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1 Introduction

Lorentz invariance is intimately connected with existence of antiparticles. At the same

time, one can formulate an effective field theory (EFT) that describes particles which are

essentially non-relativistic [1–3]. When considering heavy particles, the energy cost of pair

production can be so high that one can integrate out the anti-particles. Subsequently,

both relativistic effects and the effects of anti-particle appear as corrections, i.e., higher-

order terms in the EFT, and the relationships between the numerical coefficients of these

higher-order terms are due to Lorentz invariance. The guiding principle to implement

the constraints from Lorentz invariance on a heavy-particle effective theory is known as

reparameterization invariance (RPI) [4–8]. Imposing invariance under reparameterization

can be technically difficult, and this has lead to different perspectives and methods on the

topic, e.g., see refs. [4, 5, 8].

To be concrete, consider the fundamental interactions between gauge field and an

elementary fermion q with mass M is governed by the Lagrangian:

L = q
(
i /D −M

)
q , (1.1)

where D is the covariant derivative, Dµ ≡ ∂µ + igZAµaTa, g is the gauge coupling, gZ is

the tree level charge of the fermion, the Aµa ’s are the gauge fields, and the Ta’s are the

generators of the gauge group. For other fermionic degrees of freedom Q, such as protons,

neutrons, or the b quark within a B meson, etc., in general the Lagrangian contains all

higher-order, non-renormalizable, operators that are invariants of the Poincaré group and

the gauge group:

L = Q
(
i /D −M

)
Q+

aF g

4Λ
QσαβG

αβQ+
aDg

8Λ2
Qγα[DβG

αβ ]Q+
aC
Λ2

(QQ)2 + · · · , (1.2)

where the a’s are non-perturbative coefficients, Gαβ ≡ (−i/gZ)[Dα, Dβ ], σαβ ≡ i[γα, γβ ]/2,

and the factors of 4 and 8 in the aF and aD operators, respectively, are conventional. Here,
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Λ is the nominal energy scale associated with the effective theory. We distinguish the gauge

coupling g and the tree-level charge gZ, since the fermion can have positive or negative

charge, e.g, Z = ±1, or be neutral, where Z = 0. The square bracket indicates that the

derivative inside only act within the brackets. Here we only include operators that are

invariant under parity and time reversal, since the underlying Lagrangian, i.e., eq. (1.1), is

also invariant under these discrete transformations. Due to Lorentz symmetry, the bilinear

sector contains no effective operators constructed solely out of covariant derivatives with

Lorentz indices symmetric under interchange, otherwise the fermion would not have the

relativistic dispersion relation. Furthermore, in the limit that g → 0, the fermion does not

couple to the external gauge fields, and it is impossible to construct any Lorentz-invariant

effective operator which is bilinear in the fermion [9]. However, Lorentz symmetry does

permit operators quartic in the fermionic fields, even in the g → 0 limit. The operators of

different orders of 1/Λ can, in principle, mix under the renormalization flow.

We focus on a subset of the full Hilbert space of the theory described by the Lagrangian

in eq. (1.2) that contains only the operators that are bilinear in the fermion, i.e., systems

that only contain one fermion:

L = Q
(
i /D −M +

aF g

4Λ
σαβG

αβ +
aDg

8Λ2
γα[DβG

αβ ] + · · ·
)
Q . (1.3)

When the fermion is heavy, one can integrate out the anti-particle component of the rel-

ativistic spinor, which generates an infinite number of effective operators, in addition to

those already included in eq. (1.3). Doing so will give rise to non-trivial relationships be-

tween the Wilson coefficients in the heavy particle effective theory, due to the underlying

Lorentz symmetry of the original theory with particles and anti-particles. We coin this

the “top down,” perspective. Later, we will discuss the cases when this fermion is charged

under U(1) electromagnetism or SU(3) color, effective theories called NRQED and HQET,

respectively.

There is a second, “bottom up,” perspective for these heavy particle effective field

theories. Here, one constructs a theory invariant under only translations and rotations.

The operators that span such a theory are the same as the operators in the heavy particle

effective theory after the anti-particles have been integrated out, since integrating out the

anti-particles breaks the Lorentz group down to its rotational subgroup: SO(3, 1)→ SO(3).

In ref. [10], we enumerated an operator basis, invariant under translations, rotations, and

the underlying gauge symmetry, for operators bilinear in the fermion, using Hilbert series

methods.1 Such an operator basis can provide the operators for an heavy particle effec-

tive field theory, but it does not supply the non-trivial relationships between the Wilson

coefficients due to Lorentz symmetry. Such relationships can be recovered by requiring

invariance under an additional transformation, called reparameterization [4].

We reemphasize that reparameterization invariance can be thought of as a way to

implement Lorentz invariance in effective theories with a single heavy degree of freedom,

where the anti-particles have already been integrated out [4–8]. It is relatively straight

1Interestingly, we found that this operator basis can be organized according to irreducible representations

of non-relativistic conformal group [11].
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forward to break Lorentz invariance then integrate out the anti-particles. But doing it

the other way around, i.e., starting with a rotationally-invariant theory and imposing

constraints from Lorentz symmetry on a theory with no antiparticles, can be technically

complicated to achieve. On a conceptual level, this is what we should expect as a Lorentz

boost does mix the particle with the anti-particle. Thus, RPI should somehow know about

the existence of anti-particle. In refs. [4–6] the form of the RPI transformation changes at

higher order in HQET formulation, this in some form implements the information about

anti-particle, i.e., the full Lorentz invariance. On other hand, we show that it is possible to

formulate a RPI in a way so that the basic transformation by definition knows about the

existence of anti-particle. Our work generalizes some of the methods discussed in refs. [4–6],

and provides a complementary viewpoint of how RPI is connected to Lorentz invariance

compared to what has been elucidated in ref. [8].

