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1 Introduction

The idea that the Higgs boson is composite remains an attractive solution to the electroweak

hierarchy problem, albeit a slightly fine-tuned one. In the most plausible such models, the

Higgs arises as a pseudo Nambu Goldstone boson (pNGB) associated with the breaking of

an approximate global symmetry G down to a subgroup H. Consequently, the Higgs mass

would naturally reside somewhere below the energy scale associated with this symmetry

breaking. Regardless of the details of the microscopic theory at high energies, at low

energies the presence of a mass gap separating the pNGBs from other, heavier resonances

means that such other fields can be integrated out. The long distance physics is thus

described by a non-linear sigma model on the homogeneous space G/H, parametrized by

the pNGB fields.
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In order to successfully describe electroweak symmetry breaking, G/H should satisfy

the following requirements. Firstly, the linearly-realized subgroup H should contain the

electroweak gauge group, SU(2)L × U(1)Y . Secondly, to guarantee consistency with elec-

troweak precision measurements, specifically the mass ratio of the W and Z bosons, we shall

require that H contains the larger, custodial, symmetry SU(2)L × SU(2)R [1], which is an

accidental global symmetry of the Standard Model.1 Finally, in order to identify a subset of

the pNGBs with the Composite Higgs, the spectrum of pNGBs parametrizing G/H (which

can be decomposed into irreducible representations of the unbroken symmetry group H)

must contain at least one copy of the (2,2) representation of the SU(2)L×SU(2)R subgroup.

Even after these requirements have been imposed, there remains a lengthy list of viable

cosets with reasonable phenomenology; for example, G/H = SO(5)/SO(4), SO(6)/SO(5),

and SU(5)/SO(5) have all been explored extensively in the literature, due to various at-

tractive features. A shortlist of candidates can be found, for example, in table 1 of [3].

The physics of the Composite Higgs is directly analogous to that of pions, which are

the degrees of freedom of QCD at long distances. Both theories are examples of four-

dimensional sigma models on coset spaces G/H. Recall that the QCD pions arise as

the pNGBs associated with the spontaneously broken chiral symmetry (G = SU(3)L ×
SU(3)R) of massless QCD down to its diagonal subgroup (H = SU(3)diag), and thus live

on the coset space G/H = SU(3)L × SU(3)R/SU(3)diag ' SU(3). The action for the

Composite Higgs is therefore to be constructed according to the same principles as the chiral

lagrangian. In both cases, the action consists a priori of all Lorentz invariant operators

that can be constructed out of the pNGB fields, which are moreover invariant under the

transitive G action on G/H. The construction of Callan, Coleman, Wess and Zumino

(CCWZ) [4] provides a systematic scheme for writing down such operators, arranged in

order of increasing irrelevance at low energies, by using the additional structure of a G-

invariant metric on G/H. However, this construction misses G-invariant terms in the

action which are topological, in the sense that they require neither a metric on G/H nor

on spacetime.2

In the chiral lagrangian, the existence of such a topological term plays an essential role

in pion physics. This topological term is the Wess-Zumino-Witten (WZW) term [5, 6]. It is

constructed out of the sigma model fields g(x) ∈ SU(3) from the SU(3)L×SU(3)R-invariant

closed 5-form, ω = n
240π2 Tr [(g−1dg)5], where n ∈ Z. While the action is not the integral of

any local lagrangian over the 4-d spacetime Σ, it can nonetheless be written by integrating

the 5-form ω over a 5-ball B whose boundary is Σ.

The WZW term is needed to reproduce the axial anomaly occurring in massless QCD

with three flavours, which is not renormalized and so must be reproduced in the low energy

effective theory (the chiral lagrangian). The precise matching of the anomaly coefficient

constrains the integer coefficient n of the WZW term to be equal to the number of colors

in the UV gauge theory, in this case n = NC = 3. Upon gauging electromagnetism, the

1In fact, to prevent large corrections to the Zbb̄ coupling, it is desirable to enlarge this even further [2],

though we will mostly ignore this nicety here.
2As a result, such terms are invariant not just under the isometry group of spacetime, viz. the Poincaré

group, but under the much larger group of orientation-preserving diffeomorphisms of spacetime.
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WZW term gives rise to, amongst other terms, a coupling of the neutral pion π0 to FF̃ ,

and so facilitates the axial current decay π0 → γγ, with the correct decay rate as measured

by experiments. Turning this argument on its head, the form of the WZW term allows

physicists to measure the number of colours in QCD, which is an integer, by measuring the

rate of pion decay.

The WZW term performs a second crucial rôle in pion physics: it is the leading order

term in the chiral lagrangian that violates the discrete Z2 symmetry (−1)NB which counts

the number of pions modulo two. It therefore provides the dominant contribution to certain

pion scattering processes which violate this discrete symmetry, for example 2 → 3 decays

such as K+K− → π0π+π−, and decays of the Φ (ss) meson to K0K
0
.

Given the important rôles played by the WZW term in the phenomenology of pions,

it is natural to expect that topological terms may play an equally important rôle in the

phenomenology of the Composite Higgs. Motivated by the rôle of the WZW term in the

chiral lagrangian, as we have just discussed, we now describe more explicitly some possible

ways in which topological terms could be important in the case of a Composite Higgs.

Firstly, it is worth pointing out that in the Standard Model, the Higgs lives on the flat,

non-compact space C2. In contrast, a composite Higgs lives (typically) on a compact space

G/H (for example, a 4-sphere), which is only locally diffeomorphic to C2; topologically,

C2 and (say) S4 are very different beasts. Different coset spaces are distinguished from

one another both by their local algebraic structure (which determines, for example, the

representations in which the various pNGBs transform under the unbroken subalgebra h),

but also by their differing global structures. Topological terms in the action allow us to

probe these global properties of the Composite Higgs, which are intrinsically Beyond the

Standard Model effects.

Just as we saw for the chiral lagrangian, the presence of a WZ-like term in the ac-

tion (the definition of which we will make precise in section 2) would yield unambiguous

information about the UV theory from which the Composite Higgs emerges, via anomaly

matching (which is not renormalized). To put this statement in a concrete setting, we

first recall that certain Composite Higgs theories are favoured because they are believed

to arise at low energies from gauge theories in the UV which contain only fermions (i.e.

from theories which are free of fundamental scalars, and thus free of hierarchy problems

of their own). For example, it appears that the SO(6)/SO(5) model can be reached in the

flow towards the IR from a gauge theory with gauge group Sp(2NC), for some number of

colours NC , with four Weyl fermions transforming in the fundamental representation of

Sp(2NC). The argument for this is that this gauge theory has an SU(4) ' SO(6) (where

' here denotes local isomorphism) global flavour symmetry, corresponding to unitary ro-

tations of the four fermions amongst themselves, which can be spontaneously broken to an

Sp(4) ' SO(5) subgroup by giving a vev to the fermion bilinear [7].

Now, a gauge theory with a symplectic gauge group cannot suffer from a chiral anomaly,

so by anomaly matching, the corresponding low energy Composite Higgs model should

also be anomaly free. Now, as we shall see in section 4, there is in fact a WZ term in

the SO(6)/SO(5) Composite Higgs theory, which can be written by integrating the SO(6)-

invariant volume form on S5 over a 5-dimensional submanifold whose boundary is the

– 3 –
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4-dimensional worldvolume. Moreover, this WZ term reproduces the anomaly [8]. Hence,

we conclude that, if the SO(6)/SO(5) Composite Higgs theory does indeed derive from a

gauge theory with symplectic gauge group, then the WZ term must have its coefficient

set to zero for consistency. Reversing the argument, if the WZ term in the low-energy

SO(6)/SO(5) sigma model were measured to be non-zero, this would tell us that the UV

completion cannot be the Sp(2NC) theory! Thus, we see that topological terms in the

sigma model can provide us with pertinent probes of the UV theory.

More generally, in any Composite Higgs model which has a viable UV completion in

the form of a gauge theory (with only fermions), one must reproduce the chiral anomaly

present (or not) in the gauge theory at low energies via a WZ term in the G/H sigma model.

We now give an altogether different example which demonstrates the potential im-

portance of topological terms to the Composite Higgs. In [8], the effect of a WZ term in

a Composite Higgs model with the coset space SO(5) × U(1)/SO(4) was discussed. This

model features a singlet pNGB, η, in addition to the complex doublet identified with the

SM Higgs. The (gauged version of the) WZ term that was identified was found to domi-

nate the decay of this singlet, as well as facilitating otherwise extremely rare decays such as

η → hW+W−Z.3 In fact, as the present authors found in [9], the addition of this putative

WZ term turns out to break the U(1)-invariance of the theory, and so there would in fact

be no light η boson at all if the WZ term were turned on. Nonetheless, it remains generally

true that topological terms can provide the dominant decay channels for pNGBs in the low

energy theory.

