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1 Introduction

Holographic entanglement entropy (HEE) has had a profound impact on our understanding

of quantum gravity, by directly connecting quantum information and geometry. According

to the Ryu-Takayanagi (RT) formula [1], the entropy of a boundary region A is given by

the area of the minimal-area bulk surface homologous to A:

S(A) =
1

4GN
min
m∼A

area(m). (1.1)

Bit threads [2] are a reformulation of the RT formula introduced to address some of the

conceptual issues arising from the RT formula. To understand them, one first defines a

flow, a vector field v satisfying ∇µvµ = 0, |v| ≤ 1 everywhere. A consequence of the

divergencelessness is that the flux of v through A equals the flux through any surface

homologous to A. Maximizing the flux picks out the minimal surface as the “bottleneck”,

on which the norm bound is saturated, giving a flux equal to the minimal surface area. A
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simple analogy is determining the size of a water pipe’s bottleneck by maximizing the flow

through one end. Mathematically, this is expressed in the max flow-min cut theorem,

min
m∼A

area(m) = max
v

∫
A

√
hnµv

µ where ∇µvµ = 0 , |v| ≤ 1 . (1.2)

Based on this theorem, we can rewrite the RT formula as

S(A) =
1

4GN
max
v

∫
A

√
hnµv

µ . (1.3)

A bit thread is an integral curve of v. The threads are chosen as a subset of the

integral curves with transverse density equal to |v|/4GN; effectively, each thread has cross-

sectional area 4GN . The fact that threads have thickness and cannot intersect then gives

an interpretation to the vector field norm bound: there is a limit to how closely the threads

can be packed together. For configurations that maximize the number of threads out of

A, the threads are maximally packed on and directionally normal to the minimal surface,

which acts as a bottleneck. There is a redundancy in which discrete members in the

continuous family of integral curves are given a cross-sectional area and called bit threads.

At AdS scales the bit thread number density is of the order N2, so the discrete family

of bit threads is indistinguishable from the continuous family of integral curves, and the

terms “bit thread” and “flow” can be used interchangeably. The maximum number of

threads that can be placed on A gives the entanglement entropy, as if each bit thread

connected an EPR pair of qubits between A and its complement region Ac; bit threads

are thus a layer of quantum information theoretic interpretation on top of the vector

field v. Unlike the minimal surface, the bit thread configuration changes continuously

under continuous deformations of the region A. Furthermore, they allow for very natural

expressions for important information-theoretic quantities such as the conditional entropy,

mutual information, and conditional mutual information. They also provide proofs of

important properties like subadditivity and strong subadditivity that correspond directly

to the information-theoretic meaning of these properties.

The RT formula (1.1), and therefore the bit-thread formula (1.3), requires the bulk

theory and state to obey a particular set of conditions, including being in the classical limit

(large-N limit of the field theory), governed by Einstein gravity (strong-coupling limit of

the field theory), and in a state possessing a time-reflection symmetry. It is by now more or

less understood how to relax each of these conditions on the RT formula. If the bit threads

indeed have a fundamental physical significance — as opposed to being just a mathematical

artifact of the simplicity of the RT formula — then it should be possible to relax these

conditions for the bit threads as well.

In this paper, we will take up this challenge by exploring how to relax one of the above

conditions, namely the assumption that the bulk is described by Einstein gravity. In other

words, we will show how to formulate bit threads when the bulk gravitational action in-

cludes higher-curvature terms. This is equivalent to moving away from the strong-coupling

limit in the boundary theory. For work on black-hole entropy and HEE in higher-curvature

gravity theories see [3–13]. The original bit thread paper [2] discussed one possible way
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to generalize bit threads to higher-curvature gravity, by employing a conjectural general-

ization of the Weyl law for the spectrum of the scalar Laplacian to vector fields. In this

paper, we will take a more direct approach.

In higher-curvature theories, the right-hand side of the RT formula is corrected by the

minimum of a local geometrical functional of the surface:

S(A) =
1

4GN
min
m∼A

aλ(m) , aλ(m) :=

∫
m

√
g
(

1 + λÃ
)
, (1.4)

where λ is a small parameter and Ã is a function of the intrinsic and extrinsic geometry

and the ambient metric [11]. For example, the simplest example of a higher curvature

correction is for Gauss-Bonnet gravity, where λ is the coefficient of the Gauss-Bonnet term

in the gravitational action and Ã is the scalar curvature of the induced metric on m [14, 15].

In order to generalize the bit threads to higher curvature gravity, we need to find a gen-

eralization of the max flow-min cut theorem (1.2) in which the area functional is replaced

by aλ and the right-hand side is corrected in an appropriate way. The right-hand side in-

volves three ingredients: the objective to be maximized
∫
A

√
hnµv

µ, the divergencelessness

condition ∇µvµ = 0, and the norm bound |v| ≤ 1. We will find that the λÃ correction can

be accounted for by correcting just the norm bound, replacing |v| ≤ 1 with

|v| ≤ Fλ[v] , (1.5)

leaving both the divergencelessness condition and the objective untouched. Here Fλ can

depend on both v and its derivatives.

