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1 Introduction

Despite the conceptual simplicity of the axion solution to the strong CP problem, relatively

few axion models have been developed which naturally predict
∣∣θ̄∣∣ . 10−11 when confronted

with gravitationally induced U(1)PQ violating operators. Models which do sufficiently

protect the axion scalar potential from gravitational perturbations typically require large

groups or complicated structures, leading to an ongoing search for more satisfying solutions.

In this work we present a relatively simple composite axion model in a confining su-

persymmetric theory, which is consistent with gauge coupling unification and compatible

with current experimental results. Certain mesons in the theory are identified as composite

Higgs fields, ameliorating the B/µ problem of the MSSM, and in one variant of our model

the B − L global symmetry of the Standard Model is gauged.

1.1 The strong CP problem

The Standard Model (SM) contains several puzzles, one of the most pressing of which is

the value of the θ parameter in the QCD Lagrangian:

L =
g2θ

64π2
εµνρσGaµνG

a
ρσ ≡

g2

32π2
θGµνG̃

µν . (1.1)
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Searches for an electric dipole moment of the neutron have so far resulted only in upper

limits on its magnitude, implying that
∣∣θ̄∣∣ < 6 × 10−11 [1, 2], where θ̄ is the physically

relevant combination of CP violating phases,

θ̄ = θ + arg detMQ, (1.2)

whereMQ is the quark mass matrix. As the θ term violates both P and CP , the unnaturally

small value of θ̄ is referred to as the strong CP problem. For more complete reviews, see

for example [3–5].

In many popular solutions of the strong CP problem, θ̄ is rendered unphysical by

ensuring that the classical Lagrangian respects a global U(1) symmetry, which is explicitly

broken by the QCD anomaly. A simple example can be seen from eq. (1.2), if one sets

mu = 0: an axial U(1)A symmetry emerges in this limit, so that arg detMQ (and therefore

θ̄) becomes unphysical. If it were not for compelling evidence that mu,d 6= 0, this “massless

up quark solution” would naturally explain the absence of CP violation in the strong sector.

Axion models address the strong CP problem by associating θ̄ with the pseudo-Nambu-

Goldstone boson of an approximate U(1)PQ global symmetry. This is achieved by introduc-

ing a (SM singlet) complex scalar φ together with left-handed color (anti)-triplet fermions

Q and Q, along with the interaction

L ⊃ V (φ) + φQQ+ h.c. (1.3)

where V (φ) is designed such that φ acquires an expectation value 〈φ〉 & 109 GeV. The bare

mass term mQQ is forbidden, so that L respects a U(1)PQ symmetry under which φ is

charged. The SU(3)2
c-U(1)PQ anomaly coefficient is nonzero, as can be seen from the fact

that (QQ) carries a net U(1)PQ charge.

Expanding about the 〈φ〉 6= 0 vacuum, the axion a is identified as the phase of φ:

φ =

(
〈φ〉+

σ√
2

)
exp

(
i
a

fa

)
, (1.4)

where fa ≡
√

2〈φ〉. The SU(3)2
c-U(1)PQ anomaly induces an aGG̃ coupling,

L =
g2

32π2

(
θ̄ − a

fa

)
GµνG̃

µν , (1.5)

and nonperturbative QCD dynamics generate a periodic potential for a which can be

heuristically (up to chiral symmetry-violating corrections [6], which are unimportant for

our discussion) described by

V (a) ' m2
πf

2
π

(
1− cos

[
a

fa
− θ̄
])

. (1.6)

The axion potential is minimized by 〈a〉 = faθ̄, so that CP is conserved in the QCD

vacuum.

In “invisible axion” models of this type [4, 7–9] the axion is light and weakly coupled,

with a mass given by:

m2
a '

m2
πf

2
π

f2
a

. (1.7)
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A lower bound fa & 109 GeV is set primarily by astrophysical observations of stellar cooling

and supernovae. In much of the parameter space, the axion provides a natural dark matter

candidate: its interactions are suppressed by the decay constant fa, and it can be produced

in the early universe by the misalignment mechanism [10–12]. For O(1) initial misalignment

angles, the correct relic abundance is obtained for fa . 1012 GeV, though fa could be larger

if the misalignment was smaller. The fact that the QCD axion could also play the role of

dark matter is one of the reasons for its continued popularity as a solution to the strong

CP problem.

1.2 Axion quality problem

A closer inspection of the simple axion model presented above reveals a new set of the-

oretical difficulties, namely a hierarchy problem and a fine-tuning problem. The axion

model prefers a hierarchy between the scale of symmetry breaking fa and the Planck mass,

MP. A number of standard solutions, such as supersymmetry or compositeness, have been

proposed which would render an axion scale fa �MP technically natural. However, many

axion models still suffer from a more severe fine-tuning, known as the axion quality problem.

Arguments from general relativity [13–18] suggest that non-perturbative quantum

gravitational effects do not respect global symmetries such as baryon number or U(1)PQ.