Although it is peripheral to the main thrust of this paper, it would be remiss of us not

to remark that there may exist other topological effects in Composite Higgs models, albeit

ones not directly associated to terms in the action. One such possible effect is the existence

of topological defects analogous to the skyrmion, which plays the rôle of the baryon in the

chiral lagrangian. If the third homotopy group of G/H vanishes, then one expects there to

exist topologically stable solutions to the classical equations of motion which correspond

to homotopically non-trivial maps from a worldvolume with the topology S3×S1 to G/H.

This occurs, for example, in the “littlest Higgs” theory based on the coset SU(5)/SO(5),

which has π3(SU(5)/SO(5)) = Z2. Being stable, the skyrmions have been suggested as a

candidate for Dark Matter [10, 11].

Given the possible physical effects, it is evidently useful to be able to find all possible

topological terms in a given Composite Higgs model. In this paper, we shall try to answer

this question in a more-or-less systematic fashion. In a recent paper [9], we suggested

a homology-based classification of topological terms appearing in a generic sigma model

(in any spacetime dimension) on an arbitrary homogeneous space G/H. In this paper, we

apply this formalism to classify the topological terms appearing in a selection of well-studied

Composite Higgs cosets G/H. To wit: SO(5)/SO(4), SO(6)/SO(5), SO(5) × U(1)/SO(4),

SO(6)/SO(4), SO(6)/SO(4)× SO(2), and SU(5)/SO(5). We find different results to those

claimed earlier in the literature for four of these six models. Sometimes these differences

3This model was originally proposed as a potential explanation for the resonance observed at 750 GeV

in the diphoton channel, subsequently found to be but a statistical fluctuation.
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are rather subtle from the phenomenological perspective, such as in the case of the Minimal

Model (with coset SO(5)/SO(4)), while sometimes they are rather more drastic, such as

in the case SO(5) × U(1)/SO(4). In the case of SO(6)/SO(4), a rather rich topological

structure is uncovered.

The structure of the paper is as follows. We begin in section 2 by reviewing the

formalism developed in [9], and summarizing the main results which are relevant to the

case of Composite Higgs models. We then tackle the cosets of interest one by one, in

sections 3–8. Each of the cosets chosen reveals its own distinct topological story. In

section 9, we discuss how the different Composite Higgs models can be deformed into one

another by the addition of explicit symmetry breaking operators; we show explicitly how,

in one case, the topological terms identified in the different theories can be matched onto

each other. Finally, we conclude in section 10.

2 Review: Aharonov-Bohm and Wess-Zumino terms

We begin by summarizing the key results of [9] that we need in the context of Composite

Higgs models.

As we have already indicated, a Composite Higgs model is described by a sigma model,

which is a quantum field theory whose degrees of freedom are maps φ, in this case from a

4-dimensional spacetime manifold Σ4 into a coset space G/H acted upon transitively by a

Lie group G, which are the global symmetries of the theory. If we take Σ4 to be an oriented,

compact, connected manifold without boundary,4 then Σ4 defines a class of 4-cycles, in the

sense of smooth singular homology, called its fundamental class [Σ4]. One can then define

a topological term in the sigma model action by integrating differential forms of degree 4

on a 4-cycle z ∈ [Σ4]. Such 4-forms can be readily supplied by pulling back 4-forms from

the target space using φ∗. Completely equivalently, we can push forward the 4-cycle z to a

cycle φ∗z in G/H, on which we can directly integrate forms on G/H. We shall from hereon

rename the cycle φ∗z in G/H to be just z.5

Subject to these assumptions, there are two types of topological terms, which we shall

refer to as Aharonov-Bohm (AB) terms (also known in the literature as ‘theta terms’) and

Wess-Zumino (WZ) terms. Both types of terms shall play important rôles in Composite

Higgs models. The essentials are as follows.

An AB term is the integral over z of a closed 4-form A, with a U(1)-valued coefficient:

SAB[z] =
θ

2π

∫
z
A, dA = 0, θ ∈ [0, 2π). (2.1)

4Compactness of Σ4 can be justified as follows. When we Euclideanize the theory on R4, the usual

leading-order, two-derivative kinetic term will force the fields to tend to a constant value ‘at infinity’ in R4,

in order that the action be finite. Thus, at least for the purposes of studying topological terms, we can

one-point-compactify R4 to S4.
5We remark that topological terms constructed using homology in this way can be defined on all com-

pact, oriented, connected 4-manifolds without boundary, rather than just on S4. This is necessary not

only to be able to give a full description of physics (e.g. the dynamics in the background of a skyrmion

requires us to consider Σ = S3 × S1 [12]), but also to be able to couple to quantum gravity, in which the

topology of spacetime may fluctuate. The construction is thus, in this sense at least, superior to the original

constructions [6, 13] based on homotopy.
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In our normalization of choice, for which the action phase appearing in the path integral is

e2πiS[z] (in other words, h = 1), the 4-form A is integral.6 Since an AB term is locally just

a total derivative, it has no effect in the corresponding classical theory or in perturbation

theory; thus its effects, if any, must be non-perturbative. In all these senses, an AB term

is the sigma model analogue of the theta term in Yang-Mills theory. The integral in (2.1)

only depends on the cohomology class of A (i.e. it vanishes if A is exact), hence AB terms

exist only if the 4th de Rham cohomology of G/H is non-vanishing. In general, the space

of AB terms is classified by the quotient H4
dR(M,R)/H4

dR(M,Z). In particular, this means

there is a topological term in the minimal model whose target space is SO(5)/SO(4) ' S4.

We shall discuss in detail the phenomenological effects of this AB term in section 3.

A WZ term is more subtle, and involves integrating 4-forms on G/H that are not closed,

and which may be only locally-defined. If the worldvolume 4-cycle z is a boundary z = ∂b,

the action may be written straightforwardly as the integral of a G-invariant, integral,7

closed 5-form ω over the 5-chain b. This is not possible for cycles which are not boundaries;

in such cases, the appropriate language for formulating the WZ action in terms of local

integrals is Čech cohomology.8 For the details of this construction, we refer the reader

to [9] (see also [15]). For our purposes here, however, we nevertheless think it important

to highlight two facts about WZ terms which are not widely appreciated in the literature.

Firstly, and contrary to what one may read in the literature, the existence of WZ

terms in a p-dimensional sigma model does not require the (p+ 1)th de Rham cohomology

be non-vanishing. Indeed, one can readily see this from the simple example of quantum

mechanics of a point particle on the plane, which can be formulated as a sigma model with

worldvolume dimension p = 1, and target space G/H = R2. In this example, there is a

WZ term corresponding to the closed, translation-invariant 2-form F = Bdx ∧ dy, which

is of course exact because the cohomology of Rn is trivial. The 2-form F may here be

identified with the electromagnetic field strength, for a constant magnetic field out of the

plane. The addition of this topological term to the action modifies the spectrum of the

Hamiltonian from that of a free particle, to the Landau level spectrum. Thus, there is a WZ

term, with profound physical effects on both the classical and quantum theories, despite

H2
dR(G/H) = 0; it corresponds to the existence of a closed, G-invariant 2-form on G/H.

Returning to the case of our 4-d Composite Higgs model, WZ terms may exist for every

G-invariant, integral, closed 5-form ω on G/H. This 5-form may be exact (in which case

the coefficient will be R-valued, since every exact form is automatically an integral form),

or not exact (in which case the coefficient will be Z-valued for the form to be integral).

6An integral p-form is one whose integral over any p-cycle is an integer. The normalization is such that,

when θ is shifted by 2π, the action SAB shifts by an integer for every cycle, leaving e2πiS[z] invariant; hence,

θ and θ + 2π are identified.
7This integrality requirement for WZ terms is to ensure the action phase e2πiS[z], for a given worldvolume

cycle z, is free of ambiguities. If z is a boundary, this corresponds to ambiguities in the possible choices of

5-chain b such that z = ∂b.
8Alternatively, and more elegantly, the action phase e2πiS[z] for a WZ term is a differential character, as

defined by Cheeger-Simons [14], of which the (p+ 1)-form ω is the curvature. Note that, in this language,

an AB term is also a differential character, but one for which the curvature is zero.
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The second fact is that mere G-invariance of the 5-form is not sufficient to guarantee the

existence of a WZ term in the action which is G-invariant. As we shall see in section 5, the

G symmetry can be anomalous for topological reasons in the case where H4(G/H,Z) 6= 0,

that is, if there are non-trivial 4-cycles in G/H corresponding to the existence of physical

worldvolumes that are not boundaries. Rather, in general, it was shown in [9] that the

necessary and sufficient condition for a G-invariant WZ term (at least when G is connected)

is that

ιXω = dfX , fX ∈ Λ3(G/H), ∀X ∈ g, (2.2)

where Λ3(G/H) denotes the space of 3-forms on G/H, and the set of vector fields {X} are

the generators of the G action on G/H.9 We refer to this condition, as we did in [9], as the

Manton condition.10 Moreover, it was shown in [9] that the Manton condition turns out

to be necessarily satisfied for all X ∈ [g, g]; in particular, the Manton condition is satisfied

for all of g when G is a semi-simple Lie group.

