example of the process of probe D1-branes

intersecting and breaking on NS5 branes through a topological transition in which the

D-brane’s 2d spatial worldvolume pinches off via a standard Riemann surface plumbing

fixture; upstairs in 10+2d, there are no NS5-branes — there is only a smooth 10+2d
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Figure 9. An H2 brane describes D1-brane segments stretching from the NS5-branes to infinity,

while an S2 brane describes the complementary segment stretching between NS5-branes, when

lifted to 10+2 dimensions. In both cases, the azimuthal direction is the orbit of spatial gauge

transformations; all points on an orbit project down to the same point in physical spacetime. The

brane must also be smeared along the orbits of temporal gauge transformations.

flux geometry. The fivebrane locus arises through the degeneration of the gauge orbits;

the D-brane worldvolume knows about the fivebranes because it must lie along the gauge

orbits, and thus it must degenerate whenever it intersects the fivebranes. In this way, the

gauged WZW model can encode the phenomenon of D-brane worldvolumes “ending” on

NS5-branes.

We have considered the various options for factorized branes with ε = − in (6.9),

finding straight line D1 probes lying in the x1-x2 plane at x3 = x4 = 0. If instead we take

ε = +, we get straight line D1 probes in the x3-x4 plane at x1 = x2 = 0. Now in order to

satisfy (6.13) we require εsl = − and εsu = +. Again to describe a D1 brane rather than

a D3 brane, one of the conjugacy classes must be trivial, and so we consider a pointlike

brane in SU(2) at θ = 0, i.e. at x1 = x2 = 0, extended along x4 at x3 = const. This is the

conjugacy class

1

2
Tr[gsu] = cos θ cosψ = Csu ,

1

2
Tr[gslΓsl] = sinh ρ cosσ = Csl (6.13)

with Csu = 1 to specify the pointlike brane at θ = 0 (and ψ = 0), and Csl specifies the

impact parameter of the brane trajectory in the x3-x4 plane. The SL(2,R) brane describes

an AdS2 conjugacy class; in this case, the combined brane is invariant under temporal

gauge transformations shifting τ and φ, and the effect of multiplying by CH is to smear

along spatial gauge orbits.

We should note that the branes that are factorized between the various group factors

in G are very special. A D1-brane downstairs with a general position and orientation

will inextricably correlate its location in SL(2,R) and SU(2) along its worldvolume. For

instance, a brane along the straight line x1 = x4 = 0, x2 = c imposes the condition in

bipolar coordinates

cosh ρ sin θ = c (6.14)
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which does not appear to be a condition on class functions, or any other natural group-

theoretic quantity. Nevertheless, in representative examples such as this one we have been

able to lift the D-brane worldvolume to G by extending it along the gauge orbits of H, and

find the two-form flux that solves the DBI equations of motion. We omit the details of this

example, which are a straightforward application of the above methods.

6.2 Flux quantization effects

Note that in the null gauging approach, the gauge action degenerates where the NS5’s are

located. Naively this is the locus where the coefficient of AĀ in the gauge action vanishes.

But this quantity vanishes along the entire circle ρ = 0, θ = π/2, and doesn’t distinguish the

locations of the NS5’s specifically; in other words the naive sigma model does not exhibit

the breaking of rotational symmetry in the x1-x2 plane of the ring of fivebrane sources to

Zn5 , which is a nonperturbative effect in α′. However, when the brane intersects the ring of

fivebranes twice, we can see some aspects of the discrete structure through the quantization

of worldvolume F flux carried by the brane in 10+2 dimensions. For the S2 ⊂ SU(2) branes

that are pointlike in SL(2,R), this flux is the usual induced lower-dimensional brane charge

that keeps the brane puffed up due to the Myers effect [111]. After smearing along the

gauge orbits, the two-form ω2 is given by the twisted version of (5.21)

ω2 = ± Csu cot θ√
sin2 θ − C2

su

dθ ∧ dψ + cos2 θ dφ ∧ dψ . (6.15)

If we integrate the flux on a fixed time(s) slice, the conjugacy classes are quantized as

Csu = cosµ , µ = 2πj/n5 , j = 0,
1

2
, 1, . . . ,

1

2
n5 (6.16)

due to the quantization of magnetic flux on the smeared S2 [81, 86, 87, 92], and this fixes

the relative location of the N/S poles of the S2 along the φ circle at θ = π/2 where the

fivebranes are located.

Similarly, for the component described by H2 branes, one must smear the brane along

the gauge orbit parametrized by τ (the brane lies at θ = π/2, where ψ is trivial); there is

again a worldvolume magnetic flux [80, 112] (see eq. (5.38)),

ω2 = ± Csl tanh ρ√
cosh2 ρ− C2

sl

dρ ∧ dσ − sinh2 ρ dσ ∧ dτ . (6.17)

While the flux for the unsmeared brane grows exponentially in ρ and is not normalizable,

for the smeared brane the flux is integrable; quantization of the integrated flux once again

yields Csl = cosµ with µ = 2π n
n5

, n ∈ Z. Thus the F flux is again quantized for smeared

H2 branes, and leads to the same discrete locations for the fivebranes.

The lift of a D1-brane in 9+1d is a 2+2 brane in 10+2d; the spatial sections of probe

2+2 branes that drop down from spatial infinity are topologically cylindrical in the 10+2

lift, consisting of a 1+1-dimensional “spine” given by an embedding of the D1 worldline

into 10+2, that is then spun around the orbits of the spatial and temporal gauge groups.
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When the D1-brane encounters a fivebrane downstairs in 9+1 dimensions, upstairs in 10+2

the spatial circle of the cylinder pinches off. The D-brane can then undergo a topology

change which allows the two sides of the pinch to separate in the longitudinal directions

of the NS5. For a straight-line D1-brane in the x1-x2 plane and at the origin in x3-x4, we

saw this happen when the brane intersects the unit circle in the x1-x2 plane.

But if the brane pinches off into distinct topological components, the total integer

magnetic F flux carried by the brane must partition into integer-quantized pieces; how-

ever, the S2 and H2 branes only carry integer flux for particular quantized values of the

corresponding conjugacy classes in SU(2) and SL(2,R) respectively, and a general offset

from the origin b < 1 for the straight-line D1-brane won’t correspond to one of these quan-

tized values. The way the D1-brane accommodates this is by blowing up the intersection

of the two brane components at ρ = θ = 0, into a small “plumbing fixture” that allows

flux to leak from one component to the other. Equivalently, there is a small condensate of

bifundamental strings with one end on the H2 and one on the S2, which compensates the

induced Myers flux such that the total flux is integral. When this condensate is sufficiently

large, it results in the blowing up of the intersection into a geometrical plumbing fixture. In

either description, the fractionated component segments of the D1-brane are stitched back

together into a single D1-brane that can move away from the discrete fivebrane locations.

An instructive thought experiment is to consider D1-branes in the x1-x2 plane at

constant x1 = b, varying the impact parameter b and considering the the brane as it

sequentially passes across the fivebrane ring, see figure 10. Suppose n5 is a multiple of

four, which simplifies the discussion; for instance in the figure, n5 = 12 and we can label

the NS5-branes by the hours on a clock-face. Put a D1-brane going along the vertical line

through 12:00 and 6:00. The lift of this brane to 10+2 is depicted in figure 11(d). The

part of the brane in the disk bounded by the source ring is an S2-brane which is the largest

size S2 brane, that has n5/2 (i.e. six) units of F flux. The parts of this D1-brane outside

the source ring are H2-branes that are flat in AdS3; they do not bend up or down because

they carry no F flux. Now start moving the D1-brane to the left, toward 9:00, keeping it

vertical. Every time one crosses an hour-point, e.g. 11:00–7:00 (depicted in figure 11(c)),

or 10:00–8:00, the amount of flux on the S2-brane component changes by two units; and

the upper and lower H2-branes each get a unit of F flux, and as a result get more dimpled,

i.e. bend more towards one another. The flux is transferred from the S2-brane to the H2-

branes through the neck of the plumbing fixture described above, that opens up as the

brane traverses the region between hour-points where the NS5’s are located. Locally at

an NS5 pinch-point, the region near the origin ρ = 0 of the H2 brane intersects a north

or south pole of the S2-brane at θ = π/2. Condensing the strings with one end on the

S2-brane and the other end on the H2-brane opens out a plumbing fixture that connects

the two components, and allows F flux to leak from one to the other (equivalently, these

strings carry charge on both branes which transfers gauge flux from one to the other).

Eventually one gets to the 9:00 point (see figure 11(b)), where the S2-brane has become

pointlike and carries no F flux; the H2-branes now touch at the center ρ = 0 of AdS3, and

the two sides of the pinch each contain n5/4 (i.e. three) units of F flux. If we continue to

increase the impact parameter, the two H2 branes join together into a single dS2 brane as

shown in figure 11(a).
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(c) (d)(a)

x

(b)

2

x
1

Figure 10. A sequence of D1-branes probing the circular array of NS5-branes, varying the dis-

placement x1 = b of branes lying in the x1-x2 plane. The NS5’s fractionate the D1 probe into

segments indicated in yellow, blue, and green.

(a) (b) (c) (d)

Figure 11. 10+2d lift of D1-branes probing the circular array of NS5-branes. (a) The dS2 brane

is the lift of a D1-brane passing outside the ring; (b) Degeneration limit where the dS2 brane splits

into a pair of H2 branes; (c) H2 brane segments are the lift of D1-branes that extend to infinity and

end on NS5-branes (the latter being the 10+2d locations where the gauge group action degenerates),

while an S2 brane describes the D1 segment extending between NS5-branes; (d) Maximum size S2

segment extends between minimum H2 branes.

If we instead move the branes to the right of the 12:00–6:00 line, the signs reverse,

so that by the time one gets to the 3:00 point where one again has a pair of extreme H2

branes in AdS3 touching at their tips, each carrying −n5/4 units of flux, but also there is

the point-brane in S3 that carries +n5 units of F flux when it is at the opposite pole to

the one that carries zero flux, so that once again the total F flux is n5/2.15 So there is a

consistent picture where the lifted D1-brane carries a fixed amount of F flux, and when

the brane encounters an NS5, the cylindrical D2+2 brane in 10+2 pinches off in such a way

that an integral amount of F flux is carried by each side of the pinch. In the in-between

spaces where the D1-brane is crossing the NS5 source ring but is not quite intersecting

15Note that the flux is only defined modulo n5 due to the effects of large gauge transformations of the

NS B-field [113].
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the NS5’s, the brane never quite reaches the ring ρ = θ = 0, instead opting to avoid

this locus by blowing up the brane via a plumbing fixture that allows either side to carry

non-integer F flux.