This is highly problematic for most axion models, which rely on U(1)PQ being an exact

symmetry in the αs → 0 limit, explicitly broken only by the QCD anomaly. If additional

PQ-violating operators representing the short distance influence of quantum gravity such as

∆V (φ) =
|φ|k+3

Mk
P

(λkφ+ λ?kφ
?) (1.8)

are present, the corresponding perturbation in V (a) can shift 〈a〉 far away from the CP -

conserving value of eq. (1.6):

δV (a) ∼ λkf4
a

(
fa
MP

)k
cos

(
∆PQ

a

fa
− ϕ

)
, (1.9)

where the phase ϕ is determined by λk, and ∆PQ is the U(1)PQ charge of the operator φ.

It is convenient to describe such perturbations by defining a “quality factor” Q:

δV (a) = Qf4
a cos

(
a

fa
− ϕ

)
. (1.10)

If we assume ϕ ∼ O(1) is not tuned, the measured value of
∣∣θ̄∣∣ . 10−11 is possible only if

δV (a) satisfies

Q . 10−63

(
1012 GeV

fa

)4

. (1.11)

Satisfying this bound requires that the theory of quantum gravity somehow produce a

severe fine-tuning in the λk, such that even the dimension-12 operators in eq. (1.9) must

have λk � 1.

In a truly compelling axion model, the U(1)PQ symmetry should emerge as a conse-

quence of some other underlying structure which forbids the problematic operators. For
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example, a gauged discrete Zn symmetry [19] for some n & 13 can forbid all PQ-violating

operators smaller than (φn + c.c.). Significantly smaller groups can be employed to the

same effect in supersymmetric theories [20, 21], if the discrete group is an R symmetry.

Composite axion models such as [22–24] also protect U(1)PQ to arbitrarily high order,

with the added benefit that the axion scale fa can be generated dynamically. Other con-

structions [25–27] associate U(1)PQ with a different, gauged U(1), so that many of the

PQ-violating operators are forbidden. Many of these constructions are intricate and also

rather delicate in the sense that the axion quality is easily ruined in extensions of the model.

In this work we present an alternative composite axion model based on an SU(N) ×
SU(N) confining supersymmetric gauge theory with simple matter content. The Standard

Model matter fields and interactions are easily embedded, and we show that the axion

quality is preserved even with the addition of new fields. Upon identifying the Hu and Hd

doublets as mesons from SU(N) confinement, we find that the µ parameter of the MSSM

naturally assumes an O(TeV) value. Finally, we explore the ability of this model to mediate

supersymmetry breaking via composite messengers.

2 Composite axion model

Conjectured dualities [28, 29] allow one to analyze the low energy behavior of supersymmet-

ric gauge theories. In particular, an SU(Nc) gauge theory with Nf = Nc flavors of quarks

(Q+Q) in the (anti-)fundamental representation is expected to confine at a characteristic

scale Λ, such that the low energy degrees of freedom are described by the gauge-singlet

operators

M = (QQ), B = (QN ), B = (Q
N

), (2.1)

subject to the quantum-modified constraint

detM −BB = Λ2N . (2.2)

The constraint eq. (2.2) guarantees that the global SU(Nf ) × SU(Nf ) × U(1) symmetry

is spontaneously broken, either by 〈M〉 6= 0 or 〈BB〉 6= 0. Similar behavior has been

demonstrated in theories with product gauge groups of the form SU(N)× SU(N)× . . . ×
SU(N) with bifundamental matter [30]. We show that a composite axion emerges in a

subset of these theories, with sufficiently high axion quality.

We invoke the gauge group SU(N)L×SU(N)SM ×SU(N)R×U(1)X , where SU(N)SM
contains the Standard Model SU(3)c×SU(2)L×U(1)Y either as a gauged subgroup or as an

SU(5) grand unified theory. The strongly coupled SU(N)L,R confine at the characteristic

scales ΛL,R � TeV, but the Abelian U(1)X is weakly coupled.1 The bifundamental fields

Q1,2 and Q1,2 have U(1)X charges ±1, as depicted in the moose diagram of figure 1, with

U(1)PQ charges shown in table 1.

1The axion construction leaves the charges of the MSSM matter under U(1)X largely undetermined. We

explore several alternatives below.
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Q2

qX = +1
SU

(1)
N

GL=
SUN

ΛL

Q1

qX = −1

G0⊃
GSM

“Λ0”

Q1

qX = +1

GR=
SUN

ΛR

Q2

qX = −1
SU

(2)
N (1.1)

Figure 1. Moose diagram indicating the charges of bifundamental matter fields Q1,2 and Q1,2

under the gauge group SU(N)L × SU(N)SM × SU(N)R × U(1)X and global SU(N)1 × SU(N)2
global symmetries. The Standard Model SU(3)c × SU(2)L ×U(1)Y is a subgroup of G0.

SU(N)1 GL G0 GR SU(N)2 U(1)X U(1)PQ

Q2 1 −(1− α)/N

Q1 −1 (1− α)/N

Q1 1 (1 + α)/N

Q2 −1 −(1 + α)/N

M 0 0

M 0 0

B2 N −1 + α

B1 −N 1− α
B1 N 1 + α

B2 −N −1− α

Table 1. U(1)PQ charges and representations under the gauged GL × G0 × GR and the global

SU(N)1 × SU(N)2 symmetries are indicated for the bifundamental quarks (upper half) and com-

posite operators resulting from GL ×GR confinement (lower half).