This useful result tells us that left-invariance of the closed 5-form ω is sufficient to guar-

antee the existence of an invariant WZ term in all but one of the Composite Higgs models

that follow (even in the presence of homologically non-trivial 4-cycles, as in section 6). The

exception is the model considered in section 5, in which the group G = SO(5) × U(1) is

not semi-simple; indeed, in this case, we find that invariance under the U(1) factor of G is

broken (in the quantum theory) by the addition of the WZ term.

We now turn to classifying the topological terms appearing in our list of phenomeno-

logically relevant Composite Higgs models, in (approximate) order of increasing difficulty.

While we briefly pointed out in [9] the examples that we shall discuss in sections 3, 4,

and 5, in this paper we wish to study them (and others) more comprehensively. We begin

with the minimal model.

3 The Aharonov-Bohm term in the SO(5)/SO(4) model

The minimal Composite Higgs model (MCHM) [16] is a sigma model whose target space

is G/H = SO(5)/SO(4) ' S4. There are no non-trivial 5-forms on the target, it be-

ing a 4-manifold, and so there are no WZ terms in the minimal model. However, since

H4
dR(S4,R) = R, and H4

dR(S4,Z) = Z, there is an AB term given by the integral of a

4-form proportional to the volume form on S4.

In terms of the Higgs doublet fields H = (h1, h2, h3, h4) which transform in the fun-

damental representation of the linearly-realized SO(4) subgroup, and which provide local

coordinates on the S4 target space (i.e. coordinates only a patch of S4, albeit a rather large

patch which covers all but a finite set of points), the contribution to the AB term from a

local patch may be written

SAB =
θ

2π

∫
1

V4
dh1 ∧ dh2 ∧ dh3 ∧ dh4, θ ∈ [0, 2π), (3.1)

9Each vector field X is the pushforward to G/H of a right-invariant vector field on G, under the canonical

projection map π : G→ G/H.
10Provided the Manton condition is satisfied, the 3-forms {fX} define, via their integrals over appropriate

spatial hypersurfaces, the contributions to the Noether charges for G-invariance from the WZ term [9].
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where V4 is the volume of the unit 4-sphere, and dh1 ∧ dh2 ∧ dh3 ∧ dh4 denotes the volume

form on S4.11 The space of inequivalent topological action phases is thus R/Z = U(1),

labelled by the coefficient θ ∼ θ + 2π. The existence of a topological term in the MCHM,

which we pointed out in [9], had gone previously unnoticed in the literature.

The effects of this term, like all AB terms, are entirely quantum-mechanical and non-

perturbative. Unlike the theta term in 2-d sigma models, whose physical effects are largest

in the deep infrared, we expect the effects of an AB term in a 4-d sigma model such as a

Composite Higgs theory to become large in the ultraviolet. This conclusion follows from an

instanton argument, which we summarize in appendix A. This raises an exciting prospect

for searches at the TeV scale and beyond. However, by that same argument, at low energies

the non-perturbative effects of this AB term in the MCHM are exponentially suppressed.

Thus, whether there are any measurable effects at the energy scales probed by the LHC,

say, is unclear.

Some hope in this direction comes from the fact that, as we will now show, the AB term

in the MCHM violates both P and CP .12 Violation of these symmetries in the Higgs sector

is known to lead to effects in a variety of physical processes and is strongly constrained.

Thus, even though the effects of the topological term at lower energies are expected to be

small, they may, nevertheless, have observable consequences. If the angle θ in (3.1) could

be measured to be neither zero nor π, perhaps by observing some instanton-induced effect,

then one would deduce that the microscopic theory the sigma model originates from breaks

P and CP .

3.1 P and CP violation

To see that P and CP are violated, we must first discuss how they are implemented in the

SO(5)/SO(4) model. The leading-order (two-derivative) term in the low-energy effective

theory is built using the CCWZ construction and requires a metric on both the target

space and the worldvolume. The metric on the target space S4 should be invariant under

the action of at least the group G = SO(5), but such a metric (which is, of course, just the

round metric on S4) is, in fact, invariant under the full orthogonal group O(5). Moreover,

since this a maximal isometry group of 4-d manifolds, there is no larger group that can act

isometrically. The metric on the worldvolume S4 is just the Euclideanized version of the

Minknowski metric on R4, which is also the round metric on S4, itself with isometry group

O(5). The full symmetry of the two-derivative term is thus O(5) ×O(5).

11For the reader who seeks an explicit expression for the lagrangian in this example, one may of course

pull-back the 4-form in (3.1) to obtain the SO(5)-invariant lagrangian density

LAB (hi(x
µ)) =

θ

2π
εµνρσ∂µh1∂νh2∂ρh3∂σh4,

such that SAB =
∫
d4x LAB , where xµ are coordinates on the worldvolume. Of course, LAB is locally a

total derivative as for any AB term.
12To be clear, we are not suggesting this AB term is the leading order term in the effective field theory

expansion that breaks P and CP , which it is certainly not: indeed, 4-derivative (non-topological) operators

exist in the ordinary CCWZ construction which break these discrete symmetries. Note that in the effective

field theory expansion of the sigma model action, the AB term may be regarded as an “infinite order”

contribution, since it corresponds locally to a total derivative in the lagrangian.
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The usual parity transformation P corresponds (in the Euclideanized theory) to the fac-

tor group O(5)/SO(5) ' Z/2Z acting on the worldvolume. This is an orientation-reversing

diffeomorphism of the worldvolume, and so the topological term, which is proportional

to the volume form on the worldvolume after pullback, changes sign under the action of

P . It is invariant only for forms whose integral over S4 is equal to 1/2 (mod an integer),

corresponding to θ = π.

As for charge conjugation, it is defined in the Standard Model as the automorphism of

the Lie algebra su(3)⊕su(2)⊕u(1) corresponding to complex conjugation of the underlying

unitary transformations that define the group and its algebra. We wish to extend this

transformation to the composite sector in such a way as to obtain a C-invariant 2-derivative

term. To do so, we may focus our attention on the electroweak subalgebra su(2) ⊕ u(1),

which is embedded in the composite sector as a subalgebra of so(4) ' su(2) ⊕ su(2),

corresponding to the algebra of H = SO(4). Now, the automorphism of su(2) ⊕ u(1)

corresponding to complex conjugation can be extended to an automorphism of su(2)⊕su(2),

given explicitly by conjugating each su(2) factor by the Pauli matrix σ2 :=
(
0 −i
i 0

)
=

−iei
π
2
σ2 . Neither of these automorphisms are inner (because u(1) has no non-trivial inner

automorphisms and because σ2 /∈ SU(2)), but the latter does induce an inner automorphism

on the factor group SO(4) ' (SU(2) × SU(2))/(Z/2Z): it sends SU(2) × SU(2) 3 (a, b) 7→
(σ2aσ

−1
2 , σ2bσ

−1
2 ) ∼ (−σ2aσ−12 ,−σ2bσ−12 ) = (iσ2aiσ

−1
2 , iσ2biσ

−1
2 ) (where ∼ denotes the

Z/2Z equivalence). Hence the action on the factor group is equivalent to conjugation by

[(iσ2, iσ2)] ∈ (SU(2)× SU(2))/(Z/2Z).

Now, quite generally, an inner automorphism of H by h ∈ H defines an inner automor-

phism ofG ⊃ H asG 3 g 7→ hgh−1, whose action on cosets, G/H 3 gH 7→ hgh−1H = hgH,

is not only well-defined, but also is equivalent to the original action of H ⊂ G induced by

left multiplication in G that is central to the discussion in this paper. Thus we see that

we can not only naturally extend the definition of C in the Standard Model to the MCHM

(in a way that the leading order action term is manifestly invariant, even after we gauge

the SM subgroup), but that doing so is equivalent to an action on G/H by an element

in SO(4) ⊂ SO(5). Since the topological term is SO(5)-invariant by construction, it is

invariant under C. Hence it changes by a sign under CP , except for forms whose integral

over S4 is equal to 1/2 (mod an integer).

We remark that, just as for the parity transformation, the topological term also changes

by a sign under the action of the factor group O(5)/SO(5) ' Z/2Z on the target space.

