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Abstract: Motivated by the recently found realization of the 1 + 1 dimensional Bjorken

flow in ideal and nonideal relativistic magnetohydrodynamics (MHD), we use appropriate

symmetry arguments, and determine the evolution of magnetic fields arising from the 3+1

dimensional self-similar and Gubser flows in an infinitely conductive relativistic fluid (ideal

MHD). In the case of the 3 + 1 dimensional self-similar flow, we arrive at a family of

solutions, that are related through a differential equation arising from the corresponding

Euler equation. To find the magnetic field evolution from the Gubser flow, we solve the

MHD equations of a stationary fluid in a conformally flat dS3×E1 spacetime. The results

are then Weyl transformed back into the Minkowski spacetime. In this case, the temporal

evolution of the resulting magnetic field is shown to exhibit a transition between an early

time 1/t decay to a 1/t3 decay at a late time. Here, t is the time coordinate. Transverse

and longitudinal components of the magnetic fields arising from these flows are also found.

The latter turns out to be sensitive to the transverse size of the fluid. In contrast to the

result arising from the Gubser flow, the radial domain of validity of the magnetic field

arising from the self-similar flow is highly restricted. A comparison of the results suggests

that the (conformal) Gubser MHD may give a more appropriate qualitative picture of the

magnetic field decay in the plasma of quarks and gluons created in heavy ion collisions.
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1 Introduction

In heavy ion collisions (HICs), large electromagnetic fields are generated by the electric

current produced by the accelerated motion of positively charged spectators, i.e. nucleons

that do not participate in the collision (see [1, 2] for recent reviews). Concerning the

evolution of electromagnetic fields, one may distinguish between the collision, early (pre-

equilibrium) and quark-gluon plasma (QGP) stages [2]. Quite a large number of attempts

are devoted to estimate the strength and the spacetime evolution of electromagnetic fields

in these stages. Depending on the energies and the impact parameters of the collisions,

they are found to be of the order eB ∼ 1-10m2
π in the early stage [2–5].1 Moreover, they

1Here, e is the electric charge and mπ ∼ 140MeV the pion mass.
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are believed to be aligned in the transverse direction with respect to the reaction plane. In

very short timescales of about 0.065 fm/c at the Relativistic Heavy Ion Collider (RHIC)

and 0.005 fm/c at the Large Hadron Collider (LHC), the spectators leave the scene, and

a medium including highly excited partons, mostly dominated by gluons, remains [6]. At

this stage, this medium is far from equilibrium and is, because of this gluon dominance,

almost a perfect insulator. Electromagnetic fields are thus believed to quickly decay in

this stage. The decay is roughly of a t−3 nature near the center of the collision [2]. In a

timescale of roughly 0.5 fm/c, the medium is deexcited into a plasma of quarks and gluons,

and a local thermal equilibrium is approximately achieved. The spacetime history of the

QGP in this stage is well understood using the relativistic hydrodynamics (RHD) (see [7]

for a recent review). Inspired by the successes of RHD, it seems therefore to be natural

to consider the relativistic magnetohydrodynamics (MHD) to provide a reliable effective

picture of the interplay between electromagnetic fields and the QGP.

In this framework, one may ask two types of questions: (1) How do electromagnetic

fields evolve within the ultrarelativistic fluid, and (2) how do the fluid degrees of freedom,

e.g. the fluid’s velocity and temperature, are affected by electromagnetic fields. To the

best of our knowledge, the first analytical realization of electromagnetic fields in MHD was

presented in [8, 9]. Here, the evolution of magnetic fields in an infinitely conductive fluid

was found in the presence of the 1 + 1 dimensional Bjorken flow [10]. In this setup the

decay of the magnetic field turns out to be of a t−1 nature at the center of the collision.

This is significantly slower than its early time decay. In a previous work [11], we relaxed

the assumption of infinite conductivity made in [8, 9], and found the evolution of magnetic

and electric fields in the presence of the Bjorken flow. We also studied the effects of

electromagnetic fields on the evolution of QGP temperature. Other attempts to study the

effects of magnetic fields on the properties of the QGP created at the RHIC and LHC, and,

in particular, to determine their lifetime are made in [12–16].

A well-known poverty of the Bjorken flow, that prevents it from giving a qualitative

picture of certain observables of HICs, is its lack of a transverse expansion [6]. In particular,

the spectra of final hadrons’ transverse momentum signal the existence of a significant radial

expansion of the QGP [17–19]. This fact motivated several attempts on the generalization of

the Bjorken flow to solutions including an appropriate transverse expansion. It is the main

purpose of the present paper to focus on the 3+1 dimensional self-similar flow from [20–22]

and the Gubser flow from [23, 24], and to determine the magnetic field evolution arising

from these flows. To do this, we present a realization of these flows in an ideal MHD using,

in particular, similar symmetry arguments as in [25].

A 3+1 dimensional self-similar flow can be regarded as a combination of three Bjorken

flows in three spatial directions. Although this flow is a simple spherical Hubble expansion,

more symmetries can be introduced by similarity variables [21, 22, 26? ]. Other attempts

are made, e.g., in [27, 28] to introduce more realistic elliptically-shaped solutions of hydro-

dynamic equations. On the other hand, the crucial observation that leads to the Gubser

flow is that the Bjorken flow is based on the assumption of a translational invariance in the

transverse plane, which, as aforementioned, prohibits an expansion of the fluid in trans-

verse directions. Similarly, the transverse MHD setup introduced in [8, 9] is, as a realization
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of the same Bjorken flow, also based on the same symmetry. Gubser argued that such a

symmetry is indeed a poor approximation for a small system such as the QGP created in

HICs, and replaced it with a certain conformal symmetry [23]. Similar techniques are used

in [29, 30] to introduce other nonboost invariant flows as well as a generalization of the

Gubser flow to the case of noncentral collisions [31].

The organization of this paper is as follows: in section 2, we briefly review the general

equations of MHD in the ideal limit. In section 3, we first present a generalized form of the

Bekenstein and Oron’s treatment of symmetries in MHD from [25]. To set a benchmark for

this analysis, we then study the transverse MHD, previously considered in [8, 9, 11], and

arrive at the same results, as expected. We close this section with remarks on a cylindrically

symmetric flow with a longitudinal boost invariance. In section 4, the method developed

in section 3 is applied to the case of a 3 + 1 dimensional self-similar flow [20, 21] with a

cylindrical similarity variable. We first find that a family of solutions exists, and that the

exact form of the magnetic field evolution is thus ambiguous. We then present a number

of possible solutions to this problem. Among others, we consider the stationary case,

where the corresponding electric current vanishes. This solution is referred to as the zero

current self-similar solution (ZCSSF). In section 5, we use the method of [23], and present

a realization of the Gubser flow in MHD. In section 5.1, we first start with a brief review

of the Gubser flow from a slightly different point of view than originally introduced in [23].

We then show, in section 5.2, that the magnetic field arising from the implementation of

the Gubser flow into ideal MHD has only one nonvanishing component in the longitudinal

beam direction, and that the surviving longitudinal component is sensitive to the finite

transverse size of the fluid. These results, however, turn out to be in contrast to what is

generally believed to be the case in HICs [2–5]. To overcome this problem, we apply, in

section 6, the technique of Weyl transformations from [24] to ideal MHD. However, instead

of using the SO(3) symmetry group as in [24], we introduce a proper similarity variable to

fix the four-velocity. We then determine the spacetime dependence of the magnetic field by

a Weyl transformation from a combination of a three dimensional anti de Sitter spacetime

and a one dimensional Euclidean space, denoted by dS3 × E1, into a 3 + 1 dimensional

Miknowski spacetime, denoted by M3,1. This turns out to be a cure for the aforementioned

problem with the Gubser MHD. This novel solution is referred to as the conformal MHD

(CMHD) solution. We emphasize at this stage that all these solutions are determined

under certain symmetry properties that may not necessarily apply in noncentral HICs,

where, as aforementioned, the strong magnetic fields are believed to be created. They may

nevertheless provide useful insight on the late time dynamics of magnetic fields produced

in noncentral HICs. Bearing this in mind, we numerically compare the ZCSSF and CMHD

solutions in section 7. In particular, we introduce a number of parameters to emphasize the

role played by nonvanishing longitudinal components of these solutions. Section 8 contains

our conclusions and final remarks.

In this paper, we take ~ = c = kB = 1, and assume the mostly plus metric diag(− +

++). The four-velocity is thus normalized as uµuµ = −1. We also use the total antisym-

metric tensor ǫ0123 = −1/ǫ0123 = −√−g and the transverse projector ∆µν ≡ gµν + uµuν .

The covariant, covariant proper time and Lie derivatives are denoted by ∇µ,D ≡ uµ∇µ,

and Lξ, respectively (see appendix A for more definitions).
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2 Equations of relativistic MHD

Relativistic MHD is an extension of the RHD that includes electromagnetic degrees of

freedom. The corresponding constitutive equations consist of the energy-momentum con-

servation equation,

∇µT
µν = 0, (2.1)

as well as homogeneous and inhomogeneous Maxwell equations,

∂αFβγ + ∂βFγα + ∂γFαβ = 0, (2.2)

and

∇νF
µν = Jµ. (2.3)

The latter implies the electric current conservation,

∇µJ
µ = 0. (2.4)

Other conserved currents, such as baryon number or entropy density currents, may also

be present in the theory. In (2.1), Tµν is the total energy-momentum tensor, consisting of

fluid and Maxwell energy-momentum tensors, Tµν
F and Tµν

EM,

Tµν = Tµν
F + Tµν

EM. (2.5)

Neglecting the magnetization and electric polarization, and assuming the fluid to be nondis-

sipative, Tµν
F is given by

Tµν
F = ǫuµuν + p∆µν . (2.6)

Here, uµ, ǫ and p are the fluid velocity, energy density and pressure of the fluid, respectively.

Moreover, the Maxwell tensor Tµν
EM reads [32–35]

Tµν
EM = Fµ

αF
να − 1

4
gµνFαβF

αβ , (2.7)

where Fµν , similar to any other antisymmetric rank two tensor, can be decomposed as [26]

Fµν = uµEν − uνEµ + ǫµνρσBρuσ. (2.8)

Here,

Eµ = Fµνuν , (2.9)

and

Bµ =
1

2
ǫµνρσuρFρσ. (2.10)

In the local rest frame (LRF) of the fluid, (2.9) and (2.10) are given by

Eµ
LRF = (0,E), Bµ

LRF = (0,B). (2.11)

For the electromagnetic field strength tensor Fµν , we identify E andB with the electric and

magnetic three-vectors, as measured in the LRF of the fluid. Because of this identification,
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Eµ and Bµ from (2.9) and (2.10) are referred to as electric and magnetic four-vectors.2

Using (2.11), the magnitudes of local electric and magnetic fields are thus given by

B ≡ |B| =
√

BµBµ, E ≡ |E| =
√

EµEµ. (2.12)

In its simplest form, the electric current, appearing in (2.3), is given by

Jµ = ρeu
µ + σeE

µ, (2.13)

where ρe is the proper charge density, and σe is the fluid conductivity. For an infinitely

conductive fluid, in order to keep the current finite, Eµ must tend to zero. This is the

so called ideal MHD limit [8, 9, 11, 25]. Using (2.1) and (2.5), the energy-momentum

conservation can also be written as [25, 36]

∇µT
µν
F = F ναJα. (2.14)

Contracting both sides of (2.14) with uν , we arrive first at the energy equation,

Dǫ+ (ǫ+ p)∇µu
µ = 0. (2.15)

This relation shows that in the ideal limit, the electromagnetic part is completely decoupled

from the energy equation. To solve (2.15), one needs to provide the equation of state (EOS).

We assume the EOS to be [20, 21]

ǫ = κp, (2.16)

with κ ≡ 1/c2s, and cs being the sound velocity in the fluid. In what follows, we assume cs
to be constant.

Projecting, at this stage, (2.14) into the transverse direction, i.e. the direction perpen-

dicular to uµ, we arrive at the Euler equation, that, in the case of ideal MHD reads [25]

(

ǫ+ p+B2
)

aµ = −∆µν

[

∂ν

(

p+
B2

2

)

−∇ρ(BνB
ρ)

]

, (2.17)

where aµ ≡ Duµ is the acceleration of the fluid. In contrast to (2.15), the Euler equation

is different from its pure hydrodynamical counterpart,

(ǫ+ p) aµ = −∆µν∂νp. (2.18)

One should bear in mind that, in the ideal MHD limit, the electric current is ambigu-

ous. Hence, only the homogeneous Maxwell equation from (2.2) should be used to solve

the energy equation (2.15) [37]. In what follows, the energy-momentum tensor and the

inhomogeneous Maxwell equations (2.3) are only used to determine Jµ.

2One should bear in mind that, in an arbitrary frame Eµ and Bµ are not purely electric and magnetic.
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3 Application of symmetries in relativistic MHD

3.1 General remarks

Complicated equations of MHD may be simplified by symmetry considerations. A few

decades ago, Bekenstein and Oron showed that these equations can be significantly sim-

plified using a temporal (stationary) and an axial symmetric flow [25]. In this section, we

generalize their treatment to the case of two arbitrary spatial symmetries.

Let us assume that there exists two vectors ξ1 and ξ2 that commute with the metric

and every physical quantities that appear in the energy-momentum tensor,

[ξi, gµν ] = 0,

[ξi, Fµν ] = 0, [ξi, uµ] = 0, · · · , for i = 1, 2. (3.1)

Based on the geometry and underlying physics of the system, symmetries are to be found.

