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1 Introduction

In 1960s, Bondi and collaborators established an elegant framework of formulating the Ein-

stein equation as a characteristic initial value problem for axisymmetric isolated systems [1].

In this framework, the gravitational radiation is characterized by the news functions and

the mass of the system always decreases whenever news functions exist. This demonstrates

that gravitational waves exist in the full Einstein theory rather as an artifact of lineariza-

tion. A surprising result of [1] is that they found the asymptotic symmetry group has

infinite dimensions. Although all gauge choices should give the same physical result, a

convenient one can make the physical properties more transparent. The manifest infinite

dimensional asymptotic symmetry not only makes Bondi gauge [1] one of the best choices

to describe physics near null infinity, but also it reveals the rich structure of spacetime in

the asymptotic regions.

In recent years, physics near null infinity has obtained renewed interest from sev-

eral aspects, e.g. holography [2–6], asymptotic symmetries [7–12], infrared physics [13–22],

memory effect [23–25], and gravitational conserved quantities [26–31]. The Bondi gauge

plays a central role in all the relevant research. The asymptotic expansion of the metric

functions are typically of integer powers in terms of the inverse of the radial coordinate.
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For extending Bondi’s framework to include a matter coupled system with the same power

series expansion, the matter fields are necessarily massless. The Einstein-Maxwell theory

in Bondi gauge was studied in [32, 33]; however, the effect of other types of matter fields is

less stressed in literatures. When spacetime dimensions are higher than four, application

of the Bondi gauge is restricted. In particular, it was observed in [34, 35] that the news

functions associated with gravitational radiation must appear in the half-integer powers of

the radial expansion in five dimensions.

In the present paper, we study the asymptotic structure in a class of four dimensional

Einstein-Maxwell-dilaton (EMD) theories in Bondi gauge. The matter sector consists of

Maxwell field A and dilatonic scalar ϕ, both are massless and minimally coupled to gravity.

However, the dilaton is non-minimally coupled to the Maxwell kinetic term with an expo-

nential function eaϕ where a is the dilaton coupling constant. There are many reasons to

investigate EMD theory in Bondi gauge. On the one hand, this type of theories include the

Kaluza-Klein theory that arises naturally from five dimensional Einstein gravity reduced

on a circle. The study of its asymptotic structure can thus provide a glimpse of that in

five dimensions from the perspective of the Kaluza-Klein reduction. On the other hand,

for suitable values of the constant a, the EMD theories can also be embedded in vari-

ous supergravities that have origins in strings or M-theory. Our study of the asymptotic

structure of EMD theories can thus provide a procedure to study the fundamental theories

using the Bondi formalism. Most importantly, both matter fields are massless and hence

their feedback to gravity is consistent to the asymptotic integer power expansions in Bondi

gauge.

The plan of the rest of this paper is quite simple. In section 2, we will study the

asymptoitics of four dimensional EMD theory in detail. The solution space in Bondi gauge

will be obtained where three different types of news functions are identified. The effect

of the non-minimal coupling between Maxwell field and dilatonic scalar will be specified.

A generalized Bondi mass-loss formula will be derived for the general EMD theories. We

will work out the asymptotic symmetry group in EMD theory as well. Section 3 will turn

to the study of the uplift of these solutions to solutions of five dimensional pure Einstein

theory through Kaluza-Klein procedure. Asymptotic symmetry group in five dimensional

Einstein theory will also be given here. We conclude this paper in the last section.

2 Asymptotics of EMD theory in D = 4

2.1 The theory

The four-dimensional EMD theory has been extensively studied in a variety of aspects for a

few decades. The theory generalizes the Einstein-Maxwell theory to include a real dilatonic

scalar. The Lagrangian is

L =
√−g

[

R− 1

4
eaϕF 2 − 1

2
(∂ϕ)2

]

, F = dA. (2.1)

For certain specific values of the dilaton coupling constant a, namely a = 0, 1√
3
, 1,

√
3, the

EMD theory can all be embedded in the N = 2 STU supergravity, which is pure N = 2
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supergravity with three vector multiplets [36]. The a = 0 case can be reduced to Einstein-

Maxwell theory which is the bosonic sector of N = 2 supergravity. The a =
√
3 case

can be Kaluza-Klein theory obtained from the circle reduction from pure gravity in five

dimensions. In this section we assume that the constant a is an arbitrary real constant.

The dilaton, Maxwell and Einstein equations can be derived from the Lagrangian (2.1).