This symmetry has been exploited in the literature [2] to prevent unobserved corrections

to the decay rate of the Z-boson to b-quarks, compared to the Standard Model prediction.

We can see that it is incompatible with a non-vanishing topological term, except for forms

whose integral over S4 is equal to 1/2 (mod an integer).

The physics associated with AB terms appearing in other Composite Higgs models

follows a similar story to that discussed here in the context of the minimal model. To sum-

marize, the essential features are (i) that AB terms are likely to violate discrete symmetries,

such as P and CP , and (ii) they can only affect physics at the non-perturbative level.
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4 The Wess-Zumino term in the SO(6)/SO(5) model

Consider the Composite Higgs model based on the homogeneous space G/H = SO(6)/

SO(5) ' S5 [17]. The five pNGBs transforms in the fundamental representation of the

unbroken SO(5) symmetry, which decomposes under SU(2)L × SU(2)R as (2,2) ⊕ (1,1).

Thus, in addition to the Higgs doublet H = (h1, h2, h3, h4), there is a Standard Model

singlet η in this theory. The fields (η,H) provide (local) coordinates on the S5 target space.

The principal appeal of this model, compared to the minimal model, is that one can

easily imagine a UV completion in the form of a (technically natural) strongly coupled

Sp(2Nc) gauge theory with four Weyl fermions transforming in the fundamental of the

gauge group, which has SU(4) flavour symmetry. An explicit realization of the necessary

spontaneous symmetry breaking of SU(4) down to an Sp(4) ' SO(5) subgroup has been

proposed in [7]. An explicit formulation of the microscopic theory such as this would of

course provide a unique prediction for the quantized coefficient of the WZ term in the

SO(6)/SO(5) Composite Higgs model, via anomaly matching.

The WZ term in this theory corresponds to the closed, integral, SO(6)-invariant 5-

form ω on S5, which is simply the volume form, as originally described in [17]. Indeed, a

straightforward calculation using the relative Lie algebra cohomology cochain complex13

reveals that this is the unique SO(6)-invariant 5-form on SO(6)/SO(5), up to normalization

(in fact, the volume form is the only SO(6)-invariant differential form on S5 of any positive

degree). Thus, there is a single WZ term in this model.

The Manton condition is satisfied trivially here, because the fourth de Rham cohomol-

ogy of S5 vanishes, so the closed 4-forms ιXω are necessarily exact. For the same reason,

there are no AB terms. Since the fourth singular homology vanishes, we can always follow

Witten’s construction and write the action as the (manifestly SO(6)-invariant) integral of

ω over a 5-ball B whose boundary z = ∂B is our worldvolume cycle:

SWZ[z = ∂B] =
n

V5

∫
B
dη ∧ d4H, n ∈ Z, (4.1)

where dη ∧ d4H is short-hand for the volume form on S5 in our local “Higgs” coordinates

(η,H), with d4H ≡ dh1∧dh2∧dh3∧dh4, and V5 = π3 is just the volume of a unit 5-sphere.

As noted above, depending on the details of the microscopic theory, the integer coefficient

n will be fixed by anomaly matching.

What phenomenological effects are associated with this WZ term? Näıvely, the WZ

term is a dimension-9 operator, as can be seen by considering the action locally. The

Poincaré lemma means we can write ω = dA on a local patch, for example

SWZ[z] =
n

V5

∫
z
η dh1 ∧ dh2 ∧ dh3 ∧ dh4, (4.2)

which contains 5 fields and 4 derivatives, and is thus dimension-9. We might therefore ex-

pect this operator to be entirely irrelevant to the phenomenology at low energies. However,

in order to study the phenomenology, it is necessary to first gauge the Standard Model

subgroup SU(2)L ×U(1)Y ⊂ SO(5).

13We shall expand on the role of Lie algebra cohomology in section 6.1.
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Gauging the WZ term is a subtle issue, because the 4-dimensional lagrangian for the

WZ term (which, remember, is only valid in a local patch) is not G-invariant, but shifts

by an exact form. This means that a näıve “covariantization” of the derivative d→ d−A
does not yield a gauge-invariant action. The gauging of topological terms is a subtle

problem, even in cases where the construction of Witten can be carried out [6, 18–21]. We

postpone the discussion the gauging of topological terms in the general case to future work,

remarking here only that upon gauging, one expects the WZ term to give rise to operators

of dimension-5 which couple the Composite Higgs fields to the electroweak gauge bosons

W± and Z,14 which are certainly important to the TeV scale physics of this theory.

We now turn to a more subtle example, where the subtlety is concerning G-invariance

of the putative WZ term.

5 The SO(5) × U(1)/SO(4) model

Consider the Composite Higgs model on the coset space G/H = (SO(5)× U(1))/SO(4) '
S4 × S1, in which a WZ term was incorrectly identified [8]. The error was that a WZ

term was postulated due to the existence of a G-invariant 5-form, when it turns out that

one cannot write down a corresponding G-invariant action (phase) for worldvolumes cor-

responding to homologically non-trivial 4-cycles. This was observed in [9], and we shall

elaborate on the discussion in what follows.

The target space is homeomorphic to S4 × S1, which has non-vanishing 4th and 5th

cohomology, so there are potentially both AB and WZ terms.15 The potential problem with

G-invariance of the putative WZ term arises due to the non-trivial 4-cycles in G/H which

wrap around the S4 factor, which mean that Witten’s construction cannot be applied;

moreover, the group G is not semi-simple because of the U(1) factor. This means we will

have to check the Manton condition explicitly. Indeed, the SO(5)×U(1)-invariant, closed,

integral 5-form ω, which is just the volume form on S4 × S1, fails to satisfy the Manton

condition for the generator of U(1) ⊂ G,16 and so the putative WZ term in fact explicitly

breaks U(1)-invariance. Thus, there is no such WZ term.17

To see more explicitly how the problem with U(1) invariance arises, we again introduce

local Higgs coordinates (η,H), where now η ∈ S1, and the Higgs field provides local

14This is precisely analogous to the gauging of electromagnetism in the chiral lagrangian, which we

discussed in the Introduction, which leads to the dimension-5 operator πF F̃ and thus pion decay to two

photons.
15As we emphasized in the Introduction, WZ terms are strictly in correspondence with invariant 5-

cocycles, and not de Rham cohomology classes; nonetheless, because G/H is compact and G is connected,

the non-vanishing fifth de Rham cohomology of G/H implies that there is a G-invariant 5-form on G/H [22].
16The interior product of the volume form on S4 × S1 with the vector field generating the U(1) factor is

proportional to the volume form on the S4 factor, which is closed but not exact.
17We would like to emphasize that there is nonetheless a WZ term in the corresponding classical theory.

The classical equations of motion, obtained by variation of the action, only depend on the WZ term through

the 5-form ω; thus, classical G-invariance is implied by G-invariance of ω. It is only in the quantum theory

that we require the action itself (or, more precisely, the action phase e2πiS[z]) to be G-invariant, and this

requires the stronger Manton condition be satisfied. The difference between G-invariance of ω (i.e. LXω = 0)

and the Manton condition (i.e. ιXω = dfX) is purely topological, depending only on global information.

The quantum theory is sensitive to this global information, whereas the classical theory is not.
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coordinates on the S4 factor. Consider a worldvolume which corresponds to a non-trivial

4-cycle z in the target space; for example, let z wrap the S4 factor some W times, at some

fixed value of the S1 coordinate, η0. On this cycle, we may write ω = dA, where A ∝ η0d4H
is well-defined on z (again, d4H is shorthand for the volume form on the S4 factor), and

the WZ term is then given by the integral

n

2πV4

∫
z
η0 d

4H =
n

2π
η0W, (5.1)

where V4 = 8
3π

2 is the volume of the 4-sphere (the factor 2πV4 is just the volume of the

target space, such that n ∈ Z corresponds to ω being an integral form). This is clearly

not invariant under the action of U(1) on this cycle, which shifts η0 → η0 + a for some

a ∈ [0, 2π). However, the U(1) symmetry is not completely broken, because the action phase

e2πiS[z] remains invariant under discrete shifts (for any W ), such that an ∈ 2πZ. Thus, the

symmetry of the corresponding classical theory is broken, due to the WZ term, from

SO(5)×U(1)→ SO(5)× Z/nZ (5.2)

in the quantum theory. This is directly analogous to the breaking of translation invariance

that occurs (in the quantum theory) upon coupling a particle on the 2-torus to a translation

invariant magnetic field, a fact which was first observed by Manton [23]. This instructive

example from quantum mechanics, and its connection to this Composite Higgs model, was

discussed in [9].