For simplicity, let us choose a coordinate system with ξi = ∂i, i = 1, 2. Relations (3.1) thus

takes the form

∂igµν = 0, ∂iFµν = 0, ∂iuµ = 0, · · · , for i = 1, 2. (3.2)

As a consequence of (3.2), the homogeneous Maxwell equation (2.2) reads

∂0F12 = 0,

∂3F12 = 0,

∂3F02 + ∂0F23 = 0. (3.3)

Assuming Fαβ being zero at infinity, we arrive at

F12 = 0. (3.4)

As aforementioned, in the ideal MHD limit, the electric field vanishes. Hence, Fαβu
β =

Eα = 0 results in

F01u
1 + F02u

2 + F03u
3 = 0,

F10u
0 + F13u

3 = 0,

F20u
0 + F23u

3 = 0,

F30u
0 + F31u

1 + F32u
2 = 0. (3.5)

These equations lead to a number of relations between electric and magnetic components

of the field strength tensor, F0i and Fij ,

F01 =
u3

u0
F13,

F02 =
u3

u0
F23,

F03 = − 1

u0
(u1F13 + u2F32). (3.6)
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Plugging at this stage, (3.6) into (3.3), we obtain

D logF13 = D logF23 = −u0∂3

(

u3

u0

)

. (3.7)

Two magnetic components F13 and F23 are thus related as

F13 = f(ϑ)F23. (3.8)

In (3.8), ϑ is a parameter that does not change through flow lines, i.e. Dϑ = 0. It also

respects the same symmetries as in (3.2), i.e. Lξiϑ = 0, i = 1, 2. Being a proper scalar,

one can thus label flow lines with ϑ. Let us notice that under certain circumstances, ϑ

may also be regarded as a similarity variable [26]. Using (3.2), the right hand side (rhs)

of (3.7) reads

− u0∂3

(

u3

u0

)

= −∂αu
α +D log

(

u0
)

. (3.9)

The first term on the r.h.s. of (3.9) may be written in a simpler form. To do this, let us

consider a conserved current of type Qµ = Q(x0, x3)uµ that satisfies

∇α(Quα) = 0. (3.10)

Physical examples of Q include the conserved baryon number density n and entropy density

s. For following arguments, however, Q is not required to be any physical quantity. It is

merely a solution to (3.10). Using (A.2), (3.10) gives rise to

∂αu
α = −D log

(√−gQ
)

. (3.11)

Plugging, at this stage, (3.11) into (3.9), and then the resulting expression into (3.7), and

also using (3.8), the formal solution for the field strength tensor is found to be

F13 = Q
(

x0, x3
)

u0
√−gf(ϑ)h(ϑ),

F23 = Q
(

x0, x3
)

u0
√−gh(ϑ), (3.12)

with Q satisfying (3.10). These relations are quite general, and are thus valid for different

hydrodynamic flows. They will be used in the next sections to derive the evolution of

magnetic fields from the 3+1 dimensional self-similar and Gubser flows in the ideal MHD.

Assuming the corresponding symmetries to these flows, we start with these four-velocity

profiles, and solve (3.10). We show that the corresponding solutions are determined up

to functions of the proper scalar, that respects the assumed symmetries. Using then the

Euler equation (2.17), we determine these functions, and arrive at the final solutions of Bµ

in each cases.

We close this section with a brief comparison of our treatment with the one presented

in [8, 25]. In [8], in particular, the frozen-flux condition of MHD is developed in the context

of QGP. The same condition can be reproduced by making use of the homogenous Maxwell

equation (2.2) and the conservation law (3.10). It reads

(u · ∇)

(

Bµ

Q

)

=
1

Q
[(B · ∇)uµ + uµ (∇ ·B)] . (3.13)

– 7 –
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Setting the conserved charge Q equal to n and s, with n the conserved baryon number

density and s the entropy density, (3.13) is transformed into the frozen-flux condition as

developed by [25] and [8], respectively.

3.2 Ideal transverse MHD

To illustrate the approach described above, let us consider the Bjorken flow with a trans-

verse MHD setup [8, 9, 11]. In [11], it is, in particular, demonstrated that in ideal transverse

MHD, the frozen-flux condition (3.13) is translated into a continuity relation for the mag-

nitude of the magnetic field, ∂µ(Buµ) = 0, that leads to B = B0
τ0
τ upon using the Milne

parametrization, as expected from [8]. In what follows, we derive the same result by making

use of symmetry arguments.

As it was recognized by Gubser in [23], the Bjorken velocity profile can be fixed by

symmetry considerations alone. The symmetries that fix it are

1. Translational invariance in the transverse x-y plane.

2. Rotational invariance around the beamline, which is assumed to be in the z-direction.

3. Boost invariance along the beamline.

According to our arguments in [11], the translational invariance in the transverse plane

leads automatically to the transverse MHD setup, where, in particular, v ·B = 0. Let us

now parameterize the flat spacetime metric as

ds2 = −dτ2 + dx2 + dy2 + τ2dη2. (3.14)

Here, τ ≡
√
t2 − z2 is a combination of coordinates that respect all aforementioned sym-

metries.3 The parameter η ≡ 1
2 log

t+z
t−z is defined so that ∂η is the Killing vector associated

with a longitudinal boost. In terms of the coordinates of (3.14), the Killing vectors asso-

ciated with translational and boost symmetries are thus ordinary partial derivatives with

respect to (x, y) and η, respectively. Remarkably, the Bjorken four-velocity turns out to

be given by [38]

uµ = − ∂µτ
√

−∂µτ∂µτ
. (3.15)

In the metric (3.14), it reads uµ = (1, 0, 0, 0). Since there is no proper acceleration, the left

hand side (lhs) of the Euler equation (2.17) vanishes identically. Using the four-velocity

profile from (3.15), let us now determine the magnetic field. In the transverse MHD setup,

we choose the symmetries of electromagnetism to be

ξx =
∂

∂x
, ξy =

∂

∂y
. (3.16)

These are a subset of the Bjorken symmetries. Relaxing the boost invariance for quantities

other than uµ, we can use η to label flow lines. From (3.6), one notices that the electric

3The parameter τ is sometimes called spacetime proper time. In this work, we avoid this confusing

terminology, and emphasize that, in general, τ is a coordinate that only in the Bjorken case identifies with

the spacetime proper time.
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components of the field strength tensors, F0i, vanish. Moreover, according to [11], the

solution to (3.10) for Bjorken flow is given by

Q = Q0
τ0
τ
. (3.17)

Plugging (3.17) into (3.12), we arrive at

Fxη = Q0τ0f(η)h(η),

Fyη = Q0τ0h(η). (3.18)

The magnetic field Bµ is then immediately found by plugging (3.18) into (2.10). It reads

Bµ = Q0
τ0
τ
h(η) (0, 1,−f(η), 0) . (3.19)

Here, functions f and h are found by plugging (3.19) into (2.17), and solving the resulting

equation. The latter can be simplified by symmetry arguments: the second term on the

r.h.s. of (2.17), i.e. ∇ρ(BνB
ρ), vanishes due to ∇ρB

ρ = 0 and the lack of connection

between transverse and longitudinal directions. The transverse projector, i.e. ∆µν , vanishes

for µ = τ . Moreover, for µ = x, y, the r.h.s. vanishes due to symmetries. The only

nonvanishing component of (2.17) is thus in the η-direction. It reads

∂B

∂η
= 0. (3.20)

Using (3.19), this gives rise to

d

dη

[

h(η)2
(

1 + f(η)2
)]

= 0. (3.21)

Let us write, without loss of generality, the solution to (3.21) as

h(η) =
1

√

1 + f2(η)
. (3.22)

Plugging (3.21) into (3.19) leads to

Bµ = B0
τ0
τ

1
√

1 + f2(η)
(0, 1,−f(η), 0) , and B = B0

τ0
τ
. (3.23)

While, according to (3.20), B =
√

BµBµ is forced to be boost invariant, it is not necessary

for the individual components of Bµ to be so.4 Here, as in the case of the temperature and

entropy density in self-similar flows [11, 20–22], there is an arbitrariness in (3.23). This

arbitrariness disappears if one assumes Bµ to be boost invariant. Such an assumption has

a crucial physical significance, as we show below.

To do so, let us consider the electric current, Jµ from (2.13), where, according to the

arguments in [11],5 the proper charge density ρe vanishes. The electric current is thus given

4As a consequence of the η dependence of Bµ, the direction of the B field differs between two flow lines,

but is frozen through each particular flow line.
5See appendix A 1 in [11].
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by Jµ = σeE
µ. It turns out to be ambiguous, because in the ideal MHD limit, as Eµ tends

to zero, σe goes to infinity. We are therefore left with a 0 × ∞ product that cannot be

naively set to zero. Plugging, nevertheless, (3.23) into (2.3), the electric current is found

to be

Jµ = B0
τ0
τ2

f ′(η)

(1 + f2(η))3/2
(0, 1,−f(η), 0) . (3.24)

Interestingly, the current vanishes if Bµ from (3.23) is assumed to be boost invariant. This

assumption leads automatically to f ′(η) = 0. Choosing, without loss of generality, f = 1,

a specific solution for Bµ from (3.23) is given by

Bµ = B0
τ0
τ

1√
2
(0, 1,−1, 0) . (3.25)

One may also notice that

E

B
∼
√

JµJµ

σeB
=

1

σeτ

f ′(η)

(1 + f(η)2)
. (3.26)

This heuristic result confirms our previous results presented from [11], where it was found

that for E ≪ B, σe must be much larger than a typical value of τ .

3.3 General solutions of Bµ and Jµ

The rest of this work is devoted to flows that, in contrast to the transverse MHD flow, are

not translational invariance in the transverse plane, and expand in transverse directions.

Being motivated by the physics of the QGP in HICs, flows that we study share two sym-

metries, namely, boost invariance along and rotational invariance around the beamline. To

reveal these symmetries, we parameterize the flat spacetime metric as

ds2 = −dτ2 + r2dφ2 + τ2dη2 + dr2. (3.27)

For

xµ = (τ, φ, η, r), (3.28)

we thus have r =
√

x2 + y2 and φ = arctan y
x . In terms of the coordinates (3.28), the

Killing vectors that are associated with these symmetries are

ξφ =
∂

∂φ
, ξη =

∂

∂η
. (3.29)

For the above metric (3.27), Christoffel symbols read

Γτ
ηη = τ, Γη

τη = Γη
ητ =

1

τ
,

Γr
φφ = −r, Γφ

rφ = Γφ
φr =

1

r
.

(3.30)

Although the concrete form of the four-velocity profile is specific to each flow, longitudinal

boost invariance together with Z2 symmetry under η → −η eliminates uη in any case [23].6

6This is because the Z2 symmetry demands uη(−η) = −uη(η) and the longitudinal boost invariance

demands the opposite.
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If the system is nonrotating (φ independent and symmetric under φ → −φ), we thus end

up with

uµ = (uτ , 0, 0, ur) . (3.31)

Using (3.31) and (3.6), we arrive, in particular, at

Fτr = 0. (3.32)

Moreover, for the metric (3.27), (3.12) turns out to be

Fφr = rτQ(τ, r)uτf(ϑ)h(ϑ),

Fηr = rτQ(τ, r)uτh(ϑ). (3.33)

Plugging first (3.6) into (2.10), and using (3.31), the general solution of Bµ reads

Bµ =
1

uτrτ
(0, Fηr,−Fφr, 0) . (3.34)

Plugging then (3.33) into (3.34) leads to

Bµ = Q(τ, r) (0, h(ϑ),−f(ϑ)h(ϑ), 0) . (3.35)

As concerns the electric current Jµ, we use (2.3) to arrive at

Jµ =
1√−g

∂ν
(√−gFµν

)

=

(

∂

∂τ
+

1

τ

)

Fµτ +

(

∂

∂r
+

1

r

)

Fµr. (3.36)

4 The 3 + 1 dimensional self-similar flow in relativistic MHD

A 3 + 1 dimensional generalization of self-similar flows [22] was introduced in [20, 21].

In this case, the four-velocity can be shown to respect rotational invariance around and

boost invariance along the x, y and z directions. More restricting symmetries such as

the spherical, cylindrical, and elliptical symmetries are introduced by the assumption of

different similarity variables. In this section, we first present an alternative derivation of

the self-similar flow from [20–22], that fits our purposes, and then implement it into ideal

MHD, where, in particular, the self-similar solution of Bµ is presented.

To fix the four-velocity profile, we introduce the following similarity variable that

commutes with the Killing vectors of (3.29)

ϑ ≡ r

τ
. (4.1)

Assuming the similarity variable ϑ to be proper (i.e. Dϑ = 0), (3.31) takes the form

uµ =

(

τ√
τ2 − r2

, 0, 0,
r√

τ2 − r2

)

. (4.2)

A crucial point is that the combination ̺ ≡
√
τ2 − r2 respects, apart from symmetries

of (3.29), an extra symmetry represented by

ξ03 = τ
∂

∂r
+ r

∂

∂τ
. (4.3)
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Here, ξ03 can be regarded as a boost in the radial r direction (hereafter radial boost).