The constant λ will always be considered to be perturbatively small, allowing both

the flow vµ and the norm bound to be expressed as perturbative expansions. Thus we

will write

Fλ[v] = 1 +

∞∑
n=1

λnfn[v] . (1.6)

We will compute the functions f1 and f2. Although the entropy functional (1.4) has no

order-λ2 term, it turns out that such a term is necessary in the norm bound. The reason is

that maximizing the flux subject to a norm bound with a first-order correction leads to a

second-order term in the flux, which must then be cancelled with an explicit second-order

correction to the norm bound. Our general result can be found in subsection 2.5, and its

application to Gauss-Bonnet gravity in eq. (2.92).

We derive our results by two different methods. The first, which we call the bottleneck

method, is described in section 2. It asks what the norm bound needs to be such that the

maximum flux of a vector field defined on a given surface m equals aλ(m). This implies

that, for any m ∼ A, aλ(m) bounds the flux through A of any divergenceless vector field.

The tightest bound is
∫
A v ≤ min

m∼A
aλ(m). We then ask whether this inequality can be

saturated, in other words whether a vector field defined on the minimizing surface and

satisfying the norm bound can be extended to one that is defined everywhere in the space

while respecting the divergenceless condition and the norm bound. This issue is non-

trivial, and discussed in detail. The bottleneck method is general enough that it can in
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principle be used to write any higher-curvature HEE prescription in an equivalent bit-

thread formulation. We apply the bottleneck method to the specific case of Gauss-Bonnet

(GB) gravity and discuss how to incorporate the accompanying Gibbons-Hawking-York

(GHY) boundary term. The second method, described in section 3, applies the machinery

of Lagrange dualization of convex programs to the corrected min cut problem. This method

is more straightforward, but it requires the corrected min cut problem to define a convex

program, which is only true under restrictive assumptions, either when the minimal area

surface has a high degree of symmetry or Ã has a particularly simple form. The bottleneck

method on the other hand is always valid. For GB HEE both methods are valid when

considering boundaryless bulk entangling surfaces without extrinsic curvature. Despite the

limited applicability of Lagrange dualization to our problem, we include it because it is a

non-trivial self-consistency check in results. In section 4, we consider cases where the norm

bound is a function purely of flow direction from the viewpoint of bit threads.

2 Bottleneck method

In this section we explain the bottleneck method and use it to derive the norm bound

corrections.

2.1 Method

We will retain, from the max flow-min cut theorem, the objective
∫
A v as well as the

divergenceless constraint∇µvµ = 0. As a result, we still have, for any surface m homologous

to A, ∫
m
v =

∫
A
v , (2.1)

so we can measure the flux through any m. Let m∗λ be the surface that minimizes the

functional aλ whose minimum gives S(A) in the corrected RT formula (1.4). We wish to

find a norm bound

|v| ≤ Fλ (2.2)

such that the maximum flux equals

max
v

∫
m
v = aλ(m∗λ) =

∫
m∗λ

√
g
(

1 + λÃ
)
. (2.3)

with λÃ the perturbative correction to the HEE area functional. This is not a trivial task

because Fλ is not allowed to depend explicitly on m∗λ, only on v and the local geometry

since the norm bound (2.2) will be imposed everywhere without reference to any particular

surface.

Let us fix a surface m homologous to A, and further restrict m to be perturbatively

close to the λ = 0 RT surface m∗0. To see that this restriction does not exclude any potential

bottlenecks, note that corrections to the flow must be perturbatively small, so the position

where the bit threads are maximally packed can only move a perturbatively small distance,

assuming no flat directions in the position of the RT surface. A useful property of minimal
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area surfaces such as m∗0 is that K the trace of the extrinsic curvature vanishes. This

implies, since m is perturbatively close to m∗0,

K = O(λ) on m. (2.4)

We will do a local analysis on m, thus in this subsection the vector field v is defined only on

m and its neighborhood. Only when it is established that the norm bound we derive has

flow solutions that do not violate it in the neighborhood of m, will v be extended off the

surface onto the entire time slice. We will derive a norm bound of the form (2.2) such that

max
v

∫
m
v = aλ(m) , |v| ≤ Fλ[v] on m. (2.5)

Separating v into its norm |v| and direction v̂, the flux is∫
m
v =

∫
m

√
g̃ uµv

µ =

∫
m

√
g̃ uµv̂

µ |v| (2.6)

with u the unit normal on m. To maximize the flux for a given direction field v̂ (assuming

uµv̂
µ ≥ 0, as it will be) corresponding to a fixed orientation of the bit threads on m, the

threads should clearly be maximally packed, saturating the norm bound such that

|v| = Fλ[v] on m, (2.7)

so what we want to maximize and match is

max
v

∫
m

√
g̃ uµv̂

µFλ[v] =

∫
m

√
g̃(1 + λÃ). (2.8)