Aside on Page charges: one can ask, what is this quantized charge carried by the branes

upstairs in 10+2 dimensions? It is modeled after the induced D0-brane charge carried by

D2-branes in the SU(2) WZW model. The situation has been studied in [114–116]; the

gauge invariant generalization of
∫
F over the D-brane worldvolume is the Page charge∫
B
H −

∫
D

(B + F) (6.18)

where B is a three-manifold whose boundary is the worldvolume D of the D2-brane. The

Page charge is invariant under small gauge transformations of B and F . However, under

large gauge transformations it shifts by a multiple of the level n5. One can see this from

its definition (6.18); there are two choices for the three-manifold B whose boundary is the

D-brane worldvolume D, whose difference is S3, and thus yield values for the Page charge

differing by
∫
S3 H = 4π2n5.

7 D-branes on the round supertube

Having described the D-branes that stretch between static NS5-branes separated on their

Coulomb branch using the formalism of null gauging, we are now ready to generalize the

discussion to the modified null gauging that leads to two-charge NS5-P and NS5-F1 super-

tubes. We begin with the former, as the geometrical structure is somewhat more intuitive;

and then describe the effects of the T-duality that takes us to the NS5-F1 background.

7.1 NS5-P supertube

We now include the factors Rt × S1
ỹ in our considerations. The gauge group acts via

`(ζ, η)
(
gsl, gsu, e

it, eiỹ
)
r(−ζ,−η) (7.1)

=
(
eiασ3gsle

iβσ3 , eiασ3gsue
−iβσ3 , e−iναeite−iνβ , e−iναeiỹe−iνβ

)
,

with α = 1
2(ζ + η), β = 1

2(ζ − η), and ν = k/Rỹ. As before, we define the group

automorphisms

ΩG
(
gsl, gsu, e

it, eiỹ
)

=
(
Ωεsl(gsl),Ω

εsu(gsu),Ωεt(eit),Ωεỹ(eiỹ)
)

(7.2)

and recall the definition of ΩH of equation (6.9); once again, we seek factorized branes of

the form CG · CH, where the automorphisms that define the choices of twisted conjugacy

classes CG and CH are related by the embedding constraint (6.6).

We are primarily interested in W-branes stretching between strands of the NS5 helix.

Thus we adapt the results of the Coulomb branch analysis of the previous section, and take

ε = − , εsl = + , εsu = − , εt = εỹ = + (7.3)
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so that the embedding constraint (6.6) is satisfied. The starting conjugacy class is thus an

S2 brane whose poles are anchored on the fivebrane ring at ρ = 0, θ = π/2, and pointlike

in all the other group factors. This brane is then smeared along CH, which because ε = −
is nontrivial in the timelike direction only.

Previously, the gauge group didn’t act in the physical time direction Rt of static five-

branes; we implicitly took the brane to be extended along this direction and didn’t need

to look further. Now the embedding constraint has forced the starting brane locus CG to

be pointlike in Rt, so we must explicitly smear it in the physical time direction transverse

to the timelike gauge orbits. The formalism is easily adapted to accomplish this task —

we simply enlarge the group H to H′ = H × U(1)K where U(1)K is generated by timelike

currents K, K̄ satisfying〈
J K

〉
= 0 ,

〈
J̄ K̄

〉
= 0 ,

〈
KK

〉
=
〈
K̄ K̄

〉
. (7.4)

These conditions ensure that the starting conjugacy class CG is consistently smeared along

U(1)K as well as H; effectively, these are the conditions that we be able to gauge U(1)K in

addition to H and so the brane is consistently extended along all of H′. Note that we are

not saying that we will gauge U(1)K (we will not); we are simply saying that we could if

we wanted to, and that is sufficient for our purposes. Let

K = k1J
sl
3 + k2J

su
3 + k3∂t+ k4∂ỹ

K̄ = k̄1J̄
sl
3 + k̄2J̄

su
3 + k̄3∂̄t+ k̄4∂̄ỹ ; (7.5)

the condition for anomaly freedom amounts to

n5(−k1 + k2) + ν(k3 + k4) = 0 , n5(−k̄1 − k̄2) + ν(k̄3 + k̄4) = 0 , (7.6)

(recall ν = k/Rỹ) which we satisfy by setting

ka = µ(ω,+vω, Rỹ,−vRỹ) (7.7)

k̄a = µ(ω,−vω, Rỹ,−vRỹ) , ω ≡ k/n5

where µ is a normalization. The parameter v describes the motion of the probe brane along

the fivebrane strands it is attached to, a spiral motion simultaneously along φ and ỹ; note

that the physical requirement that K is timelike restricts v2 < 1. Note that we could have

also included in K, K̄ a linear combination of the currents generating translations on the

T4 compactification which the fivebranes wrap — the moduli space of the W-particle is

the entire fivebrane worldvolume, which is the tensor product of the supertube spiral with

this T4 — but we have omitted it for simplicity. Smearing along U(1)K is accomplished by

taking ΩK = Ω−. The brane locus upstairs

CG · CH′ (7.8)

is thus 2+2 dimensional — two spatial dimensions from CG and two timelike directions

from CH′ .
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To see that we have arrived at a physically sensible brane, consider a section of the

supertube geometry (2.4) defined by ρ = 0, corresponding to setting x3 = x4 = 0. In this

limit the B-field reduces to a constant and the metric simplifies to:

ds2 = −dudv + n5

[
dθ2 + tan2 θ

(
dφ+

ω

Rỹ
dv

)2

+
ω2

R2
ỹ

dv2

]
,

e−2Φ =
a2 cos2 θ

g2
sn

2
5

. (7.9)

Setting z = sin θ and defining

u′ = u− n5ω
2

R2
ỹ

v , v′ = v , φ′ = φ+
ω

Rỹ
v , (7.10)

we can write the metric as

ds2 = −du′dv′ + n5

1− z2

(
dz2 + z2(dφ′)2

)
,

e−2Φ ∼ 1− z2 . (7.11)

This geometry is R1,1 times a parafermion disk (the geometry of the SU(2)/U(1) gauged

WZW model [117–119] parametrized by (z, φ′). Because once again the metric and dilaton

are controlled by the same warp factor, D-branes are straight lines in the (z, φ′) plane [81]

at constant ỹ′ = 1
2(u′ − v′). Effectively, these coordinate transformations map the ρ = 0

section of the geometry back to that of NS5-branes on the Coulomb branch, and so we

can use results from the previous section to describe probe D1-branes stretching between

the fivebrane strands of the supertube. We can also slightly generalize by giving the probe

brane a constant velocity v′ in the ỹ′ direction.

We thus take the probe brane worldvolume downstairs to be parametrized by

u′ = e−γ ξ′′0

v′ = e+γ ξ′′0

φ′ = ξ1 (7.12)

θ = θ(ξ1)

where t′ = 1
2(v′ + u′) and θ(ξ1) is given by the solution of the embedding equation

sin θ cos(ξ1) = C . (7.13)

Mapping this embedding back to the original unprimed variables yields

t =

(
cosh γ +

n5ω
2

2R2
ỹ

eγ
)
ξ′′0

ỹ = −
(

sinh γ − n5ω
2

2R2
ỹ

eγ
)
ξ′′0 (7.14)

φ = ξ1 −
ω

Rỹ
eγ ξ′′0
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Note that regardless of its boost γ, the brane worldvolume always lives along [66]

dφ

d(v/Rỹ)
= −ω = − k

n5
. (7.15)

We would like a brane in 10+2 dimensions whose gauging yields the above brane in 9+1d

physical spacetime. The fact that the spatial sections look like the SU(2)/U(1) projection

of a symmetry preserving S2 brane in SU(2) suggests that we start with this brane and

smear it to get something that is both gauge invariant and projects onto the above brane

in 9+1d. Indeed, let us set

τ = −ξ3

t = (1− v′)ξ′0 +
k

Rỹ
ξ3

ỹ = −v′ξ′0 +
k

Rỹ
ξ3 (7.16)

φ = ξ1 −
ω

Rỹ
ξ′0 − ξ3

ψ = ξ2

where ξ2 ∝ η parametrizes the spatial gauge motion (4.31), ξ3 ∝ ζ parametrizes the

temporal gauge motion, and θ(ξ1) solves (7.13). Comparing to (7.12), one has

ξ′0 = eγξ′′0 , v′ = e−γ sinh γ − n5ω
2

2R2
ỹ

. (7.17)

Note that for n5ω
2 > R2

ỹ, one must have v′ 6= 0.

Note that the spatial SL(2,R) Euler angle σ is redundant at ρ = 0 so we may omit

it, and so the azimuthal direction ψ of the S2 brane lies along the spatial gauge orbit —

the starting point is already invariant under the axial gauge group and needs no further

smearing spatially.

We see that ξ1, ξ2 parametrize our starting S2 brane. Both the temporal gauge mo-

tion parametrized by ξ3 and the physical timelike direction parametrized by ξ′0 are U(1)

isometries of G; the brane worldvolume is thus a product of conjugacy classes

Csu(ξ1, ξ2) · Cu(1)×u(1)(ξ
′
0, ξ3) (7.18)

as advertised (suppressing trivial pointlike conjugacy classes of factors in G apart from

SU(2)). In order to match with our choice (7.5)–(7.8), we note that we have the freedom

to shift K by an arbitrary amount of J , and similarly for K̄; we can use this freedom to

set k1 = k̄1 = 0 which was implicitly chosen in (7.16). The current K′ corresponding to

this choice is related to the current K of (7.7) via

K′ = −K/µ− ωJ
Rỹ(1− v)

, v′ = −
n5ω

2 +R2
ỹv

R2
ỹ(1− v)

(7.19)
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so that the brane parametrization becomes

τ = µωξ0 − ξ3

t = µRỹ ξ0 +
k

Rỹ
ξ3

ỹ = µvRỹ ξ0 +
k

Rỹ
ξ3 (7.20)

φ = ξ1 + µvωξ0 − ξ3

ψ = ξ2 .

Thus with a simple modification of the setup describing D-branes stretching between

fivebranes on the Coulomb branch, we can describe D-branes stretching between fivebrane

strands of the NS5-P supertube. One is free to slide the endpoints of the probe brane along

the fivebranes, and so the D-brane has an S1 moduli space that is the k-fold cover of the

φ circle, i.e. the supertube source ring. Motion along this moduli space is specified by the

velocity parameter v in the current K that generates translations in physical time, which

as we have mentioned can be generalized to include motions along T4 as well as along the

supertube spiral.