The covariant equations of motion are

∂µ(
√−ggµν∂νϕ)−

a

4

√−geaϕF 2 = 0, ∂ν(
√−geaϕFµν) = 0,

(

Rµν −
1

2
gµνR

)

− 1

2
eaϕFµρFν

ρ +
1

8
gµνe

aϕF 2 − 1

2
∂µϕ∂νϕ+

1

4
gµν(∂ϕ)

2 = 0. (2.2)

Contracting Eintsein equation with gµν , one can obtain

R =
1

2
(∂ϕ)2. (2.3)

Inserting (2.3) back, we can rearrange Einstein equation as

Eµν ≡ Rµν −
1

2
eaϕFµρFν

ρ +
1

8
gµνe

aϕF 2 − 1

2
∂µϕ∂νϕ = 0. (2.4)

2.2 Bondi gauge

We study the above EMD theory in four dimensions in Bondi gauge. The metric has the

form [1]

ds2 =

[

−V (u, r, θ)

r
e2β(u,r,θ) + U(u, r, θ)2r2e2γ(u,r,θ)

]

du2 − 2e2β(u,r,θ)dudr

− 2U(u, r, θ)r2e2γ(u,r,θ)dudθ + r2
[

e2γ(u,r,θ)dθ2 + e−2γ(u,r,θ) sin2 θdφ2
]

. (2.5)

The metric ansatz involves four functions (V, U, β, γ) that are to be determined by the

equations of motion. These functions are independent of the φ-coordinate and hence the

metric has manifest global Killing direction ∂φ. This is the “axisymmetric isolated system”

introduced by Bondi and collaborators [1]. The guφ term is noticeably absent in the metric.

The inverse metric has a much simpler expression, given by

gµν =











0 −e−2β 0 0

−e−2β V
r
e−2β −Ue−2β 0

0 −Ue−2β e−2γ

r2
0

0 0 0 e2γ

sin2 θr2











. (2.6)

Correspondingly, we choose the following gauge fixing ansatz

A = Au(u, r, θ)du+Aθ(u, r, θ)dθ. (2.7)

A priori, we may also consider Aφ(u, r, θ)dφ; however, we find that adding this term to the

Maxwell field leads to a constraint on Aθ and Aφ from Einstein equations. The simplest
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solution is that Aφ = 0 and Aθ is an arbitrary function. We consider that this simplification

is related to the metric condition guφ = 0 in the Bondi metric ansatz (2.5).

Following closely [1], the falloff conditions for the functions (β, γ, U, V ) in the metric

for asymptotic flatness are given by

β = O(r−1), γ = O(r−1), U = O(r−2), V = O(r). (2.8)

We find that the necessary falloff conditions of the gauge and scalar fields consistent with

the metric falloffs are

Au = O(r−1), Aθ = O(1), ϕ = O(r−1). (2.9)

The consistency of the Bondi gauge and the corresponding falloff conditions in the EMD

theory can be verified by the equations of motion, which we carry out subsequently.

2.3 Equations of motion in Bondi gauge

In order to solve the equations of the EMD theory in Bondi gauge, it is useful first to

rearrange the equations. Since the EMD theory (2.1) is a gauge theory, the equations of

motion are not all independent. The constraints among them are the following identities

∇µ(G
µν − Tµν) = 0, ∂ν∂µ(

√−geaϕFµν) = 0. (2.10)

Making use of these constraints, we are able to arrange the fifteen equations of motion as

follows:

• Five hypersurface equations:

∂ν(
√−geaϕF uν) = 0,

Err = Erθ = Erφ = 0,

Eθθg
θθ + Eφφg

φφ = 0.

(2.11)

• Five standard equations:

∂ν(
√−geaϕF θν) = ∂ν(

√−geaϕFφν) = 0,

∂µ(
√−ggµν∂νϕ)−

a

4

√−geaϕF 2 = 0,

Eθθ = Eθφ = 0.

(2.12)

• One trivial equation:

Eru = 0. (2.13)

• Four supplementary equations:

∂ν(
√−geaϕF rν) = 0,

Euθ = Euφ = Euu = 0.
(2.14)
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As explained in the literatures [1, 8, 37, 38], once the hypersurface equations and stan-

dard equations are satisfied, the identities (2.10) yield that the trivial equation is satisfied

automatically and the supplementary equations are left with only one order in the 1
r
ex-

pansions.1

2.4 Hypersurface equations

Now we are ready to solve the equations of motion. Starting with Err = 0, we obtain

∂rβ =
r

2
(∂rγ)

2 +
r

8
(∂rϕ)

2 +
1

8r
eaϕ−2γ(∂rAθ)

2. (2.15)

Once γ, ϕ and Aθ are given, β will be solved out.