In subsection 2.2, we will find the conditions on the maximizing vector field and the

surface m such that the vector field can be extended off of that surface while respecting

both the divergencelessness constraint and the norm bound. In subsection 2.3 we derive

some useful perturbative expansions in λ, and in 2.4 we will find a suitable Fλ by first

considering the vector field v on m, and requiring that (2.3) hold. This establishes

max
v

∫
A
v = aλ(m∗λ) (2.9)

as the maximum flux from A is bounded by the maximum flux through the bottleneck,

which when (2.3) holds is also the surface that minimizes aλ(m).

In this section Gaussian normal coordinates (GNC) will sometimes be used, with

the notation

ds2 = dz2 + g̃ijdx
idxj . (2.10)

Thus vz is the component of v normal to hypersurfaces of constant z, and vi the tangential

components. We take m to be the surface with z = 0.

– 5 –
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2.2 Obstruction equations

The flux
∫
A v through the boundary subregion A is equal to the flux

∫
m v through any

surface m homologous to A, from the divergenceless condition on v and Stoke’s theorem.

This is assuming there is no obstruction to the flow, that is, given some v on m, it is possible

to extend v from m to the boundary (A∪Ac) without anywhere violating the norm bound.

For λ = 0, this is true by the MFMC theorem. We would like to know whether for λ 6= 0

this holds true, or whether the maximally packed threads will inevitably collide.

Away from the bottlenecks the bit threads are far from maximally packed; stopping

them from running into each other and violating the norm bound is simple, as there is a

lot of space for maneuvering. On the minimal surface however, the threads are maximally

packed and their directionality fixed; there is no choice on how to orient the threads in

order to stop them colliding, so just off the surface is the most likely place for the norm

bound to be violated.

Let us calculate the necessary condition for the threads not to collide off a surface m,

given that the norm bound on v is saturated on that surface

|v| − Fλ[v] = 0. (2.11)

If the difference between the norm bound and Fλ[v] is anywhere positive, on or off the

surface, then the norm bound has been violated. Assuming the flow to be smooth, the

norm bound must be saturated to linear order in distance from m

∂z(|v| − Fλ[v])|m = 0, (2.12)

which may be written as

vµ∇zvµ = Fλ[v]∇zFλ[v]. (2.13)

To quadratic order in distance from m the non-violation of the norm bound is expressed

as a bound on the second normal derivative

∇2
z(|v| − Fλ[v])|m ≤ 0. (2.14)

which may be written as

vµ∇2
zv
µ +∇zvµ∇zvµ − Fλ[v]∇2

zFλ[v]− (∇zFλ[v])2 ≤ 0. (2.15)

2.3 Perturbative expansions of the flow

Here we introduce our notation for keeping track of λ dependence, and derive useful per-

turbative expansions of the flow. The bulk geometry is a solution to the Einstein’s field

equations with higher curvature corrections, so has dependence on λ. The flow solution

which maximizes the flux also depends on λ. In perturbative expansions care must be

taken to keep track of the perturbative order of every term. The norm bound is expanded

Fλ[v] = 1 +
∞∑
n=1

λnfn[v] (2.16)
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and the flow

v = v0 +

∞∑
n=1

λnvn . (2.17)

While vn has no λ dependence, fn[v] does. For other quantities, perturbative expansions in

λ use (n) to denote the nth order in the expansion. In our notation, by definition a quantity

with a (n) superscript never has λ dependence. For example, the metric we expand as

gµν =

∞∑
n=0

λng(n)µν . (2.18)

In GNC the zz component of the metric is exactly 1 by definition,

g(0)zz = 1, g(n>0)
zz = 0 (2.19)

while the tangential components do have λ dependence with

g
(n)
ij = g̃

(n)
ij . (2.20)

g̃ is the induced metric on m. In our notation the only quantities without a (n) superscript

which do not have λ dependence are vn and quantities which we have explicitly shown and

stated to have no λ dependence.

A useful simplification is made using a result from the zeroth-order RT bit threads,

that the maximizing flow on the minimal area surface equals the unit normal, v0|m∗0 = u.