Similar to (3.15) for the Bjorken flow, the four-velocity profile can be written as,7

uµ = − ∂µ̺
√

−∂µ̺∂µ̺
. (4.4)

Identifying ̺ with the proper time, the proper acceleration aµ = Duµ vanishes. Moreover,

the covariant divergence of four-velocity is given by

∇µu
µ =

3

̺
. (4.5)

Physical quantities can be regarded as functions of ̺ and ϑ, instead of r and τ . For a scalar

function f(r, τ), the covariant proper time derivative is simply given by

Df =
∂f

∂̺
. (4.6)

Using (4.5) and (4.6), the solution of (3.10) for the 3 + 1 dimensional self-similar flow is

found to be

Q(τ, r) = Q0

(

̺0
̺

)3

Q(ϑ). (4.7)

Here, Q0 ≡ Q(τ0, r0), ̺0 ≡
√

τ20 − r20 and Q is an arbitrary differentiable function of

ϑ, referred to as the scaling function of Q [20–22]. Plugging, at this stage, (2.18), (4.5)

and (4.6) into the energy equation (2.15) gives rise to

∂ǫ

∂̺
+ 3

(1 + κ)

κ

ǫ

̺
= 0. (4.8)

The solution of this equation yields the ̺ dependence of ǫ. As concerns its ϑ dependence,

we consider the Euler equation (2.18). Bearing in mind that aµ on the l.h.s. of (2.18)

vanishes, we obtain

∆µν∂νp = 0, (4.9)

that requires p and ǫ to be ϑ independent. The solution to (4.8) is thus given by

ǫ = ǫ0

(

̺0
̺

)3(1+1/κ)

, (4.10)

as expected from [20–22].

At this stage, we are in a position to implement the 3+1 dimensional self-similar flow

into ideal MHD. Plugging first (4.7) into (3.35) leads to

Bµ = Q0

(

̺0
̺

)3

(0, h(ϑ),−f(ϑ)h(ϑ), 0) , (4.11)

7One may call τ and ̺ invariant scalars of the Bjorken and 3 + 1 dimensional self-similar flows,

respectively.
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where Q(ϑ) is absorbed into h(ϑ). For further convenience, we introduce two constants A1

and A2 and two functions H(ϑ) and F(ϑ) as

A1

√

H(ϑ) ≡ Q0h(ϑ),

A2

√

F(ϑ) ≡ −f(ϑ). (4.12)

Using then these definitions, (4.11) reads

Bµ =

(

̺0
̺

)3

A1

√

H(ϑ)
(

0, 1,A2

√

F(ϑ), 0
)

, (4.13)

and the magnitude of the Bµ field is given by,

B =

(

̺0
̺

)3

A1

√

H(ϑ)
(

r2 + τ2A2
2F(ϑ)

)

. (4.14)

Here, (2.12) and the metric (3.27) are used. To determine H(ϑ) and F(ϑ) in (4.13)

and (4.14), we use, as in the case of transverse MHD, the Euler equation (2.17). For

vanishing aµ on the l.h.s. of (2.17), we arrive first at

1

2

(

uµ
∂

∂̺
+ gµν∂ν

)

B2 +∆µνΓα
βνB

βBα = 0, (4.15)

where (4.9) as well as ∇ρB
ρ = aρBρ = 0 [25, 36], Bρ∂ρ = 0 and uµ∂µ = ∂̺ are used. The

second term on the l.h.s. of (4.15) can be simplified using

Γα
βνB

βBα = Γφ
φνr

2
(

Bφ
)2

+ Γη
ηντ

2 (Bη)2 . (4.16)

Here, we can set α = β, because there is no connection between longitudinal and transverse

parts of the metric. Plugging, at this stage, (4.16) into (4.15) gives rise to

1

2

(

uµ
∂

∂̺
+ gµν∂ν

)

B2 +∆µν

(

δrν r
(

Bφ
)2

+ δτντ (B
η)2
)

= 0. (4.17)

In the directions of symmetries, i.e. for µ = {η, φ}, (4.17) turns out to be trivial. In the

flow directions, i.e. for µ = {r, τ}, however, we arrive at

1

2

(

r
∂

∂τ
+ τ

∂

∂r

)

B2 + rτ

[

(

Bφ
)2

+ (Bη)2
]

= 0. (4.18)

Using the radial boost symmetry (4.3), we have

(

r
∂

∂τ
+ τ

∂

∂r

)

f(̺) = 0. (4.19)

Plugging (4.19) into (4.18), and using (4.13), we obtain

1

2

(

1− ϑ2
)

{

[

ϑ2 +A2
2F(ϑ)

] dH
dϑ

+A2
2H(ϑ)

dF
dϑ

}

+ 2ϑH(ϑ)
[

1 +A2
2F(ϑ)

]

= 0. (4.20)
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Similar to the case of transverse MHD, we are therefore left with one equation and two

unknown functions H(ϑ) and F(ϑ). In contrast to the case of transverse MHD, however,

they appear not only in Bµ from (4.13), but also in B from (4.14). Applying, as in the case

of transverse MHD, the radial boost symmetry (4.3) to remove the arbitrariness of these

functions, we arrive at constant H and F . Plugging these constant functions into (4.20),

it reduces to

2ϑH
(

1 +A2
2F
)

= 0. (4.21)

For (4.21) to hold, either H or 1+A2
2F must vanish. The latter case is impossible, because,

by (4.12), F is non-negative. For H = 0, we obtain Bµ = 0. We conclude that the radial

boost symmetry (4.21) prohibits the existence of a magnetic field in any directions. Similar

to function Q in (4.7), H and F may also be considered as scaling functions. Although Q is

arbitrary for conserved charges, the magnetic scaling functions are constrained by (4.21).

In the rest of this section, we present two possible solutions to (4.20). The first one

is found by assuming Jµ = 0, in the same spirit of (3.25) in the transverse MHD case. In

HICs, such a solution may be regarded as an approximation to late time hydrodynamical

expansion of the QGP, when induced currents are supposed to be exhausted. This solution

is referred to as the stationary or ZCSSF solution. Another interesting solution is found

by assuming H = 1. This assumption implies Bφ, which translates into By and Bx, to

not change between flow lines at every fixed proper time. This solution, in contrast to the

zero current one, turns out to be regular at r = 0, and is thus referred to as the regular

self-similar solution.

4.1 Zero current self-similar solution

Let us start by considering Jµ from (3.36). As it turns out, for self-similar flow uµ from (4.2)

with vanishing uφ and uη, the τ and r components of Jµ vanish. We are therefore left with

its φ and η components,

Jφ =
1

r2τ

(

r
∂

∂τ
+ τ

∂

∂r

)

F13 −
F13

r3
,

Jη =
1

τ3

(

r
∂

∂τ
+ τ

∂

∂r

)

F23 +

(

τ2 − 2r2
)

rτ4
F23. (4.22)

The components of Fµν , arising in (4.22), are found by first plugging (4.13) into (2.8), and

then using (3.8). This results in

Jφ = −A1A2̺
3
0

̺4
√
FH

[

2 +
1− ϑ2

2ϑ

d

dϑ
(FH)

]

,

Jη =
A1̺

3
0

̺4
√
H

[

2H+
1

2
ϑ
(

1− ϑ2
) dH
dϑ

]

. (4.23)

The solution to (4.20) that eliminates the current is thus given by

H =

(

1− ϑ2
)2

ϑ4
, and F = ϑ4. (4.24)
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Plugging H and F from (4.24) into (4.13) and (4.14), we arrive at

Bµ = B
(

̺0
̺

)2
(

0,
̺0
r2

,A2
̺0
τ2

, 0
)

, (4.25)

and

B = B
(

̺0
̺

)2
√

̺20
r2

+A2
2

̺20
τ2

. (4.26)

Here, B ≡ A1̺0 is a constant with the dimension of a magnetic field. In the limit r → 0

and r = τ , B blows up. Let us notice that in a 3 + 1 dimensional self-similar flow, other

thermodynamic quantity such as the entropy and energy densities as well as the tempera-

ture are also proportional to ρ−1 and blow up at r = τ . Transforming Bµ from (4.25) back

into the Minkowski coordinate system (t, x, y, z), it is given by

Bµ = B
(

̺0
̺

)2
(

A2
̺0
τ

sinh η,−y̺0
r2

,
x̺0
r2

,A2
̺0
τ

cosh η
)

. (4.27)

Hence, A2 turns out to be proportional to Bz/B, with Bz being the z component of B

from (2.11) in the LRF of the fluid.

4.2 Regular self-similar solution

Let us now consider (4.20) again. Plugging H = 1 into this equation gives rise to

1

2
A2

2

(

1− ϑ2
) dF
dϑ

+ 2ϑ
(

1 +A2
2F
)

= 0, (4.28)

whose solution is given by

F(ϑ) = F (0)
(

1− ϑ2
)2 − ϑ2

A2
2

(

2− ϑ2
)

. (4.29)

Plugging (4.29) into (4.14) at the point (τ0, r0) = (τ0, 0), we obtain

B0 = A1A2̺0F(0). (4.30)

Here, ̺0 =
√

τ20 − r20 = τ0 and B0 = B(τ0, r0 = 0). Let us assume, without loss of

generality, F(0) = 1. We thus get A1 = A2̺0/B0. Plugging A1 into (4.25), we arrive at

the regular self-similar solution for Bµ

Bµ = B0

(

̺0
̺

)2
(

0,

√

a20 − 1

̺
,
1

τ2

√

̺2 − r2 (τ2 + ̺2)

̺2
(

a20 − 1
) , 0

)

, (4.31)

with

B = B0

(

̺0
̺

)2
√

1− a20

( r

τ

)2
. (4.32)

Here, a20 ≡ A2
2+1

A2
2

. The radial domain of above solution is 0 ≤ r < τ
a0
. On the other hand,

a0 is related to the relative strength of magnetic field in transverse directions compared to

longitudinal ones,

a0 =

√

√

√

√1 +

(

Bφ
0

Bη
0

)2

. (4.33)
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Here, Bφ
0 ≡ Bφ(τ0, 0) and Bη

0 ≡ Bφ(τ0, 0). As mentioned above, the radial domain of (4.31),

does not cover the whole radial domain of self-similar flow r ≤ τ . At any value of τ , the

magnetic field exists only in a circle of radius r⋆ = τ/a0. The value of
∫

r dr B is constant

within this circle. Moreover, B exactly vanishes at r = τ/a0. It is also possible to show

that By = rBφ at point (t, x, y, z) = (τ, r, 0, 0). For the solution of (4.31), By = 0 at

r = 0. These kinds of properties are not relevant in the QGP context. We thus exclude

this solution from the discussion in section 7.

Let us notice, at this stage, that other solutions can also be found for (4.20). For

example, we may assume

H(ϑ) =
1

ϑ2
exp

(

− ϑ2

2b2

)

. (4.34)

Here, b is a constant. Plugging (4.34) into (4.20), one is able to find F , which contains expo-

nential integral functions, and becomes negative as ϑ tends to unity. We may alternatively

assume F to be unity, and find

H(ϑ) =
(1− ϑ2)2

(A2
2 + ϑ2)2

. (4.35)

The radial domain of this solution is highly restricted too. Moreover, the corresponding

electric current does not vanish, in contrast to Jµ arising from the ZCSSF solution (4.25).

In the rest of this work, we focus on this solution, which is nicely related to the Bjorken

and Gubser solutions, whose corresponding currents also vanish.

5 Gubser flow in relativistic MHD

The Gubser flow was first introduced in [23] and then, using a different approach, rederived

in [24]. In this section, motivated by the approach presented in [23], we mainly focus on

its realization in relativistic MHD. In section 5.1, we first derive its symmetries in a rather

different way than was presented in [23]. These symmetries are then applied to MHD, and

lead eventually to the evolution of the magnetic field in this setup (see section 5.2).

5.1 Gubser flow and its symmetries

As aforementioned, the Bjorken four-velocity (3.15) can be fixed by considering three sym-

metries8

ξx =
∂

∂x
, ξφ =

∂

∂φ
, ξη =

∂

∂η
. (5.1)

The translational invariance in the y-direction, i.e. ∂
∂y , is found by commutating ξx and

ξφ. Using the Jacobi identity, it can be shown to be a symmetry as well [32–35]. The

assumption of translational invariance in the transverse x-y plane, as in the Bjorken flow,

implies the fluid transverse size to be infinitely large. Bjorken assumed that in the central

rapidity region, where η ≈ 0, hydrodynamic equations respect the symmetries of (5.1). In

particular, he assumed that close to the center of collisions, there exists a region in the

transverse plane where fluid elements are not affected by the finite size of the system [10].

8For simplicity, the first vector is given in (3.14) parameterization, while the second one in (3.27).
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This can be interpreted as if in this region the mean free path of fluid constituents are

almost zero so that they are not aware of the fluid finite size. According to this picture,

the size of this unawareness region shrinks with the sound velocity as the system evolves.

The mean free path thus increases with time, and the system becomes diluted. There are,

however, experimental signals that suggest the early existence of a transverse expansion

(for a discussion on these signals, see [18, 19] and the references therein). The Gubser flow

takes this early transverse expansion into account.

The Gubser’s approach is to replace the Killing vectors associated with the transla-

tional invariance in (5.1), with weaker symmetries that consider the finite transverse size.

The Bjorken symmetries (5.1) cover all Killing vectors of M3,1 that may be appropriate in

this context. To expand the number of available symmetries, one extends to the conformal

group of M3,1, and, instead of Killing vectors associated with the aforementioned trans-

lational invariance, considers appropriate conformal Killing vectors that satisfy conformal

Killing equation (A.9) from appendix A. In addition, such conformal Killing vectors must

1. depend on the typical transverse size of the system, L,

2. commute with ∂η,

3. reduce to ∂x and ∂y as L → ∞,

4. and, finally, reduce to ∂x and ∂y as τ → 0 and r → 0.