There is only one hypersurface equation from the Maxwell’s equations which is

1

sin θ
∂ν(

√−geaϕF uν) = 0.

This will lead to

∂rL =
1

sin θ
∂θ

[

sin θeaϕ−2γ∂rAθ

]

, (2.16)

where, for later convenience, we define

L = (∂rAu + U∂rAθ) r
2eaϕ−2β . (2.17)

It is completely fixed by γ, ϕ and Aθ.

We move on to 2r2Erθ = 0, where we find

∂r

[

r4e2(γ−β)∂rU
]

= 2r2
[

∂r∂θ(β − γ) + 2∂rγ∂θγ − 2∂θβ

r
− 2∂rγ cot θ

]

+r2∂rϕ∂θϕ+ L∂rAθ. (2.18)

To proceed, we need to implement the result of (2.16). Hence, U will be fixed by β, γ, ϕ

and Aθ. Then substituting U back to (2.17), Au can be worked out.

The next hypersurface equation is 1
2r

2e2β(Eθθg
θθ + Eφφg

φφ) = 0, from which we have

∂rV = 2r∂θU +
1

2
r2∂r∂θU − 1

4
r4e2(γ−β)(∂rU)2 +

1

2
r2∂rU cot θ + 2rU cot θ

+e2(β−γ)

[

1− (∂θβ)
2 − ∂θβ cot θ + 2∂θβ∂θγ + 3∂θγ cot θ − 2(∂θγ)

2

−∂2
θβ + ∂2

θγ

]

− 1

4r2
L2e2β−aϕ − 1

4
e2(β−γ)(∂θϕ)

2 . (2.19)

This will fix V when β, γ, U , ϕ, Au and Aθ are known.

The last hypersurface equation Erφ = 0 is satisfied automatically because there is no

φ-dependence in the un-known functions.

From hypersurface equations, we can learn that, once γ, ϕ and Aθ are given as initial

data, the other un-known functions β, U , Au, and V will be completely determined up to

four integration constants of r. For the next step, we will work out the time evolutions of

the initial data from the standard equations.

1The equations that are left with only one order in the 1

r
expansions due to the identity ∇µ(G

µν−Tµν) =

0 are Guθ − Tuθ = Guφ − Tuφ = Guu − Tuu = 0. When the hypersurface equations and standard equations

are satisfied, (2.3) will be guaranteed. Then Euµ = Guµ − Tuµ.
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2.5 Standard equations

There are five standard equations. However two of them, namely Eθφ = 0 and

∂ν(
√−geaϕFφν) = 0 are held automatically due to no φ-dependence in our system. The

rest three equations will determine the time evolution of γ, ϕ and Aθ, which will be calcu-

lated in this subsection.

From 1
2re

2βEφφg
φφ = 0, we have

∂u∂r(rγ) =
1

2r
e2(β−γ)

[

1− 2∂θβ cot θ + 3∂θγ cot θ + 2∂θβ∂θγ − 2(∂θγ)
2 + ∂2

θγ
]

−1

2
U (2∂θγ − 3 cot θ + r∂rγ cot θ + 2r∂r∂θγ)

+
1

2
r∂rU cot θ − 1

2
r∂θγ∂rU − 1

2r
∂rV +

1

2r
V ∂rγ

+
1

2
∂rV ∂rγ +

1

2
∂θU − 1

2
r∂θU∂rγ +

1

2
V ∂2

rγ

−r

8
eaϕ−2β

[

(∂rAu)
2 + 2U∂rAu∂rAθ + (U∂rAθ)

2
]

+
1

8r2
eaϕ−2γ∂rAθ (2r∂θAu + V ∂rAθ − 2r∂uAθ) . (2.20)

From 1
2 sin θ

e2γ−aϕ∂ν(
√−geaϕF θν) = 0, we obtain

∂u∂rAθ =
1

2
∂r∂θAu +

1

2
∂r

(

V

r
∂rAθ

)

− 1

2
e2γ−aϕ∂r(UL)− 1

2
(a∂uϕ− 2∂uγ)∂rAθ

+
1

2
(a∂rϕ− 2∂rγ)

(

V

r
∂rAθ + ∂θAu − ∂uAθ

)

. (2.21)

The last one 1
2r sin θ

[

∂µ(
√−ggµν∂νϕ)− a

4

√−geaϕF 2
]

= 0 leads to

∂u∂r(rϕ) =
1

2r
e2(β−γ)

[

∂2
θϕ+ ∂θϕ (cot θ + 2∂θβ − 2∂θγ)

]

−∂θϕU − r

2
∂θϕ∂rU − r

2
∂θU∂rϕ− r

2
U (cot θ∂rϕ+ 2∂r∂θϕ)

+
1

2r
V ∂rϕ+

1

2
V ∂2

rϕ+
1

2
∂rV ∂rϕ+

ar

8
eaϕ+2βF 2. (2.22)

Clearly, there is no constraint at the order O(1
r
) of γ and ϕ, and at the order O(1) of Aθ

from those three equations. They are related to the news functions in the system which

indicating radiations.