There is nonetheless still an AB term in this model, equal to (θ/2π)
∫
z

1
V4
d4H, where

θ ∼ θ + 2π, which counts the winding number into the S4 factor of the target.

6 The SO(6)/SO(4) model

In this section, we turn to a model with a very rich topological structure, based on the

coset SO(6)/SO(4). As we shall soon see, this model exhibits both AB and WZ terms, in

a non-trivial way.

The spectrum features two Higgs doublets, in addition to a singlet η. This model is

attractive partly because the coset space is isomorphic to SU(4)/SO(4), and this global

symmetry breaking pattern may therefore be exhibited by an SO(Nc) gauge theory with 4

fundamental Weyl fermions. A closely related model was discussed at length in [3], which

quotients by a further SO(2) factor, thus removing the additional scalar. We will turn to

that model in section 7.

From our topological viewpoint, the manifolds SO(n)/SO(n−2),18 are rather unusual,

in that, for even n, they have two non-vanishing cohomology groups, in neighbouring

degrees n − 2 and n − 1. This occurs, somewhat serendipitously, at the 4th and 5th

18The manifold SO(n)/SO(n − 2) is an example of a Stiefel manifold. It is the space of orthonormal

2-frames in Rn.
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cohomologies when n = 6, which is the particular case of interest as a Composite Higgs

model for group theoretic reasons.19

In order to elucidate the topological structure of this theory, it is helpful to first

describe the geometry of this target space. For any integer n ≥ 3, the homogeneous space

SO(n)/SO(n− 2) can be realised as a fibre bundle over Sn−1 with fibre Sn−2, namely the

unit tangent bundle of Sn−1, which can be described by a point on Sn−1 and a unit tangent

vector at that point. To see this, observe that SO(n) has a transitive action on this space

(induced by the usual action on Rn), with stabilizer SO(n− 2). Indeed, the point on Sn−1

is stabilized by SO(n − 1), while a given unit vector tangent to that point gets moved

by SO(n − 1), but is stabilized by the subgroup SO(n − 2) ⊂ SO(n − 1). Thus, by the

orbit-stabilizer theorem, the unit tangent bundle is isomorphic to the homogeneous space

SO(n)/SO(n− 2).

Our target space SO(6)/SO(4) is thus a 4-sphere fibred over a 5-sphere, and it is

helpful to define the projection map for this bundle (which we shall on occasion refer to as

E for brevity):

π : E ≡ SO(6)/SO(4)→ S5, (6.1)

with which we can pull-back (π∗) forms from S5 to E, and also push-forward (π∗) cycles

in E to cycles in the base S5. The non-vanishing homology groups

H4(E,Z) = H5(E,Z) = Z (6.2)

are generated by cycles which wrap the S4 fibre and the S5 base respectively.20 Corre-

spondingly, we have the non-vanishing de Rham cohomology groups

H4
dR(E) = H5

dR(E) = R. (6.3)

19There is a low-dimensional analogue of this problem, which is a p = 2 sigma model (i.e. describing a

string) with target space SO(4)/SO(2), for which non-vanishing H2
dR yields an AB term, and non-vanishing

H3
dR implies there is at least one WZ term. This model may be studied as a useful warm-up for the

Composite Higgs example discussed in the text!
20These claims may be proven by considering the Gysin and Wang exact sequences in homology for the

bundle S4 → E → S5. The Gysin sequence is

· · · → H1(S5)→ H5(E)
π∗−−→ H5(S5)→ H0(S5)→ H4(E)

π∗−−→ H4(S5)→ . . . ,

where π denotes the bundle projection, which reduces to

0→ Z i=π∗−−−→ Z j−→ Z k−→ Z π∗−−→ 0.

From the fact that this is an exact sequence, we can deduce that the map Z k−→ Z is multiplication by one,

the middle map Z j−→ Z is multiplication by zero, and the map Z i=π∗−−−→ Z is multiplication by one. Hence

projection induces the identity map H5(E)
p∗−→ H5(S5), and thus the generating 5-cycles in the bundle E

are simply related to the generating 5-cycles that wrap the S5 base by projection. A similar argument,

using the Wang sequence

· · · → H1(S4)→ H4(S4)
i∗−→ H4(E)→ H0(S4)→ H3(S4)→ . . . ,

where i now denotes the inclusion map i : S4 → E, tells us that inclusion induces the identity map

H4(S4)
i∗−→ H4(E), and thus the generating 4-cycles in E are indeed those which wrap the S4 fibre.
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Given that the 4th singular homology is non-vanishing, we must consider worldvolumes

whose corresponding 4-cycles are not boundaries. On such non-trivial cycles, we cannot

necessarily write a WZ term using Witten’s construction, but we can certainly write the

action in terms of locally-defined forms in degrees 4, 3, 2, 1, and 0, integrated over chains of

the corresponding degree, constructed using Čech (co)homology data [9]. In fact, we shall

soon see that, because of the bundle structure of (E, π), a variant of Witten’s construction

can in fact be carried out, and locally-defined forms (and all the technicalities they entail)

will not be needed after all!

6.1 WZ terms

As we have emphasized in section 2, there may exist WZ terms corresponding to exact

5-forms. Thus, it is not sufficient to know the cohomology groups (6.3); rather, we need

to identify the complete space of SO(6)-invariant, integral, closed 5-forms on the target

space E that satisfy the Manton condition. Because G = SO(6) is here a semi-simple Lie

group, we know from [9] that the Manton condition will be automatically satisfied for any

G-invariant 5-form ω (even though the Witten construction cannot be used on non-trivial

4-cycles). So, our problem is reduced to finding the space of SO(6)-invariant, closed 5-forms

on SO(6)/SO(4).

This task in fact reduces to algebra. This is because, given only connectedness of

the subgroup H, the ring of G-invariant forms on G/H, which forms a cochain complex

under the exterior derivative, is isomorphic to a cochain complex defined algebraically,

namely that of the Lie algebra cohomology of g relative to h. This is the space of totally

antisymmetric maps from g to R, which are vanishing on h ⊂ g and are ad h-invariant,

acted upon by the Lie algebra coboundary operator. We refer the reader to [22] for the

details of this standard construction.

In order to perform this algebraic calculation, and map the resulting space of relative

Lie algebra 5-cocycles into a space of WZ terms, we need to introduce local coordinates

parametrizing the coset space SO(6)/SO(4). We parametrize the SO(6)/SO(4) cosets by

the matrix U(x) = exp(φa(x)T̂ a) : Σ4 → SO(6)/SO(4), identified up to right multiplication

by H = SO(4), where x are the coordinates on the worldvolume Σ4, {T̂ a} are a basis for the

broken generators, and the fields φa(x) define the sigma model map into the target space.

We choose to embed the H = SO(4) subgroup as the top left 4-by-4 block in SO(6).

The nine pNGB fields φa(x) divide into two composite Higgs doublets transforming in

the (2,2) of the unbroken SO(4) ∼ SU(2)L× SU(2)R subgroup, which we denote by HA =

(h1A, h
2
A, h

3
A, h

4
A) and HB = (h1B, h

2
B, h

3
B, h

4
B), together with a singlet η. They are embedded

in so(6) as follows

φaT̂
a =

 04×4 HT
A HT

B

−HA 0 η

−HB −η 0

 . (6.4)

In our geometric picture, HA provide local coordinates on the S4 fibre, and the five coor-

dinates (HB, η) provide local coordinates on the S5 base.
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Given a suitable basis for the Lie algebras of SO(6) and the SO(4) subgroup as em-

bedded above, we compute the space of closed relative Lie algebra cochains of degree 5

using the LieAlgebra[Cohomology] package in Maple. Using the canonical map from the

relative Lie algebra cochain complex to the ring of G-invariant forms on G/H, we identify

the following basis for the space of SO(6)-invariant closed 5-forms on E:{
d4HBdη, d

4HAdη, εijkldh
i
Adh

j
Bdh

k
Bdh

l
Bdη, (6.5)

εijkldh
i
Adh

j
Adh

k
Bdh

l
Bdη, εijkldh

i
Adh

j
Adh

k
Adh

l
Bdη

}
, (6.6)

where εijkl is the usual Levi-Civita symbol with four indices, and we have suppressed

the wedges.

We have chosen this basis such that the first element, d4HBdη, is closed but not exact,

and is therefore a representative of the non-trivial 5th cohomology class (6.3), while the

remaining four elements are all exact. Given this choice, the first element corresponds to

a WZ term with an integer-quantized coefficient, while the others yield real-valued WZ

terms. The space of WZ terms in this theory is therefore Z × R4. Note that our chosen

representative of the non-trivial cohomology class is simply the pull-back to the bundle E

of the evidently SO(6)-invariant volume form on the base S5, as one would expect.