Here, r, τ and η are coordinates defined in (3.28). For simplicity, we introduce a quantity

q ∼ L−1 having energy dimension. Let us consider ξx ≡ ∂x in (3.28) coordinates

ξx = cosφ
∂

∂r
− sinφ

r

∂

∂φ
. (5.2)

Let ζ be the conformal Killing vector that replaces ξx. By requirement 2, components of

ζ are found to be η independent. Using (A.9) with ν = η, one immediately finds ζη = 0,

and thus

∇αζ
α =

4

τ
ζτ . (5.3)

Equation (5.3) and ζη = 0 ensures (A.9) for metric components with µ = η and/or ν = η.

Using (A.7), (A.9) is rewritten as

∇µζν +∇νζµ =
2

τ
ζτgµν . (5.4)

For (µ, ν) = (τ, τ), (5.4) gives rise to

τ
∂ζτ

∂τ
= ζτ , (5.5)

whose solution is given by

ζτ = τA(r, φ). (5.6)

This leads immediately to ζτ = 0 at τ = 0. Using the fact that ζτ has also to vanish

at r = 0 and q = 0, we arrive at ζτ = q2rτA(φ), with A(φ) a function of φ, which is to
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be determined. The other two components of ζ, ζφ and ζr, must reduce to components

of (5.2) at r = τ = 0 and q = 0. It is thus reasonable to assume

ζ = q2τrA(φ)
∂

∂τ
+
[

1 + qbB(τ, r)
]

cosφ
∂

∂r
− [1 + qcC(τ, r)]

sinφ

r

∂

∂φ
, (5.7)

with b and c being positive constants, and functions B(τ, r) and C(τ, r) vanishing at τ =

r = 0. These functions are determined by plugging (5.7) into (5.4). For (µ, ν) = (τ, φ) and

(µ, ν) = (τ, r), we arrive at

q2τA′(φ) = −qc sinφ
∂C

∂τ
,

q2τA(φ) = qb cosφ
∂B

∂τ
, (5.8)

respectively. An immediate result of (5.8) is that b = c = 2. Bearing in mind that B(τ, r)

and C(τ, r) are functions of τ and r, and that A(φ) depends only on φ, (5.8), we obtain

A(φ) = A cosφ,

B(τ, r) =
A

2
τ2 + B̄(r),

C(τ, r) =
A

2
τ2 + C̄(r), (5.9)

with A being a constant, and B̄ as well as C̄ two unknown functions depending only on r.

They are determined by plugging (5.9) into (5.7). This leads to

ζ = Aq2τr cosφ
∂

∂τ
+

(

1 +
A

2
q2τ2 + q2B(r)

)

cosφ
∂

∂r
−
(

1 +
A

2
q2τ2 + q2C(r)

)

sinφ

r

∂

∂φ
.

(5.10)

Plugging, at this stage, (5.10) into (5.4) with (µ, ν) = (r, r) and (µ, ν) = (φ, φ), we then

obtain

Ar2 − B̄(r) + C̄(r) = 0, B̄′(r) = Ar. (5.11)

Solving (5.11), we finally end up with

ζ = Aq2τr cosφ
∂

∂τ
+

(

1 +
A

2
q2
(

τ2 + r2
)

)

cosφ
∂

∂r
−
(

1 +
A

2
q2
(

τ2 − r2
)

)

sinφ

r

∂

∂φ
,

(5.12)

that satisfies (A.9). Here, A remains an arbitrary constant. It can be absorbed into q.

Setting, however, A = 2, the vector introduced in [23] is found. It reads

ζ = 2q2τr cosφ
∂

∂τ
+
[

1 + q2
(

τ2 + r2
)]

cosφ
∂

∂r
−
[

1 + q2
(

τ2 − r2
)]

r
sinφ

∂

∂φ
. (5.13)

Having ζ in hand, it is possible to determine the other symmetry of the Gubser flow, that

replaces ∂y of the Bjorken flow. It is found from ζ ′ = [ζ, ∂φ]. It is then easy to check that

∂φ, ζ and ζ ′ satisfy the SO(3) algebra [ξi, ξj ] ∼ ξk, and can be regarded as generators of

this group.
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In what follows, we use appropriate symmetry arguments, and show that the Gubser

flow is given by

uµ = (coshΘ, 0, 0, sinhΘ) , (5.14)

with

tanhΘ =
2q2rτ

1 + q2 (τ2 + r2)
. (5.15)

To do this, let us consider

LζX = −aX

4

(

∇λζ
λ
)

X, (5.16)

with X being an arbitrary rank tensor with ζ-weight equal to aX [23]. Here, aX is a

constant number. Moreover, for ζ from (5.13), we have

∇λζ
λ = 8q2r cosφ. (5.17)

Before proving (5.14), let us first consider a number of relevant examples for the ζ-weight

aX of an arbitrary rank tensor X. Plugging, for instance, the metric into (5.16), it turns

out that it has a ζ-weight equal to ag = −2. Moreover, whereas the transverse coordi-

nates, r and φ, do not have any well-defined ζ-weights, the ζ-weights for the longitudinal

coordinates, τ and η, are given by aτ = −1 and aη = 0. They arise from

Lζτ =
1

4

(

∇λζ
λ
)

τ, and Lζη = 0, (5.18)

respectively. In addition to η, the only combination of coordinates with zero ζ-weight turns

out to be [23]

G ≡ 1− q2
(

τ2 − r2
)

2qτ
. (5.19)

Let us now turn back to the Gubser flow (5.14). To show it, one should bear in mind that

uµ is a hydrodynamical variable, and as such, it has a well-defined ζ-weight. Moreover,

it also respects boost and rotational symmetries. In other words, it commutes with the

Killing vectors from (3.29). It is thus constrained to be a function of τ and G. To determine

the ζ-weight of uµ, let us remind that the transverse projector ∆µν should have the same

weight as the metric, i.e. a∆ = −2. This is satisfied if uµ has a ζ-weight equal to auµ = −1.

From uµu
µ = −1, one then finds uµ’s ζ-weight to be given by auµ = +1. Using, at

this stage, (5.16) for uµ with auµ = +1 and the Z2 symmetry, we arrive at Gubser four-

velocity (5.14). Alternatively, uµ is given by [38]

uµ =
∂µG

√

−∂µG∂µG
. (5.20)

Similar relations are also found for the Bjorken and self-similar flows in (3.15) and (4.4).

In contrast to these flows, however, it turns out that one cannot introduce any proper

similarity variable for the Gubser flow without destroying the corresponding symmetry

constraints. This is because the only proper scalar in this setup,

Λ ≡ 2qr

1− q2 (r2 − τ2)
, (5.21)
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does not have any well-defined ζ-weight, and cannot therefore be used as a proper similarity

variable.

Let us notice, at this stage, that using the general solution of (5.16),

X =
X̃(G)

τa
, (5.22)

with G from (5.19)), it is possible to determine the (τ,G) dependence of other hydro- and

thermodynamical variables.9 Plugging, e.g., (5.22) with X = ǫ into (2.15), and using the

EOS,10

ǫ = 3p, (5.23)

leads to

ǫ =
ǭ0

τ4 (1 +G2)4/3
, (5.24)

where ǭ0 is an arbitrary integration constant.11 Alternatively, we may use (C.18) for ǫ(τ).

By the magic of symmetries, the energy density and pressure automatically satisfy the

Euler equation.

5.2 Magnetic field from the Gubser flow in relativistic MHD

Let us now turn back to the implementation of the Gubser flow into relativistic MHD. This

eventually leads to a (τ,G) dependence of the magnetic field. Let us notice that such a

formulation is possible, because the electromagnetic part of energy-momentum tensor (2.7)

is traceless. It thus respects the conformal invariance [32–35].

Let us first consider

B · ∂ = Bφ ∂

∂φ
+Bη ∂

∂η
, (5.25)

that arises from the application of rotational and boost symmetries from (3.29). In

the index free notation, the Lie derivative of the magnetic four-vector with respect to

ζ from (5.13) is thus given by

[ζ, B · ∂] = 2q2rτBφ sinφ
∂

∂τ
+
[

1 + q2
(

τ2 + r2
)]

Bφ sinφ
∂

∂r

+
cosφ

r

{

[1 + q2
(

τ2 − r2
)

]Bφ + r

(

[

1 + q2
(

τ2 + r2
)] ∂Bφ

∂r
+ 2q2rτ

∂Bφ

∂τ

)}

∂

∂φ

+cosφ

{

[

1 + q2
(

τ2 + r2
)] ∂Bη

∂r
+ 2q2rτ

∂Bη

∂τ

}

∂

∂η
. (5.26)

On the other hand, according to (5.16), we have [ζ, B · ∂] ∝ B · ∂ with B · ∂ from (5.25).

This implies the τ and r components of (5.26) to be vanishing. We therefore arrive at

Bφ = 0. (5.27)

9In the rest of this paper, quantities with “tilde” are defined to be functions of G.
10To respect conformal invariance the energy-momentum tensor must be traceless. This implies the EOS

to be given by (5.23).
11Here, ǭ0 6= ǫ(τ0, 0).
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Using, at this stage, the general solution of (5.16) from (5.22), the formal solution of Bµ

is given by

Bµ =
1

τaB

(

0, 0, B̃η(G), 0
)

, (5.28)

where aB is the ζ-weight of the magnetic four-vector Bµ and B̃η is a scalar function of

G from (5.19). To determine aB, let us consider the total energy-momentum tensor Tµν

from (2.5). Using (5.24), the ζ-weight of the energy density turns out to be aǫ = +4.

Bearing in mind that auµ = +1, the ζ-weight of Tµν turns out to be aT = +6 [see (2.6)].

Plugging, on the other hand, Fµν ∝ Bρ from (2.8) with Eµ = 0 into (2.7), it turns out

that Bµ shows up in a BµBν combination in the energy-momentum tensor. Its ζ-weight is

thus given by aB = +3. This immediately leads to

Bµ =
1

τ3

(

0, 0, B̃η(G), 0
)

. (5.29)

Comparing, at this stage, (5.29) with the general solution (3.35) for the Bµ field, and bear-

ing in mind that the Gubser’s setup does not comprise any similarity variable, the functions

f and h in (3.35) turn out to be constant. Hence, the only nonvanishing component of Bµ

is Bη, and (3.35) thus reduces to

Bη = −AQ, (5.30)

with A being a constant and Q the solution to (3.10) for the Gubser flow (5.14). To find

Q, we first notice that, according to (5.30), aQ = aB = +3. We thus have

Q =
1

τ3
Q̃(G). (5.31)

Plugging (5.31) into (3.10), and using (A.2) as well as (5.14), we arrive first at

∂

∂τ

(

r coshΘ
Q̃(G)

τ2

)

+
∂

∂r

(

r sinhΘ
Q̃(G)

τ2

)

= 0, (5.32)

that leads to

2GQ̃(G) +
(

1 +G2
) dQ̃

dG
= 0. (5.33)

Here, the definition of G from (5.19) is used. Solving (5.33) results in

Q =
Q̄0

τ3 (1 +G2)
, (5.34)

where Q̄0 is an arbitrary integration constant. Plugging finally (5.34) into (5.30) leads to

Bµ = (0, 0, Bη, 0) , with Bη = − B̄0

τ3 (1 +G2)
. (5.35)

Here, B̄0 ≡ AQ̄0 and G is given in (5.19). Using (5.35), (5.19), and the metric (3.27), the

magnitude of magnetic field thus reads

B =
4q2B̄0

1 + 2q2 (τ2 + r2) + q4 (τ2 − r2)2
. (5.36)
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As concerns the Euler equation, plugging (5.35) and (5.36) into (2.17), and using (5.23) as

well as (5.24), it turns out to be automatically satisfied.

At this stage, a number of remarks are in order. As we have shown, in the above

method of the MHD realization of the Gubser flow, only the longitudinal z component of

the magnetic field survives.12 In HICs, however, the created magnetic field is believed to

be aligned in the transverse x-y directions, while its longitudinal components are reported

to be small [2–5]. Although the elimination of transverse components in Bµ from (5.35)

is not a feature of HICs, one may get some insights about the longitudinal component of

the magnetic field in this approach. The first point is that the existence of a longitudinal

component is controlled by the finiteness of the transverse size, i.e. by taking the limit

q → 0 or L → ∞, Bz and B automatically vanish. The second point is that if we consider

the ratio ς ≡ B(τ, 0)/B(τ, 1/q), we obtain

ς =
4 + q4τ4

(1 + q2τ2)2
.

Whereas at τ = 0 we have ς = 4, ς reduces to a minimum of 4/5 at τ = 2/q, and

then asymptotically tends to unity as τ → ∞. This indicates that Bz becomes spatially

homogeneous in late times. The question whether these features are of any relevance for

the magnetic fields produced in HICs remains, however, open.

In sections 3 and 4, we introduced a proper similarity variable, and relaxed at least one

of the symmetries of the flow. According to our arguments in the present section, however,

such a similarity variable cannot be defined for the Gubser flow without destroying the

corresponding symmetry constraints. We notice that without an appropriate similarity

variable, we have to apply all symmetries from RHD to the relativistic MHD. It is exactly

this full set of symmetries that prohibits the magnetic field (5.35) to possess transverse

components. In the next section, we slightly modify the alternative approach to the Gub-

ser flow from [24], and implement it into relativistic MHD. This modification enables us to

define an appropriate similarity variable, and relax at least one of the symmetries of the

flow. We show that apart from longitudinal components, nonvanishing transverse compo-

nents of the magnetic field also arise, and, at the same time, the corresponding flow remains

preserved. The results presented in the next section are supposed to be more relevant for

the magnetic fields created in HICs.

6 Conformal MHD

In this section, we first start with a brief review of the method presented in [24]. Then,

relaxing a number of symmetries in this setup, we introduce an appropriate similarity

variable. We finally generalize our arguments to relativistic MHD, and determine the

spacetime dependence of the magnetic field.