Below the scales ΛL and ΛR, the low energy degrees of freedom are described by the

composite operators satisfying equations of motion:

M = (Q2Q1) B1 = (Q
N
1 ) B2 = (Q

N
2 ) Λ2N

L = detM −B1B2

M = (Q1Q2) B1 = (QN1 ) B2 = (QN2 ) Λ2N
R = detM −B1B2.

(2.3)

In the absence of a superpotential, this model respects the global SU(N)1 × SU(N)2 sym-

metries shown in figure 1, as well the gauged U(1)X . There is also a conserved U(1)R,

under which the gauginos have charge +1 and all of the Q1,2 and Q1,2 are neutral, which

remains unbroken everywhere on the moduli space.

In the regime where G0 is weakly coupled, there is another nearly exact global symme-

try, U(1)PQ, which is broken only by the G2
0-U(1)PQ anomaly. Due to the locally conserved

U(1)X , there is no unique assignment of Peccei-Quinn charges: rotations under U(1)PQ

can always be combined with a global U(1)X transformation to define a new, equally valid

Peccei-Quinn symmetry. This degeneracy is parameterized by the parameter α in table 1.

On the quantum-deformed moduli space described by eq. (2.3), the global SU(N)1 ×
SU(N)2 × U(1)X × U(1)PQ symmetry must be broken to a subgroup. Furthermore, if the
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low energy limit of this theory is to approach the Standard Model, then it must be true

that detM = detM = 0; otherwise, SU(3)c would be broken in the vacuum. The vacuum

therefore must be engineered to lie on the 〈B1B2〉 6= 0, 〈B1B2〉 6= 0 branch of the moduli

space, where U(1)X and U(1)PQ are both spontaneously broken, and the U(1)X vector

supermultiplet acquires a mass by “eating” a combination of the chiral superfields. This is

accomplished by including a term in the superpotential of the form:(
Q2Q1

)
(Q1Q2)

M∗
(2.4)

which after confinement generates a mass term for the mesons, W ∼ µMM , lifting the

mesonic flat directions. If not otherwise present, this term is expected to be induced by

quantum gravitational effects.

A unique definition of the Peccei-Quinn charges emerges once U(1)X is broken: by

canonically normalizing the kinetic terms of the (would-be) Nambu-Goldstone bosons of

U(1)PQ and U(1)X , the parameter α of table 1 is related to the vacuum expectation values

(VEVs) of the baryons as

α =
v̄2

1 + v̄2
2 − v2

1 − v2
2

f2
X

, (2.5)

where

v̄2
i = 2

∣∣∣∣∣ 〈Bi〉
ΛN−1
L

∣∣∣∣∣
2

, v2
i = 2

∣∣∣∣∣ 〈Bi〉ΛN−1
R

∣∣∣∣∣
2

, f2
X = v̄2

1 + v̄2
2 + v2

1 + v2
2, (2.6)

and where the axion decay constant fa is

f2
a = f2

X

(
1− α2

)
. (2.7)

With this normalization, a U(1)PQ rotation by a phase θ is achieved by the linear shift

a→ a+ θfa. (2.8)

Although the products v1v2 and v̄1v̄2 are set by the quantum modified constraints,

v̄1v̄2 = 2
∣∣Λ2

L

∣∣ , v1v2 = 2
∣∣Λ2

R

∣∣ , (2.9)

the values of the decay constants fa and fX vary along the flat directions within the allowed

ranges

f2
X ≥ 4

∣∣Λ2
L

∣∣+ 4
∣∣Λ2

R

∣∣ , f2
a ≤ f2

X . (2.10)

The case fa � fX is achieved in the limits ΛL � ΛR or ΛL � ΛR, as α→ ±1. Conversely,

the special case v2
1 + v2

2 = v̄2
1 + v̄2

2 corresponds to fa = fX .

2.1 Axion quality

To examine the axion quality, we introduce operators characterized by MP which represent

an effective field theory description of the low energy residual effects of quantum gravity.
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It is convenient to introduce a set of rescaled composite operators with mass dimension

+1:

M =
(Q2Q1)

ΛL
M =

(Q1Q2)

ΛR
Bi =

(Q
N
i )

ΛN−1
L

Bi =
(QNi )

ΛN−1
R

. (2.11)

The effective gravitational superpotential violating all of the global symmetries takes the

form:

Wg =λ1
(Q

N

1 )(QN
1 )

M2N−3
P

+λ2
(Q

N

2 )(QN
2 )

M2N−3
P

+λ3
(Q

N

2 )(Q
N

1 )

M2N−3
P

+λ4
(QN

1 )(QN
2 )

M2N−3
P

+ρ1
(Q2Q1)(Q1Q2)

MP
+... (2.12)

=

(
ΛN−1
L ΛN−1

R

M2N−3
P

){
λ1B1B1+λ2B2B2+λ3B1B2+λ4B1B2

}
+ρ1

(
ΛLΛR

MP

)
MM+..., (2.13)

with parameters λi and ρi encoding the UV physics. Of the operators listed above, only the

two associated with λ1 and λ2 violate U(1)PQ. All of the lower-dimensional operators such

as (Q2Q1)(Q1Q2) are neutral under U(1)PQ, and thus not harmful to the axion quality.