One of the purposes of this paper is to be self-contained, so we revisit both the

“top down” (section 2) and “bottom up” (section 3) approaches to heavy particle ef-

fective field theory with an aim towards to making a rigorous connection between RPI

and Lorentz symmetry without spoiling the particle-antiparticle symmetry. In section 4,

we explore an immediate corollary of our generalized form of RPI, where operators span-

ning a reparameterization-invariant theory can be mapped to those that are manifestly

Lorentz-invariant. Thus, we are able to provide with a Lorentz invariant operator basis up

to and including order 1/M4, free of redundancies from integration by parts or equations

of motion, for theories with a single fermion, charged under an external U(1) or SU(3)

gauge field (section 4). Moreover, we explicitly map some of them onto lower dimensional

operators in HQET as a proof of our concept along with recovering one of the constraints

produced by conventional RPI (see discussion around eq. (4.28) and eq. (4.32)).

2 The “top down” approach

Here, we recapitulate many of the arguments presented in ref. [6], using similar notation.

We consider the Lorentz invariant field theory as described by eq. (1.3). If the mass M

of the particle is heavy compared to all other scales in the system, then its antiparticle

can be integrated out, and this induces a set of non-renormalizable effective operators. To

do so, one can factor out the rapidly-oscillating phase of the field, Q′(x) ≡ eiMv·xQ(x),

where vµ ≡ (γ, γv) is the velocity 4-vector, and γ ≡ 1/
√

1− v2, such that v2 = 1, and the

time-ordered two-point correlation function for Q′ is:

〈0|TQ′(x)Q′(0) |0〉 =

∫
d4p

(2π)4

(
i

/p− (1− /v)M + iε

)
e−ip·x , (2.1)

'
∫

d4p

(2π)4

(
i

v · p+ iε

)(
1 + /v

2

)
e−ip·x +O

(
1

M

)
. (2.2)

Here, (1 + /v)/2 is a projection operator, since v2 = 1. In the rest frame, it projects onto

the particle component of the field Q. Likewise, (1 − /v)/2 is also a projection operator,

and in the rest frame, it projects onto the anti-particle component of the field Q. So, the
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Dirac spinor Q can be decomposed into two components using these projection operators:

Q(x) = e−iMv·x

eiMv·x
(

1 + /v

2

)
Q(x)︸ ︷︷ ︸

≡ Qv

+ eiMv·x
(

1− /v
2

)
Q(x)︸ ︷︷ ︸

≡ Qv

 , (2.3)

for a general velocity.2 The Lagrangian in eq. (1.3) can be rewritten now in terms of Qv
and Qv, where we will let Λ→M , as is conventional in heavy particle effective theory:

L = (Qv+Qv)e
iMv·x

(
i /D −M +

aF g

4M
σαβG

αβ +
aDg

8M2
γα[DβG

αβ ] + · · ·
)
e−iMv·x(Qv+Qv) .

(2.4)

For convenience, one can replace operators of the form Qvi /DQv with Qvi /D⊥Qv, where

Dµ
⊥ ≡ D

µ−vµ(v ·D), since Qv/vQv = 0, because from eq. (2.3), /vQv = Qv and /vQv = −Qv:

L = Qv

(
i /D +

aF g

4M
σαβG

αβ +
aDg

8M2
γα[DβG

αβ ]

)
Qv

+ Qv

(
i /D − 2M

)
Qv +Qv

(
i /D⊥ +

aF g

4M
σαβG

αβ
)
Qv + h.c.+ · · · .

(2.5)

This is the same Lagrangian as eq. (1.3). Some terms have not been included in eq. (2.5),

because they contribute at order 1/M3 or higher, and our present discussion will be to

order 1/M2, for the sake of brevity.

If all operators are bilinear in the heavy fields, the heavy antiparticle Qv can be

integrated out by performing the Gaussian integral over Qv in the action. This is equivalent

to solving for the equation of motion for Qv:(
i /D − 2M + · · ·

)
Qv =

(
i /D⊥ +

aF g

4M
σαβG

αβ + · · ·
)
Qv , (2.6)

and inserting this back into eq. (2.5), noting that Qvγ
αQv = vαQvQv, and expanding to

order 1/M2 (after a considerable amount of algebra):

L = Qv

[
iv ·D − D2

2M
+

(aF − Z)g

4M
σαβG

αβ

]
Qv

+Qv

[
− i(2aF − Z)g

8M2
vµσαβ{Dα

⊥, G
µβ}+

aDg

8M2
vα[D⊥βG

αβ ]

]
Qv +O

(
1

M3

)
.

(2.7)

The non-trivial relationships between the Wilson coefficients of operators at different orders

in 1/M are due to the underlying theory being Lorentz invariant. Note that the second

operator in eq. (2.7) is not of the form QvD
2
⊥Q, since we have summed an infinite series

of operators to achieve the form QvD
2Q. We discuss this point further in section 3. It is

interesting to note that the operator ∝ ZgσαβGαβ does not depend on a Wilson coefficient

2The right-hand side of eq. (2.3) does not depend on vµ. Therefore, a sum over all vµ is the most

general expression: Q(x) =
∑
v e
−iMv·x (Qv(x) + Qv(x)). However, when inserting this definition back into

eq. (1.3), the Lagrangian will have an overall phase of e±iM(v−v′)·x. In the M →∞ limit, only the sector of

the Hilbert space that is not rapidly oscillating in x is the one where v = v′, leaving only the sector where

all heavy fields have the same velocity [3]. We thank E. Mereghetti for pointing this out.
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and is due to Thomas precession, i.e., it is purely kinematic effect due to the Lorentz

group. This particular form matches onto the Bargmann-Telegdi-Michel equation for the

semi-classical motion of a spin-1/2 particle in an external electromagnetic field in the lab

frame, which would not have been apparent if one ignored the effective operators in eq. (1.3).