Let us consider two spacetimes that are related through a Weyl rescaling

ds2 = Ω(x)2dŝ2. (6.1)

12According to (C.3), in the LRF of the fluid Bx = 0, By = rBφ = 0 and Bz = τBη 6= 0, with Bη given

in (5.35).
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A physical quantity X, being an arbitrary rank tensor, is said to have a conformal weight

of wX if

X = Ω(x)−wXX̂. (6.2)

Here, X̂ is the tensor in the spacetime associated with dŝ2 from (6.1).13 Following the

standard practice, we denote the conformal weight of X with [X]. All hydrodynamical

degrees of freedom, in particular, the four-velocity, have definite conformal weights [24].14

In contrast, the acceleration aµ does not have any definite conformal weight. This is why,

a nonaccelerating flow in a conformally flat spacetime can transform to an accelerated one

in the flat spacetime. Using Ω = τ in (6.1), the four-dimensional Minkowski spacetime is

transformed into dS3 × E1 [24]. The corresponding metric is then parameterized as

dŝ2 = −dρ2 + cosh2 ρ sin2 θ dφ2 + dη2 + cosh2 ρ dθ2. (6.3)

Here,

sinh ρ = −1− q2
(

τ2 − r2
)

2qτ
,

tan θ =
2qr

1 + q2 (τ2 − r2)
. (6.4)

Comparing with the definitions of G and Λ in (5.19) and (5.20), one notices that G =

− sinh ρ and Λ = tan θ. The corresponding Christoffel symbols to (6.3) read

Γρ
θθ = cosh ρ sinh ρ, Γρ

φφ = cosh ρ sinh ρ sin2 θ,

Γθ
ρθ = tanh ρ, Γθ

φφ = − cos θ sin θ,

Γφ
ρφ = tanh ρ, Γφ

φθ = cot θ.

(6.5)

According to the arguments in [24], a stationary fluid with SO(3)×SO(1, 1)×Z2 symmetry

in dS3 × E1 transforms into the Gubser flow in the Minkowski spacetime M3,1. As in

previous sections, the Killing vector associated with the SO(1, 1) subgroup is ∂η. Moreover,

it is known that the SO(3) subgroup of SO(3)× SO(1, 1)×Z2, which acts on the S2 part

of dS3 with a constant ρ, contains ∂φ and [32–35]

ξ1 = sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ
,

ξ2 = cosφ
∂

∂θ
− cot θ sinφ

∂

∂φ
. (6.6)

Comparing (6.6) with (5.2), reveals ξ1 and ξ2 being translations in S2. Using (6.6)

and (3.29), physical quantities are thus functions of ρ, that plays the role of τ in the

Bjorken flow. A comparison with the Bjorken case (3.15) gives rise to

ûµ = − ∂µρ
√

−∂µρ∂µρ
= (−1, 0, 0, 0). (6.7)

13In the rest of this paper, quantities with “hat” are in the spacetime associated with dŝ2 from (6.1).
14This is a similar concept like the ζ-weight in section 5.
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Hence, in the coordinates presented by (6.3), the fluid is stationary. The Gubser flow in

the flat spacetime, (5.14), can be rederived from (6.7) with an appropriate Weyl rescaling

together with a coordinate transformation [24].

At this stage, instead of applying (6.6) and (3.29) to the field strength tensor, and

arriving at a constant magnetic field, we relax (6.6), and introduce a proper similarity

variable ϑ = ϑ(θ). This leads to the same velocity profile (6.7), but physical quantities, in

particular, the electromagnetic field strength tensor may acquire θ dependence. Following

the arguments presented in [11, 22], it turns out that the θ dependence of the energy

density and pressure are eliminated. However, certain scaling function for the temperature

remains (see appendix B for some more details). In this way, the hydrodynamics of the

Gubser flow remain essentially the same as presented in [23, 24].

To generalize the above arguments to MHD, let us bear in mind that the equations

of MHD (2.1) and (2.3) are conformal invariant, and that a solution can be transformed

between two conformally related spacetimes. Inspecting electromagnetic terms in Tµν ,

one finds
[

Fαβ
]

=
d+ 4

2
, [Fαβ ] =

d− 4

2
. (6.8)

For d = 4, we have, in particular, [Fαβ ] = 0. On the other hand, as we have argued before,

Bµ appears in a BµBν combination in the energy-momentum tensor. Hence,

[Bµ] =
d+ 2

2
, [Bµ] =

d− 2

2
, [B] =

d

2
. (6.9)

We therefore have

Bµ(x) = Ω−
d+2

2
∂xµ

∂x̂ν
B̂ν(x̂). (6.10)

In what follows, we first determine the components of Bµ in dS3 × E1, where, according

to (6.7), the fluid turns out be stationary. Using (6.10), we then transform them back into

the Minkowski spacetime. To solve MHD equations in the (6.3) spacetime, let us consider

the Killing vectors (3.29), this time in the dS3 × E1 spacetime. Similar to the transverse

MHD setup, since the fluid is stationary, the electric component of the field strength tensor

vanish, i.e. F̂0i = F̂i0 = 0, and (3.3) thus leads to

∂F̂13

∂ρ
= 0,

∂F̂23

∂ρ
= 0. (6.11)

In addition, F̂φη = F̂12 turns out to be constant. Without loss of generality, we choose this

constant to be zero.15 We use the following ansatz for two nonvanishing components of

Fµν , which turn out to be functions of ϑ,

F̂23 = A1

√

F(ϑ), F̂13 = − sin θA2

√

H(ϑ) (6.12)

15It can be shown that a nonzero value for F̂φη, which eventually leads to a nonvanishing B̂θ component,

apart from B̂φ and B̂η components from (6.21), can be eliminated by appropriately rotating the x-y plane

around the z-axis.
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Here, similar to (4.12), A1 and A2 are constants, and F(ϑ) and H(ϑ) two unknown scaling

functions. Plugging, at this stage, (6.12) into (2.10), we arrive first at

B̂µ =
1

cosh2 ρ sin θ

(

0,A1

√

F(ϑ), sin θA2

√

H(ϑ), 0
)

. (6.13)

To determine the scaling functions F(ϑ) andH(ϑ), let us consider the Euler equation (2.17).

Here, similar to the case of the Bjorken flow, the fluid is not accelerated. We thus have

âµ = 0. Being merely a function of ρ, the pressure p̂ satisfies

∆̂µν∂ν p̂ = 0. (6.14)

The Euler equation (2.17) thus reduces to

1

2
∆̂µν∂νB̂

2 = ∆̂µν∇ρ

(

B̂νB̂
ρ
)

=−∆̂µνΓβ
ανB̂

αB̂β

= −cosh2 ρ sin2 θ ∆̂µνΓφ
φν

(

B̂φ
)2

−cosh2 ρ sin2 θ ∆̂µν
(

tanhρδρν+cotθ δθν

)(

B̂φ
)2

.

(6.15)

Plugging (6.13) into (6.15), we thus arrive at

1

2
∆̂µν∂ν

[

(

1

cosh2 ρ sin θ

)2
(

r2A2
1F(ϑ) + τ2A2

2 sin
2 θ H(ϑ)

)

]

= −r2A2
1F(ϑ)

cosh2 ρ
∆̂µν

(

tanh ρ δρν + cot θ δθν

)

. (6.16)

Bearing in mind that the fluid in dS3×E1 is stationary, it turns out that ∆̂iν = giν for the

spatial directions i = θ, φ, η, while it vanishes in the temporal direction ρ. Hence, (6.16)

becomes trivial for µ = ρ. For µ = {φ, η}, the l.h.s. of (6.16) vanishes because of (3.29),

and the r.h.s. because of Kronecker δs. Setting µ = θ, (6.16) thus reads

A2
1 cosh

2 ρ

(

1

2

dϑ

dθ

dF
dϑ

+ cot θF(ϑ)

)

+
1

2
A2

2

dϑ

dθ

dH
dϑ

= 0. (6.17)

Let us notice that (6.17) must be satisfied for any value of ρ. In addition, the solutions

are to be independent of a particular choice for ϑ. Hence, without loss of generality, we let

ϑ = θ. At ρ = 0, we thus obtain

A2
1

(

1

2

dF
dθ

+ cot θF(θ)

)

= −1

2
A2

2

dH
dθ

. (6.18)

Plugging (6.18) back into (6.17) leads to
(

1

2

dF
dθ

+ cot θF(θ)

)

= 0, and
dH
dθ

= 0. (6.19)

The solutions to (6.19) read16

F(θ) =
1

sin2 θ
, and H(θ) = 1. (6.20)

16For simplicity, integration constants are chosen to be unity.
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Plugging, at this stage, (6.20) into (6.13) leads to

B̂φ =
A1

cosh2 ρ sin2 θ
, and B̂η =

A2

cosh2 ρ
. (6.21)

To transform B̂µ back into the Minkowski spacetime, we use (6.10). Using the fact that

the coordinates η and φ are the same in dS3 ×E1 and M3,1, (6.10) with Ω = τ and d = 4

reduces to

Bµ =
B̂µ

τ3
. (6.22)

Plugging (6.21) into (6.22), and using (6.4) as well as the relation r = τ cosh ρ sin θ, the

components of the magnetic field in conformal MHD read

Bφ =
A1

r2τ
,

Bη =
1

τ

4q2β0A1

[1 + q4(τ2 − r2)2 + 2q2(τ2 + r2)]
, (6.23)

with β0 ≡ A2/A1. In the limit of τ → 0, β0 reduces, for qr = 1, to

β0 = lim
τ→0

Bη

Bφ

∣

∣

∣

∣

qr=1

. (6.24)

Hence, Bµ in the Minkowski spacetime is given by

Bµ =
(

0, Bφ, Bη, 0
)

, (6.25)

with Bφ and Bη from (6.23). Taking the covariant square root of (6.25), the magnitude of

the magnetic field given by

B = A1

[

1

r2τ2
+ β2

0

(

4q2

[1 + q4(τ2 − r2)2 + 2q2(τ2 + r2)]

)2
]1/2

. (6.26)

Let us now consider the solutions (6.23) and (6.26) for Bµ and B in the Minkowski space-

time. As it turns out, in contrast to the longitudinal coordinate of the magnetic field Bη,

its transverse one Bφ is independent of the system transverse size L ∼ q−1. In addition, B

exhibits a full symmetry under exchange of τ and r. The first term is, however, singular

in r and τ . Neglecting the longitudinal term including q, and defining B0 to be the value

of B at some arbitrary point (r0, τ0), B is then given by

B = B0
r0τ0
rτ

. (6.27)

For any fixed radius r⋆, (6.27) is B = B0
τ0
τ , which is the same as the transverse MHD

result (3.23), with B0 replaced with B0 ≡ B0r0/r
⋆ and fixed r⋆. Same scaling behavior oc-

curs for the radial evolution of the magnetic field, because of the aforementioned symmetry

under the exchange of r and τ .
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We close this section with the computation of the electric current in this conformal

MHD setup. Using (2.4) and the dS3 × E1 metric (6.3), we first arrive at

Ĵµ =
1√−g

∂ν

(

F̂µν√−g
)

=
1√−g

[

∂ρ

(

F̂µρ√−g
)

+ ∂θ

(

F̂µθ√−g
)]

=
1

cos2 ρ sin θ
∂θ

(

F̂µθ cos2 ρ sin θ
)

=

(

∂

∂θ
+ cot θ

)

F̂µθ. (6.28)

Plugging then (6.20) into (6.12), we obtain

F̂φθ = − β0A0

cosh4 ρ sin θ
,

F̂ ηθ =
A0

cosh2 ρ sin θ
. (6.29)

We finally arrive at

Ĵµ = 0, (6.30)

by plugging (6.29) into (6.28). Transforming (6.30) back into the Minkowski space, we

obtain17

Jµ = 0. (6.31)

This result is in contrast to the cases of transverse MHD and self-similar flow in sections 3

and 4. In transverse MHD setup in section 3, the electric current vanishes if Bµ from (3.23)

is assumed to be boost invariant. In the self-similar flow in section 4.1), we assumed Jµ = 0,

and found a specific solution to (4.20). In both cases, we could, in principle, use the heuristic

relation E/B ∼ J/(Bσe) to study the consistency of the ideal MHD limit. However, since

Jµ identically vanishes, such argument does not hold in the present case.

7 Comparison of solutions

In this section, we compare different features of the solutions presented in previous sections.

In particular, we focus on the ZCSSF solution from (4.25) and (4.26) as well as the CMHD

solution from (6.23) and (6.26). As described in the previous sections, these results are

derived using certain symmetry conditions, which may not directly apply in noncentral

HICs, where large magnetic fields are believed to be created. They, however, provide

useful insight on late time dynamics of the magnetic fields. Bearing this in mind, we define

(see appendix C for more details),

Binit. ≡ |B(τ0, r0)|, (7.1)

with B =
(

0, rBφ, τBη
)

from (C.3), and examine the evolution of the dimensionless quan-

tityB/Binit. forB being ZSCCF and CMHD solutions. Let us notice that studyingB/Binit.,

instead of B, enables us to compare these solutions independent of Binit., that cannot be

determined in the MHD framework. In this way, we measure, without loss of generality,

17We notice that such a transformation is only allowed when a quantity has a definite conformal weight.