In a supersymmetric vacuum, the leading U(1)PQ violation appears with M4N−6
P sup-

pression in the Lagrangian: for example, within terms such as∣∣∣∣∂Wg

∂B1

∣∣∣∣2 =

∣∣∣∣∣ΛN−1
L ΛN−1

R

M2N−3
P

∣∣∣∣∣
2 ∣∣λ1B1 + λ4B2

∣∣2 , (2.14)

implying a perturbation to the axion potential on the order of

Qf4
a ∼ |λ1λ4|

(√
ΛLΛR
MP

)4N−4

M2
P〈B1〉〈B2〉. (2.15)

Taking ΛL ≈ ΛR ≈ fa ≈ 1011 GeV as a benchmark and ignoring O(1) factors, the quality

factor

Q ∼ |λ1λ4| 1048−32N (2.16)

satisfies the bound given in eq. (1.11) for N > 3, even when the λi are O(1).

More serious perturbations to the axion potential emerge when supersymmetry break-

ing is taken into account. Supersymmetry breaking induces an “A-term” potential,

−LA =

(
ΛN−1
L ΛN−1

R

M2N−3
P

){
A1λ1B1B1 +A2λ2B2B2 +A3λ3B1B2 +A4λ4B1B2

}
+h.c, (2.17)

where the mass scales Ai are in principle calculable once a particular mechanism of

supersymmetry breaking is specified. To remain agnostic concerning the details of

supersymmetry-breaking, we assume that the Ai should be of roughly the same magni-

tude as the SU(3)c × SU(2)L ×U(1)Y gaugino masses.

Both the A1 and A2 terms in eq. (2.17) perturb the axion potential:

δV (a) = 2
ΛN−1
L ΛN−1

R

M2N−3
P

{∣∣A1λ1〈B1〉〈B1〉
∣∣cos

(
2
a

fa
+ϕ1

)
+
∣∣A2λ2〈B2〉〈B2〉

∣∣cos

(
2
a

fa
+ϕ2

)}
.

(2.18)
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Again taking ΛL,R ≈ fa ≈ 1011 GeV, the constraint on the quality factor eq. (1.11) can be

written as

λiAi
104 GeV

(
1019 GeV

MP

)2N−3(
ΛLΛR

1022 GeV2

)N−1 〈Bi〉〈Bi〉
1022 GeV2 · 10−16N . 10−76 (2.19)

for i = 1, 2, indicating that models with N ≥ 5 are free from fine-tuning as long as the

characteristic scales ΛL,R and fa are not much larger than 1011 GeV.

In figure 2 we plot the maximum values of λi consistent with eq. (2.19), for given

values of fa, N , and the other parameters, with the simplifying assumptions A1 ≈ A2 and

λ1 ≈ λ2. It is convenient to label the vacua with the following parameterization:

tanβL =
v̄2

v̄1
tanβR =

v2

v1
sin2 2γ =

f2
a

f2
X

= 1− α2. (2.20)

All of the dimensionful parameters except for Ai and MP are now expressed in terms of fa:

v̄1 =
cosβL
2 cos γ

fa v̄2 =
sinβL
2 cos γ

fa v1 =
cosβR
2 sin γ

fa v2 =
sinβR
2 sin γ

fa, (2.21)

so that the axion quality condition is expressed:

Qf4
a

M4
P

= 8

(
f2
a

8M2
P sin 2γ

)N
(sin 2βL sin 2βR)

N−1
2

×
(
λ1A1 cosβL cosβR + λ2A2 sinβL sinβR

MP

)
. 10−88.

(2.22)

Because βL,R label degenerate vacua on the moduli space defined by eq. (2.3), partic-

ularly large or small values of tan βL,R are typically unnatural. On the other hand, γ is

primarily determined by the ratio ΛL/ΛR:

tan γ =
ΛL
ΛR

√
sin 2βL
sin 2βR

, (2.23)

so large or small values of tan γ are more easily tolerated from a naturalness perspective.

As we see from eq. (2.22), the best axion quality is achieved for tan γ ≈ 1, when fa ≈ fX
and ΛL ≈ ΛR.

We show the maximum tolerable λ1 ≈ λ2 as a function of fa for a few choices of

N , tanβL = tanβR, and sin 2γ in figure 2. While effective field theory would suggest that

generic theories of quantum gravity should produce λ1,2 ∼ O(1), in [16–18] it is argued that

wormhole-induced U(1)PQ violation yields suppressed values of λi ∼ exp(−Sw), where the

wormhole action Sw depends logarithmically on the axion decay constant, Sw ∼ a−b ln fa
MP

.

For typical cases the resulting suppression in λi is modest: values as small as λ ∼ 10−7 are

achieved in [16] for fa ∼ 1012 GeV. For N = 5 such that G0 is large enough to contain the

SM, O(1) λ’s are consistent with fa . 1011 GeV.