Eq. (2.7) is the desired form of the heavy particle effective Lagrangian, subject to ex-

ternal gauge fields. The procedure to achieve this form is coined the “top-down” approach,

and to provide a starting point for this method, we enumerate all Lorentz-invariant opera-

tors that span an operator basis in table 2 for an external U(1) gauge field, and in table 3

for an external SU(3) gauge field, up to and including 1/M4 operators.

3 Reparameterization invariance

A second method by which to derive the non-trivial relationships between Wilson coeffi-

cients in heavy particle effective theory is one that begins with a theory invariant under

rotations and translations, embeds the rotationally-invariant objects within irreducible rep-

resentations of the Lorentz group (such that it reduces to the rotationally-invariant theory

in the rest frame), and requires invariance under reparameterization. We call this the

“bottom-up” approach, since it does not explicitly use the concept of a Lorentz boost.

These steps yield a Lagrangian of the same form as eq. (2.7), which we will demonstrate up

to and including order 1/M2. There are other methods by which one can derive the non-

trivial relationships between Wilson coefficients (for example, see refs. [5, 7, 8, 12]), which

utilize explicit representations of the Lorentz algebra and explicit form of the commutators.

The method we discuss this section, based in reparameterization, is a generalization of the

one outlined in refs. [4, 6].

Reparameterization invariance in heavy particle effective field theories is a consequence

of Lorentz invariance, since derivatives in the relativistic theory are split into two operators

in the heavy theory. To illustrate this, consider the theory of a free, relativistic, fermion:

L = Q(i/∂ −M)Q . (3.1)

Inserting eq. (2.3) to rewrite it in terms of Qv and Qv, and integrating out the antiparticle,

one obtains:

L = Qv

[
iv · ∂ + i/∂⊥

1

(iv · ∂ + 2M)
i/∂⊥

]
Qv . (3.2)

Expanding in powers of 1/M :

L = Qv

[
iv · ∂ −

∂2
⊥

2M
+
∂2
⊥(iv · ∂)

4M2
−
∂2
⊥(iv · ∂)2

8M3
+ · · ·

]
Qv . (3.3)

If one inserts the equation of motion for Qv back into the effective operators in the above

Lagrangian, it eliminates all v dependence, and the power series in 1/M truncates, resulting

in the simple expression:

L = Qv

[
iv · ∂ − ∂2

2M

]
Qv . (3.4)

– 5 –
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This is the same Lagrangian as eq. (3.1), after the antiparticles have been integrated out.3

The relative coefficient between the two operators in eq. (3.4) is fixed by the underlying

relativistic theory. The energy-momentum dispersion relation provided by eq. (3.4) is

E =
√
M2 + (γMv + k)2 − γM , where v is the 3-velocity, γ ≡ 1/

√
1− v2 is the Lorentz

factor, and k is often called the residual momentum. This is the relativistic dispersion

relation, provided that one identifies the full momentum as pµ = Mvµ + kµ, and that the

energy of the heavy particle has the relativistic mass subtracted. These relationships are

often used as the starting point for heavy particle effective field theory.

Reparameterization invariance is defined as a transformation of the degrees of freedom

in eq. (3.4) such that it remains invariant. This is tantamount to requiring that the

relativistic dispersion relation remains intact. Since the Lagrangians in eqs. (3.1) and (3.4)

are the same Lagrangian, and since the free Dirac theory in eq. (3.1) does not depend on

the velocity, therefore neither does the heavy effective theory in eq. (3.4), so a shift in the

definition of vµ in the effective theory must amount to nothing. A sufficient choice for the

definition of reparameterization would be to shift the velocity vector vµ 7→ vµ+εµ/M [4, 6].

Furthermore, because (1 + /v)/2 must remain a projection operator, i.e., [(1 + /v)/2]n =

(1 + /v)/2 for all n ∈ Z where n > 0, it is necessary to impose constraints on ε to ensure

this. This can be obtained by requiring that v·ε = 0 and terms of order O(ε2) are negligible.

Using the definition in eq. (2.3), one can determine the change in the heavy field, under

the shift vµ 7→ vµ + εµ/M :

Qv+ε/M = eiε·x
(

1 +
/ε

2M

)
Qv + eiε·x

/ε

2M
Qv . (3.7)

This expression is exact and one of the main result of our paper.4 Similarly, we have

Qv+ε/M = eiε·x
(

1− /ε

2M

)
Qv − eiε·x

/ε

2M
Qv . (3.9)

and we also note that (
Qv+ε/M + Qv+ε/M

)
= eiε·x (Qv + Qv) . (3.10)

3The passage from eq. (3.3) to eq. (3.4) requires the following to be true:(
− (iv · ∂)2

2M
+

∂2
⊥(iv · ∂)

4M2
− ∂2

⊥(iv · ∂)2

8M3
+ · · ·

)
Qv = 0 . (3.5)

This equation can be rewritten as:

(iv · ∂)2Qv = (iv · ∂)

(
∂2
⊥

2M
− ∂2

⊥(iv · ∂)

4M2
+ · · ·

)
Qv , (3.6)

and the two sides of the equation are in fact equal, due to the equation of motion for Qv.
4We compare eq. (3.7) to the one used in ref. [6]:

Qv+ε/M = eiε·x
(

1 +
/ε

2M

)
Qv , (3.8)

which differs from eq. (3.7) beginning at order O(1/M2).