7.2 NS5-F1 frame

The NS5-F1 supertube is obtained by T-dualizing along the ỹ direction; we let y

parametrize the T-dual circle. In 9+1d, the T-dual of the D1-brane stretching between

NS5-brane strands is a D2-brane wrapping a two-cycle created by slightly resolved KK

monopoles. In the gauged 10+2d worldsheet theory, T-duality amounts to simply flipping

axial to vector gauging of this circle. Following through the same steps as the previous

section, one finds the same choices (7.3) are required to describe W-branes wrapped at the

cap of the geometry, except for a flip of εỹ = + to εy = −; in other words, the brane is

wrapped around the y circle since it was pointlike on the ỹ circle. A D1+1 brane in 9+1d

lifts to a D2+2 brane upstairs in 10+2d; T-duality transforms this to a D3+2 brane. If

the brane upstairs had Dirichlet boundary conditions in ỹ, it now has Neumann boundary

conditions in the coordinate y parametrizing the T-dual circle; the location ỹ0 of the brane

in S1
ỹ arises as the value of the Wilson line of the gauge field Ay on the brane,

ỹ0 =

∮
dy Ay . (7.21)

The motion along the brane moduli space now consists of moving along φ while continuously

changing the value of the Wilson line in the proportion ω.

The effect of gauge transformations (4.31) now shows that both ψ and y transform

under spatial (axial) gauge transformations. The brane fills both of these directions, and

the spatial gauge orbits are oblique lines in the (ψ, y) torus, with slope determined by k,

see figure 12.
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Figure 12. T-dual pictures of the W-brane. In the NS5-P frame in type IIB (top), D1-branes

stretching between NS5’s lift to S2 branes smeared along the temporal gauge orbit and are pointlike

on the ỹ circle. In the type IIA NS5-F1 frame (bottom), the NS5 source becomes a coiled KK

monopole loop; the W-brane is now a D2 wrapping a vanishing cycle of coincident KKM’s, and lifts

to an S2 × S1 brane extended along the T-dual y circle (and again smeared along gauge orbits).

On the right, the spatial gauge orbits on the respective ỹ-ψ and y-ψ tori are depicted to show

how identification along gauge orbits upstairs recovers the picture of stretched/wrapped W-branes

downstairs.

The brane worldvolume (and Wilson line ỹ) can be parametrized as

τ = µωξ0 − ξ3

t = µRỹ ξ0 +
k

Rỹ
ξ3

y = ξ4 (7.22)

φ = ξ1 + µvωξ0 − ξ3

ψ = ξ2

ỹ = µvRỹ ξ0 +
k

Rỹ
ξ3 ,

with again θ(ξ1) solving (7.13). In other words, we start with a brane worldvolume CG
that is a spatial S2 brane in SU(2) (parametrized by ξ1, ξ2) that is also extended along

S1
y (parametrized by ξ4), and smear it along the two time directions — the physical time

direction parametrized by ξ0 in the same way as before, and the timelike gauge orbit

parametrized by ξ3 specified in (4.31). The starting brane CG is already invariant under

spatial gauge transformations, which shift ψ, y in the proportion

δ(y/Ry) = −kδψ . (7.23)

The D3+2 brane upstairs has a spatial worldvolume S2 × S1, and from the figure we

see that because the spatial gauge orbits involve motion along y, they never degenerate.

If as in section 4.2 we fix y as a gauge choice, we remove the S1 factor, and the physical
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spatial D-brane worldvolume is topologically an S2. Note that as described there, gauge

fixing y leaves a residual discrete Zk gauge identification, but this does not change the

topology of the brane — S2/Zk is still topologically a two-sphere. This identification will,

however, reduce the action of the brane by a factor k — a result similar to the action cost

of fractional branes on orbifolds [120, 121].

Thus the T-duality between NS5 branes and KK monopoles is reflected in the structure

of their W-branes. A D1-brane stretching between nearly coincident NS5-branes in type IIB

becomes a D2-brane wrapping a vanishing (i.e. stringy) cycle of coincident KK monopoles

in type IIA. The lift to 10+2 dimensions makes the relation quite transparent.

7.3 W-strings

We have described the 10+2d lift of D1-branes stretching between fivebrane strands in the

NS5-P supertube or D2-branes wrapping KK monopole topology in the NS5-F1 supertube;

these objects are W-particles. To get W-strings, we still need to extend the D-brane world-

volume along the fivebranes (in a direction which is not the spatial gauge orbit direction,

rather it is a physical direction transverse to that). This smearing along the fivebranes in

the NS5-P frame gives us a D2+1 brane strip stretching between NS5’s downstairs, lifting

to a D3+2 brane upstairs; and in the NS5-F1 frame, a D3+1 brane wrapping the S2 × S1

topology in the cap lifts to a D4+2 brane upstairs.

This smearing can either be along T4, or along the supertube spiral; in the latter case

the brane worldvolume is a k-fold cover of the supertube source circle in the x1-x2 plane,

in a harbinger of the long string structure expected in the black hole phase, see figure 5.

The extra spatial dimension of this coiled W-string lies along the moduli space of the above

W-particle — the spiral along the fivebranes with pitch n5/k along ỹ, φ. We thus have an

extra spatial brane direction parametrized by motion generated by

L = κ0

[
kJ su

3 − n5 ∂(ỹ/Rỹ)
]

+ κi ∂(xi/Ri)

L̄ = κ0

[
kJ̄ su

3 − n5 ∂̄(ỹ/Rỹ)
]

+ κi ∂̄(xi/Ri) . (7.24)

where κ0, κi ∈ Z. Here we have restored a possible contribution that gives the W-brane

winding along the T4 compactification parametrized by xi, i = 6, 7, 8, 9.

To implement the smearing, we add L, L̄ to the group H along the lines of eqs. (7.4)–

(7.8), so that the brane worldvolume is extended along the U(1) orbits generated by L, L̄.

For the NS5-P frame the brane is pointlike along ỹ in CG but then gets smeared along its

moduli space, which is a correlated motion in ỹ and φ; so now we have a brane extended

along the (k,−n5) cycle of the ỹ-φ torus. T-duality converts this brane filling one dimension

of this two-torus to one that fills the entire two-torus parametrized by y and φ, which now

carries a flux F determined by the data (n5, k) (see for instance [122]).16

16Counting dimensions upstairs in the NS5-F1 frame, before smearing the brane is locally a spatial

S2
ϑ,ψ × S1

y, where ϑ is related to θ, φ via the analogue of (A.8) for twisted conjugacy classes:

sin θ cosφ = sinµ , sin θ sinφ = cosϑ cosµ .

The smearing along the moduli space fills the fourth spatial dimension of SU(2) × S1
y in the region θ > µ.

Gauging then gets us down to 9+1d with a brane having three spatial dimensions, which comprise the

topological cycle S2 × S1 at the tip of the geometry.
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7.4 The DBI effective action

The effective action on D-branes at leading order in the derivative expansion is the DBI

effective action

SDBI =

∫
e−Φ

√
det(G+B + F) . (7.25)

We would like an expression for this effective action for the above D-branes, in terms of

the branes upstairs in G. There are a few wrinkles to straighten out. First of all, as

mentioned at the end of section 4.1, null gauging by its very nature implies that the matrix

M = G+B+F evaluated on the brane worldvolume upstairs in G has both a kernel

and cokernel due to the null isometries of the background, and therefore its determinant

vanishes. Our prescription for computing the physical DBI determinant in the quotient

theory on G/H is to evaluate the DBI action slightly off-shell, and extract the coefficient of

the vanishing as one takes the fields on-shell. This coefficient is the determinant E of the

minor in the space transverse to the null isometries. Since M is not a Hermitian matrix,

we consider instead

E2 ≡ d

dλ
det
(
M †M − λ1l

)∣∣∣
λ=0

, M = G+B + F . (7.26)

as a basis-independent definition of the determinant E . Our prescription for the DBI action

is then to consider

SDBI = µ0

∫ √
E , (7.27)

where µ0 is an overall constant.

Evaluating the induced metric and the two-form ω2 = B + F from equation (3.32) in

the brane parametrization (7.20), we find

ω2 = ± n5C cot θ√
sin2 θ − C2

dθ ∧ dψ + n5 cos2 θ dφ ∧ dψ

= cos2 θ (µkv dξ0 ∧ dξ2 + n5 dξ2 ∧ dξ3)− n5 sin2 θ dξ1 ∧ dξ2 , (7.28)

where we used the embedding equation (7.13). The matrix M evaluates to

M =


µ2
(
−k2(1−v2 sin2 θ)

n5
− 1−v2

R2
ỹ

)
µkv sin2 θ µkv cos2 θ µkv cos2 θ

µkv sin2 θ n5(sin2 θ + θ̇2) − n5 sin2 θ − n5 sin2 θ

−µkv cos2 θ n5 sin2 θ n5 cos2 θ n5 cos2 θ

µkv cos2 θ −n5 sin2 θ − n5 cos2 θ − n5 cos2 θ

 . (7.29)

The kernel of M is then spanned by the direction parametrized by ξ3−ξ2, while the cokernel

is spanned by the direction parametrized by ξ3 + ξ2; these are of course the left and right

gauge directions on the brane, as expected. Extracting the effective action from the linear

term in the characteristic polynomial (7.26) we find

L ∼
√
n5(1− v2)(sin2 θ + θ̇2 cos2 θ) , (7.30)
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using the normalization µ = (k2 + n5R
2
ỹ)
−1/2 for the physical time ξ0 in (7.20). The

embedding equation (7.13) solves the equations of motion derived from the above effective

action; this part of the action is identical to that for D1-branes in SU(2), equation (5.13)

(up to the map θ → π/2− θ appropriate for the twisted conjugacy class used here).

Note that the quantity E already incorporates the spatial variation of the dilaton, i.e.

the factor Σ0 in equation (2.4); the overall constant µ 2
0 = np/(n5k

2V4) coming from the

dilaton is determined by physical considerations. The dilaton in gauged WZW models

arises from the coefficient of the term quadratic in gauge fields (see for example [123]).17

The spatial dependence e−2Φ ∝ Σ is the same as the varying size Vη of the spatial gauge

orbits in G, because

V2
η =

〈(
`(X1)−r(X2)

)
,
(
`(X1)−r(X2)

)〉
= 2
〈
`(X1), r(X2)

〉
(7.31)

is indeed the coefficient of the term quadratic in the gauge potentials in the null-gauged

action, which yields the dilaton. On the other hand, the contribution to the effective

action (7.30) from the ξ2-ξ3 directions is identical to that for twisted S2 branes in SU(2),

which already incorporates the effects of the varying dilaton. Gauge invariance requires

that the brane upstairs lies along the orbits of G, and so its induced volume element in the

DBI action will be proportional to the volume of the gauge orbits, times the volume of the

brane worldvolume on the coset; the first factor is the dilaton, and the second factor is the

DBI induced volume element.