Generally, the high axion quality observed in eq. (2.19) is preserved even when new

fields are coupled to the model provided that they are neutral under U(1)X . Problems

arise if there are fields S with U(1)X charges:

qS = ±N,±N
2
,±N

3
, . . . ,± N

N − 1
, (2.24)

for which case Wg includes gauge-invariant terms SpB1,2 or SpB1,2 for some power p < N .
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8

1 0
9

1 0
1 0

1 0
1 1

1 0
1 2

1 0
1 3

1 0
1 4

1 0
1 5

1 0
-1 6

1 0
-1 2

1 0
-8

1 0
-4

1

1 0
4

fa HGeVL

Λ
m

a
x

N=4 N=5 N=6 N=7 N=8

s in 2 Γ = 0 .1

tanΒ
L
= tanΒ

R
= 1

s in 2 Γ = 0 .1

tanΒ
L
= tanΒ

R
= 1 0

s in 2 Γ = 1 .0

tanΒ
L
= tanΒ

R
= 1

s in 2 Γ = 1 .0

tanΒ
L
= tanΒ

R
= 1 0

Λ = 1

Λ = f a
�MP

Figure 2. Maximum values of λ1 ≈ λ2 consistent with eq. (2.22) for given values of fa and

N = 4, 5, 6, 7, 8. The region to the left of each line indicates the axion models which return∣∣θ̄∣∣ < 10−11 without any fine tuning. From left to right within each band of a given N , models are

indicated with: sin 2γ = 0.1, tanβL = tanβR = 1 (thin, dashed); sin 2γ = 0.1, tanβL = tanβR = 10

(thin, solid); sin 2γ = tanβL = tanβL = 1 (thick, solid); and sin 2γ = 1, tan βL = tanβL = 10

(thin, dotted). In each case A1 ≈ A2 = 105 GeV.

2.2 U(1)B−L as U(1)X

From eq. (2.19) we see the remarkable fact that for fa . 1011 GeV and O(1) values in the

couplings λi, sufficient protection of the axion quality requires N ≥ 5: precisely the right

size to fit the entire Standard Model within G0. In this section we take G0 = SU(5) to be a

global symmetry with a gauged SU(3)c×SU(2)L×U(1)Y subgroup, and we identify U(1)X
as the B − L symmetry of the Standard Model. The mesons M(5) and M(5) decompose

into irreducible representations of SU(3) × SU(2)×U(1):

M(5) −→M(3)(3,1)− 1
3
⊕M(2)(1,2) 1

2
(2.25)

M(5) −→M(3)
(3,1) 1

3
⊕M(2)

(1,2)− 1
2
. (2.26)

Table 2 indicates the representations of the composites under the SM, plus three generations

of MSSM matter and three right-handed neutrinos necessary to cancel the U(1)B−L gauge

anomaly.

The B − L charges of the baryons Bi and Bi are left in terms of a constant q 6= 0

which parameterizes their size relative to the canonical charges of the MSSM matter.

While generic values of q are phenomenologically viable, certain choices would permit

low-dimensional U(1)PQ-violating operators and spoil the axion quality. The problematic
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SU(5)1 SU3 SU2 U(1)Y SU(5)2 U(1)B−L U(1)PQ

M(3)
5 3 1/3 0 0

M(2)
5 2 −1/2 0 0

M(3) 3 −1/3 5 0 0

M(2) 2 1/2 5 0 0

QL 3 2 1/6 +1/3 0

ūR 3 −2/3 −1/3 0

d̄R 3 1/3 −1/3 0

L 2 −1/2 +1 0

ēR +1 −1 0

ν̄R 0 −1 0

B1, B2 0 5q ±1 + α

B1, B2 0 −5q ±1− α

Table 2. Transformation representations of the superfields for the U(1)X = U(1)B−L model.

q can be identified by considering all of the low-dimensional SU(5)SM singlet operators with

nonzero B − L charge:

(ν̄R)−1, (ν̄nR)−n, (LM(2)
)+1, (d̄RM(3))−1/3, (M(3)

QLL)+1/3, (2.27)

where the subscripts indicate the B − L charge of each operator. Since none of these

carry PQ charge, the superpotential operator constructed by multiplying any of them by

a baryon superfield would violate U(1)PQ unacceptably. To avoid this issue, we restrict

ourselves to the cases where q 6= ±n
5 , for n = 0, 1, 2, 3, 4, and also q 6= ±1

3 .

2.2.1 Composite Higgs doublets

The identification of X = B−L has positive implications for the superpotential, notably by

forbidding many of the operators that would mediate highly constrained B and/or L viola-

tion such as proton decay [31]. The allowed low energy effective superpotential has the form:

W = µM(2)M(2) +µ′M(3)M(3) +yuQLM(2)ūR+ydQLM(2)
d̄R+yeLM(2)

ēR+yνLM(2)ν̄R,

(2.28)

containing mass terms for the doublet and triplet mesons, and Yukawa interactions for

the doublets with the MSSM matter.

The mesons M(2)
and M(2) have the same gauge representations as the MSSM

Higgs superfields Hd and Hu. We take the economical route of interpreting the light-

est M(2)
+M(2) pair of the five flavors of SU(2)L doublet mesons as composite MSSM

Higgs superfields, which potentially offers insight into the µ problem of the MSSM. The

terms in eq. (2.28) descend from non-renormalizable composite operators in the UV the-

ory. In the case of the µ terms, these operators are dimension-4 and violate the U(1)R
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symmetry. If generated by quantum gravitational residuals, the natural mass scale for µ

and µ′ would thus be:

Wg ∼
(Q2Q1)(Q1Q2)

MP
−→ ΛLΛR

MP

(
M(2)M(2) +M(3)M(3)

)
−→ µ, µ′ ∼ ΛLΛR

MP
. (2.29)

This is µ ∼ O(TeV) for our benchmark choice of ΛL ≈ ΛR ≈ 1011 GeV.