– 6 –
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In the free theory being considered, eq. (3.7) takes the following form after integrating out

the antiparticle:

Qv+ε/M = eiε·x
(

1 +
/ε

2M
+

/ε

2M

1

(iv · ∂ + 2M)
i/∂⊥

)
Qv . (3.11)

After expanding in 1/M , and using the equation of motion for the heavy field, one can show:

Qv+ε/M

[
i
(
v +

ε

M

)
· ∂ − ∂2

2M

]
Qv+ε/M = Qv

[
iv · ∂ − ∂2

2M

]
Qv . (3.12)

The Lagrangian in eq. (3.4) is invariant under reparameterization, as expected.

Reparameterization invariance supplies a necessary requirement to pass from a

rotationally-invariant theory to one that is Lorentz invariant. Using again the free the-

ory to illustrate this, the most general operator basis for a theory with a free fermion,

assuming only rotational and translational invariance is

L = ψ†
{
i∂t + c2

∂2

2M
+ c4

∂4

8M3
+ · · ·

}
ψ , (3.13)

where the c’s are arbitrary coefficients. The fermion and derivatives can be embedded

within irreducible representations of the Lorentz group:

L = Qv

{
iv · ∂ − c2

∂2
⊥

2M
+ c4

∂4
⊥

8M3
+ · · ·

}
Qv , (3.14)

where ∂µ⊥ ≡ ∂
µ − vµ(v · ∂), such that when vµ = (1, 0, 0, 0), this reduces to the form of the

Lagrangian in eq. (3.13). Requiring that the Lagrangian in eq. (3.14) is invariant under

reparameterization yields c2 = 1, c4 = 1, etc.:

L = Qv

{
iv · ∂ −

∂2
⊥

2M
+

∂4
⊥

8M3
+ · · ·

}
Qv . (3.15)

When inserting the equation of motion of Qv back into eq. (3.15) to eliminate all the velocity

dependence among the effective operators, the result is the same Lagrangian as eq. (3.4).

The arguments supporting the existence of reparameterization invariance for a free

theory must also carry over to the interacting theory. A rotationally- and translationally-

invariant theory of a two-component Pauli spinor, charged under a gauge group, even under

both parity and time reversal, is

L=ψ†
{
iDt+c2

D2

2M
+cF g

σ ·B
2M

+cDg
[D·E]

8M2
+icSg

σ ·(D×E−E×D)

8M2

}
ψ+O

(
1

M3

)
.

(3.16)

Here, ψ is a two-component Pauli spinor, and we have used the convention for the Wilson

coefficients in ref. [5]. Derivatives acting within square brackets only within those brackets.

This theory can be expressed in an arbitrary frame as:

L = Qv

{
iv ·D − c2

D2
⊥

2M
− cF g

σαβG
αβ

4M

}
Qv

+Qv

{
− cDg

[vαD⊥βG
αβ ]

8M2
+ icSg

vµσαβ{Dα
⊥, G

µβ}
8M2

+ · · ·
}
Qv +O

(
1

M3

)
.

(3.17)
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Eq. (3.17) reduces to eq. (3.16) when vµ = (1, 0, 0, 0). Under reparameterization, one shifts

the velocity by an infinitesimal amount vµ 7→ vµ+εµ/M , where v·ε = 0, and the subsequent

shift in the heavy field is defined in eq. (3.7). The rotationally-invariant operator basis up

to and including order 1/M4 operators, invariant under parity, is presented in refs. [10, 13].

Determining the form of Qv+ε/M after integrating out the antiparticle is non-trivial to

an arbitrary order in 1/M . If one wishes to impose reparameterization invariance among

operators up to and including order 1/M2, then eq. (3.7) takes the form:

Qv+ε/M = eiε·x
(

1 +
/ε

2M
+

/ε

2M

1

(iv ·D + 2M)
i /D⊥

)
Qv . (3.18)

This is identical to the definition of reparameterization of the heavy field in the free theory,

under the replacement ∂ → D. If one wishes to continue imposing reparameterization

invariance to high orders in 1/M , one can begin with the relativistic theory, find the

equation of motion for the antiparticle, and insert that relationship into eq. (3.7).

To continue with our discussion, we choose to work to order 1/M2, so eq. (3.18) will

serve as the definition of the transformation of the heavy field under reparameterization.

Requiring reparameterization invariance of the Lagrangian yields the following form:

L = Qv

[
iv ·D − D2

2M
− cF g

4M
σαβG

αβ

]
Qv

+Qv

[
i(2cF − Z)g

8M2
vµσαβ{Dα

⊥, G
µβ} − cDg

8M2
vα[D⊥βG

αβ ]

]
Qv +O

(
1

M3

)
,

(3.19)

which is the same as eq. (2.7), after identifying that aF = −cF+Z and aD = −cD. These are

the same results found in refs. [5, 8]. The relationships from reparameterization invariance

(or, rather, Lorentz invariance) between the Wilson coefficients up to and including 1/M3

for HQET and NRQED can be founds in refs. [5] and [8], respectively, and some of the

relationships for NRQED at 1/M4 can be found in [14]. These results utilized different

methods than the ones discussed here.