Before we move on to discuss the AB term in this model, we now describe more

explicitly how these WZ terms in the action can be written. Firstly, the integer-quantized

WZ term is unique in that the corresponding 5-form d4HBdη can be written as the pull-

back to E of a form on S5. Thus, to evaluate the corresponding WZ term, we can in

fact push-forward the worldvolume 4-cycle from the target space E to the base S5, using

the bundle projection π, and evaluate the WZ term by performing an integral in the base

space. Moreover, since H4(S
5,Z) = 0, the push-forward of any 4-cycle to S5 is in fact the

boundary of a 5-chain B in the base. The corresponding WZ term evaluated for 4-cycle z is

then given, in local coordinates, by the manifestly SO(6)-invariant 5-dimensional integral:

SWZ[z] =
n

V5

∫
B
d4HB dη, ∂B = π∗z, n ∈ Z. (6.7)

So, for this particular term, there is a sense in which Witten’s construction goes through,

but only after exploiting the bundle structure of the target space.

The remaining four WZ terms correspond to exact 5-forms on E, and hence for each

we can find a global 4-form A whose exterior derivative is the corresponding 5-form. These

terms can therefore all be written as 4-dimensional integrals of globally defined 4-forms

over the 4-cycle z, each with a different R-valued coefficient. Thus, again, there is no need

to introduce locally-defined forms.

6.2 AB term

The AB term in the action is the integral of a closed (but necessarily not exact) 4-form

over the worldvolume 4-cycle, and only depends on the de Rham cohomology class of that

4-form. The 4th de Rham cohomology of SO(6)/SO(4) is one-dimensional (6.3), so we

simply need to find a representative of that class.
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Because G/H is compact and G is connected, the de Rham cohomology is in fact

isomorphic to the cohomology of G-invariant forms, and as stated above, because H is

connected, this is furthermore isomorphic to the Lie algebra cohomology of g relative to h.

Hence, we can find such a representative 4-form for our AB term by performing an algebraic

calculation in the relative Lie algebra cochain complex, which we again implement in Maple.

Such a representative is given by (again suppressing wedges)

d4HA + d4HB +
1

3
εijkl dh

i
A dhjA dhkB dhlB. (6.8)

Thus, the AB term in the action is locally given by the integral

SAB[z] =
θ

2π

∫
z

1

V4

(
d4HA + d4HB +

1

3
εijkl dh

i
A dhjA dhkB dhlB

)
, θ ∈ [0, 2π). (6.9)

As usual, quotienting by the space of integral cohomology classes results in a U(1)-valued

coefficient for the AB term. Thus, putting everything together, the total space of topolog-

ical terms in a Composite Higgs model based on the coset SO(6)/SO(4) is given by

Z× R4 ×U(1). (6.10)

6.3 Twisted versus trivial bundles

We conclude this section by contrasting the Composite Higgs model on SO(6)/SO(4), which

is a (twisted) S4 fibre bundle over S5, with a Composite Higgs model on the corresponding

trivial bundle S4 × S5, which we may realize as the coset space

SO(5)

SO(4)
× SO(6)

SO(5)
. (6.11)

Let HA = (h1A, h
2
A, h

3
A, h

4
A) and (HB, η) = (h1B, h

2
B, h

3
B, h

4
B, η) provide local coordinates on

the S4 and S5 factors respectively (which is of course locally isomorphic to the coordinates

introduced above on a patch of SO(6)/SO(4)). The transitive action of G = SO(5)×SO(6)

on this space simply factorizes over the two components.

Clearly, the AB term is now simply the integral of the volume form on the S4 factor,

viz. SAB[z] = (θ/2πV4)
∫
z d

4HA, which is SO(5)-invariant and trivially SO(6)-invariant.

This is precisely analogous to the AB term in the Minimal Model of section 3. In contrast,

in the more complicated SO(6)/SO(4) model above, the SO(6) acts non-trivially on the S4

fibre, such that the volume form on the fibre is not G-invariant on its own.

For the WZ terms, we require an SO(5)×SO(6)-invariant 5-form on this space. Since,

in general, the only SO(n)-invariant form (in any positive degree) on an n-sphere is the

volume form, the only such 5-form must be the volume form on the S5 factor. Hence, there

is a single WZ term in this model, with quantized coefficient, corresponding to that 5-

form. This is precisely analogous to the WZ term in the SO(6)/SO(5) model considered in

section 4. Again, this is in sharp contrast to the more complicated story for SO(6)/SO(4),

in which we found a 4-dimensional space of R-valued WZ terms, corresponding to exact,

SO(6)-invariant 5-forms on SO(6)/SO(4).
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In conclusion, we see that even two composite Higgs models which are locally identical,

being products of S4 and S5 locally, nevertheless have completely different spectra of

topological terms. The differences arise as a subtle interplay between the differing group

actions, together with the way that products are globally twisted as bundles.

7 Two AB terms in the SO(6)/SO(4) × SO(2) model

We now consider a variant of the previous two-Higgs-doublet model, in which the lin-

early realized subgroup H ⊂ SO(6) is enlarged from SO(4) to SO(4) × SO(2). This

model contains exactly two Higgs doublets, with no singlet η. A detailed discussion of

this model can be found in [3]. Geometrically, the target space is a Grassmannian, that is,

the space of planes in R6. The story concerning topological terms is much simpler here than

in section 6, because demanding right-SO(2) invariance restricts the basis of projectable

forms significantly.

We find that there are no SO(6)-invariant forms on this Grassmanian in any odd

degree. In particular, there are no SO(6)-invariant 5-forms, and so no WZ terms here.

There are, however, invariant forms in even degrees; indeed, there is a 2-dimensional

basis of SO(6)-invariant 4-forms. Given there are no invariant forms in degrees 3 or 5,

these 4-forms are necessarily both closed and not exact, and hence they span a basis for

the AB terms in this model:

SAB[z] =
θ1
2π

∫
1

N

(
d4HA + d4HB +

1

3
εijkl dh

i
A dhjA dhkB dhlB

)
(7.1)

+
θ2
2π

∫
1

M

∑
ij

dhiA dhjA dhiB dhjB, (7.2)

where the sum in the second term is over all six pairs of indices (i, j), and both coefficients

θ1, θ2 ∈ [0, 2π) are periodic. The coefficients N and M are appropriate normalization

factors, chosen such that the 4-forms within the integrals are integral.

8 The littlest Higgs

For our final example, we consider the little Higgs model with coset SU(5)/SO(5).21 This is

the smallest coset known to give a little Higgs, and is therefore known as the “Littlest Higgs”

model [25]. The presence of topological terms in this model was discussed in ref. [26], and

has been mentioned in passing elsewhere (e.g. in [10]). Despite this interest, a classification

of all topological terms occurring in this model has not been attempted. Indeed, the authors

of [26] merely assert that there is a WZ term in this model, ‘related to the non-vanishing

homotopy group π5(SU(5)/O(5)) = Z’. While we shall find that this is essentially the right

result, we note that the occurrence of WZ terms in such a sigma model is in fact due to

21The little Higgs models are a subset of Composite Higgs models which exhibit a natural hierarchy be-

tween the Higgs vev and the scale of the symmetry breaking G→ H, with the Higgs mass being hierarchi-

cally lighter than the other pNGBs. This is achieved by the mechanism of “collective symmetry breaking”,

which causes the Higgs potential to be loop-suppressed. For a review of little Higgs models, see ref. [24].
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the non-vanishing of the space of SU(5)-invariant, closed 5-forms on SU(5)/SO(5), which

is unrelated a priori to the fifth homotopy group.

As we reviewed in section 2, there are potentially two types of topological term in a

Composite Higgs model (at least that can be written in terms of differential forms): AB

terms and WZ terms. The fact that

H4
dR(SU(5)/SO(5),R) = 0 (8.1)

means that there are no AB terms in this model; but there are certainly WZ terms. WZ

terms are in one-to-one correspondence with the space of closed, integral, SU(5)-invariant

5-forms on SU(5)/SO(5) (because the Manton condition is guaranteed to be satisfied by

virtue of SU(5) being semi-simple). We know from the fact that

H5
dR(SU(5)/SO(5),R) = R (8.2)

that there is at least one WZ term, because, given compactness of G/H and connectedness

of H, the de Rham cohomology is isomorphic to the Lie algebra cohomology of su(5)

relative to so(5), which in turn is isomorphic to the cohomology of SU(5)-invariant forms

on the coset SU(5)/SO(5) [22]. However, to deduce that this WZ term is unique (up to

normalization), we must show that there are no WZ terms corresponding to (de Rham)

exact invariant 5-forms. In other words, we must show that the trivial class in the fifth Lie

algebra cohomology is empty.