8 Three charge supertubes

We now turn to the three charge supertubes (2.7)–(2.10) described as a null gauged WZW

model in section 4.3. The geometry has topology in the cap consisting of Z`1 and Z`2
orbifold singularities at θ = 0, π/2, and so we expect to find D2-branes wrapping the

orbifold vanishing cycles in a manner similar to the D2-branes in the NS5-F1 geometry,

which lifted to S2 × S1 branes upstairs in G.

8.1 Finding factorized branes

The constraint (6.6) can no longer be satisfied by embedding the gauge group H into G in

a single step; in fact, one cannot generally satisfy this condition at all, even with a more

general embedding chain of the form (3.45). We have, however, been able to find solutions

with a two-step embedding chain, for particular choices of the circle radius Ry.

The construction of D-branes in G respecting the asymmetric gauge action (4.33) is

similar to the construction of branes in the T p,q spaces
(
SU(2)k1×SU(2)k2

)
/U(1) treated

in [88, 90, 91]. In that example, one is gauging the asymmetric U(1) embedding

(g1, g2)→
(
g1e

ipησ3 , eiqησ3g2

)
, (8.1)

17The transformation of the dilaton under T-duality similarly picks up a factor of the volume of the torus

being dualized, because T-duality can be realized in terms of gauging of U(1) isometries [124].
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which is non-anomalous if k1p
2 = k2q

2. The method for constructing branes adds a further

stage in the embedding chain,(
U2 = U(1)

)
↪−→
ε2

(
U1 = U(1)×U(1)

)
↪−→
ε1

(
U0 = SU(2)× SU(2)

)
. (8.2)

The left and right embeddings are related by (3.46)

` = ε1 ◦ ε2 , r = Ω0 ◦ ε1 ◦ Ω1 ◦ ε2 ◦ Ω2 (8.3)

with the embeddings

ε2(eiη) =
(
1, eiη

)
, ε1(eiη1 , eiη2) =

(
eipη1σ3 , eiqη2σ3

)
. (8.4)

and the exchange automorphism

Ω1(h1, h2) = (h2, h1) . (8.5)

The modified embedding relation (3.46) consistently generalizes the embedding con-

straint (6.6) that relates left and right embeddings of the gauge group. The construction

of D-branes now follows as before, given a pair of automorphisms Ω0 ≡ ΩG , Ω2 ≡ ΩH. The

extended embedding chain leads to branes smeared along a product of conjugacy classes

CΩ0
su×su ·

(
Ω0 ◦ ε1

(
CΩ1

u(1)×u(1)

))
·
(

Ω0 ◦ ε1 ◦ Ω1 ◦ ε2

(
CΩ2

u(1)

))
. (8.6)

A suitable generalization of the construction of the two-form ω2 leads to the general ex-

pression described at the end of section 3.4, see [90, 91] for details.

In the three-charge supertube, H also has an asymmetric action on G. We have not

been able to find a solution to the constraint (3.46) in general; however a special choice of

radius yields a very similar structure to the above, namely for

Ry = R? =
√
n5 s/k , Rỹ =

√
n5 (s+ 1)/k̃ , (8.7)

so that

l4 = −kRy + k̃Rỹ =
√
n5 , r4 = (kRy + k̃Rỹ) = (2s+ 1)

√
n5 (8.8)

and thus the gauge action along S1
y has the same structure as along SU(2), with left and

right interchanged just as in the example above. Then the gauge action is

`(ζ, η)
(
gsl, gsu, e

it, eiy
)
r(−ζ,−η) (8.9)

=
(
eiασ3gsle

iβσ3 , e−i(2s+1)ασ3gsue
iβσ3 , e−iκ+αeite−iκ+β , e−iκ−αeiye−iκ+β

)
,

with again α = 1
2(ζ + η), β = 1

2(ζ − η); and κ− = l4, κ+ = r4. We choose the intermedi-

ate group

U1 = U(1)3 ≡ I (8.10)

(later we will enlarge this to U(1)4 in order to smear along physical time), with the em-

bedding chain

H ↪−→
εH

I ↪−→
εI
G , (8.11)
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and set

εH(ζ, η) =
(
ζ + η , (2s+1)(ζ + η) , −(ζ + η)

)
εI(η1, η2, η3) =

(
eiη1σ3 , e−iη2σ3 , e−i(2s+1)η1

√
n5 , eiη3

√
n5
)

ΩH(ζ, η) = (εζ,−εη) (8.12)

ΩI(η1, η2, η3) = (ε′η1, ε
′′η3, ε

′′′η2)

ΩG
(
gsl, gsu, gt, gy

)
=
(
Ωεsl(gsl),Ω

εsu(gsu),Ωεt(gt),Ω
εy(gy)

)
.

With the goal of describing a brane localized in the cap of the geometry, we choose

εsl = + so that the brane does not extend to spatial infinity; one can then check that the

embedding conditions (3.46) are satisfied provided

εt = + , ε′ = −ε , ε′′ = −εεsu , ε′′′ = εεy (8.13)

The extended embedding chain leads to branes smeared along a product of conjugacy classes

CΩG
G ·

(
ΩG ◦ εI

(
CΩI
I
))
·
(

ΩG ◦ εI ◦ ΩI ◦ εH
(
CΩH
H
))

(8.14)

We have the choice of a starting conjugacy class in G. We choose the trivial conjugacy

class in SL(2,R) and Rt, an S2 brane in SU(2) at either θ = 0 (for εsu = +) or θ = π/2 (for

εsu = −). In contrast to the two-charge case, this starting conjugacy class is not invariant

under any subgroup of H, temporal or spatial, and so will have to be smeared along both

directions by the last two factors in (8.14) (for which we adopt the shorthand notation

CI · CH, leaving the embedding chain implicit).

Regardless of the sign of ε, the product of the last two factors CI · CH always smears

CG in the temporal gauge direction, but not in the other timelike direction. As in the

two-charge case, one must construct independent timelike currents K, K̄ transverse to the

gauge currents J , J̄ and adjoin them to H in order to build a brane that is extended along

the physical time direction. We will attend to that issue after the analysis of smearing

along gauge orbits, since the two are essentially independent. We discuss the two choices

in turn.

ε=−: the analysis of the previous section suggests the choice ε=− for the automorphism

ΩH defining CH for the localized W-brane. Then CH is extended along the timelike gauge

direction parametrized by ζ. We find that the product CI · CH adds only one space and one

time direction (thus smearing only along the gauge orbits and not adding further spatial

dimensions) only for the choices

ε = − , εsuεy = − . (8.15)

In terms of the parametrizations (ζ, η) ∈ H and (η1, η2, η3) ∈ I, one finds for these choices

that the product of conjugacy classes CI · CH can be parametrized by (ζ, η3) with the other

parameters being redundant; ζ parametrizes the right-hand gauge orbit, and η3 a spacelike

direction. The product of conjugacy classes embeds in SL(2,R)× SU(2)× Rt × S1
y via

CI · CH =
(
eiζσ3 , ei(ζ+η3)σ3 , −(2s+1)

√
n5 ζ , εy

√
n5 (η3+µ3)−(2s+1)

√
n5 ζ

)
, (8.16)
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where µ3 is a constant. For εsu =− (so θ ∼ π/2), one requires εy=+ and so CG consist only

of S2 ⊂ SU(2); the only additional spatial direction beyond this S2 is the S1 parametrized

by η3. One obtains a brane upstairs with three spatial dimensions, projecting down to a

D2 brane wrapping the S2 of the S2×S1 cycle at θ = π/2 in the cap of the 9+1d geometry.

This brane is the direct analogue of the W-particle in the two-charge case, wrapping in

that case a vanishing cycle of the local Zk singularity in the NS5-F1 supertube and free to

move along the S1 of the supertube coil. Here one has much the same structure for the Z`1
singularity at θ = π/2 of the three-charge supertube, which has a moduli space coiled `1
times around the φ circle.

For εsu = + (so θ ∼ 0), one sets instead εy = −, and now the starting brane CG is

S2× S1
y. We seem to have landed on a T-dual description of the W-particle — the starting

brane CG is localized in ỹ rather than y, and so repeating the analysis in that duality

frame one expects to have a moduli space of motion that spirals in ỹ and ψ. One can

verify this conclusion by modifying the last of the relations (8.13) to ε′′′ = −εεy, which

results in the T-dual description. This starting brane is now smeared along the spatial

direction parametrized by η3 in the product of conjugacy classes (8.16), and so all told the

brane (8.14) has a four-dimensional spatial volume S2 × S1 in the ỹ frame.

The asymmetry here between the descriptions of W-particles at θ = 0 and θ = π/2

seems to be a limitation of the method of [90, 91], which forces a particular relation between

left and right gauge actions that, while sufficient to guarantee the existence of a brane built

out of factorized conjugacy classes, is by no means necessary. It turns out that a different

choice of special radius

Ry = R∗ =
√
n5 (s+ 1)/k , Rỹ =

√
n5 s/k̃ (8.17)

leads to much the same analysis, but with the feature that, only for the special choice

ε = − , εsuεy = + , (8.18)

will the product CI · CH have only one spacelike and one timelike dimension. At this new

radius R∗, when the starting point CG is pointlike on S1
y (so that εy=+), it is now localized

near θ = 0 (i.e. εsu =+) rather than at θ = π/2 as it was when Ry = R?, due to the flip from

twisted to untwisted SU(2) conjugacy class in CG . For the opposite sign choices, εsu =− and

εy =−, one wants to use again the T-dual description by setting ε′′′ = −εεy. The starting

brane CG is localized in ỹ, so that in the T-dual frame it again has topology S2 × S1. Thus

the structures at θ = 0, π/2 are exchanged relative to those found for Ry = R? when we

set instead Ry = R∗.

Clearly the existence of such branes is not dependent on the value of the radius Ry
of S1

y, and we expect that a relaxation of some of the requirements above should allow a

construction of W-particles for general radius Ry, at both θ = 0, π/2 — that being able to

construct W-particles at the orbifold loci only for two special radii R? and R∗ is an artifact

of the particular method and not a general limitation.