4 Operator basis for reparameterization-invariant NRQED & HQET

A method to ensure a reparameterization-invariant operator basis is to construct the effec-

tive Lagrangian out of bilinear operators

Leff =
∑
k

ΨvOkΨv , (4.1)

where Ψv and Ok themselves transform covariantly under reparameterization. This method

is discussed in refs. [4, 5, 8, 14]. We present here a general version of this method, using

the definitions provided in section 1. Specifically, the heavy field Ψv is defined as

Ψv ≡ Qv + Qv , (4.2)

– 8 –
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which, using eq. (3.10), transforms under reparameterization as:

Ψv+ε/M = eiε·xΨv . (4.3)

The operator Ok is constructed out of Dirac matrices, field strength tensors (both of which

are invariant under reparameterization), and covariant derivatives, Dµ defined as:

iDµ ≡ iDµ +Mvµ , (4.4)

where Dµ is the gauge covariant derivative, such that iDµΨv transforms covariantly under

reparameterization:

iDµΨv 7→ (iDµ +Mvµ + εµ)Ψv+ε/M = eiε·xiDµΨv . (4.5)

The operator Ok cannot be constructed out of vµ, since it does not transform linearly under

reparameterization. Therefore, any bilinear operator in eq. (4.1) will be invariant under

reparameterization.

One may proceed in this manner, defining an operator basis for the theory defined

in eq. (4.1), free from redundancies associated with integration by parts and equations of

motion when calculating S-matrix elements [15, 16]. Before doing so, it is interesting to

remember the definition in eq. (2.3):

Q = e−iMv·xΨv , (4.6)

where, again, Q is the Dirac spinor. So, bilinear operators built out of objects that trans-

form covariantly under reparameterization can be written solely in terms of objects in the

Lorentz-invariant theory. For example:

ΨviDµΨv = QiDµQ . (4.7)

Any reparameterization-invariant operator in eq. (4.1) can be rewritten as a Lorentz-

invariant one by making the trivial replacement Ψv → Q and Dµ → Dµ.

We continue by defining the operator basis for an explicitly Lorentz-invariant theory,

since the nomenclature is more conventional. To aid in the construction of an operator

basis, we use Hilbert-series methods, as laid out in refs. [17–24]. To begin by defining

the objects out of which we will construct singlets of the Lorentz group and the gauge

group. When in three spatial dimensions, is most natural to use the local isomorphism

SO(3, 1) ' SU(2)L × SU(2)R, due to the simplicity of the SU(2) algebra. See table 1 for

the irreducible representations of the Lorentz and gauge group, i.e., U(1) and SU(3), for

the objects out of which the effective Lagrangian is built.

Exploring first the case of an external U(1) gauge, we define Hilbert series as

HS =

∮
[dα]SU(2)L

∮
[dβ]SU(2)R

∮
[dz]U(1) PEψ PEψ† PEψc PEψc† PEFL PEFL , (4.8)
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Symbol SU(2)L SU(2)R U(1)

ψ 2 1 1

ψ† 1 2 -1

ψc 2 1 -1

ψc† 1 2 1

FL 3 1 0

FR 1 3 0

D 2 2 0

Symbol SU(2)L SU(2)R SU(3)

ψ 2 1 3

ψ† 1 2 3̄

ψc 2 1 3̄

ψc† 1 2 3

GL 3 1 8

GR 1 3 8

D 2 2 1

Table 1. Left: the irreducible representations of the Lorentz and gauge group for the objects out

of which our effective Lagrangian is built. The normalization of the U(1) charge is moot, since we

are only making singlets in the bilinear sector. Right: same as the left-hand table, but for an SU(3)

gauge group.

where

PEψ? ≡ exp

[ ∞∑
n=1

(−1)(n+1)(ψ?)n

n
P (Dn, αn, βn)χψ?(Dn, αn, βn, zn)

]
, (4.9)

PEF? ≡ exp

[ ∞∑
n=1

(F?)
n

n
P (Dn, αn, βn)χF?(Dn, αn, βn, zn)

]
, (4.10)

P (D, α, β) ≡ 1

(1−Dαβ)(1−Dα/β)(1−Dβ/α)(1−D/αβ)
, (4.11)∮

[dα]SU(2)L ≡
∮
|α|=1

dα

2α

(
1− α2

)(
1− 1

α2

)
, (4.12)∮

[dβ]SU(2)R ≡
∮
|β|=1

dβ

2β

(
1− β2

)(
1− 1

β2

)
, (4.13)∮

[dz]U(1) ≡
∮
|z|=1

dz

z
, (4.14)

where ψ? stands for ψ,ψ†, ψc or ψc†, and F? stands for FL or FR. The characters χ for the

Weyl fermions contain a subtraction due to the choice of basis that operators of the form

/DQ are ignored, since they can be related to other operators in the basis via the equations

of motion for Q:

χψ(D, α, β, z) ≡ z
(
α+

1

α
−D

(
β +

1

β

))
, (4.15)

χψ†(D, α, β, z) ≡ 1

z

(
β +

1

β
−D

(
α+

1

α

))
, (4.16)

χψc(D, α, β, z) ≡ 1

z

(
α+

1

α
−D

(
β +

1

β

))
, (4.17)

χψc†(D, α, β, z) ≡ z
(
β +

1

β
−D

(
α+

1

α

))
. (4.18)
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In a full quantum field theory, DαF
αβ can be related to other operators in the Hilbert space

via the equations of motion for Fαβ . However, since we are working only in the single-

particle sector, it is possible that the fermions in our sector can respond to external gauge

fields, so in our case DαF
αβ cannot be ignored, in general. All the while, we must maintain

the Bianchi identity, DαF̃
αβ = 0. Because FL = F + iF̃ and FR = F − iF̃ , we choose to

subtract operators with DFR, but not those with DFL, so therefore the characters for the

gauge field with these relations are:

χFL(α, β, z) ≡ α2 + 1 +
1

α2
, (4.19)

χFR(α, β, z) ≡ β2 + 1 +
1

β2
−D

(
α+

1

α

)(
β +

1

β

)
+D2 . (4.20)

After Taylor expanding the integrand in eq. (4.8) to second order in the fermions, and

performing the integrals over the unit circles, the Hilbert series at each mass dimension is:

HSd=5 = ψψcFL + ψ†ψc†FR ,

HSd=6 = ψcψc†FLD + ψψ†FLD ,
HSd=7 = ψψcFLD2 + ψ†ψc†FLD2 + ψψcF 2

L + ψψcF 2
R + ψ†ψc†F 2

L + ψ†ψc†F 2
R ,

HSd=8 = ψcψc†FLD3 + ψψ†FLD3 + ψcψc†F 2
LD + ψψ†F 2

LD + 2ψψ†FLFRD
+ 2ψcψc†FLFRD .