When the above ten equations are satisfied, Eru = 0 will be held automatically from

identities (2.10).

– 6 –
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2.6 Solution space in series expansion

Now, supposing that γ, ϕ and Aθ are given in 1
r
series expansion as initial data2

γ =
c(u, θ)

r
+

∞
∑

a=3

γa(u, θ)

ra
, (2.23)

ϕ =
∞
∑

a=1

ϕa(u, θ)

ra
. (2.24)

Aθ = A0(u, θ) +
∞
∑

a=1

Aa(u, θ)

ra
, (2.25)

the other functions can be worked out from the results in 2.4. We find

β = −4c2 + ϕ2
1

16r2
− ϕ1ϕ2

6r3
− 12cγ3 + 2ϕ2

2 + 3ϕ1ϕ3 +
1
2A2

1

16r4
+O(r−5), (2.26)

U = −∂θc+ 2c cot θ

r2
+

4c (∂θc+ 2c cot θ)−N(u, θ)

3r3

+
1

4r4

[

2cN −A1q + 12 cot θγ3 −
(

3c2 − 1

4
ϕ2
1

)

(2c cot θ + ∂θc)

+ 6∂θγ3 −
1

3
ϕ2∂θϕ1 +

2

3
ϕ1∂θϕ2

]

+O(r−5), (2.27)

Au = −q(u, θ)

r
− A1 cot θ + ∂θA1 − aqϕ1

2r2
+

1

24r3

[

4c2q − 8A2 cot θ

+ qϕ2
1 − 4a2qϕ2

1 + 8aqϕ2 + 8c∂θA1 + 4aϕ1∂θA1 − 8∂θA2

+ 4A1(6c cot θ + a cot θϕ1 + 4∂θc− a∂θϕ1)

]

+O(r−4), (2.28)

and

V = r −M(u, θ) +
1

24r

[

6q2 + 4∂θN + 4N cot θ + 44(∂θc)
2

+2c2 (23 + 25 cos 2θ) csc2 θ + 4c
(

37 cot θ∂θc+ 5∂2
θc
)

+3
(

ϕ2
1 − cot θϕ1∂θϕ1 + (∂θϕ1)

2 − ϕ1∂
2
θϕ1

)

]

+
1

48r2

[

c3(8− 192 cot2 θ) + 12A1q cot θ + 48γ3 − 6aq2ϕ1 + 8ϕ1ϕ2

+12q∂θA1 + 24N∂θc+ 9 cot θϕ2
1∂θc− 72 cot θ∂θγ3

−4 cot θϕ2∂θϕ1 + 6ϕ1∂θc∂θϕ1 − 4 cot θϕ1∂θϕ2 + 4∂θϕ1∂θϕ2

+3ϕ2
1∂

2
θc− 12c2(23 cot θ∂θc+ ∂2

θc)− 24∂2
θγ3

2The absent of the order O
(

1

r2

)

in γ is to avoid logarithm terms as explained in [1, 37].
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+6c
(

8N cot θ − 16(∂θc)
2 − (∂θϕ1)

2 + ϕ1(cot θ∂θϕ1 + ∂2
θϕ1)− ϕ2

1

)

−4ϕ2∂
2
θϕ1 − 4ϕ1∂

2
θϕ2

]

+O(r−3), (2.29)

where M(u, θ), N(u, θ) and q(u, θ) are the integration “constants” from solving the partial

differential equation associate with r.

Standard equations determine the time evolution of the whole series of γ, ϕ and Aθ

except for their leading order terms. In particular the first order of the standard equations

are listed as follows:

∂uϕ2 = −1

2
(∂2

θϕ1 + cot θ∂θϕ1). (2.30)

∂uA1 = c∂uA0 −
1

2
∂θq −

1

2
aϕ1∂uA0. (2.31)

∂uγ3 =
1

96

[

c2(16− 32 csc2 θ)− 4 cot θN − 3 cot θ∂θϕ1ϕ1 − 3(∂θϕ1)
2 + 3ϕ1∂

2
θϕ1

+ 4c
(

6M + 3 cot θ∂θc+ 5∂2
θc
)

+ 4
(

∂θN + 5(∂θc)
2 − 3A1∂uA0

)

]

. (2.32)

All the time evolution equations of the sub-leading terms in γ, ϕ and Aθ can be derived

recursively from (2.20)–(2.22) order by order. However the time evolution of c, A0 and

ϕ1 are not constrained. Hence, ċ, Ȧ0 and ϕ̇1,
3 are the news functions of this system that

indicate gravitational, electromagnetic, and scalar radiations.