What seems to be happening is that for Ry = R? =
√
n5 s/k, we are in the happy

situation that we can start with a brane that is a factorized product of conjugacy classes
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— an S2 brane at θ = π/2 times a point brane in S1
y, or an S2 brane at θ = 0 times a point

brane in S1
ỹ — which is then smeared over CI · CH, as well as a conjugacy class CK for the

physical timelike direction generated by some current K, K̄ (we will discuss the possibilities

for this current below). In order to implement this in the embedding chain for H above, we

can define an augmented group embedding for H′ = H×K, and a new intermediate group

I ′ = I ×K that simply passes through the embedding of physical time smearing generated

by K. The product

Ĉ ≡ CI′ · CH′ (8.19)

has two timelike dimensions, and for εsuεy = −1 has only one spacelike dimension. Roughly

speaking, the starting factorized brane gets smeared along the 1+1 dimensional gauge

orbits, as well as the physical time direction. For θ = π/2 the starting brane CG is analogous

to our description of the W-particle in the two-charge supertube, now localized in y, while

for θ = 0 it is localized in ỹ. Conversely, for Ry = R∗ =
√
n5(s+1)/k, we impose εsuεy = +1

and the two descriptions are flipped — the starting CG brane at θ = 0 is analogous to the

W-particle of the two-charge supertube, here localized in y, while the one at θ = π/2 is

localized in ỹ.

For general radius Ry, neither of these θ = 0, π/2 W-particles can be described from a

starting point where the brane locus CG is purely Neumann or purely Dirichlet in y, instead

the brane has a mixed boundary condition that is correlated to what the brane is doing

in SU(2). In other words, the starting point cannot be a brane that is factorized between

SU(2) and S1
y. But this is indeed the generic state of affairs; the spatial gauge group

parametrized by η = 1
2(α − β) in (4.35) transforms each of φ, ψ, y, ỹ in a correlated way,

and generically the cycle wrapped by a W-particle will not cleanly factorize between SU(2)

and S1
y (or S1

ỹ). From this perspective, it was rather remarkable that for the special radii

R? and R∗ one found success with a factorized starting point and using a bit of trickery.

ε = +: here is also the alternative choice, ε = +. Now CH is the spatial gauge orbit

parametrized by η, and CI · CH is three-dimensional. This choice leads to branes wrapping

a topology S2×T2 upstairs in G, regardless of the choices of automorphism εsu, εy in SU(2)

and S1
y; and thus one always has a brane of topology S2 × S1 at either of the orbifold

loci downstairs in G/H. These branes are of interest as well — they again appear to be

particular orientations of the W-strings we have been looking for. An analysis of the various

choices of the remaining independent signs εsu, εy shows that the product CI · CH has two

physical spatial dimensions in addition to the gauge orbit parametrized by η; in the full

product of conjugacy classes (8.14), it smears CG along both the spatial gauge orbit, and

in addition two physical spatial circles. Thus, for an initial S2 brane near θ = π/2 whose

azimuthal direction is ψ, the additional smearing is along both φ and y; for an S2 brane

near θ = 0 whose azimuthal direction is φ, the additional smearing is along both ψ and

y. There is no choice that reduces to the W-particle of the previous section when s = 0.

Thus after smearing, the brane upstairs always has four spatial directions with topology

S2 × T2,18 and projects down to a localized D3 brane in 9+1d.

18The starting brane CG can be either S2 (for εy = +) or S2 × S1 (for εy = −); the smearing by CI · CH
is always along two spatial dimensions, one of which is redundant for εy = −. As a result the final brane

upstairs always has spatial topology S2 × T2.
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We have not checked whether this ε= + brane is the same as or different from what

one gets from smearing the W-particle along its moduli space. The different 4d branes

upstairs could have different fluxes even though they occupy the same worldvolume.

8.2 Smearing along physical time

Independently, we must smear the above brane along the physical timelike direction. Thus

we seek timelike currents K, K̄ having vanishing two-point function with the gauge currents

J , J̄ . We again define currents K, K̄ as in (7.5) and adopt the ansatz

k1 = k̄1 , k2 = −δ2k̄2 , k3 = k̄3 , k4 = −δ4k̄4 (8.20)

where δ2, δ4 = ±. For the gauge currents (4.33) of the three-charge background, the

constraints (7.4) have various solutions depending on δ2, δ4 (choosing the normalization

k3 = k̄3 = 1 and setting k2 = v = −δ2k̄2):

δ2 =+, δ4 =+ : k4 = −kRy
s+1

v , k1 =
kRy + k̃Rỹ

n5
+ v

(
(s+1) +

skR2
y

k̃

)
δ2 =−, δ4 =+ : k4 = −kRy

s
v , k1 =

kRy + k̃Rỹ
n5

+v

(
s+

(s+1)kR2
y

k̃

)
δ2 =+, δ4 =− : k4 = +

k̃Rỹ
s+1

v , k1 =
kRy + k̃Rỹ

n5
+ v

(
(s+1) +

sk̃R2
ỹ

k

)
δ2 =−, δ4 =− : k4 = +

k̃Rỹ
s

v , k1 =
kRy + k̃Rỹ

n5
+v

(
s+

(s+1)k̃R2
ỹ

k

)
. (8.21)

For the first two choices, the fact that k4, k̄4 are proportional to Ry tells us that the moduli

space is along y rather than ỹ; similarly the last two choices having k4, k̄4 proportional to

Rỹ, describe brane motion along ỹ. When δ2 =−, the moduli space involves motion along

ψ, while for δ2 =+, it involves motion along φ.

The four choices of sign correlate with the four branes found above for ε = −. We

found branes localized in y and ỹ; and near θ=0 localized in ψ, and near θ=π/2 localized

in φ. The currents K, K̄ implement the following spiral motions, depending on the choice

of δ2, δ4:

1. δ2 =+, δ4 =+: spiral motion in the y-φ torus with a pitch

d(y/Ry)

dφ
= − k

s+ 1
= − `1

m2
. (8.22)

There are m2 strands of the orbit over each point in φ.

2. δ2 =−, δ4 =+: spiral motion in the y-ψ torus with a pitch

d(y/Ry)

dψ
= −k

s
= − `2

m1
. (8.23)

There are m1 strands of the orbit over each point in φ.
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Figure 13. (a) Brane moduli space on the ỹ-φ torus. There is an equivalent picture for the ỹ-ψ

torus, with `1 ↔ `2 and m1 ↔ m2. (b) The T-dual picture on the y-φ torus exchanges the roles of

k and k̃ = m1m2n5.

3. δ2 =+, δ4 =−: spiral motion in the ỹ-φ torus with a pitch

d(ỹ/Rỹ)

dφ
= +

k̃

s+ 1
= +

m1n5

`2
. (8.24)

There are `2 strands of the orbit over each point in φ.

4. δ2 =−, δ4 =−: spiral motion in the ỹ-ψ torus with a pitch

d(ỹ/Rỹ)

dψ
= +

k̃

s
= +

m2n5

`1
. (8.25)

There are `1 strands of the orbit over each point in φ.

These choices correspond to the coiling of the S1 in the S2 × S1 topology at the tip of

the geometry at θ = 0, π/2, for both the spectrally flowed supertube described in the y

coordinate (choice 1 at the end of section 4.3), and the T-dual description in terms of ỹ

(choice 2 at the end of section 4.3). In the two-charge case, we saw that the coiling of

this topology was revealed in the spiral of the T-dual coordinate — the spiral of the S2

vanishing cycle around the φ circle of the NS5-F1 supertube was seen in the trajectory of

the fivebrane in the T-dual ỹ coordinate. The pitch of the spiral d(ỹ/Rỹ)/dφ = −n5/k

indicated that there were k locations of the fivebrane source in ỹ for any given value of φ,

and so in the NS5-F1 frame one has a local Zk orbifold singularity. The moduli space for

the various choices (8.22)–(8.25) is depicted in figure 13.

8.3 Aside on non-commutativity

As a consequence of the asymmetric smearing, and more generally for branes at general

radii which are necessarily non-factorized, the brane is generically not localized purely in

y nor in ỹ. The situation is somewhat similar to D-branes wrapping a non-primitive cycle

on a T2 of the sort depicted in figure 4(b) (see for instance [122]; and also [125], section
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1A for a discussion of the relevant CFT boundary states). Suppose the primitive cycles

of the torus have coordinates x1 and x2 of radii R1 and R2. Neither primitive cycle has a

purely Dirichlet or Neumann boundary condition; instead for a brane wrapping the (p, q)

cycle one has a brane making an angle χ with respect to these directions, where

tanχ =
q

p

R2

R1
. (8.26)

The D-brane boundary state for such a brane has the structure

|χ; x̃0, x0〉〉 = N
∑
n,w∈Z

exp

[
ix0n

R′2
+ 2iR′1x̃0w

]∣∣n,w〉〉
χ

∣∣n,w〉〉
χ

= exp

(
−
∑
m>0

1

m
at−mMχā−m

) ∣∣nq,−np;wp,wn〉 (8.27)

Mχ =

(
cos 2χ sin 2χ

sin 2χ − cos 2χ

)
, R′1 =

pR1

cosχ
, R′2 =

R2 cosχ

p

where am, ām are left/right mode operators for x1, x2. Roughly speaking one has a Dirichlet

boundary condition on a rotated combination of x1, x2, and a Neumann boundary condition

on the orthogonal combination. The D-brane boundary state will have a delta function of

the zero mode x0 in the orthogonal direction to the (p, q) cycle; the Neumann nature of

the (p, q) cycle yields a delta function of the zero mode coordinate x̃0 for the (−q, p) cycle

of the T-dual torus, which is the Wilson line of the brane. But from the point of view of

the individual free field CFT’s for x1 and x2, the brane is not fully localized or delocalized.

One way to think about the D-brane boundary state in such a situation employs a

doubling of the zero modes on both S1 factors to include both a coordinate x0 on the circle

as well as a coordinate x̃0 on the T-dual circle. One may want to consider such a doubling

on general grounds, for instance the vertex operator algebra of exponentials of a compact

free scalar can shift both the winding and momentum quantum numbers p, w of closed

string states, and so one wants a Fourier conjugate for each. But the zero modes x0, x̃0

conjugate to p, w do not commute [126, 127]. Boundary states for D-branes are localized in

position space rather than momentum/winding space, and thus must select a “polarization”

in the “phase space” of these coordinates, depending only on one linear combination. In

the example above of a D1-brane on a (p, q) cycle of T2, one has a four-dimensional “phase

space” of the doubled zero modes for x1, x2; the boundary state chooses a polarization that

is not diagonal in these coordinates, but rather diagonalizes the coordinates x0, x̃0 along

the (p, q) cycle and its dual, that commute with one another but not the remaining pair of

the four coordinates on the doubled two-torus.