(4.21)

At this level, the Hilbert series does not say how to contract indices, and it includes all

operators of any charge under the parity (P ) and time reversal (T ). Using the Hilbert

series output as a guide, we explicitly construct the operators, contracting Lorentz indices

by hand, and categorize them by their charge under P and T , as done in table 2. The

operator basis for an external electromagnetic interaction, for example, would be spanned

by only operators even under both P and T .

Here, we pause for a brief aside to illustrate how we go from the Hilbert series output

to operators that are listed tables 2 and 3. For example, we can consider Hilbert series

output for d = 5:

HSd=5 = ψψcFL + ψ†ψc†FR . (4.22)

Since the fundamental objects are two-component spinors, one can construct two Hermitian

operators, invariant under CPT , by contracting the spinor indices:

O1 ≡ (ψc)α(FL)α
β ψβ + (ψ†)α̇(FR)α̇β̇ (ψc†)β̇ , (4.23)

O2 ≡ i
[
(ψc)α(FL)α

β ψβ − (ψ†)α̇(FR)α̇β̇ (ψc†)β̇
]
. (4.24)

These operators can be recast using the familiar vector indices:

O1 = ΨσµνF
µνΨ , (4.25)

O2 = ΨσµνF̃
µνΨ . (4.26)
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Order P even, T even P even, T odd P odd, T even P odd, T odd

M−1 σµνF
µν σµνF̃

µν

M−2 γµ[∂νF
µν ] γµγ

5[∂νF
µν ]

M−3

FµνF
µν iγ5FµνF

µν

iγ5FµνF̃
µν FµνF̃

µν

σµν [∂2Fµν ] σµν [∂2F̃µν ]

M−4

γµ[∂ν∂
2Fµν ] γαFαν [∂µF

µν ] γµγ
5[∂ν∂

2Fµν ] γαγ5Fαν [∂µF
µν ]

γαγ5F̃αν [∂µF
µν ] γαF̃αν [∂µF

µν ]

γµγ
5Fαν [∂αF̃µν ] γµFαν [∂αF̃µν ]

Table 2. A basis of Hermitian, Lorentz-invariant, effective operators in a relativistic theory of a

single fermion, subject to an external U(1) gauge interaction, categorized by their charge under

parity (P ) and time reversal (T ) transformations, up to and including dimension 8. The operators

O listed in this table should be understood as sandwiched between two Dirac spinors, i.e., QOQ.

The square brackets indicate that the derivatives act only on the object within the square brackets.

While this is explicitly a Lorentz-invariant theory, it can be rewritten as a reparameterization-

invariant theory by making the replacements Q→ Ψv and Dµ → Dµ. See section 4 for definitions

and details.

where Ψ is related to ψα and (ψc†)α̇ in Weyl basis:

Ψ =

(
ψα

(ψc†)α̇

)
, Ψ =

(
(ψc)α , (ψ†)α̇

)
. (4.27)

Among the two operators O1 and O2, we see that only O1 is P and T even. It is interesting

to note the comparison to the Lagrangian with only heavy particles. To do so, one can

switch to the Dirac basis, which separates the particle and anti-particle:

O1 = ψ† [σ ·B] ψ︸ ︷︷ ︸
heavy-particle operator

+ terms involving anti-particle , where ψ =

(
1 + γ0

2

)
Ψ .

(4.28)

which is precisely the operator in eq. (3.16), modulo a multiplicative constant.

In practice, we do not go through this exercise for all operators appears as output of the

Hilbert series. Instead, we use the Hilbert series as a guide for how many singlet operators

there are with the indicated degrees of freedom. It turns out that, up to and including

dimension 8, the operator basis can be expressed as Hermitian operators with derivatives

only acting on the field strength tensors, and not the fermions, as demonstrated in table 2.

One might wonder at this point how our choice of basis with no derivatives acting on the

fermionic degrees of freedom compares to the HQET operators as written down in ref. [5],

which contains operators that do. The key observation is that these terms come about

via integrating out the antiparticle component of terms appearing at lower dimension in

table 2. For simplicity, let us elucidate on how this happens in NRQED. For example, to
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explain the cM terms, we look at the operator O3 ≡ Ψγµ[∂νF
µν ]Ψ appearing at dimension

6 in the table 2. Expanding this out in the Dirac basis, we see that O3 contains a piece

that mixes the particle (ψ1) and the anti-particle (ψ2) fields, given by

O3 3 ψ†1(σ · j)ψ2 + h.c. , (4.29)

where (j)i ≡ ji = ∂νF
νi. This mixed piece can be recast in terms of heavy fields Qv=0 ≡ Q

and Qv=0 ≡ Q in the rest frame as Q†(σ · j)Q + h.c., by using eq. (2.3). If one integrates

out the antiparticle piece Q using Q = i
2mσ · DQ, it produces a contribution to the cM

term, as evident from the following expression:

O3 = Q†(σ · j)Q + h.c 3 − i

2m
Q† (D · [D×B] + [D×B] ·D)Q . (4.30)

We also note that particle piece in O3 reproduces the cD term:

O3 3 ψ†1(D ·E)ψ1 . (4.31)

The above observation is consistent with the relation

2cM = cF − cD . (4.32)

In fact, one can verify that the cF contribution also comes about by integrating out the

antiparticle. This explicitly shows how operators at different orders in 1/M mix upon

imposing reparameterization invariance and integrating out the anti-particle.