In (2.31), the time evolution equation of A1 involves the coupling constant a. Since A1

is related to the electric dipole [39], the non-minimal coupling effect can be seen from the

first radiating source in the multipole expansion. On the gravitational side, the coupling

constant a does not show up in (2.32) which is related to the quadrupole [39]. This is

a reasonable result as the scalar field is minimally coupled to gravity. Presumably, the

coupling constant a will show up in the time evolution equation of γ4 which is related to

the octupole.

2.7 Conservation laws and the loss of mass

There are four supplementary equations to be solved and we only need to solve them at one

order in the 1
r
expansion. Equation Euφ = 0 holds automatically, again from the assumption

that the system is φ-independent. The rest three supplementary equations determine

the time evolution of the integration constants M , N and q. Since those integration

constants are related to the conserved quantities, the supplementary equations are also

called conservation equations [31].

From ∂ν(
√−geaϕF rν) = 0, we obtain

∂uq = − cot θ∂uA0 − ∂u∂θA0. (2.33)

Applying the identity
∮

sin θ(cot θ∂uA0 + ∂u∂θA0)dθdφ = 2π∂uA0 sin θ |π0= 0, (2.34)

3An overdot denotes a time derivative ∂u.
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we can conclude that the total electric charge Q, defined by

Q =

∮

q(u, θ) sin θdθdφ, (2.35)

is conserved. This is not surprising because the dilaton scalar field is real and it cannot

carry electric charges.

The conservation law regarding the angular momentum quantity N however is more

subtle. The conservation equation can be obtained from Euθ = 0, given by

∂uN = ∂θM − 3∂θc∂uc+ c∂u∂θc−
3

4
∂uϕ1∂θϕ1 +

1

4
ϕ1∂u∂θϕ1 + q∂uA0. (2.36)

The last supplementary equation Euu = 0 leads to

∂uM = −2(ċ)2 − 1

2
(Ȧ0)

2 − 1

2
(ϕ̇1)

2 + 3 cot θ∂u∂θc+ ∂u∂
2
θc− 2∂uc. (2.37)

This is the generalized Bondi mass-loss formula in the four dimensional EMD theory. We

define the mass density

m = M − 1

sin θ
∂θ (2 cos θc+ sin θ∂θc) . (2.38)

Inserting the mass density into the generalized Bondi mass-loss formula (2.37), one obtains

∂um = −2(ċ)2 − 1

2
(Ȧ0)

2 − 1

2
(ϕ̇1)

2. (2.39)

Thus, we have the following theorem in four dimensional Einstein-Maxwell-dilaton theory:

The mass density at any angle of the system can never increase. It is a constant if

and only if there is no news.

2.8 Asymptotic symmetries

The complete set of local symmetry involves a pair (ξ, χ) of a vector field ξ = ξµ∂µ and an

internal gauge parameter χ. The generating infinitesimal transformations are given by

δ(ξ,χ)gµν = Lξgµν , δ(ξ,χ)Aµ = ∂µχ+ LξAµ, δ(ξ,χ)ϕ = Lξϕ. (2.40)

The infinitesimal transformation parameters are independent of φ in order to keep the

φ-independence of the fields. The residual gauge transformation preserving the gauge

conditions (2.5) and (2.7) can be solved as follows:

• Lξgrr = 0 =⇒ ξu = f(u, θ).

• Lξgrφ = 0 =⇒ ξφ = ξφ(u, θ).

• Lξgrθ = 0 =⇒ gru∂θf + gθθ∂rξ
θ = 0.

The last equation can be solved as

ξθ = Y (u, θ) +

∫ ∞

r

dr grug
θθ∂θf. (2.41)

– 9 –
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• δ(ξ,χ)Ar = 0 =⇒ χ = ǫ(u, θ)−
∫∞
r

dr Aθg
θθgru∂θf .

• Lξguφ = 0 =⇒ ξφ = ξφ(θ).

• Lξgθφ = 0 =⇒ ξφ is a constant.