With asymmetric gauging it seems we again have the boundary conditions providing a

brane that is neither purely Dirichlet nor Neumann on the coordinate axes φ, ψ, y, ỹ. The

zero mode coordinates on SU(2) lead to a non-commutative geometry on D-branes [74],

the zero modes of y, ỹ are also non-commutative [126, 127]; the boundary state is thus

expected to lead to a somewhat non-commutative structure on the D-branes wrapping the

topology at the bottom of the 3-charge supertube throat.
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9 Discussion

We have seen that the sub-string scale structure of two-charge supertubes (and the as-

sociated three-charge backgrounds obtained by spacetime spectral flow) can be exposed

through a quantitative analysis of D-brane probes, yielding a wealth of information about

dynamics near the threshold of black hole formation; this analysis is made possible by the

exact solvability of the round supertube background, through the gauging of a group of

null isometries of a Wess-Zumino-Witten model.

While the generic supertube D-brane has boundary conditions that inextricably cor-

relate the various factors in the WZW group G of equation (1.6), particular D-branes are

given by products of conjugacy classes of G and of the subgroup H being gauged. In the

two-charge NS5-P supertube, we found D-branes bound to the fivebranes; and in the NS5-

F1 supertubes, we found their T-duals which wrap KK monopole structures in the cap of

the geometrical background. In the three-charge case, we found a suitable generalization

(for special choices of the radius Ry) involving an intermediate group H ⊂ I ⊂ G. These

results led to a complete characterization of the corresponding D-brane worldvolumes and

the fluxes that support them, at least at the level of the DBI action. Furthermore, one

expects that exact CFT boundary states for these branes can be constructed along the lines

of [89–91]. Fortunately, this class of D-branes includes examples of the “W-branes” which

expose the long string structure that arises near the threshold of black hole formation in

linear dilaton and asymptotically AdS3 spacetimes.

The SU(2) factor in G encodes the locations of the NS5-branes in the NS5-P supertube;

a D1-brane stretching between NS5-branes in G/H lifts in part to an S2 brane in the

SU(2) factor of G, with the polar direction of the S2 giving the path between fivebranes,

and the azimuthal direction of the S2 related to the axial gauge orbit. The gauge orbit

degenerates at the poles of the S2 where the fivebranes are located. Thus, while upstairs in

G the D-brane worldvolume is completely smooth, downstairs in G/H it projects to a line

segment that ends abruptly. For D2-brane W-strings, this structure extends along a second,

longitudinal direction of the fivebranes — either along the T4 compactification, or along the

supertube spiral along S1
ỹ, or some combination of the two (see equation (7.24)), so that the

spatial worldvolume upstairs in G is S2 × S1. The helical structure of the supertube leads

to the characteristic “long string” feature that the S1 is a multiple cover of the supertube

source ring in the four physical dimensions transverse to the compactification S1
y × T4.

Because we have an exact worldsheet CFT, T-duality from the NS5-P frame to the

NS5-F1 frame is simply a relabelling of the CFT data. D1-branes stretching between

NS5’s dualize to D2-branes wrapping vanishing cycles of nearly coincident KK monopoles.

The T-dual description of the D-branes we constructed in the NS5-P frame yields the

corresponding D-branes for the NS5-F1 frame in a straightforward manner. Although the

fivebranes have “disappeared” into flux, the CFT keeps track of the structure in the cap of

the geometry that they generate. That structure exhibits the expected T-dual W-branes,

and illuminates the duality between NS5-branes and KK monopoles.

9.1 Is our lamp-post in a good location?

One can ask to what extent our results are generic, and what features are special to the

particular round supertubes we can study in detail. The round supertube is of course a
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Figure 14. Generic supertube profile for an NS5-P supertube at low angular momentum, consisting

of a single mode of high wavenumber making a tight spiral, together with a generic sprinkling of low

wavenumber modes causing a random walk of the profile on larger scales. The n5 = 50 fivebrane

strands have been wound into a single supertube; color adiabatically evolves along the profile to

reveal the supertube’s wandering in the transverse x1-x2 plane.

highly non-generic coherent state; for instance, in the NS5-P frame it is built by populating

a single wavenumber and polarization mode of the fivebrane to a macroscopic level, leading

to the characteristic spiral of figure 4(a). A more generic low angular momentum supertube

profile executes a random walk in the transverse space, and looks more like figure 14.

Clearly the fivebranes continue to be separated on their Coulomb branch, but the

strands no longer neatly line up along a single trajectory in the x1-x2 plane. The supertube

still winds n5 times around the ỹ circle, and thus so also will the W-brane; however, the

minimal W-brane shape will be much more complicated, and not simply a multiple cover of

a single trajectory. Rather, for k � n5 it looks more like n5 separate coils having of order

k/n5 windings. Because of the transverse spread of the profile, the more generic supertube

may actually be farther from the threshold of black hole formation than the rather special

configurations that we have studied here — the W-branes are heavier and exhibit less of

the expected long string structure. The geometry has many higher multipoles excited and

is not locally AdS3×S3. In contrast, the round supertube is locally AdS3×S3, a property

it shares with the BTZ black hole.

It may be that when excited, the supertube is driven toward more compact, coiled

profiles like the round supertube, i.e. toward the origin of the Coulomb branch where the

long string structure becomes fully liberated [128]. In the process, the supertube must

shed its angular momentum, or at least carry it in such a way that fivebrane strands

can come together to make the W-branes light, as we will discuss below. Decreasing the

angular momentum by increasing the mode number k of the dominant excitation makes

the supertube more pointlike, and W-brane excitations will then push the system into a

black hole phase;19 alternatively, the supertube may maintain a finite radius, with W-brane

19There are also momentum modes on the type IIA NS5-P supertube that don’t carry transverse angular

momentum, such as the self-dual antisymmetric tensor modes and their scalar superpartner; exciting these

rather than the transverse scalars also decreases the supertube radius and increases the depth of the throat

sourced by the supertube (see for instance [49]).
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excitations forming a black ring. So indeed, the special round supertubes are very non-

generic configurations, but this may actually be a good thing if the goal is to study the

black hole or black ring threshold.

9.2 Round supertubes and exotic phases

In regimes where black holes dominate the spectrum, one can think of the black hole

solution itself as a sort of “ensemble geometry” which captures the thermodynamics. In

particular, the classical action determines the constitutive relation S(E) by connecting

the ADM mass to the Wald entropy, both of which are Noether charges of the underlying

diffeomorphism symmetry of gravity [129, 130].20 If there are multiple black objects that

might occur, the one with the most entropy dominates. The asymptotics of the spectrum

in AdS3 is governed by the BTZ solution, connected to the Cardy formula for the density of

states (1.2) of the spacetime CFT. In the regime where semiclassical gravity applies, namely

large central charge and large supergravity charge radii Qi, there are additional “ensemble

geometries” which govern the thermodynamics of intermediate phases [131]. These phases

fill in the region between the locus SBTZ = 0 where the BTZ solution ceases to dominate

the ensemble, and various unitarity bounds (for instance, the requirement that ε > 0).

The main unitarity bound is a polygon coming from integer spectral flow of the BPS

bound (additional unitarity bounds come from the structure of the N = 4 supersymmetric

spacetime superconformal algebra [132]). Outside this bound, there are no states in the

spectrum. Between the bound and the BTZ threshold, the density of states is dominated

by a particular black object, depending on the angular momentum. For J < n1n5/2, the

system likes to carry all its angular momentum in a supertube surrounding a zero angular

momentum (BMPV) black hole; for J > n1n5/2, the dominant configuration is a black

ring.21 This phase structure, worked out in [131], is depicted in figure 15.

In bipolar coordinates of the sort used in this paper, the black hole plus supertube

phase is characterized by a zero angular momentum (BMPV) black hole at ρ = θ = 0, and

a supertube that carries the angular momentum at ρ=0, θ=π/2; in the black ring phase,

the ring is located at ρ=θ=π/2, and ρ = θ = 0 is an ordinary smooth region of spacetime.

In the three-charge supertube, there can be orbifold structure at either or both lo-

cations ρ = 0, θ = 0 and ρ = 0, θ = π/2, supporting W-branes in both places. How much

the orbifold structure coils at each location depends on the diophantine relations among s,

s + 1 and k that determine gcd(s, k) = `1 and gcd(s+1, k) = `2 (see the discussion around

equation (4.38)); for instance the orbifold structure only exists at θ = 0 if `1 = 1, or only

at θ = π/2 if `2 = 1. There are also potentially large dipole charges, for instance KK

20Usually in thermodynamics, this constitutive relation must be supplied from some analysis of the

underlying microscopics; it is remarkable that gravity knows what the result must be, even though it

doesn’t know what the underlying microscopics is. In the AdS/CFT context, and perhaps more broadly,

gravity is a collective mode of the underlying microscopics, whose emergent diffeomorphism symmetry

determines the outcome.
21One can check that the density of states of these two configurations flow into one another according

to the standard spectral flow relations of the spacetime CFT, which on the gravity side of the duality

is simply a large gauge transformation that mixes AdS3 and S3 angular coordinates. Both objects have

horizon topology S3 × S1, so it is consistent that they flow into one another.
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Figure 15. Two-charge supertubes are BPS configurations at the lower bound in energy, and for

angular momenta up to J = n1n5/2. Between the unitarity bound and the BTZ threshold, there

is a black hole plus supertube phase at low angular momentum (purple), and a black ring phase

at high angular momentum (light blue). Spectral flow in the spacetime CFT takes one phase into

the other.

monopole charge of amounts −s at θ = 0 and s + 1 at θ = π/2, as well as F1 and NS5

dipole charges of magnitude n1,5s(s+1)/k at these locations. This does not directly fit the

black object structure, which blackens only at θ = 0 for small angular momentum, and only

at θ = π/2 for large angular momentum, and in which the charge vectors at θ = 0, π/2 are

quite different from the three-charge supertube. All these features highlight the fact that

the three-charge supertube is macroscopically different from an actual three-charge black

object at the corresponding point in the phase diagram. Nevertheless, it is encouraging

that the central player in the black object entropy, namely the long string structure, is

making an appearance in the cap of the three charge supertube, and in both the places

that have the potential to blacken, depending on the route that thermodynamics favors.