According to [24] the conformal weight of the current is [Jµ] = 4.
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any local quantity at a point (t, x, y, z) = (τ, r, 0, 0). In the context of HICs, where the

z-axis is identified with the beam direction, (τ, r, 0, 0) turns out to be on the axis of the

impact parameter characterized by φ = 0 in the mid-rapidity η = 0. Apart from Binit., we

also define

α =
Bz

By

∣

∣

∣

φ=0,η=0
, (7.2)

as the ratio of the longitudinal and transverse components of the magnetic field. Here, α

is the cotangent of the angle between B and the beamline. Using α, and, in particular,

α0 gives us the possibility to express different solution-dependent parameters with a single

free parameter (see appendix C for more details).18 In what follows, the point (τ0, r0) is

referred to as the initial point. We assume τ0 = 0.5 fm/c and r0 = csτ0, where cs = 1/
√
3 is

the speed of sound. Whereas, the value of r0 is arbitrary, and can thus be chosen as small

as desired, τ0 is roughly equal to the thermalization time [17]. Another useful quantity is

λ, defined by

λ ≡ Bz

B

∣

∣

∣

φ=0,η=0
. (7.3)

Here, Bz = τBη is the longitudinal magnetic field component and B = |B|, with B

from (C.3). We demonstrate the evolution of the dimensionless quantity λ/λ0 for the

ZCSSF and CMHD solutions with respect to τ and r. Similar to α, λ turns out to be the

cosine of the angle between B and the beamline. To have a measure for the strength of the

magnetic field, we also study the ratio of magnetic field energy B2 over the fluid energy

density ǫ,

σ ≡ B2

2ǫ
. (7.4)

This quantity is, in particular, related to the Alfvén wave velocity [39]

vA ≡
√

2σ

2σ + 1 + c2s
, (7.5)

that goes to the speed of light c = 1, as σ tends to infinity.

The corresponding B fields to the ZCSSF and CMHD solutions turn out to be only

functions of r and τ , and to have no radial components.19 In general, at a fixed value

of r, the τ -dependency of the B field describes its evolution with time, whereas the r

dependence at a fixed value of τ gives the spatial distribution of the magnetic field in the

transverse plane. As it turns out, the evolution and spatial distribution in both cases are

sensitive to α0 = α(τ0, r0) with α defined in (7.2). Despite this similarity, two solutions

are different in many aspects. The first difference is in their radial domain of validity.

Whereas the CMHD solution covers the whole domain [r0,∞) for any fixed value of τ , the

ZCSSF solution merely covers r ≤ τ . This is demonstrated in figure 1, where the (τ, r)

dependence of B/Binit. for the ZCSSF and CMHD solutions from (C.9) and (C.15) are

plotted in figure 1(a) and figure 1(b), respectively. Moreover, the magnetic field turns out

18In general, X0 denotes the quantity X as measured at the initial point, i.e. X0 ≡ X(τ0, r0).
19In (4.25) and (6.26), r =

√

x2 + y2 is the length of r = (x, y), which is defined to be in the transverse

x-y plane.
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Figure 1. (color online). (a) The (τ, r) dependence of B/Binit. for the ZCSSF solution (C.9) is

plotted for α0 = 0.01. The magnetic field turns out to be restricted to the domain r ≤ τ . (b)

The (τ, r) dependence of B/Binit. for the CMHD solution (C.15) is plotted for α0 = 0.01 and

1/q = 4.3 fm [23]. In contrast to the ZCSSF case, there is no restriction on the radial domain of

the CMHD solution.

to be generally stronger in the CMHD solution than the ZCSSF one [see figure 2, where

the (τ, r) dependence of BCMHD/BZCSSF is plotted].20 As the system evolves, the ZCSSF

solution significantly lags behind the CMHD one. For the CMHD solution, B is not far

from Binit. for a significant timescale τ ≃ 5-6 fm/c, that covers most of the hydrodynamical

expansion near the center of the collision. On the other hand, for the ZCSSF solution, the

magnetic field becomes one order of magnitude smaller at a very short timescale. Let us

notice that if Binit. is sufficiently large to have measurable quantum effects, then significant

physical differences will arise. These properties are demonstrated in figure 3, where the

τ dependence of [B/Binit.]sol, with sol = {ZCSSF,CMHD}, is plotted for α0 = 0.01 (solid

orange curves) and α0 = 1 (dashed blue curves).

In figure 4, the r dependence of B/Binit. for the ZCSSF and CMHD solutions is demon-

strated for α0 = 0.01 (solid orange curve) and α0 = 1 (dashed blue curve). A comparison

of the radial and temporal dependence of BZCSSF in figures 4(a) and 3(a) shows that the

radial dependence of BZCSSF is quite different from its temporal evolution. As concerns its

radial dependence, the magnetic field tends to infinity as r/τ → 1. In particular, it does

not exist for r > τ . The vertical green line in figure 4(a) indicates the r = τ validity bor-

derline for the ZCSSF solution (here, τ = τ0 = 0.5 fm/c). We notice that, mathematically,

this inherent feature of the ZCSSF solution arises from the factor 1/̺ in (C.9). In contrast

to the ZCSSF solution, the radial dependence of the magnetic field for the CMHD solu-

tion, demonstrated in figure 4(b) is very similar to its temporal evolution from figure 3(b).

Similar to its temporal dependence, B . Binit. for a relatively large distance r ∼ 4-5 fm.

20Here, Bsol with sol = {ZCSSF,CMHD} are defined by B = |B| from (C.3), with (Bφ, Bη) from (4.25)

for the ZCSSF solution and from (6.23) for the CMHD solution (see appendix C for more details).
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Figure 2. (color online). The (τ, r) dependence of the ratio BZCSSF/BZCSSF is plotted for α0 = 0.01

and 1/q = 4.3 fm. Both magnetic fields are comparable around τ = r line. For τ > r and any fixed

value of r, the CMHD solution becomes significantly larger than the ZCSSF one.

Figure 3. (color online). The τ dependence of B/Binit. for the ZCSSF solution (panel a) and

CMHD solution (panel b) is plotted at r = r0 and for α0 = 0.01 (solid orange curve) and α0 = 1

(dashed blue curve). For the CMHD solution q is chosen to be q = 1/4.3 fm−1. Whereas B/Binit. for

the ZCSSF solution drops below 0.1 around τ ∼ 1 fm/c, B for the CMHD solution becomes 0.1Binit.

at τ ∼ 6 fm/c. In contrast to BCMHD, the decay of the ZCSSF field turns out to become faster,

if the initial magnetic field has a large component along the beamline. The latter is characterized

with larger α0.
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Figure 4. (color online). The r dependence of B/Binit. for the ZCSSF solution (panel a) and the

CMHD solution (panel b) is plotted at τ = τ0 and for α0 = 0.01 (solid orange curves) and α0 = 1

(dashed blue curves). For the CMHD solution q is chosen to be q = 1/4.3 fm−1. Whereas BZCSSF

blows up as r → τ (this is indicated by the vertical green line in panel a), BCMHD is finite in the

whole range of r. For the latter case, the decay of B is slower for the initial magnetic field having

a larger component along the beamline (larger α0).

In HIC experiments, the longitudinal component of the magnetic field, Bz, is generally

reported to be small [2]. However, in our solutions, Bz does not vanish neither in the

ZCSSF nor in the CMHD cases.21 Moreover, as it is demonstrated in figures 3 and 4 for

the τ and r dependence of the magnetic field, B/Binit. is sensitive to α0. As it turns out,

the ZCSSF and CMHD solutions behave differently for various choices of α0. Whereas

the ZCSSF solution decays faster for larger values of α0, the CMHD solution lives longer

for the initial magnetic field having larger component along the beamline (see the plots in

figure 3, and compare the τ dependence of the ZCSSF and CMHD solutions for α0 = 0.01

and α0 = 1). Moreover, the CMHD solution turns out to be significantly more sensitive to

α0 comparing to the ZCSSF solution. As concerns the radial dependence of B/Binit. for

the ZCSSF and CMHD solutions, whereas BZCSSF increases with a larger slope, the decay

of BCMHD becomes slower for larger values of α0 [see figure 4(b)], so that for larger values

of α0, BCMHD is relatively strong in larger radial distances with respect to the centrum of

the collision at r = 0.

The evolution of [λ/λ0]ZCSSF and [λ/λ0]CMHD in the temporal τ and radial r directions

is presented in figures 5 and 6, respectively. For the ZCSSF solution, λ/λ0 always decreases

as the system evolves, although for an initially large α0, it decreases at a slower pace [see

figure 5(a) and compare the evolution of [λ/λ0]ZCSSF for α0 = 0.01 (solid orange curve)

and α0 = 1 (dashed blue curve)]. The evolution of λ/λ0 for the CMHD solution is rather

different. It experiences an initial rise to a peak, and then mildly tends to zero at infinity.

Interestingly, a smaller initial α0 enhances [λ/λ0]CMHD significantly stronger than a larger

one [see figure 5(b), and compare the evolution of [λ/λ0]CMHD for α0 = 0.01 (solid orange

curve) and α0 = 1 (dashed blue curve)]. As it is demonstrated in figure 6(a), the radial

21Let us notice that Bz is not forced to be zero. But, if it is zero at the initial point, it remains zero

during the evolution.
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Figure 5. (color online). The τ dependence of λ/λ0 for the ZCSSF solution (panel a) and the

CMHD solution (panel b) is plotted at r = r0 and for α0 = 0.01 (solid orange curves) and α0 = 1

(dashed blue curves). For the CMHD solution q is chosen to be q = 1/4.3 fm−1. Whereas [λ/λ0]ZCSSF

decreases with increasing τ , [λ/λ0]CMHD exhibits a maximum at τ ∼ 4τ0, and then slowly decreases

with increasing τ . This maximum becomes larger, the smaller α0 is chosen.

distribution of [λ/λ0]ZCSSF is approximately linear, and becomes larger with increasing

r up to the validity borderline of this solution at r = τ , demonstrated with a vertical

green line (here τ = 4τ0 = 2 fm/c). The radial dependence of [λ/λ0]CMHD in figure 6(b)

shares the same properties with its temporal evolution from figure 5(b). In view of the

above qualitative results, it would be interesting to further explore the role playing by the

longitudinal component of the magnetic fields created in HIC experiments.

Let us now consider σ defined in (7.4). The ratio σ/σ0 for the ZCSSF and CMHD

solutions are presented in (C.12) and (C.19), respectively.22 Whereas for [σ/σ0]ZCSSF the

parameter κ turns out to be a free parameter, σ/σ0 arising from the conformal solution

for the magnetic field (6.23) as well as the corresponding energy density (5.24), or equiv-

alently (C.18), are restricted to possess a conformal EOS ǫ = κp with κ = 3. Let us first

consider [σ/σ0]ZCSSF from (C.12). In figure 7, we have plotted the τ dependence of this

quantity for fixed r = r0 and α0 = 0.01 [figure 7(a)] and α0 = 1 [figure 7(b)] for two

different κ = 3 (solid orange curves) and κ = 10 (blue dashed curves).23 Whereas for κ = 3

and α = 0.01 [σ/σ0]ZCSSF remains almost constant, for α0 = 1, it decreases very fast in the

early stages after the collision, and then becomes saturated to a constant value 0.2 in late

times. In contrast, for κ = 10, [σ/σ0]ZCSSF decreases for both α0 = 0.01 and α0 = 1.

The effect of different choices of α0 on the evolution of [σ/σ0]ZCSSF is also demon-

strated in figure 8(a), where the τ dependence of [σ/σ0]ZCSSF is plotted for r = r0, κ = 10,

and two different α0 = 0.01 (solid orange curve) and α0 = 0.5 (dashed blue curve). As

it turns out, larger values of α0 suppress the evolution of [σ/σ0]ZCSSF. As concerns the

evolution of [σ/σ0]CMHD, it is plotted in figure 8(b) for r = r0, 1/q = 4.3 fm, and two dif-

22See appendix C for a derivation of these two expressions in (C.12) for the ZCSSF and (C.19) for the

CMHD solution.
23Nonconformal values for κ in ǫ = κp are also used in [40].
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Figure 6. (color online). The r dependence of λ/λ0 for the ZCSSF solution (panel a) and the

CMHD solution (panel b) is plotted at τ = 4τ0 and for α0 = 0.01 (solid orange curves) and

α0 = 1 (dashed blue curves). For the CMHD solution q is chosen to be q = 1/4.3 fm−1. Whereas

[λ/λ0]ZCSSF increases with increasing r, and it is slightly suppressed once larger values of α0 are

chosen, the r dependence of [λ/λ0]CMHD share the same properties with its τ dependence, i.e. for α0

being small enough, a relatively large maximum appears that then slowly decays. For larger values

of α0, [λ/λ0]CMHD remains small.

Figure 7. (color online). The τ dependence of [σ/σ0]ZCSSF is plotted for r = r0, α0 = 0.01 (panel

a) and α0 = 1 (panel b) as well as different values for κ = 3 (solid orange curves) and κ = 10

(dashed blue curves). For small values of α0, [σ/σ0]ZCSSF remains almost constant for κ = 3, that

characterizes the conformal EOS. For a smaller speed of sound, e.g. κ = c−2
s

= 10, [σ/σ0]ZCSSF

decays as the system evolves.

ferent α0 = 0.01 (solid orange curve) and α0 = 0.5 (dashed blue curve). In contrast to

[σ/σ0]ZCSSF,[σ/σ0]CMHD increases with increasing τ .