The Yukawa interactions of eq. (2.28) similarly correspond to dimension five operators

in the UV. Realizing the large couplings necessary for the heavy quarks requires that they

be generated at a lower scale MF �MP:

W = y′u
QL(Q1Q2)ūR

MF
+ y′d

QL(Q2Q1)d̄R
MF

+ y′e
L(Q2Q1)ēR

MF
, (2.30)

where yt ∼ 1 requires MF ∼ ΛR (and yb requires ΛL is not much larger). Unlike the

dynamics generating the µ terms, the Yukawa interactions are compatible with the U(1)R
symmetry, which allows for the disparate scales to remain technically natural.

The presence of the four additionalM(2) andM(2)
in eq. (2.30) poses a potential phe-

nomenological problem. In the absence of any additional structure, the y′u,d,e couplings of

the matter fields with the heavier SU(2)L doublets will generally introduce flavor-changing

neutral currents (FCNC). A number of potential solutions exist in the literature. For ex-

ample, by imposing minimal flavor violation [32] on eq. (2.30), the M(2) and M(2)
can

have masses as small as a few TeV. Or, as we discuss in section 3, a discrete symmetry

can be imposed (even if broken at MP) to forbid the y′u,d,e couplings for all of the mesons

except for Hu and Hd.

2.2.2 Color-triplet mesons

As illustrated in eq. (2.29), we expect that gravitational effects induce electroweak scale

O(ΛLΛR
MP

) supersymmetric masses for each of the five pairs of M(3)M(3) color triplets.

Generically, color triplets with weak scale masses are very tightly constrained, especially

because the interactions

Wbad ∼ QLM(3)
L+ ūRM(3)ēR + d̄RM(3) +M(3)

ūRM(3)
+ . . . , (2.31)

if present, would mediate fast proton decay. Fortunately, every term in eq. (2.31) is for-

bidden upon gauging U(1)X = U(1)B−L. Thus, M(3) and M(3)
are distinct from the

Higgs color triplets which typically appear in SU(5) grand unified theories. In section 3

we explore the possibility that they could (along with the extra SU(2)L doublets) serve as

messengers for gauge-mediated supersymmetry breaking.

2.3 Alternatives to B − L

In addition to B − L, there are a number of other acceptable anomaly-free U(1)X charge

assignments for the Standard Model matter. While none are as attractive as B − L, in

this section we sketch three alternatives: a “5/-3/1” pattern of U(1)X charges within each

generation; every matter superfield neutral under U(1)X ; and an Li − Lj model.
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SU(5)1 SU3 SU2 U(1)Y SU(5)2 U(1)X U(1)PQ

M(3)
5 3 1/3 0 0

M(2)
5 2 −1/2 0 0

M(3) 3 −1/3 5 0 0

M(2) 2 1/2 5 0 0

B1, B2 0 5 ±1 + α

B1, B2 0 −5 ±1− α
QL 3 2 1/6 +q 0

ūR 3 −2/3 +q 0

d̄R 3 1/3 −3q 0

L 2 −1/2 −3q 0

ēR +1 +q 0

ν̄R 0 5q 0

Hu 2 1/2 −2q 0

Hd 2 −1/2 2q 0

Table 3. Charges of the matter fundamental superfields and Higgs doublets and composite baryons

and mesons in the “5/-3/1” U(1)X model.

2.3.1 5/-3/1 model

An alternative charge assignment is shown in table 3: QL, ūR and ēR fields have U(1)X
charge q; L and d̄R have charge −3q; and the ν̄R has charge 5q to cancel the U(1)3

X .

anomaly. Forbidding all U(1)PQ-violating operators of dimension less than 10 requires:

q 6= ±1,±1

2
,±1

3
,±1

4
,±5

2
,±5

3
, (2.32)

but otherwise q is a free parameter describing a family of models. With this charge assign-

ment the undesirable baryon and lepton number violating operators LHu, LLēR, QLd̄R
and ūRd̄Rd̄R are all forbidden, and proton decay occurs via the dimension 5 operator

W ∼ ūRūRd̄RēR/MP.

Unlike in the B − L model, U(1)X forbids the mesons M(2) and M(2)
from having

Yukawa interactions with MSSM matter unless q = 0. Thus, additional fundamental Higgs

doublets Hu + Hd with U(1)X charges ±2q must be added to generate quark and lepton

masses,

WH = µHuHd + yuQLHuūR + ydQLHdd̄R + yeLHdēR + yνLHuν̄R. (2.33)

As in the MSSM with fundamental Higgs doublets, there is no a priori reason for µ to be

at the weak scale.