We have one more gauge condition from angular part of metric elements4

gφφ
gθθ

= r4 sin2 θ. (2.42)

The precise condition is Lξ(
gφφ
gθθ

) = 0 which leads to

ξr = −r

2

(

∂θξ
θ + cot θξθ − grθgur∂θf

)

. (2.43)

Boundary conditions (2.8) and (2.9) will finally yield

Y (u, θ) = y sin θ, ǫ(u, θ) = ǫ(θ), f(u, θ) = T (θ) +
1

2
(∂θY + cot θY )u, (2.44)

where y is a constant. Since there is no φ dependence in the symmetry parameters, the

asymptotic symmetry group is much small than the result in [40].

To summarize, the asymptotic symmetries of the EMD theory (2.1) with the gauge

and boundary condition (2.5)–(2.9) are generated by

ξu = f = T + uy cos θ,

ξr = −r

2

(

∂θξ
θ + cot θξθ − grθgur∂θf

)

,

ξθ = y sin θ + ∂θf

∫ ∞

r

dr grug
θθ,

ξφ = ξφ,

(2.45)

and

χ = ǫ−
∫ ∞

r

dr Aθg
θθgru∂θf. (2.46)

Notice that ξr, ξθ, χ depend on the coupling constant a through their dependence on the

metric and Maxwell field.

2.9 Asymptotic symmetry algebra

The asymptotic symmetry transformations satisfy a modified algebra introduced in [8, 40]

[(ξ1, χ1), (ξ2, χ2)]M = (ξ̂, χ̂), (2.47)

where

ξ̂ = [ξ1, ξ2]− δ(ξ1,χ1)ξ2 + δ(ξ2,χ2)ξ1, χ̂ = ξµ1 ∂µχ2 − ξµ2 ∂µχ1 − δ(ξ1,χ1)χ2 + δ(ξ2,χ2)χ1 . (2.48)

4This is equivalent to the determinant condition used in [7, 8]. Our choice is more convenient to compare

with the 5d result discussed in the next section.
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The algebra is closed which can be seen from straightforward computation

ξ̂u = f̂ = y1 sin θ(∂θT2 − cot θT2)− y2 sin θ(∂θT1 − cot θT1),

∂r(ξ̂
θ) = −gurg

θθ∂θf̂ ,

∂r

(

ξ̂r

r

)

=
1

2

[

∂θ(g
θθgur∂θf̂) + cot θ(gθθgur∂θf̂) + ∂r(g

rθgur∂θf̂)
]

,

∂r(χ̂) = Aθg
θθgru∂θf̂ .

(2.49)

When r → ∞, the algebra is reduced to

[(T1, y1, ǫ1), (T2, y2, ǫ2)] = (T̂ , ŷ, ǫ̂), (2.50)

where

T̂ = y1 sin θ(∂θT2 − cot θT2)− (1 ↔ 2), (2.51)

ŷ = 0, (2.52)

ǫ̂ = y1 sin θ∂θǫ2 − (1 ↔ 2). (2.53)

Jacobi identity for the algebra (2.50) and the closure of the algebra (2.47) guarantee that

the Jacobi identity is satisfied by the algebra (2.47).

To implement mode expansions, we define t = tan θ
2 . In the new coordinate, we have

T̂ = y1

(

t∂tT2 −
1− t2

1 + t2
T2

)

− (1 ↔ 2), (2.54)

ŷ = 0, (2.55)

ǫ̂ = y1t∂tǫ2 − (1 ↔ 2). (2.56)

The basis vectors are choosen as

Tm =

(

t

1 + t2

)

tm∂u, Y0 = t∂t, ǫm = tm. (2.57)

In terms of the basis vector, the asymptotic symmetry algebra is

[Tm, Tn] = [ǫm, ǫn] = [Tm, ǫn] = 0, (2.58)

[Y0, Tn] = nTn, [Y0, ǫn] = nǫn. (2.59)

It is worth pointing out that the structure constants of the algebra are independent of the

dilaton coupling constant a. The degeneracy of the algebra is related to the restriction

of the Bondi gauge where gθθ → r2 asymptotically, which has the effect that Y = y sin θ

rather than being a more generic function of θ.
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3 Lifting to 5d

As was discussed earlier, for specific values of the dilaton coupling constant a, the EMD

theory can be embedded in supergravities, which implies that the order-by-order solutions

we obtained in the previous section can be lifted to strings and M-theory. It therefore

provides a tool to study the more fundamental higher-dimensional theories using the Bondi

formalism, via the Kaluza-Klein procedure. In this section we shall focus on a specific

example, namely a =
√
3. The theory can be obtained from S1 reduction from pure

Einstein gravity in five dimensions.