The r dependence of [σ/σ0]sol for sol = {ZCSSF,CMHD} is plotted in 9 for two different

α0 = 0.01 (solid orange curves) and α0 = 0.5 (dashed blue curves). Neglecting the blow

up at the r = τ validity borderline, demonstrated by the vertical green line in figure 9(a),

[σ/σ0]ZCSSF decreases with r, and, in contrast to its temporal evolution, it is enhanced

for larger values of α0. The same is also true for the r dependence of [σ/σ0]CMHD from

figure 9(b), which is maximized in regions where τ/r is far from unity. Comparing the
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Figure 8. (color online). The τ dependence of [σ/σ0] for the ZCSSF solution (panel a) and the

CMHD solution (panel b) is plotted at r = r0 and for α0 = 0.01 (solid orange curves) and α0 = 0.5

(dashed blue curves). For the CMHD solution q is chosen to be q = 1/4.3 fm−1. The parameter

κ, appearing in the EOS ǫ = κp is chosen to be κ = 10 for the ZCSSF and κ = 3 for the CMHD

solution. In contrast to [σ/σ0]ZCSSF, [σ/σ0]CMHD increases with increasing τ . Different choices for

α0 affect the evolution of σ/σ0.

Figure 9. (color online). The r dependence of [σ/σ0] for the ZCSSF solution (panel a) and the

CMHD solution (panel b) is plotted at τ = τ0 and for α0 = 0.01 (solid orange curves) and α0 = 0.5

(dashed blue curves). For the CMHD solution q is chosen to be q = 1/4.3 fm−1. The parameter

κ, appearing in the EOS ǫ = κp is chosen to be κ = 10 for the ZCSSF and κ = 3 for the CMHD

solution. The validity borderline for the ZCSSF solution at τ = r is demonstrated by a vertical

green line. Both [σ/σ0]ZCSSF and [σ/σ0]CMHD decrease with increasing r at early stages after the

collision, and then, after passing a minimum, they increase with increasing r. Different choices for

α0 significantly affect the evolution of σ/σ0.

τ and r dependence of [σ/σ0]CMHD from figures 8(b) and 9(b), it turns out that at any

fixed value of r, σCMHD increases significantly with τ , while for fixed values of τ , σ starts

with a sharp decline to a minimum at some r > r0. It then increases with increasing

r. The difference between the temporal evolution and radial distribution for the CMHD

solution, is because of the breakdown of r ↔ τ symmetry in ǫ from (5.24), or equivalently

from (C.18).
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Let us notice, at this stage, that in [41] the value of σ0 is reported to be of order 10−2

in central HICs. This is a small value that makes the effects arising from magnetic fields

much inferior than that from the hydrodynamical expansion. However, if in a particular

event the initial value of σ is not very small, in late times or far from the center of the

collision, the magnetic energy density B2 may compete with fluid energy density ǫ. This

may be a motivation for studying the effects arising from magnetic fields on the acceleration

of the fluid.

We close this section with a qualitative comparison of our solutions with few numerical

results from the literature. The magnitude of the magnetic field generated in HIC exper-

iments is usually reported in the form eB/m2
π. According to [2–5, 41], at RHIC center of

mass energies
√
sNN = 200GeV, eB/m2

π is estimated to be of order eB ∼ 5m2
π. The afore-

mentioned value is the event-by-event average value of By, and, one should bear in mind

that these values correspond to very early stages of the collision. External sources quickly

vanish, and the magnetic field declines in a nonconductive gluon dominated medium. A

formula for the early time dynamics of the magnetic field is given by (see [2] and the

references therein),

eBy(τ) =
eBy (0)

(

1 + τ2/t2B
)3/2

, (7.6)

where tB = 0.065 fm/c at RHIC top energies. Using (7.6), one arrives for eBy(0) = 5m2
π

and τB = 0.065 fm/c at eBy ∼ 10−2m2
π for τ = 0.5 fm/c. In (7.6), there is no information

about spatial distribution of B, and it thus cannot be used for fixing Binit.. In [5, 42],

another useful ansatz is suggested for magnetic fields arising from near-central collisions

eB(τ, r)

m2
π

=
1

a1 + b1τ
exp

(

− r2

σ2
r

)

. (7.7)

Here, numerical parameters are given by a1 = 78.2658, b1 = 79.5457 fm−1 and σr = 3.5 fm

for a zero impact parameter b = 0. In figure 10(a), the τ dependence of eB/m2
π is plotted

for eB arising from the CMHD solution with α0 = 0.01 (solid orange curve) and α0 = 1

(dashed blue curve), and from the ZCSSF solution with α0 = 0.01 (dotted yellow curve).

Moreover, eB/m2
π is plotted for the early time magnetic field from (7.6) with eBy(0) = 4m2

π

(dotted-dashed magenta curve) and the Gaussian ansatz (7.7) (green dashed curve). To

arrive at eBy(0) = 4m2
π for (7.6), we compared eB from (7.7) at τ = τ0 = 0.5 fm/c and

r = r0 = 0.5cs with eB from (7.6) at τ = τ0 = 0.5 fm/c, and arrived at eB0 ≈ 4m2
π. As

it turns out, the early time dynamics (7.6) is a decay of τ−3 type leading to a fast decay

of the magnetic field. On the other hand, (7.7) is a combination of a τ−1 temporal decay

with a Gaussian radial distribution, and turns out to be slower than that arising from the

Bjorken MHD, i.e. B ∝ τ−1 from (3.23). The ZCSSF solution for small values of α0 is very

close to the early time dynamics, the CMHD solution transmits between a τ−1 decay of

Gaussian type magnetic field from (7.7) at early times to a τ−3 from (7.6) decay at late

times [see figure 10(a)]. This is consistent with the phenomenological picture of the QGP

evolution, that it transmits from an early Bjorken flow to a later Hubble expansion [17].

The 3 + 1 dimensional self-similar flow, being a Hubble expansion, may be considered as
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Figure 10. (color online). (a) The τ dependence of eB/m2
π
is plotted for the CMHD solution

with α0 = 0.01, 1 as well as 1/q = 4.3 fm, the ZCSSF solution for α0 = 0.01, the early time

dynamics (7.6) (denoted by “E-Time”) for eB0 = 4mπ2, and the phenomenological Gaussian ansatz

for r = r0 (denoted by “Gaussian”) (7.7). The τ dependence of (7.7) is roughly τ−1, while (7.6)

ones is approximately τ−3. The CMHD solution transmits between τ−1 at early times to τ−3

at late times. The CMHD solution with larger α0 turns out to be more similar to the Gaussian

ansatz. The ZCSSF solution is more similar to the early time dynamics, and changing α0 does not

significantly modify this behavior (not shown). (b) The r dependence of eB/m2
π
is plotted for the

CMHD solution with α0 = 0.01, 1 and 1/q = 4.3 fm as well as for the Gaussian ansatz for τ = τ0.

Although for larger α0, the magnetic field survives up to larger distances to the origin, but the r

dependence of the CMHD solution remains quite different from the r dependence of the Gaussian

ansatz (7.7).

an effective picture in the later stages of the QGP spacetime history. By virtue of these

results, one may conclude that the CMHD solution probably gives the best qualitative

picture of the magnetic field evolution in all stages of the QGP evolution from τ0 ∼ 0.5 fm

to τf ∼ 10 fm/c. In figure 10(b), the r dependence of eB/m2
π is plotted for BCMHD with

α0 = 0.01 (solid orange curve), α0 = 1 (dashed blue curve) and the Gaussian ansatz (7.7)

(dotted yellow curve). Although for α0 = 1, the magnetic field survives in larger distances

from the origin, but the r dependence of the CMHD solution remains quite different from

the r dependence of the Gaussian ansatz (7.7).

8 Concluding remarks

In this paper, we studied the evolution of magnetic fields within an infinitely conductive

fluid, using, in particular, the 3 + 1 dimensional self-similar and Gubser flows. We fol-

lowed a systematic procedure, and derived the corresponding flows and magnetic fields to

these setups. This procedure is mainly based on the application of appropriate spacetime

symmetries, and can be summarized as follows: in general, a solution to RHD may be

obtained by considering a set of isometries I. This set must at least contain three inde-

pendent isometries to fix the four-velocity uµ. There may also exist a scalar, Γ, that is

invariant under all isometries in I. If this is the case, the partial differential equations of

RHD reduce to ordinary differential equations with Γ being an independent variable. In
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addition, the four-velocity may be proportional to partial derivatives of Γ with respect to

given coordinates. For the Bjorken, 3+ 1 dimensional self-similar and Gubser flows, Γ was

found to be Γ = {τ, ̺,G}, respectively [see (3.14), (4.1), and (5.19)]. It is also possible to

derive the same velocity four-vectors by relaxing some of the aforementioned isometries in

I. This can be done by introducing a proper scalar ϑ, that must respect the remaining set

of isometries S. In this way, apart from the four-velocity, the energy density remains also

the same as is obtained by application of I. In the case of an ideal fluid, this is because

the Euler equation prevents the pressure and energy density to obtain ϑ dependence. As a

simple example, we considered the spacetime rapidity η as the proper scalar in the Bjorken

flow. Here, although the reduced set of isometries did not include the boost invariance, the

Euler equation forced the pressure and energy density to be boost invariant.24 We showed

that this trick is indeed crucial for the generalization of RHD solutions to ideal MHD. If

S contains at least two independent isometries, the homogeneous Maxwell equations can

significantly be simplified. Assuming the ideal MHD limit, one is then able to determine

field strength tensor, and eventually the magnetic field, up to two unknown functions of

ϑ. These functions, that are referred to as scaling functions, can be found by solving the

MHD Euler equation.

To set a benchmark for this procedure, we reproduced the previous results on the

transverse MHD from [8, 9, 11]. In addition to these results, we found that the induced

current vanishes if the boost invariance is not relaxed. We then applied this procedure to

the case of 3+1 dimensional self-similar and Gubser flows in order to study the consequences

of the QGP transverse expansion on the lifetime of the magnetic field. Here, in contrast to

the Bjorken 1 + 1 dimensional case, the dependence of the magnitude of magnetic field on

the proper scalar ϑ did not vanish. This was because of additional terms in the MHD Euler

equation, that did not appear in the Bjorken case. In the 3 + 1 dimensional self-similar

flow, the aforementioned ϑ dependence turned out to be mandatory. In addition, the Euler

equation transformed into one equation for two unknown functions. We found a physically

acceptable solution by assuming that the induced current vanishes (the ZCSSF solution).

As concerns the implementation of the Gubser flow into relativistic MHD, it turned out

that in the flat space, it is impossible to introduce a proper scalar that respects the desired

symmetries. It was this lack of a proper scalar that led to the elimination of the magnetic

field in transverse directions with respect to the beamline. This makes the corresponding

magnetic field unappropriate for the purpose of HICs. We could resolve this problem by

exploiting the technique of Weyl transformations from [24]. The resulting solution was

referred to as the CMHD solution. According to our numerical results from section 7, the

CMHD solution transforms from an early time Bjorken ideal MHD solution to a late time

3+1 self-similar MHD solution as the system evolves. Moreover, the corresponding induced

current automatically vanishes. This is consistent with the numerical results from [5].

Let us notice that if the induced current vanishes, the electric conductivity of the QGP

becomes almost irrelevant for the magnetic field evolution. This is also in agreement with

our previous results from [11], where we showed that in nonideal transverse MHD the

24This is the essence of the 1 + 1 self-similar flow [22].
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magnetic field is not significantly modified by the finite electric conductivity, and that a

finite electric conductivity does not necessarily lead to a deviation from the ideal MHD. It is

noteworthy to mention that in order for the magnetic field to deviate from the ideal regime,

the boost invariance must also be broken. In the nonideal transverse MHD, although the

magnitude of the magnetic field remains boost invariant, but its direction explicitly depends

on the spacetime rapidity η [11].

According to our results from section 6, in any fixed distances from the origin, the

evolution of the transverse component of the CMHD solution is similar to that of the

Bjorken solution from the ideal transverse MHD [see (6.23)]. This is also consistent with the

numerical results from [5, 43]. We also showed that, once a small longitudinal component for

the magnetic field is assumed, the radial expansion of the fluid does not significantly modify

the magnetic field evolution. Let us, however, notice that the longitudinal component of

the magnetic field vanishes only if the fluid transverse size is assumed to be infinitely large.

In a more realistic setup, however, even an initially small longitudinal component can be

enhanced in certain regions of the spacetime (see section 7). We thus conclude that there

may be an unexplored role of the longitudinal component of the magnetic field in HICs,

which deserves to be taken into account.

At this stage, let us notice that the ideal MHD limit, which is used in the present

work, is based on the assumption of an infinitely large electric conductivity of the QGP.

This leads, however, to a large magnetic Reynolds number Rm ≡ σeLu. Here, L and u

are a typical size and velocity of the fluid. For L ∼ 10 fm and u ∼ 0.5, we arrive for

Rm ≫ 1 at σe ≫ 40MeV. Such a large electric conductivity is much larger than typical

lattice QCD results for σe from, e.g., [44]. It would be thus useful to extend the present

work to nonideal MHD, and look for a generalization of self-similar and Gubser solutions

of ideal MHD to a resistive fluid (nonideal MHD), as is already performed for the 1 + 1

dimensional Bjorken flow in [11]. Another important extension is related to the assumed

rotational invariance around the beamline, which turns out to be a poor approximation

if the collision is not near-central. Such an extension is indeed necessary, because the

analytical results presented in this paper are mainly derived under a certain rotational

symmetry condition that does not directly apply in the case of non-central HICs, where

strong magnetic fields are believed to be created. Interestingly, a novel analytical solution

for off-central HICs is recently introduced in [45], that calls for a generalization to ideal

and nonideal MHD, using the symmetry arguments presented in this paper.

A Useful definitions

In this appendix, we present a quick review of mathematical concepts used in this work

(see [32–35] for more details).