This is indeed the case, as one may show via an explicit calculation using the

LieAlgebra[Cohomology] package in Maple. In fact, one finds that there are no invariant,

exact forms in any degree.22

Thus, the WZ term is indeed unique. The fact that it belongs to a non-trivial coho-

mology class (in the de Rham sense) means that the restriction to integral classes results in

the coefficient of the WZ term being quantized. The upshot is that the space of topological

terms in the Littlest Higgs model are indeed classified by a single integer n ∈ Z. An explicit

expression for the WZW term in this case is given in [26].

Was it a coincidence that, in this example, the homotopy-based classification yielded

the correct answer? While, as we noted, there is a priori no direct link between homotopy

and cohomology groups, there is of course an indirect link between the two, proceding (via

homology) through the Hurewicz map. Indeed, because SU(5)/SO(4) happens to be 4-

connected (which means its first non-vanishing homotopy group is π5 = Z), the Hurewicz

map h∗ : π5(SU(5)/SO(5)) → H5(SU(5)/SO(5)) is in fact an isomorphism. Hence, the

fifth homology group, and its dual in singular cohomology, are both Z, from which we

deduce (8.2). However, the homotopy can certainly tell us nothing about the existence of

invariant 5-forms which are exact; in this case, that final piece of information was supplied

by an explicit calculation using Lie algebra cohomology.

22It is well-known that there are no two-sided G-invariant exact forms on G/H if G/H is a symmetric

space, which SU(5)/SO(5) is. However, the differential forms that appear in the Relative Lie algebra

cohomology (and which correspond to topological terms in our sigma model) are two-sided invariant only

for the subgroup H ⊂ G, and one-sided invariant for all of G.
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9 Connecting the cosets

In this final section, we discuss how topological terms in different Composite Higgs models

can in fact be related to each other under RG flow. Firstly, of course, one needs to know

how different Composite Higgs models can themselves be related by RG flow.

The idea here is straightforward: if the global symmetry G (which, recall, is sponta-

neously broken to H) is in fact explicitly broken (via some small parameter) to a subgroup

G′, then the Goldstones parametrizing the coset space G/H will no longer all be strictly

massless. Rather, a potential will turn on for the Goldstones, which will acquire small

masses23 (thus becoming pNGBs). Only the subgroup H ′ = G′ ∩H will then be linearly

realized in vacuo, yielding exact Goldstone bosons on the reduced coset space G′/H ′. If we

flow down to sufficiently low energies, we will be able to integrate out the pNGBs which

acquire masses, and thereby arrive at a deep IR theory describing only the massless de-

grees of freedom. This theory will be a sigma model on G′/H ′. This concept was recently

introduced in ref. [27], under the name of “Composite Higgs Models in Disguise”.

We postulate that, under such a flow between Composite Higgs Models, the topological

terms in the G/H theory should match onto the topological terms in the eventual G′/H ′

theory. We now illustrate this proposal with its most simple incarnation, namely the flow

between theories based on the cosets:

SO(6)/SO(5)→ SO(5)/SO(4), (9.1)

that is, from a theory of Goldstones living on S5, to a theory of Goldstones living on

S4.24 This flow was discussed in [27], but we reformulate it here from a more geometric

perspective, since this is better suited to a discussion of the topological terms.

9.1 From the 5-sphere to the 4-sphere

We begin by considering the sigma model on target space M = S5, which has a transitive

group action by G = SO(6). A particular subgroup G′ = SO(5) is defined unambiguously

by explicit symmetry breaking, as follows. Pick a point p on M , which we will define

to be the origin in local coordinates (x1, . . . , x5). The stabilizer of this point p under

the action of G is a subgroup of G isomorphic to SO(5). Define this group to be G′, the

subgroup of G that remains an exact symmetry of the lagrangian after the explicit breaking

is introduced.25

Because there is explicit breaking of SO(6), a potential is turned on for the coordinates.

What form does it take? We claim that, in suitable coordinates, the potential must be

a function of r2 :=
∑5

i=1 x
2
i . The reasoning is as follows. The potential V (xi) must be

invariant under the action of the exact symmetry G′ = SO(5), which implies that V (xi)

must be constant on the orbits of the G′ action. We shall now show that these orbits are

indeed surfaces of constant r.
23By “small”, we mean that the pNGBs will nevertheless remain light relative to the other composite

resonances in the theory.
24Given the theory on SO(6)/SO(5) ' SU(4)/Sp(4) has a UV completion (in the form of an Sp(2Nc) gauge

theory with an SU(4) flavour symmetry), this provides a model for a UV completion of the Minimal Com-

posite Higgs model, in the form of an Sp(2Nc) gauge theory with an approximate SU(4) flavour symmetry.
25To see how this explicit breaking might be achieved at the level of the lagrangian, we refer the reader

to ref. [27].
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Consider an arbitrary point xi away from the origin. The stabilizer of that point under

the original action of G = SO(6) on M is again an SO(5) subgroup of G, that is conjugate

to G′; call this subgroup Hx. The action of the exact symmetry G′ = SO(5) at that point

xi is not trivial, so long as Hx 6= G′; but there is nevertheless a stabilizer of this G′ action

given by the intersection of G′ with Hx. This intersection is an SO(4). So the action of

G′ = SO(5) traces out orbits which are, by the orbit-stabilizer theorem, isomorphic to

G′/(G′ ∩Hx) =

{
SO(5)/SO(4) ' S4, xi /∈ {0, 0̄},
SO(5)/SO(5) ' {0}, xi ∈ {0, 0̄},

}
(9.2)

where 0̄ denotes the antipodal point on S5 to the origin 0 (both the origin and its antipode

are stabilized by the same subgroup, equal to G′; in this sense, the G′ action picks out

a special pair of points {0, 0̄}). Note that, because the G′ action on M is not transitive,

there need not be only one orbit; in this case, the origin and its antipode are special

points, for which the orbit trivially contains only the point itself. Because the theory is G′-

invariant, the potential should be constant on each SO(5)/SO(4) orbit through any given

non-zero point.

Continuing, if the minimum of the potential is at the origin or its antipode (which are

special points with respect to the G′ action), we find that there are no massless degrees of

freedom (unless the potential equals zero, which just means there is no explicit breaking).

But for a minimum at any point which is not the origin, we know from (9.2) that there

is a whole 4-manifold of degenerate vacua with constant
∑5

i=1 x
2
i = a2 6= 0. Thus, there

are precisely four Goldstones everywhere (except at the pair of special points), and one

massive mode.

Integrating out the massive mode just corresponds (at least at leading order) to re-

stricting to the level set of the minimum of the potential. For the minimum being at the

origin, that level set is a point, while for a minimum away from the origin that level set is

a 4-sphere, on which the four light degrees of freedom live. Given this S4 has an action of

G′ = SO(5) (the non-linearly realised global symmetry) with stabilizer SO(4) = G′ ∩ Hx

(the subgroup that is linearly realised), this theory may be identified with the minimal

Composite Higgs model.

Looking at it in this way shows that a more convenient set of coordinates is as follows.

Let r =
√∑5

i=1 x
2
i be a radial coordinate measuring the distance from the origin, while

θj , for j = 1, . . . , 4, are four angular coordinates on the level set S4. In these coordi-

nates, we have that the potential V (r, θj) = V (r). We identify the massive radial mode

r, which is integrated out, with the η, and the massless angular coordinates θj with the

Composite Higgs.

9.2 From the WZ term to the AB term

Now we consider the WZ term. As set out in section 4, the WZ term in the SO(6)/SO(5)

theory is proportional to the volume form on M = S5, integrated over a 5-disk B bounding

the 4-cycle z = ∂B which defines the field configuration, which may locally be written

SWZ[∂B] ∝
∫
B dr d

4θ in our new coordinates. On such a local patch, the closed 5-form
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we have integrated is of course exact, and so locally we can re-write SWZ[∂B] ∝
∫
∂B r d

4θ

(more correctly, we can write the WZ term in this way for any cycle z on which the 4-form

r d4θ is well-defined). But what happens when we integrate out the massive degrees of

freedom? If the minimum is at the origin or its antipode, then all degrees of freedom

are massive, and integrated out, so we are left with no dynamics at all, which is clearly

uninteresting. So we assume the minimum in V (r) is at some value r = a away from the

origin, in which case integrating out the radial mode has the effect of constraining the field

configuration to the level set (which is an S4) through r = a.

This can be achieved by taking the original 4-cycle z on S5, and pushing it forward onto

this level set (under the obvious map π : S5 → S4 : (r, θj) 7→ (a, θj)).
26 The 4-form r d4θ

is well-defined on this level set, and so the WZ term can be written SWZ[π∗z] ∝ a
∫
π∗
d4θ,

which is nothing but the AB term in the Minimal Composite Higgs model defined on the

S4 which minimizes V .