3.1 Solutions

Setting a =
√
3, the solutions of the EMD theory obtained in the previous section become

those in five-dimensional Einstein gravity. The D = 5 metric is

ds25 = e
− 1

√

3
ϕ
ds24 + e

2
√

3
ϕ
(dz +Aµdx

µ)2. (3.1)

The inverse metric is

gµν =



























0 −e
−2β+ ϕ

√

3 0 0 0

−e
−2β+ ϕ

√

3 V
r
e
−2β+ ϕ

√

3 −Ue
−2β+ ϕ

√

3 0 e
−2β+ ϕ

√

3 (Au +AθU)

0 −Ue
−2β+ ϕ

√

3 e
−2γ+

ϕ
√

3

r2
0 − e

−2γ+
ϕ
√

3Aθ

r2

0 0 0 e
2γ+

ϕ
√

3

r2 sin2 θ
0

0 e
−2β+ ϕ

√

3 (Au +AθU)− e
−2γ+

ϕ
√

3Aθ

r2
0 e

− 2ϕ
√

3 +
e
−2γ+

ϕ
√

3A2
θ

r2



























. (3.2)

Inserting the a =
√
3 solution in the previous section, we obtain D = 5 metric as the series

expansion:

ds2 = −
[

1−
M + 1√

3
ϕ1

r
+O(r−2)

]

du2

−2

[

1− ϕ1√
3r

+

1
2c

2 − 1
24ϕ

2
1 − ϕ2√

3

r2
+O(r−3)

]

dudr + 2

[

(2c cot θ + ∂θc)

+
1

3r

(

N − 3qA0 + 4c2 cot θ + c(2∂θc− 2
√
3 cot θϕ1)−

√
3ϕ1∂θc

)

+O(r−2)

]

dudθ − 2

[

q

r
− 3A1 cot θ +

√
3qϕ1 + 3∂θA1

6r2
+O(r−3)

]

dudz

+

[

r2 +

(

2c− ϕ1√
3

)

r +A2
0 +

1

2

[

(

ϕ1√
3
− 2c

)2

− 2ϕ2√
3

]

+O(r−1)

]

dθ2

+

[

r2 sin2 θ − r sin2 θ

(

2c+
ϕ1√
3

)

+
1

18
sin2 θ

[

(6c+
√
3ϕ1)

2 − 6
√
3ϕ2

]
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+O(r−1)

]

dφ2 + 2

[

A0 +
A1 +

2A0ϕ1√
3

r
+

A2 +
2
3 [
√
3A1ϕ1 +A0(ϕ

2
1 +

√
3ϕ2)]

r2

+O(r−3)

]

dθdz +

[

1 +
2ϕ1√
3r

+
2(ϕ2

1 +
√
3ϕ2)

3r2
+O(r−3)

]

dz2. (3.3)

The different types of news functions ċ, Ȧ0 and ϕ̇1 in 4d are now purely gravitational

in five dimensions. They represent gravitational radiation in five dimensions. The extra

news functions arise because the asymptotic spacetimes in five dimensions is a product

of four-dimensional Minkowski spacetimes and a circle. A similar interplay happens also

between 3 and 4 dimensional general relativity [41, 42]. The physical interpretation can be

understood most clearly from a lower dimensional perspective.

3.2 Asymptotic symmetries

In this subsection, we derive the asymptotic symmetries in 5d pure Einstein theory. The

gauge conditions which are read off from the metric (3.3) are

grr = grθ = grφ = grz = guφ = gθφ = gφz = 0. (3.4)

The infinitesimal transformation parameter ξµ will be independent of φ and z since there

is no φ nor z dependence in the metric. The residual gauge transformation preserving the

required gauge conditions is solved as follows:

• Lξgrr = 0 =⇒ ξu = f(u, θ).

• Lξgrφ = 0 =⇒ ξφ = ξφ(u, θ).

• Lξgrθ = 0 =⇒ gru∂θf + gθθ∂rξ
θ + gθz∂rξ

z = 0.

• Lξgrz = 0 =⇒ gzz∂rξ
z + gθz∂rξ

θ = 0.

The last two equations can be solved as

ξθ = Y (u, θ) +

∫ ∞

r

dr
gzzgur∂θf

gzzgθθ − g2θz
= Y (u, θ) +

∫ ∞

r

dr grug
θθ∂θf, (3.5)

ξz = ǫ(u, θ) +

∫ ∞

r

dr
gθzgur∂θf

g2θz − gzzgθθ
= ǫ(u, θ) +

∫ ∞

r

dr grug
zθ∂θf. (3.6)

• Lξguφ = 0 =⇒ ξφ = ξφ(θ).

• Lξgθφ = 0 =⇒ ξφ is a constant.