Renormalizable couplings between the mesons M and M and the MSSM fields are

mediated exclusively by gauge interactions. Direct couplings in the superpotential are sup-

pressed, beginning with the dimension-7 operators (MM)HuHd. Direct couplings which
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would allow the mesons to decay entirely into the Standard Model depend sensitively on q,

with the operators permitting prompt decay also typically violating U(1)PQ and forbidden

by eq. (2.32). As consequence, the lightest mesons tend to have long lifetimes, and for some

values of q can be absolutely stable and bounded by the strong constraints on colored or

charged cosmological relic particles.

2.3.2 q = 0: neutral MSSM

In the limit q → 0, the MSSM decouples from U(1)X . This assignment allows for Yukawa

interactions between the mesons and MSSM matter, permitting M(2) and M(2)
to play

the role of the MSSM Higgs doublets, with O(ΛLΛR/MP) supersymmetric masses as in

eq. (2.29). However, U(1)X no longer forbids the problematic operators of eq. (2.31) or

W ′bad ∼ LM(2) + LLēR +QLd̄R + ūRd̄Rd̄R. (2.34)

Among the potentially disastrous consequences of W ′bad is a short proton lifetime. This

problem is averted in the MSSM by imposing a Z2 R parity, which ensures that the su-

perpotential respects the B − L global symmetry. Upon imposing R parity or some other

discrete symmetry on the q = 0 model, the superpotential comes to resemble that of the

B−L axion model in all respects except one: if q = 0 the right-handed neutrino is a singlet

under the gauge symmetries, at which point it can be safely omitted.

2.3.3 Li − Lj models

The Standard Model also admits anomaly-free U(1) symmetries for which charges are not

uniform across all three generations. The combinations of Lµ−Lτ and Le−Lτ are among

the phenomenologically interesting alternatives. Models of this type are typically consistent

with a composite Hu and Hd, but as in the MSSM, an R parity must be imposed on such

models to ensure that all of the B and L violating operators of eq. (2.34) are forbidden.

3 Gauge-mediated supersymmetry breaking

Beyond the usual MSSM superfields, there are relatively few additional light degrees of

freedom:

• The four baryons B1,2 and B1,2 contain at most two light fields in the 〈Bi〉 6= 0,

〈Bi〉 6= 0 vacuum. There is a chiral multiplet containing the composite axion.

• For U(1)X gauge coupling gX � 1, there is a U(1)X vector supermultiplet with a

mass mX ∼ gXfX , where fX is typically ∼ fa.

• The mesons M and M have O(ΛLΛR/MP) vectorlike masses. In the B − L model

and its variants, the lightest such SU(2)L doublets are identified as the MSSM Hu

and Hd leaving four heavier M(2) +M(2)
pairs, and five color triplets M(3) +M(3)

.

In this section we explore how these mesons may be utilized as messengers of supersym-

metry breaking.
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We parameterize the supersymmetry-breaking in a secluded sector as a set of one or

more chiral superfields Xi acquiring F -term expectation values,

〈X〉 = X + θ2FX , (3.1)

with FX 6= 0. Introducing superpotential terms of the form W ∼ XM(3,2)M(3,2) communi-

cates supersymmetry breaking to the MSSM [33, 34]. In the UV theory this superpotential

originates from dimension-5 operators (Q2Q1)X(Q1Q2)/M2
S , reducing in the IR to

Ws = λ
′ij
3

(
ΛLΛR
M2
S

)
XM(3)

i M(3)
j + λ

′ij
2

(
ΛLΛR
M2
S

)
XM(2)

i M(2)
j , (3.2)

where the indices i, j = 1 . . . 5, for some scale MS &
√

ΛLΛR which we take to be small

compared to MP. It is convenient to absorb the factors of ΛLΛR/M
2
S into the definitions

of λ2,3:

λij2,3 =
ΛLΛR
M2
S

λ
′ij
2,3. (3.3)

As with the Yukawa couplings of eq. (2.30), the superpotential Ws respects a global U(1)R
symmetry under which the mesons M and M are neutral, and X has charge +2.

As discussed in section 2.2, Yukawa-like couplings between the matter fields and the

four heavy M(2) + M(2)
may introduce unacceptable flavor-changing neutral currents.

A standard solution is to impose a “messenger parity” on the model, under which the

Higgs Hu,d are even, and the messengers M(2,3) and M(2,3)
are odd. Thus, the direct

couplings between messenger SU(2)L doublets and the matter fields are forbidden, and

the problematic flavor-changing neutral currents are avoided.2 Imposing this Z2 symmetry

reduces eq. (3.2) to:

Ws = λ1,1
3 XM(3)

1 M(3)
1 + λ1,1

2 XHdHu +
∑
i=2...5

∑
j=2...5

(
λij3 XM

(3)
i M(3)

j + λij2 XM
(2)
i M(2)

j

)
,

(3.4)

where, if the messenger parity is derived from the global symmetries of the quarks Q2 and

Q2, we take the SU(3)c triplets M(3)
1 and M(3)

1 to be even under the Z2 messenger parity.