9.3 W-brane excitations

The structure of D-branes wrapping topology in the cap of two- and three-charge supertube

backgrounds exhibits many features of the long string structure that characterizes the black

hole phase of the spacetime CFT. In particular, excitations of these objects may teach

us about the entropy-carrying degrees of freedom of the black hole phase, i.e. the long

string structure. The open string spectrum characterizes the ways we can wiggle the W-

brane. While we defer a complete analysis of this spectrum to future work, we can make

a few preliminary remarks. In the open string sector the zero modes are restricted by the

boundary conditions. Consider the string-like D2-brane in the NS5-P supertube of figure 5,

for example. The brane is extended along the S2 (twisted) conjugacy class in SU(2) near

θ = π/2, and along the supertube helix with the slope (7.15), i.e. n5 δφ = −k δ(ỹ/Rỹ).
In other words, we have a single fivebrane which winds n5 times around the ỹ circle as

it winds k times around the φ circle, and the W-string tracks that structure.22 A wave

along the supertube helix thus has momentum fractionated by a factor n5 along ỹ and by

22Additionally the W-brane can wrap around T4 as it winds along the supertube helix; or it can wrap

only the T4. In the AdS3 limit R−1
y = Rỹ → 0, the brane wrapping only the supertube helix is lightest.
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a factor k along φ. More precisely, the total ỹ and φ momenta are integral, but a fraction

of each is carried by each coil of the supertube. These waves can be polarized along any of

the T4 directions, exhibiting the hypermultiplet of excitations of the long string. Dualizing

to the NS5-F1 frame, the component of the momentum along ỹ turns into fundamental

string winding along y; the W-string now fractionates F1 charge by a factor n5. Similarly,

there are k strips of W-brane lying vertically above a given point on the φ circle, and so

open strings stretching between the ith and jth strip stretch a fraction |i−j|−1
k Rỹ around

the ỹ circle (for i 6= j). In the T-dual picture one has y momentum fractionated into

amounts |i−j|−1
kRy

.

The DBI effective action indicates that W-branes are rather heavy excitations com-

pared to fundamental strings. A rough estimate of the W-string DBI action in the NS5-P

frame is given by the value of the dilaton in the cap23 times the area of the ỹ-φ torus at

ρ = 0, θ = π/2 ∫
e−Φ

√
det(G+B + F ) ∼

√
n1`4str
k2n5V4

Rỹ
√
n5

`2str
. (9.1)

The k dependence of this result comes from a slightly different route in the NS5-F1 frame

— there the dilaton is the fixed scalar value, exp[2Φ] = n5V4/(n1`
4
str), but the vanishing

cycle S2/Zk of figure 12 wrapped by the W-string has volume proportional to 1/k. The

end result is that in the NS5-F1 frame the energy cost of a W-string is of order

E ∼

√
n1`4str
V4

1

kRy
. (9.2)

This has the appropriate scaling for the AdS3 decoupling limit, where one holds ERy
fixed, but the deepest supertube throat has k ∼ n1 (since we have demanded that k

and n5 are relatively prime, and k is bounded above by n1n5). Thus when we consider

a supertube with a deep throat, the W-string is heavier than the lightest supergravity

excitations in the bottom of the throat by a factor of order
√
n1/V4. The volume V4/`

4
str of

the compactification is bounded by n1/n5 in order for the F1-NS5 description to be valid;

beyond that, the valid weakly-coupled effective description switches to the S-dual D1-D5

frame (see for instance [133]). Indeed we see that the W-string becomes lighter and lighter

as we increase the torus volume and at the limit of validity of the NS5-F1 duality frame

becomes as light as supergravity modes in the cap.

This convergence of excitation energy scales is due to the fixed scalar condition in the

cap of the NS5-F1 geometry,

exp[2Φ] = g2
s

Q5

Q1
=

n5V4

n1`4str
, (9.3)

which strikes a balance between the onebrane and fivebrane charge radii. Increasing the

torus volume shifts the balance in favor of the fivebranes and increases the string coupling,

making D-branes lighter. Similarly, the radius a of the supertube ring in the NS5-P frame

23Correcting a typo in [66].
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(see figure 4),

a2 =
QpQ5R

2
ỹ

k2`4str
=
n5npg

2
s`

6
str

k2V4
, (9.4)

is determined by a balance between the tension of the fivebranes wanting to shrink the

supertube radius and the angular momentum forcing the fivebranes to stretch; increasing

the torus volume again makes the fivebranes heavier and shrinks the supertube radius,

pushing the fivebranes closer together and making the W-string lighter.

Thus W-branes become light and compete with fundamental strings when the five-

branes approach one another, as expected from the picture painted in the introduction.

But when the fivebrane strands are well-separated and the W-branes are heavy, the su-

pertube has a certain rigidity to it. The fivebrane strands cannot typically come together

unless either the supertube sheds its angular momentum [128], or two windings of the

supertube cross through evolution of its transverse profile and start locally exciting W-

branes. Both processes require some energy to be supplied.24 One of the excitations that

costs rather little energy is to pry a fundamental string loose from the background. In [67]

it was shown that large gauge transformations in the SL(2,R) factor of G mediate processes

by which F1 winding charge dissolved as background flux can be transferred to winding

string excitations not bound to the cap. The lightest perturbative string scattering states

carry the same momentum and angular momentum per unit F1 charge as the background,

and cost energy above the BPS bound (see [67, eq. (4.63)]),

ε = ERy =
n5

[
s(s+ 1) + 1

]
wy

k2
, ny = PyRy =

n5s(s+ 1)wy
k2

, (9.5)

where wy is the number of units of F1 winding carried by the string. Thus as k increases,

these become very easy to excite, and their effect is to strip off the background F1 charge

which is keeping the cap structure weakly coupled. When enough energy is supplied so

that enough charge is stripped away, the supertube shrinks to the point that the W-branes

become competitive with elementary string excitations, and one starts to enter the black

hole phase of thermally excited long/little strings.

Even if the W-brane is somewhat heavy, once one has paid the cost of creating it,

further excitations are expected to be relatively light. We hope in future work to ana-

lyze the spectrum of open strings on the W-branes constructed above, and estimate their

contribution to the density of states near the black hole threshold.

9.4 The role of microstate geometries

As we have emphasized, the primary role of microstate geometries in our considerations is

to bring us near to the black hole threshold where we can study the most entropic degrees

of freedom, which are excitations of the long/little string. The round supertubes we have

studied are quite close to the black hole threshold but have high curvature (an orbifold

structure) in the cap. The structure of topological bubbles here is thus nearly degenerate

— the bubbles are sub-string scale in size so that the W-branes that wrap them are light.

24In the classical GR analysis of [14] excitations can sit at the supertube locus where they cost zero

energy, but as shown in [67] there is a gap in the spectrum.
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There is an extensive zoology of smooth microstate geometries with large redshift to the

bottom of the cap, and one might wonder how they fit into this picture. There are two broad

classes of such geometries that have been considered in the literature — bubbled geometries

that carry all three background charges as fluxes [10], and so-called superstrata [16] which

decorate a two-charge supertube with a fully back-reacted (super)gravitational wave profile.

In both cases the background geometry is supported by angular momentum, and an issue

is to determine how easily the background can shed that angular momentum and drive

the configuration to a regime where other excitations become light. In the case of bubbled

geometries, it was argued in [13] that (an admittedly crude) quiver quantum mechanics

truncation of the dynamics of W-branes exhibits a finite fraction (a few percent) of the

three-charge black hole entropy in the Higgs phase of the QM where the hypermultiplets of

the quiver, whose quanta are the W-branes, have become light and condense. This result

suggests that once again the route to the black hole phase proceeds via a process in which

the background sheds its angular momentum and the cap descends to a redshift where the

entropic degrees of freedom become light enough to play a significant role.

Superstrata can support a deep AdS2 throat and an approximate BTZ geometry via

coherent supergravity waves on top of a two-charge supertube background [21]. The fully

nonlinear field equations are solved, with the wave profile tuned to avoid singularities and

other pathologies such as closed timelike curves. However, it has been shown [24, 134] that

probes of this geometry experience large tidal forces, an indicator that the large blueshift

experienced by the probe will result in processes well-approximated by the collision of

gravitational shockwaves, resulting in a disruption of the delicately tuned superstratum

structure. There will be plenty of excitation energy available to transfer angular momen-

tum away from the supertube, causing it to evolve toward the regime where W-branes

become light.

We should mention that our proposal — that W-brane excitations of supertubes are a

precursor of the entropic degrees of freedom of black holes — shares some similarity with

earlier attempts to use supertube probes in microstate geometries for a similar purpose [135,

136]. In both cases, excitations of a string-like probe (or the U-dual of one) deep in the

throat of a capped geometry are proposed as a way to account for black hole entropy

in asymptotically AdS3 spacetimes. The backreaction of the probe is treated as a small

correction. There are however two significant differences. First, we have taken pains

to distinguish these configurations from generic black hole microstates, arguing that the

three-charge microstate geometries constructed to date are not generic elements of the black

hole phase, but rather particular coherent states. Even their W-brane excitations should

not be considered generic black hole microstates, but rather useful probes that exhibit

certain features of the black hole phase in a context where we can apply perturbative

string theory methods. The true black hole phase involves little string dynamics, and is

inherently strongly coupled.25 Second, the supertubes of [135, 136] do not exhibit the

charge fractionation that one expects of the entropic degrees of freedom; indeed, estimates

25By which we mean having an effective coupling strength of order one — not coupling far in excess of

unity, which might lead to some other weak coupling approximation in a dual description.
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of the entropy that could be achieved this way fell short of the parametric
√
n5n1np growth

of the BTZ black hole entropy, in large part because the fractionation coming from the

third charge is absent in the two-charge supertube probes that were employed. In our

approach we have sought the source of this additional fractionation by finding where the

fivebranes are hiding in the geometry. The fact that the supertube winds n5 times around

the y circle means that the wiggles of the W-string will carry the necessary additional

fractionation beyond the order
√
n1np entropy of excited fundamental string probes in the

fivebrane throat [137].