We shall conclude this section with a few words on how this theory makes contact with

the Standard Model electroweak sector, from the geometric perspective we have developed

here. At this level of description, we have a theory which is fully G′ = SO(5) invariant,

with light degrees of freedom living on SO(5)/SO(4). But to get to the Standard Model,

we need to go further. In particular, we need to gauge a subgroup corresponding to the

electroweak interactions, which we’ll take to be K = SO(4) for ease of description. K must

be a subgroup of G′, because the interactions that give r a mass should not break the

Standard Model gauge symmetry. The gauging also breaks the SO(6) symmetry and leads

to another potential on M = S5. What do we know about this potential? It has level sets

which are subsets of the level sets of the original potential (because K ⊂ G′ and because

the level sets are just the orbits of K), but they are now only orbits of SO(4), generically27

with a stabiliser SO(3) (viz. the intersection of two SO(4) subgroups, K with G′ ∩ Hx).

In other words, the true minima of the theory generically have only a non-linearly realised

symmetry K ' SO(4), of which a subgroup SO(3) is preserved in vacuo. So, the true

vacuum picture is that there are 3 Goldstone bosons (the longitudinal modes of W± and

Z) with an unbroken gauged SO(3) symmetry, corresponding to custodial symmetry. This

is precisely the spectrum that we phenomenologically desire.

10 Discussion

In this paper, we have introduced a systematic approach for the identification of topological

terms that may appear in the action for a Composite Higgs model. In this approach, which

follows the general classification proposed in [9], the possible topological terms divide into

two types: Aharonov-Bohm (AB) terms, which correspond to integrating closed, globally-

defined 4-forms, and Wess-Zumino (WZ) terms, which correspond to integrating 4-forms

that are not closed, and may be only locally-defined, and which moreover must satisfy a

non-trivial condition for G-invariance called the Manton condition.
26In other words, we compose the original sigma model map into S5 with the projection π onto the level

set of V (a) which minimizes the potential on S5.
27Of course, a non-generic miracle is possible: there may be points at which G′ ∩Hx coincides with K.

The level sets here are points. Again, there are no light degrees of freedom about such singular points, and

so they are not interesting for us.
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We have applied our classification to a variety of well-studied Composite Higgs models

based on different cosets G/H, and found topological terms appearing in every one. To

summarize, we find AB terms for cosets SO(5)/SO(4), SO(5)×U(1)/SO(4), SO(6)/SO(4),

and SO(6)/SO(4) × SO(2). In the last example, the space of AB terms is found to be 2-

dimensional. We find WZ terms for cosets SO(6)/SO(5), SO(6)/SO(4), and SU(5)/SO(5).

In the case of SO(6)/SO(4), the space of WZ terms is isomorphic to Z× R4.

For any given coset, this classification of topological terms is of course exhaustive only

to the extent that the assumptions underlying [9] are good ones. While this is by and

large the case for, say, a Composite Higgs theory, there is one key assumption which one

might like to relax; this is the assumption that topological terms can be written in terms

of (possibly locally-defined) differential forms. If we choose to extend our analysis beyond

differential forms, there may be yet more topological terms. We conclude this paper with

a brief discussion of such terms.

Firstly, and most obviously, one may use torsion elements in H4(G/H,Z),28 to con-

struct topological terms which cannot be written using differential forms. The idea is as

follows. Consider the map that sends a 4-cycle z (obtained from a worldvolume Σ4) to

its homology class, and then to its torsion part. Composing this with any map to U(1)

defines the action phase on that cycle for a topological term. An illustrative example in

lower dimension is provided by quantum mechanics of a rigid body, which is described

by a 1-d sigma model into target space SO(3). The torsion subgroup of H1(SO(3),Z) is

isomorphic to Z/2Z, from which one can define a topological term by assigning a relative

phase eiπ to all worldlines in the non-trivial torsion class. Physically, this makes the rigid

body fermionic [9]. In the case of Composite Higgs models, there will be torsion terms

classified by the torsion subgroup of H4(G/H,Z).

Finally, we might wish to impose more geometric structure on our worldvolume, for

example a spin structure, which can result in yet further topological terms [28]. For exam-

ple, consider a 3-d sigma model with target space CP 1. The dimension of the worldvolume

exceeds that of the target space, so there are certainly no AB or WZ terms. Nonetheless

there is a topological term, associated with the Hopf invariant π3(CP 1) = Z, which cannot

be written in terms of locally-defined forms (the “lagrangian” for this term can only be

given as a non-local expression) [29]. In fact, requirements of unitarity and locality have

been recently used in [29] to show that this topological term is only well-defined for certain

discrete choices of its coefficient, from which we learn a general lesson: if we seek to extend

our classification of topological terms beyond locally-defined differential forms, we must

take care to ensure locality and unitarity.
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A Instantons and the physical effects of AB terms

To investigate the physical effects of an AB term in a Composite Higgs theory, we consider

the Euclidean path integral Z for the theory. In the case of the MCHM, whose target space

is G/H = SO(5)/SO(4) ' S4, the partition function Z is defined by integrating the action

phase over the entire space of maps φ : Σ4 → S4.

We begin by considering an action consisting of only the two-derivative kinetic term

Skin, obtained from an SO(5)-invariant metric on the target, together with the AB term

SAB. This action is scale-invariant, and admits instanton solutions (which extremize the

classical action) in each topological sector (i.e. in each homotopy class) labelled by n ∈ Z.29

One can approximate the Euclidean path integral by decomposing it into a sum over topo-

logical sectors, and expanding about the saddle points of the classical action in each sector:

Z =

∫
[Dφ]e−Skin+iSAB =

∑
n

e−Sn+inθKn, (A.1)

where Sn is the classical kinetic term evaluated on an instanton in sector n, and Kn is a

functional determinant that results from the Gaussian functional integral over quantum

fluctuations. For any given field configuration, the AB term just counts the degree n of

the map into the target space.

The factorKn involves divergent integrals over collective coordinates which parametrize

the instanton solutions. Because the two-derivative action is scale-invariant, there will be a

collective coordinate ρ parameterising the size of the instanton. We want to know whether

the integral over this coordinate diverges for large or small instantons; in other words, in

the infrared or the ultraviolet. On purely dimensional grounds, this integral is of the form

J =

∫
dρ

ρ5
F (ρµ), (A.2)

where µ is the renormalization scale, and F (ρµ) is a function to be determined. Since Z
is a physical quantity (recall that − logZ is the vacuum energy density), the combination

Je−Sn must be independent of the renormalization scale µ.

Now, the instanton action Sn depends on the coupling constant in the Composite

Higgs theory, which for the kinetic term alone is simply the scale of global symmetry

breaking f , which, in four spacetime dimensions, has mass dimension one. Since this is

a dimensionful coupling, its dependence on the renormalization scale µ is dominated by

the classical contribution. Thus, if we neglect the quantum correction to the running of

f , the instanton action is independent of µ. Hence, the function F (ρµ), needed to ensure

RG-invariance, is simply a constant, and the integral over the collective coordinate is just∫
dρ

ρ5
∼ ρ−4, (A.3)

which diverges for small instantons, i.e. in the ultraviolet.

29Since the target space is here an almost quaternionic manifold, there are instantons in each homotopy

class corresponding to so-called “tri-holomorphic maps” from Σ4 to S4, as introduced in [30].
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Of course, since Kn is UV divergent, the above calculation is not reliable. What we

expect really happens is that at short distances (where instantons give large contributions),

the higher derivative terms in the sigma model action become increasingly important rel-

ative to the leading two-derivative kinetic term. When these terms are included in the

action, the theory will no longer be scale invariant and the instantons will be stabilised at

some finite size. Their size will be of order Λ, where Λ is the cut-off for the effective field

theory expansion, because the extra terms in the action just feature extra powers of ∂/Λ.

Our conclusion from all of this is that instantons have a size of order the UV cut-off.

It might be helpful for the reader to compare this 4-d instanton argument with the more

familiar story for the theta term in a 2-d sigma model (such as the CPN model, in which the

AB term is proportional to the integral of the Kähler form on CPN ). In two dimensions,

the coupling constant 1/g2 that appears in front of the kinetic term is dimensionless, and

so its running under RG flow is dominated by the 1-loop beta function. The action for

an instanton is proportional to 1/g2, and thus e−Sn has power-law dependence on the

renormalization scale µ. The upshot is an enhancement of the integral over ρ for large ρ

due to this 1-loop running, such that the integral in fact diverges in the infrared, and the

AB term consequently modifies the vacuum structure of the theory.
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