Since the mesons come in complete SU(5) multiplets, gauge unification at a scale MGUT

is preserved due to the fact that M(3) +M(2) and M(3)
+M(2)

form complete SU(5)SM

multiplets. Following [35], the gauge coupling strength αGUT at the unification scale MGUT

is modified by

δα−1
GUT = −Nf

2π
ln
MGUT

X (3.5)

where Nf = Nc = 5. Requiring that SU(5)SM remains perturbative up to the unification

scale imposes a lower bound on X :

X & 10−13 ×MGUT ≈ 2 TeV. (3.6)

2The messenger parity is a discrete subgroup of the SU(5)1 × SU(5)2 flavor symmetry, and can be

derived from the breaking pattern SU(5)1,2 → SU(4)1,2 × U(1) with Z2 ⊂ Z4 ⊂ U(1), where Hu,d and the

corresponding SU(3)c triplets are invariant under the action of Z4.
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In addition to eq. (3.2), the meson messengers also acquire U(1)R violating mass terms

from the Planck scale effects, µ2,3 ∼ ΛLΛR/MP, leading to a scalar mass matrix:

(
M†(2,3) M(2,3)

)( (λ2,3X+µ2,3)†(λ2,3X+µ2,3) (λ2,3FX)†

λ2,3FX (λ2,3X+µ2,3)(λ2,3X+µ2,3)†

)(
M(2,3)

M†(2,3)

)
.

(3.7)

Performing SU(4)1,2×U(1)1,2 rotations on the fieldsM(2)
andM(2), the matrices (λ2X+µ2)

and (λ2FX) can be simultaneously diagonalized and made real:

Mi = (λ2X + µ2)ii, Fi = (λ2FX)ii, (3.8)

with eigenvalues M2
i ± Fi. This basis also diagonalizes the scalar mass matrix of M(3)

and M(3) in the special case λ2 = λ3 and µ2 = µ3 (but not in general). Positivity of the

(squared) messenger masses imposes a constraint on the F -term VEV of the superfield X:

FX <
µ2

2

λ2
+ 2µ2X + λ2X 2 (3.9)

for each pair of λii2 and µii2 in the diagonal basis. Note that due to the compositeness of the

messengers, the couplings λ2,3 are suppressed by a factor ΛLΛR/M
2
S which may be much

smaller than unity.

To produce the correct electroweak scale, the M2 and F terms for Hu and Hd must

coincide. Taking λ1,1
2 ∼ ΛLΛR

M2
S

and µ1,1
2 ∼ ΛLΛR

MP
, this condition implies a relationship

between the scales MS , X and FX :

FX ∼ ΛLΛR

( X
MS

+
MS

MP

)2

. (3.10)

Taking the simplifying case
√

ΛLΛR ∼ fa ∼ 1011 GeV and MS & fa in the limit

X < 105 GeV, eq. (3.10) reduces to the condition
√FX ∼ faMS

MP
. An investigation of the

extensions to the composite axion model satisfying this constraint would be an interesting

opportunity for future work.

4 Conclusions and outlook

We explore a model with a composite axion in which an accidental Peccei-Quinn symmetry

naturally emerges as a solution to the strong CP problem. Gravitational perturbations to

the axion scalar potential are shown to be sufficiently suppressed in the Nc = 5 model to

permit an axion decay constant of fa . 3× 1011 GeV, even under the pessimistic assump-

tions that supersymmetry breaking induces the most dangerous U(1)PQ-violating A-term

potential, and that the higher-dimensional operators representing quantum gravitational

effects are parameterized by O(1) coupling constants. In addition to providing a satisfac-

tory solution to the axion quality problem, this composite framework is easily extended

to any model of axion-like particles (ALPs) with masses much smaller than the scale of

spontaneous symmetry breaking.
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The general SU(N)L×SU(N)R×U(1)X axion model allows the Standard Model mat-

ter fields to carry nearly any anomaly-free U(1)X charge assignment without negatively

affecting the axion quality. In particular, attractive features emerge when U(1)X is associ-

ated with gauging the Standard Model B − L global symmetry. The leading terms in the

superpotential are those of the MSSM, with none of the problematic B or L violating op-

erators that would otherwise need to be forbidden by invoking a discrete “matter parity”.

Additionally, if the Higgs Hu and Hd are taken to be the lightest of the SU(2)L charged

mesons from SU(5)L and SU(5)R confinement, the dimension-4 gravitationally-induced op-

erator naturally generates an electroweak scale µ term for fa ∼ 1011 GeV. Other choices

of U(1)X charge assignments share this feature, that the SU(2)L charged mesons have the

same quantum numbers as Hu and Hd, and could therefore produce a composite Higgs

with a TeV scale µ term.

The low energy phenomenology largely resembles the MSSM plus a chiral superfield

containing the standard QCD axion, axino, and a saxion. More unique are the presence of

meson fields in vectorlike color triplet and electroweak doublet representations. In theories

in which the lightest weak doublet pair are identified as the MSSM Higgs superfields, they

will have ∼TeV masses. Their detailed phenomenology depends on the U(1)X charge

assignments and some choices of (perhaps slightly broken) global symmetries, and their

presence indicates that the Large Hadron Collider could potentially uncover clues to higher

scale physics. Alternatively, some of these fields could play the role of messengers, leading

to a picture in which supersymmetry-breaking is mediated by gauge interactions.

Among the many opportunities for future work, some promising directions include

developing the supersymmetry breaking sector, explaining the pattern of Yukawa couplings

in the MSSM, or exploring the cosmological implications of the composite model in the

early universe.
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