We now repeat the exercise for an external SU(3) gauge field. Similar as before, the

Hilbert series is defined to be:

HS =

∮
[dα]SU(2)L

∮
[dβ]SU(2)R

∮
[dz1, dz2]SU(3) PEψ PEψ† PEψc PEψc† PEGL PEGL ,

(4.33)

where∮
[dz1, dz2]SU(3)

≡
∮
|z1|,|z2|=1

dz1dz2

6z1z2
(1− z1z2)

(
1− z2

1

z2

)(
1− z2

2

z1

)(
1− 1

z1z2

)(
1− z1

z2
2

)(
1− z2

z2
1

)
,

(4.34)

the definition for the PE’s are the same as in the U(1) case, but now the characters involve

color charge:

χψ(D, α, β, z1, z2) ≡ χSU(3)
3 (z1, z2)

(
α+

1

α
−D

(
β +

1

β

))
, (4.35)

χψ†(D, α, β, z1, z2) ≡ χSU(3)

3̄
(z1, z2)

(
β +

1

β
−D

(
α+

1

α

))
, (4.36)

χψc(D, α, β, z1, z2) ≡ χSU(3)

3̄

(
α+

1

α
−D

(
β +

1

β

))
, (4.37)

χψc†(D, α, β, z1, z2) ≡ χSU(3)
3

(
β +

1

β
−D

(
α+

1

α

))
, (4.38)

χGL(α, β, z1, z2) ≡ χSU(3)
8

(
α2 + 1 +

1

α2

)
, (4.39)

χGR(α, β, z1, z2) ≡ χSU(3)
8

(
β2 + 1 +

1

β2
−D

(
α+

1

α

)(
β +

1

β

)
+D2

)
. (4.40)
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Order P even, T even P even, T odd P odd, T even P odd, T odd

M−1 σµνG
µν
a T a σµνG̃

µν
a T a

M−2 γµ[DνG
µν ]aT

a γµγ
5[DνG

µν ]aT
a

M−3

GµνaG
µν
b δab iγ5GµνaG̃

µν
b Tcf

abc GµνaG̃
µν
b Tcf

abc iγ5GµνaG
µν
b δab

GµνaG
µν
b Tcd

abc iγ5GµνaG
µν
b Tcd

abc

iγ5GµνaG̃
µν
b δab GµνaG̃

µν
b δab

iγ5GµνaG̃
µν
b Tcd

abc GµνaG̃
µν
b Tcd

abc

σµν [D2Gµν ]aT
a σµν [D2G̃µν ]aT

a

M−4

γµ[DνD
2Gµν ]aT

a γαGανa[DµG
µν ]bδ

ab γ5γµ[DνD
2Gµν ]aT

a γαγ5Gανa[DµG
µν ]bδ

ab

γαGανa[DµG
µν ]bTcf

abc γαGανa[DµG
µν ]bTcd

abc γαγ5Gανa[DµG
µν ]bTcf

abc γαγ5Gανa[DµG
µν ]bTcd

abc

γαγ5G̃ανa[DµG
µν ]bδ

ab γαγ5G̃ανa[DµG
µν ]bTcf

abc γαG̃ανa[DµG
µν ]bδ

ab γαG̃ανa[DµG
µν ]bTcf

abc

γαγ5G̃ανa[DµG
µν ]bTcd

abc γµGανa[D
αG̃µν ]bTcf

abc γαG̃ανa[DµG
µν ]bTcd

abc γµGανa[D
αG̃µν ]bTcf

abc

γµγ
5Gανa[D

αG̃µν ]bδ
ab γα[DαGµνaG

µν ]bTcd
abc γµGανa[D

αG̃µν ]bδ
ab γαγ5[DαGµνaG

µν ]bTcd
abc

γµγ
5Gανa[D

αG̃µν ]bTcd
abc γµGανa[D

αG̃µν ]bTcd
abc

γαγ5[DαGµνaG̃
µν ]bTcd

abc γα[DαGµνaG̃
µν ]bTcd

abc

Table 3. The same as table 2, but for an external SU(3) gauge interaction. Here, the SU(3) color

indices are suppressed, and Roman letters a, b, c, etc., are the indices associated with the eight

generators T a of SU(3).

where

χ
SU(3)
3 (z1, z2) ≡ z1 +

z2

z1
+

1

z2
, (4.41)

χ
SU(3)

3̄
(z1, z2) ≡ z2 +

z1

z2
+

1

z1
, (4.42)

χ
SU(3)
8 (z1, z2) ≡ z1z2 +

z2
2

z1
+
z2

1

z2
+ 2 +

z1

z2
2

+
z2

z2
1

+
1

z1z2
. (4.43)

After Taylor expanding the integrand in eq. (4.33) to second order in the fermions, and

performing the integrals, the Hilbert series is

HSd=5 =ψψcGL+ψ†ψc†GR ,

HSd=6 =ψcψc†GLD+ψψ†GLD ,
HSd=7 =ψψcGLD2+ψ†ψc†GLD2+3ψψcG2

L+2ψψcG2
R+2ψ†ψc†G2

L+3ψ†ψc†G2
R ,

HSd=8 =ψcψc†GLD3+ψψ†GLD3+4ψcψc†G2
LD+4ψψ†G2

LD+6ψψ†GLGRD
+6ψcψc†GLGRD+ψcψc†G2

RD+ψψ†G2
RD .