9.5 Speculations on the black hole phase

A major difference between AdS3 holography at large n5 and the perturbative string cor-

respondence point studies described in the introduction is that there are now two string

scales — the scale α′ of the fundamental string and the scale α′little = n5α
′ of the little

string, which are widely separated when n5 is large. Physics that looks local and semi-

classical to the fundamental string can look stringy and quantum to the little string. For

instance, the proper time from the bifurcation point of the BTZ horizon to the singularity

is the curvature scale RAdS which is the inverse tension scale of the little string; the little

string literally could not tell whether it is at the horizon or the singularity of the effective

geometry. (Here we are assuming that effective geometry holds at the horizon — that the

effect of the little string is not felt through violent collisions but rather through soft mo-

mentum transfers of order the little string tension scale (α′little)
−1/2 = R−1

AdS, which perhaps

not coincidentally is the scale of tidal forces in the effective geometry). Of course, inside

the horizon one expects that a probe fundamental string is fractionating into bits of little

string, like a gauge theory meson shattering into partons upon entering a large nucleus; the

picture of a localized fundamental string would be a description of the collective degrees of

freedom of the underlying little string, much as the partons that compose the jet made by

a probe meson entering the nucleus continue along the same center of mass trajectory of

the original meson, but after entering the nucleus are spread out over a narrow cone in the

transverse direction.26 To the extent that this spreading can be ignored, the center-of-mass

trajectories of massless probes in localized wavepackets would reflect the causal structure

of the effective geometry. Whether one can regard this structure as “real” depends on the

extent to which it can be decoupled from the spreading of the probe into the underlying

little string degrees of freedom. For the physics of outgoing trajectories near the effec-

tive horizon, this issue is almost certainly bound up with the maximally chaotic nature of

dynamics there [140, 141].

The main difference between the interior and exterior is the deconfinement of the

little string. One imagines that a fundamental string probe entering the region behind the

horizon will quickly fractionate. To the extent that there is a geometrical picture of the

black hole interior, it will be because one can still approximate the dynamics of probes by

26This picture has some affinity with the “fuzzball complementarity” scenario of [138, 139] in that the

physics of localized jets experiencing small transverse momentum interactions applies in a regime where the

jet has momentum much larger than the string tension and is thus localized inside a narrow cone, while the

evolution of probes of low momentum is strongly affected by parton interactions.
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the local center-of-mass of their fractionated constituents, at least for a short time, until

the fractionated constituents scramble with and thermalize into the little string ensemble.

In the effective description, this might amount to the probe hitting a singularity, signaling

the breakdown of that description.

From the present perspective, the question of whether something dramatic happens

to an infalling probe when it crosses the black hole horizon is a question regarding the

response function of the little string to probes made up of ordinary (F1) strings. The ten-

sion of the latter is much larger, so geometry might look localized to F1’s and completely

different and fuzzy to little strings. For there to be something akin to a firewall [142] would

require the little string to exhibit behavior dramatically different from that of fundamental

strings, which do not transmit strong impulsive forces [143]. Instead, each string inter-

action typically transfers momentum on the order of the string scale, which for the little

string is the curvature scale of the ambient geometry — little string interactions with the

probe’s collective modes might simply be seen as tidal forces from the perspective of the

effective theory.

A satisfactory resolution of the black hole information paradox should identify where

and how Hawking’s original calculation of black hole radiation makes a mistake. A sim-

ilar issue arises in the phenomenon of ergoregion emission, as happens for instance in

the JMaRT geometries [71], which are obtained from two-charge supertubes by non-

supersymmetric spectral flow in the spacetime CFT [144–148]. In perturbative string

theory, one sees in JMaRT backgrounds a process quite similar to Hawking pair cre-

ation [144–149].27 A probe scalar field in the background generates a pool of negative

energy in the vicinity of the ergoregion at the same time that positive energy radiation

escapes to infinity [67, 144–149] (where energy is defined in terms of the timelike Killing

vector of the asymptotically flat region that the AdS3 throat is joined to). The backreac-

tion of that radiation on the background will relax the latter by shrinking the ergoregion,

though this backreaction has not been computed in detail.

In both cases — ergoregion emission and Hawking radiation — the probe approxima-

tion treats the background as fixed and one calculates the dynamics of field modes on that

fixed background; the backreaction of the modes and in particular their entanglement with

the background are ignored altogether. In ergoregion emission one has the possibility to

patch that up after the fact; the process by which the pool of negative energy modes in the

cap relaxes the background doesn’t necessarily violate cherished principles of local quan-

tum field theory such as locality, causality or unitarity (though one faces puzzles regarding

how the negative energy “annihilates” against the background, especially if the probe field

carries some conserved quantum number, that are reminiscent of the sort of entanglement

puzzles [142, 152] that have animated recent discussions of black hole radiance). But in

the Hawking process, one of the cherished principles of local QFT must be violated.

In the dual spacetime CFT, the decay of the JMaRT background is described as de-

excitation of a particular collection of fermionic modes which have been macroscopically

excited in order to create the JMaRT background from a two-charge ground state; each

emitted quantum is directly responsible for relaxing a particular excitation of the under-

27However, the particle interpretation of the ergoregion emission process is quite subtle [150, 151].
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lying microstate, and so entanglement is properly looked after. In fact, the mechanism by

which the spacetime CFT relaxes is identical to the process by which Hawking quanta are

emitted — the only difference is in the initial state, which is a highly coherent excitation

in the JMaRT states rather than the thermally excited structure of a typical black hole

microstate. In both the JMaRT background and in black hole microstates, the “negative

energy partner” of the emitted radiation is simply a de-excitation of the underlying little

strings, whose dynamics is causally connected to their surroundings; there is then no fun-

damental issue with the unitarity of the emission process and the preservation of quantum

correlations among the constituents of the final state.

In the fuzzball paradigm, the black hole is simply a complicated bound state of frac-

tionated brane constituents whose wavefunction extends out to the horizon scale; the black

hole is yet another phase of matter, and radiates coherently from its surface. In the present

context, Hawking quanta emerge from the Hagedorn gas of little strings when a fundamen-

tal (F1) string assembles itself out of its fractionated constituents and escapes the fuzzball.

One might then regard the effective field theory in which the Hawking calculation is per-

formed, wherein field modes are continually drawn from some reservoir in the UV and

stretched to macroscopic scales, as some approximation to the fuzzball dynamics that ig-

nores much of its internal structure. There are effective field theories in other contexts

that similarly ignore correlations and entanglement between quanta of the effective theory

and the underlying constituents. In effective field theory of materials, the quasiparticles

and quasiholes near the ground state are complicated, correlated excitations of the under-

lying constituents. In the Hawking process, the emitted quanta are correlated to “negative

energy” partners behind the horizon that are akin to quasiholes in a material, whose life-

time is at most the scrambling time of the black hole. But as in the material, exciting

such a quantum amounts to the absence of an excitation in the underlying microscopics.

Isolating the effective field theory and ignoring the correlations of its excitations to the

underlying substrate amounts to a sort of mean field theory which does not capture the

correlations, leading to a seeming breakdown of unitarity which is simply an artifact of the

approximation.
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A Conventions

In this appendix we record our group theory conventions.

A.1 SU(2)

We parametrize SU(2) via Euler angles

gsu = e
i
2

(ψ−φ)σ3eiθσ1e
i
2

(ψ+φ)σ3 =

(
cos θeiψ i sin θe−iφ

i sin θeiφ cos θe−iψ

)
. (A.1)

These are the conventions used in [67] (note that [66] had conventions related to these by

φ→ −φ). Here the σa are the usual Pauli matrices, explicitly

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.2)

The generators and structure constants of the Lie algebra su(2) are as usual

Ta =
1

2
σa , f c

ab = iεabc , ε123 = 1 . (A.3)

The group element parametrizes the unit sphere in R4 through

gsu =

(
X0 + iX3 iX1 +X2

iX1 −X2 X0 − iX3

)
, (A.4)

where

X0 + iX3 = cos θeiψ , X1 + iX2 = sin θeiφ . (A.5)

Another parameterization is given by the unit quaternions

g = cosχ 1l + i sinχ
(

sinϑ cosϕσ1 + sinϑ sinϕσ2 + cosϑσ3

)
, (A.6)

for which

X0 = cosχ , X1 + iX2 = sinχ sinϑ eiϕ , X3 = sinχ cosϑ . (A.7)

We refer to these as Hopf coordinates, as they describe the group manifold S3 as the χ

circle fibered over the S2 parametrized by ϑ, ϕ; the untwisted conjugacy classes are given

by χ = const. The relation between the two parametrizations is given by

cos θ cosψ = cosχ , cos θ sinψ = sinχ cosϑ , sin θ = sinχ sinϑ , ϕ = φ . (A.8)

The currents J su
3 , J̄ su

3 are given by

J su
3 = n5Tr

[
(−iT3)∂gsu g

−1
su

]
= n5

(
cos2θ ∂ψ − sin2θ ∂φ

)
,

J̄ su
3 = n5Tr

[
(−iT3)g−1

su ∂̄gsu

]
= n5

(
cos2θ ∂̄ψ + sin2θ ∂̄φ

)
. (A.9)
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Defining in the usual way T± ≡ T1 ± iT2, the left-invariant vector fields that

correspond to the generators Ta, in the local coordinates in (A.1), are

(T+)L = − i
2
e+i(ψ+φ)

(
∂θ − i tan θ ∂ψ + i cot θ ∂φ

)
,

(T−)L = − i
2
e−i(ψ+φ)

(
∂θ + i tan θ ∂ψ − i cot θ ∂φ

)
,

(T3)L = − i
2

(
∂ψ + ∂φ

)
.

(A.10)

Our conventions for the right-invariant vector fields follow those of [103], as mentioned

around (3.11)–(3.12). Thus we define the right-invariant vector fields to correspond to

minus the relevant Lie algebra element, i.e.

(T3)R ↔ −T3 ⇒ (T3)R =
i

2

(
∂

∂ψ
− ∂

∂φ

)
. (A.11)

A.2 SL(2)

We parametrize SL(2,R) as SU(1, 1) via

gsl = e
i
2

(τ−σ)σ3eρσ1e
i
2

(τ+σ)σ3 . (A.12)

Again these are the same conventions we used in [67] (related to those of [66] by σ → −σ).

The generators and structure constants of the Lie algebra su(1, 1) are

T sl
1 =

i

2
σ1 , T sl

2 =
i

2
σ2 , T sl

3 = T3 =
1

2
σ3 ; f 3

12 = −i , f 1
23 = f 2

31 = i . (A.13)

The currents J sl
3 , J̄ sl

3 are

J sl
3 = n5Tr

[
(−iT3)∂gsl g

−1
sl

]
= n5

(
cosh2ρ ∂τ + sinh2ρ ∂σ

)
,

J̄ sl
3 = n5Tr

[
(−iT3)g−1

sl ∂̄gsl

]
= n5

(
cosh2ρ ∂̄τ − sinh2ρ ∂̄σ

)
. (A.14)

The left and right-invariant vector fields are similar to those given above for SU(2), via

the map

ψ → τ , φ→ σ , iθ → ρ . (A.15)

In particular, we have

(T sl
3 )L = − i

2

(
∂

∂τ
+

∂

∂σ

)
, (T sl

3 )R =
i

2

(
∂

∂τ
− ∂

∂σ

)
. (A.16)
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