• Lξgφz = 0 =⇒no more constraint as ξφ is independent of z.

We have one more gauge condition from a combination of metric elements

gzzgφφ
gθθ

= r4 sin2 θ. (3.7)

– 13 –
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The precise condition is Lξ(
gzzgφφ
gθθ

) = 0 which leads to

ξr = −r

2

(

∂θξ
θ + cot θξθ − grθgur∂θf

)

. (3.8)

Now, the vector ξ is fixed up to three integration constants f(u, θ), Y (u, θ) and ǫ(u, θ).

Suitable boundary conditions will further control their time evolutions. According to (3.3),

the boundary conditions are

gur = −1 +O(r−1), guθ = O(1), guz = O(r−1), gθθ = r2 +O(r). (3.9)

Those conditions will yield

Y (u, θ) = y sin θ, ǫ(u, θ) = ǫ(θ), f(u, θ) = T (θ) +
1

2
(∂θY

θ + cot θY θ)u. (3.10)

To summarize, the asymptotic Killing vector is

ξu = f = T +
1

2
(∂θY

θ + cot θY θ)u,

ξr = −r

2

(

∂θξ
θ + cot θξθ − grθgur∂θf

)

,

ξθ = Y + ∂θf

∫ ∞

r

dr grug
θθ,

ξφ = ξφ,

ξz = ǫ+ ∂θf

∫ ∞

r

dr grug
zθ.

(3.11)

3.3 5d algebra

The asymptotic Killing vectors will satisfy a modified algebra introduced in [8]

[ξ1, ξ2]M = [ξ1, ξ2]− δξ1ξ2 + δξ2ξ1. (3.12)

The algebra is closed in the sense that

[ξ1, ξ2]
u
M = f̂ = y1 sin θ(∂θT2 − cot θT2)− y2 sin θ(∂θT1 − cot θT1),

∂r([ξ1, ξ2]
θ
M ) = −gurg

θθ∂θf̂ ,

∂r([ξ1, ξ2]
z
M ) = −gurg

θz∂θf̂ ,

∂r([ξ1, ξ2]
r
M ) =

1

2

[

∂θ(g
θθgur∂θf̂) + cot θ(gθθgur∂θf̂) + ∂r(g

rθgur∂θf̂)
]

.

(3.13)

When r → ∞, the algebra will be reduced to

[(T1, y1, ǫ1), (T2, y2, ǫ2)] = (T̂ , ŷ, ǫ̂), (3.14)

where

T̂ = y1 sin θ(∂θT2 − cot θT2)− (1 ↔ 2), (3.15)

ŷ = 0, (3.16)

ǫ̂ = y1 sin θ∂θǫ2 − (1 ↔ 2). (3.17)

Unsurprisingly, we recover the same algebra as (2.50) in 4d EMD theory. Literally, the

same mode expansion can be applied as (2.57)–(2.59).
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4 Conclusion and discussion

Our motivation for studying asymptotic behavior of four dimensional EMD theory is

twofold: the first one is to investigate the asymptotics in cases with coupled dynamical

massless fields with various spins, the second one is to study the asymptotics of five di-

mensional pure gravity among a well-chosen class of solutions avoiding half-integer powers

in 1/r expansions. The four dimensional computations were in the Bondi gauge. Three

type of news functions were identified and the generalized Bondi mass-loss formula was

obtained. The four dimensional solutions were uplifted to five dimensions and this gave us

the guide for gauge and boundary conditions for this class of solutions to five dimensional

pure Einstein theory. Asymptotic symmetry algebras in both four and five dimensional

cases were computed and they are the same. This approach of dimensional lifting also

opens windows for studying more fundamental theories in even higher dimensions based

on the Bondi formalism.

One of the straightforward generalizations of this work is to relax the axisymmetric

condition and study the general four dimensional asymptotic flatness solutions and their

uplift to five dimensions, similar to Sachs’ generalization [37] of [1]. We do not expect any

principle difficulties while the computations will be more tedious.

A more challenging point is about the asymptotic behavior of these five dimensional

solutions lifted from four dimensional EMD theory when the z direction is noncompact.

It will be of interest to see whether the asymptotic behavior has strong dependence on

the chosen null direction as what was found in [41] in dimensional reduction from four to

three dimensions. As there, we may need to study behavior of four dimensional fields at

timelike infinity in additional to the behavior at null infinity studied here. The studies

on asymptotics of four dimensional EMD theory here also strongly motivates us to study

triangular equivalent relations [13] among asymptotic symmetries, various soft theorems

and memory effects in this theory. We leave these interesting questions for future studies.
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