(4.44)

With this output as an aid, we contract Lorentz indices by hand, and categorize all oper-

ators by their charge under P and T , as shown in table 3. The operator basis when the

gauge theory is SU(3) color is even under P and T .
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5 Discussion and summary

This work is the culminating step in our program for constructing invariant operator basis

in heavy particle effective theories. In ref. [10], we developed and employed a Hilbert-series

method to construct and enumerate an operator basis in a rotationally-invariant theory of

a single fermion in an external gauge field. In ref. [11] we showed that the operator basis in

ref. [10] is spanned by scalar primaries of the non-relativistic conformal group. This present

article provides a discussion and generalization of a particular point of view that makes

the connection between a rotationally-invariant theory and one that is Lorentz invariant.

An important link between these two theories is requiring reparameterization invariance,

which relates operators appearing in different orders in 1/M .

Reparameterization invariance is a necessary consequence of Lorentz symmetry in ef-

fective theories with a single heavy degree of freedom, where the anti-particles have been

integrated out [5–8]. While Lorentz symmetry necessarily requires the existence of anti-

particles, it may be surprising on a face value that requiring invariance under reparameter-

ization yields the same constraints as Lorentz symmetry, since the original effective field

theory is formulated only with reference to particle degrees of freedom. It is clear, however,

from eq. (3.7), that the reparameterization transformation picks up components from the

anti-particle degrees of freedom, in such a way that respects Lorentz symmetry. In this

sense, the reparameterized shift in the velocity, i.e., vµ 7→ vµ + εµ/M , where v · ε = 0,

could be interpreted as a infinitesimal, norm-preserving, Lorentz boost in an arbitrary

frame. However, nowhere does one necessarily require invoking the algebraic concept of

a Lorentz boost in order to derive the constraints from reparameterization invariance (for

other examples, see refs. [5, 7, 8, 12]).

We revisit the unambiguous “top-down” approach, which begins with a Lorentz-

invariant theory, and explicitly integrates out the anti-particles, as discussed in section 2.

A second “bottom-up” approach, as discussed in section 3, begins with a translationally-

and rotationally-invariant theory, and requires reparameterization invariance. This sec-

ond method has been the cause of some debate in the literature. We present a general

treatment of this method, extending the work in ref. [6], including an exact expression

for the reparameterized heavy field in eq. (3.7). We show that both the “top-down” and

“bottom-up” methods produce the same theory up to and including order 1/M2. These

methods can be used to determine the heavy-particle Lagrangian to higher orders in 1/M ,

though with significant increase in algebraic complexity, the results of which are discussed

in refs. [5, 8, 14].

The exact expression for the reparameterized heavy field in eq. (3.7) involves of both

the particle and anti-particle, which upon integrating out the anti-particles, and expanding

to fixed order in 1/M , becomes the one generally used in the literature, e.g., ref. [6]. The

novelty associated with this is that we are able to establish an one-to-one correspondence

between a theory that is explicitly invariant under reparameterization and a theory that is

Lorentz invariant, as discussed in section 4.

Because of this one-to-one correspondence between operators that are invariant under

reparameterization and ones that are Lorentz invariant, we tabulate an operator basis,
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using the Lorentz-invariant notation. We use Hilbert series methods, with a similar setup

as in refs. [22–24], but with the modification that one of the gauge fields is in a long

representation of the conformal group, since we are restricted to the Hilbert space with only

one matter degree of freedom. While the Hilbert series provides the number of invariant

operators given the field content, we contract indices by hand, and categorize the Hermitian

operators by their charges under the discrete transformations of parity and time reversal,

as tabulated in table 2 for NRQED and table 3 for HQET. It is interesting to note that this

relativistic theory spanned by bilinear operators in a fermion, subject to external gauge

fields is also the starting point for SCET [25–27].

Acknowledgments

We are grateful for conversations with Brian Henning, Shauna Kravec, Aneesh Manohar,

Duff Neill, and Emanuele Mereghetti. The work of AK and SP is supported in part by

DOE grant #DE-SC0009919, and the work of AK is also supported in part by the US DOE

Office of Nuclear Physics and by the LDRD program at Los Alamos National Laboratory.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] M.A. Shifman and M.B. Voloshin, On Production of D and D∗ Mesons in B Meson Decays,

Sov. J. Nucl. Phys. 47 (1988) 511 [INSPIRE].

[2] N. Isgur and M.B. Wise, Weak Decays of Heavy Mesons in the Static Quark Approximation,

Phys. Lett. B 232 (1989) 113 [INSPIRE].

[3] H. Georgi, An Effective Field Theory for Heavy Quarks at Low-energies, Phys. Lett. B 240

(1990) 447 [INSPIRE].

[4] M.E. Luke and A.V. Manohar, Reparametrization invariance constraints on heavy particle

effective field theories, Phys. Lett. B 286 (1992) 348 [hep-ph/9205228] [INSPIRE].

[5] A.V. Manohar, The HQET/NRQCD Lagrangian to order α/m3, Phys. Rev. D 56 (1997) 230

[hep-ph/9701294] [INSPIRE].

[6] A.V. Manohar and M.B. Wise, Heavy quark physics, Camb. Monogr. Part. Phys. Nucl. Phys.

Cosmol. 10 (2000) 1 [INSPIRE].

[7] N. Brambilla, D. Gromes and A. Vairo, Poincaré invariance constraints on NRQCD and
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