The covariant derivative of a vector is given by

∇µW
ν = ∂µW

ν + Γν
µρW

ρ,

∇µWν = ∂µWν − Γρ
µνWρ. (A.1)
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For an arbitrary rank tensor Qµ1µ2···
ν1ν2··· , the covariant derivative is found by assuming a

multiplication of vectors Wµ1V µ2Uν1Xν2 · · · . Some useful identities are

∇µW
µ =

1√−g
∂µW

µ, (A.2)

∇µY
µν =

1√−g
∂µ
(√−gY µν

)

+ Γν
µρY

µρ. (A.3)

For the antisymmetric tensor Fµν , we have, in particular,

∇µF
µν =

1√−g
∂µ
(√−gFµν

)

. (A.4)

The Lie derivative of a vector with respect to ξµ is given by

LξW
µ = ξν∂νW

µ −W ν∂νξ
µ,

LξVµ = ξν∂νVµ + Vν∂µξ
ν . (A.5)

In the index free notation, i.e. W = Wµ∂µ, the Lie derivative is replaced by the Lie

bracket as

LξW
µ = [ξ,W ]µ. (A.6)

The Lie derivative of the metric is given by

Lξgµν = ∇µξν +∇νξµ. (A.7)

A Killing vector ξ is a vector that satisfies the Killing equation

Lξgµν = 0. (A.8)

In the same spirit, in four-dimensional spacetime, a conformal Killing vector ξ satisfies

Lξgµν =
1

2
(∇ · ξ)gµν . (A.9)

The dS3 is the set of points in M3,1 that satisfies

−
(

X0
)2

+
(

X1
)2

+
(

X2
)2

+
(

X3
)2

= L2. (A.10)

Assuming L = 1, for the sake of simplicity, the Xµ coordinates can be re-parameterized

using

X0 = sinh ρ, X3 = cosh ρ cos θ,

X1 = cosh ρ sin θ cosφ, X2 = cosh ρ sin θ sinφ.
(A.11)

In these coordinates, we have ds2 = −dX02 + dX12 + dX22 + dX32 takes the form (6.3).
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B Scaling functions in the conformal RHD

In this appendix, we briefly comment on scaling functions in the conformal RHD. As it

was mentioned in section 6, one may assume θ to be a proper similarity variable. This also

allows the temperature to possess a θ dependency as

T =
T̂0

τ
(cosh ρ)−2/3 T (θ). (B.1)

Here, T (θ) is an arbitrary scaling function. Using (5.23), we obtain for a baryon-free quark

matter,

Ts = ǫ+ p = 4p. (B.2)

For an ideal nondissipative fluid the entropy density satisfies (3.10). This leads to

s =
ŝ0
τ3

(cosh ρ)−2 S(θ). (B.3)

According to (2.18), p from (B.2) is not function of θ. We thus have T (θ)S(θ) = 1.

C Matching free parameters in the ZCSSF and CMHD solutions

In section 7, we compared different features of the ZCSSF and CMHD solutions from (4.25)

and (6.26). To do this, we had to bring the free parameters appearing in these solutions

into connection. In this appendix, we explain how free parameters in these solutions are

matched. Before starting, let us remind that two parameters appear in each of these

solutions. We thus need two equations to fix them. Here, we use the magnitude of the

magnetic field at some fixed point and the ratio By/Bz at the same point, and reexpress

free parameters in terms of these quantities. To find them, we first find a relation between

the corresponding magnetic four-vectors and the local magnetic three-vectors to these

solutions. Let us consider Bµ in ordinary Minkowski coordinates (t, x, y, z),

Bµ =
(

zBη,−yBφ, xBφ, tBη
)

. (C.1)

Performing an appropriate boost to the LRF of the fluid at (t, x, y, z) = (τ, r, 0, 0), we

arrive for the ZCSSF and Gubser flows

uµZCSSF = xµ/̺, uµGubser = (coshΘ cosh η, sinhΘ cosφ, sinhΘ sinφ, coshΘ sinh η) , (C.2)

at

B =
(

0, rBφ, τBη
)

. (C.3)

The Lorentz transformation tensor associated with this boost reads

Λ0
ν = −uν , Λi

j = δij +
uiuj
1 + u0

. (C.4)

At the initial point (τ0, r0), (C.3) gives rise to

Binit. =
(

0, r0B
φ
0 , τ0B

η
0

)

, (C.5)
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where B
φ/η
0 = Bφ/η(τ0, r0). Plugging at this stage, (C.3) into α from (7.2), we arrive first at

α =
τBη

rBφ
. (C.6)

At the initial point, (C.6) then reads

α0 =
τ0B

η
0

r0B
φ
0

. (C.7)

We are now in a position to use α0 from (C.7) to fix free parameters A2, a0 and β0
in (4.25), (4.31) and (6.26).

For the ZCSSF solution from (4.25), we get

A2 = α0
τ0
r0
. (C.8)

Plugging (C.8) into (4.25), and using (C.5), we arrive at

[

B

Binit.

]

ZCSSF

=
1

√

1 + α2
0

(

̺0
̺

)2
√

(r0
r

)2
+ α2

0

(τ0
τ

)2
, (C.9)

withB = |B| andBinit. = |Binit.|, whereB andBinit. are from (C.3) and (C.5), respectively.

Plugging first (4.25) into λ from (7.3), and using C.8, leads to

λZSSF = α0

(τ0
τ

)

(

r

r0

)

[

1 + α2
0

(τ0
τ

)2
(

r

r0

)2
]−1/2

. (C.10)

Using (C.10), we then arrive at

[

λ

λ0

]

ZCSSF

=
τ0
τ

r

r0

√

√

√

√

1 + α2
0

1 + α2
0

(

τ0
τ

)2
(

r
r0

)2 . (C.11)

Finally, using (4.10) and (C.5) for the ZCSSF solution (4.25), σ from (7.4) is given by

σZCSSF =
σ0

1 + α2
0

(

̺0
̺

)1−3/κ [
(r0
r

)2
+ α2

0

(τ0
τ

)2
]

, (C.12)

with σ0 ≡ σ(τ0, r0) ≡ Binit.

2ǫ0
.

Let us now consider the CMHD solution (6.23) [or equivalently (6.22) with B̂µ

from (6.21)]. Plugging (6.22) into α0 from (C.7), we first arrive at

α0 =
τ0
r0

B̂η
0

B̂φ
0

=
τ0
r0
β0 sin

2 θ0, (C.13)

where θ = θ(τ0, r0). Using then (6.4), (C.13) yields

β0 =
α0

4q2r0τ0

[

1 + q4
(

τ20 − r20
)2

+ 2q2
(

τ20 + r20
)

]

. (C.14)
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Using (C.14), B/Binit. is found for the CMHD solution. In terms of (ρ, θ) coordinates

appearing in (6.3) and (6.4), it is given by

[

B

Binit.

]

CMHD

=
1

√

1 + α2
0

(τ0
τ

)2
(

cosh ρ0
cosh ρ

)2
[

α2
0 +

(τ0
τ

)2
(

r

r0

)2(sin4 θ0

sin4 θ

)

]1/2

. (C.15)

Plugging (6.23) [or equivalently (6.22) with B̂µ from (6.21)] into λ from (7.3), we get

λCMHD =
α0r0τ sin

2 θ
√

α2
0r

2
0τ

2 sin4 θ + r2τ20 sin
4 θ0

. (C.16)

Here, β0 =
α0r0

τ0 sin
2 θ0

from (C.13) is used. From (C.16), we obtain

[

λ

λ0

]

CMHD

= r0τ sin
2 θ

√

1 + α2
0

α2
0r

2
0τ

2 sin4 θ + r2τ20 sin
4 θ0

. (C.17)

To determine σ from (7.4) for the CMHD solution, let us first consider ǫ from (5.24).

Bearing in mind that in the coordinates appearing in (6.3) and (6.4), 1 + G2 = cosh2 ρ,

and defining ǫ0 ≡ ǭ0

τ4
0 (cosh

2 ρ0)
4/3 , we arrive at

ǫ = ǫ0

(τ0
τ

)4
(

cosh ρ0
cosh ρ

)8/3

. (C.18)

Using then (C.15), we finally obtain

σCMHD =
σ0

1 + α2
0

(

cosh ρ0
cosh ρ

)4/3
[

α2
0 +

(τ0
τ

)2
(

r

r0

)2(sin4 θ0

sin4 θ

)

]

, (C.19)

with σ0 ≡ B2
init.

2ǫ0
.
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Sostani, S. Pu and M. Csanàd for private communications. N.S. thanks N. Brambilla for the

hospitality during her stay in the theoretical physics department of the Technical University

of Munich (TUM), where the final stage of this work is performed. Her visit is supported by

Sharif University of Technology and the DFG cluster of excellence ‘Origin and Structure

of the Universe’25 at TUM. Financial support is also provided by Sharif University of

Technology’s Office of Vice President for Research under Grant No: G960212/Sadooghi.

25www.universe-cluster.de.

– 42 –

www.universe-cluster.de


J
H
E
P
1
1
(
2
0
1
8
)
1
8
1

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] U. Gürsoy, D. Kharzeev, E. Marcus, K. Rajagopal and C. Shen, Charge-dependent Flow

Induced by Magnetic and Electric Fields in Heavy Ion Collisions,

Phys. Rev. C 98 (2018) 055201 [arXiv:1806.05288] [INSPIRE].

[2] X.-G. Huang, Electromagnetic fields and anomalous transports in heavy-ion collisions — A

pedagogical review, Rept. Prog. Phys. 79 (2016) 076302 [arXiv:1509.04073] [INSPIRE].

[3] D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The Effects of topological charge change

in heavy ion collisions: ‘Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227

[arXiv:0711.0950] [INSPIRE].

[4] V. Skokov, A. Yu. Illarionov and V. Toneev, Estimate of the magnetic field strength in

heavy-ion collisions, Int. J. Mod. Phys. A 24 (2009) 5925 [arXiv:0907.1396] [INSPIRE].

[5] B.G. Zakharov, Electromagnetic response of quark-gluon plasma in heavy-ion collisions,

Phys. Lett. B 737 (2014) 262 [arXiv:1404.5047] [INSPIRE].

[6] K. Yagi, T. Hatsuda and Y. Miake, Quark-gluon plasma: from big bang to little bang,

Cambridge University Press, Cambridge U.K. (2005).

[7] P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics In and Out of Equilibrium

— Ten Years of Progress in Theory and Numerical Simulations of Nuclear Collisions,

arXiv:1712.05815 [INSPIRE].

[8] V. Roy, S. Pu, L. Rezzolla and D. Rischke, Analytic Bjorken flow in one-dimensional

relativistic magnetohydrodynamics, Phys. Lett. B 750 (2015) 45 [arXiv:1506.06620]

[INSPIRE].

[9] S. Pu, V. Roy, L. Rezzolla and D.H. Rischke, Bjorken flow in one-dimensional relativistic

magnetohydrodynamics with magnetization, Phys. Rev. D 93 (2016) 074022

[arXiv:1602.04953] [INSPIRE].

[10] J.D. Bjorken, Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region,

Phys. Rev. D 27 (1983) 140 [INSPIRE].

[11] M. Shokri and N. Sadooghi, Novel self-similar rotating solutions of nonideal transverse

magnetohydrodynamics, Phys. Rev. D 96 (2017) 116008 [arXiv:1705.00536] [INSPIRE].

[12] E. Stewart and K. Tuchin, Magnetic field in expanding quark-gluon plasma,

Phys. Rev. C 97 (2018) 044906 [arXiv:1710.08793] [INSPIRE].

[13] V. Roy, S. Pu, L. Rezzolla and D.H. Rischke, Effect of intense magnetic fields on

reduced-MHD evolution in
√
sNN = 200 GeV Au+Au collisions,

Phys. Rev. C 96 (2017) 054909 [arXiv:1706.05326] [INSPIRE].

[14] A. Das, S.S. Dave, P.S. Saumia and A.M. Srivastava, Effects of magnetic field on plasma

evolution in relativistic heavy-ion collisions, Phys. Rev. C 96 (2017) 034902

[arXiv:1703.08162] [INSPIRE].

– 43 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevC.98.055201
https://arxiv.org/abs/1806.05288
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.05288
https://doi.org/10.1088/0034-4885/79/7/076302
https://arxiv.org/abs/1509.04073
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.04073
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://arxiv.org/abs/0711.0950
https://inspirehep.net/search?p=find+EPRINT+arXiv:0711.0950
https://doi.org/10.1142/S0217751X09047570
https://arxiv.org/abs/0907.1396
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.1396
https://doi.org/10.1016/j.physletb.2014.08.068
https://arxiv.org/abs/1404.5047
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5047
https://arxiv.org/abs/1712.05815
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.05815
https://doi.org/10.1016/j.physletb.2015.08.046
https://arxiv.org/abs/1506.06620
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06620
https://doi.org/10.1103/PhysRevD.93.074022
https://arxiv.org/abs/1602.04953
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.04953
https://doi.org/10.1103/PhysRevD.27.140
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D27,140%22
https://doi.org/10.1103/PhysRevD.96.116008
https://arxiv.org/abs/1705.00536
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.00536
https://doi.org/10.1103/PhysRevC.97.044906
https://arxiv.org/abs/1710.08793
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.08793
https://doi.org/10.1103/PhysRevC.96.054909
https://arxiv.org/abs/1706.05326
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.05326
https://doi.org/10.1103/PhysRevC.96.034902
https://arxiv.org/abs/1703.08162
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.08162


J
H
E
P
1
1
(
2
0
1
8
)
1
8
1
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[20] T. Csörgö, F. Grassi, Y. Hama and T. Kodama, Simple solutions of relativistic

hydrodynamics for cylindrically symmetric systems, Acta Phys. Hung. A 21 (2004) 63

[hep-ph/0204300] [INSPIRE].
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