As m∗0 and m are perturbatively close, v will still be normal to m at zeroth-order and so

v0|m = u, (2.21)

which in turn implies that |v0| has no λ dependence as

|v0| = (g(0)µν v
µ
0 v

ν
0 + λg(1)µν v

µ
0 v

ν
0 + . . .)1/2

= (g(0)zz + λg(1)zz + . . .)1/2

= 1

(2.22)

so that on m

|v0| = |v0|(0) = 1, |v0|(n>0) = 0. (2.23)

v0 and |v0| do not have λ dependence, so neither does v̂0 or the projection tensor

Pµν [v̂0] := δµν − v̂µ0 v̂0ν
= δµν − gνρv̂µ0 v̂

ρ
0

= δµν − δzν v̂µ0 .
(2.24)

Taking the norm of v and perturbatively expanding gives

|v| = |v0|+ λv̂0µv
µ
1 +

λ2

|v0|

(
v0µv

µ
2 +

1

2
v1µv

µ
1 −

1

2
(v0µv

µ
1 )2
)

+O(λ3)

= 1 + λvz1 + λ2
(
vz2 +

1

2
v1iv

i
1

)
+O(λ3)

(2.25)
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When |v| saturates its norm bound, we can use the results derived so far to perturbatively

expand both sides of (2.7), finding

vz1 = (f1[v])(0) (2.26)

and

vz2 +
1

2
g̃
(0)
ij v

i
1v
j
1 = (f1[v])(1) + (f2[v])(0). (2.27)

The direction of v can be expanded in vn to

v̂µ = v̂µ0 + λ
Pµν [v̂0]v

ν
1

|v0|
− λ2 (v̂µ0P

ρ
ν [v̂0] + 2v̂ρ0P

µ
ν [v̂0])v

ν
1v1ρ − 2|v0|Pµν [v̂0]v

ν
2

2|v0|2
+O(λ3)

(2.28)

We only need the normal component of v̂ for our procedure; see equation (2.8). On m

this is

v̂z = 1− λ2 v1iv
i
1

2
+O(λ3) . (2.29)

Before proceeding with the maximization of the flux order by order in λ, note that while√
g̃ has a λ expansion it is common to both the area functional and flux sides of (2.8) and

so is a spectator; while not left out, it will be ignored.

2.4 Maximization of flux

In this subsection we maximize the flux order by order in λ, making use of the perturbative

expansions (2.25) and (2.29), and evaluate the obstruction equations (2.13) and (2.15), in

order to determine Fλ[v]. At each order in λ, there are three pieces of information that

can be used to constrain v on and off m,

1. The norm bound |v| is saturated on m.

2. The direction v̂ is such that the flux through m is maximized.

3. The norm bound cannot be violated anywhere off m.

Information that can be found about fn or vn at a given order in λ can be used at

higher-order.

Zeroth order. Norm bound: the norm bound to zeroth-order is

|v|(0) = (g̃
(0)
ij v

i
0v
j
0 + (vz0)2)1/2 = 1. (2.30)

Flux: the flux to zeroth order in λ is ∫
m

√
g̃v̂z0 (2.31)

which given the zeroth order norm bound (2.30) is maximized when

vz0 = 1, vi0 = 0 (2.32)
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As stated earlier this is a known result from RT bit threads, derived here using the novel

bottleneck method.

That v0 = u on m allows us to replace v0 with u in functionals which do not con-

tain derivatives perpendicular to the surface, for example kij [v0] = Kij . Those normal

derivatives are thus far unconstrained, for example vi0 on m is known, while ∂zv
i
0 is not.

Linear obstruction equation: the zeroth-order of the linear obstruction equation is

(vµ∇zvµ)(0) = ∇zvz0 = ∂zv
z
0 = 0. (2.33)

From this we can show that the trace of the extrinsic curvature on m must vanish to

zeroth-order, using

∂zv
z
0 = (∇zvz)(0) = (∇µvµ −∇ivi)(0) = −(Γiiz)

(0) = −K(0). (2.34)

which implies

K(0) = 0. (2.35)

That the zeroth-order component in the trace of the extrinsic curvature vanishes is thus a

no-obstruction constraint on m. This is consistent with the restriction made earlier that m

be perturbatively close to a minimal area RT surface. For RT bit threads this is a known

result, that it is not possible to extend bit threads off a surface on which the threads are

maximally packed without violating the norm bound, unless it is a RT surface, with K = 0.

Quadratic obstruction equation: the zeroth order in the quadratic obstruction equa-

tion (2.15) is

(v0µ∇2
zv
µ
0 +∇zv0µ∇zvµ0 )(0) = (∇2

zv
z
0 + g̃ij∇zvi0∇zv

j
0)

(0)

= (Rzz −∇i∇zvi0 + ∂zv0i∂zv
i
0)

(0) ≤ 0.
(2.36)

where the last line follows from

∇2
zv
z = ∇z(∇µvµ −∇ivi) = −∇z∇ivi = Rµzv

µ −∇i∇zvi. (2.37)

Note that in expressions of the form (. . .)(0), v can be replaced with v0 and vice versa.

The bound (2.36) is a constraint on how v0 changes off the surface, and the max-flow-

min-cut theorem states that for all minimal area surfaces with K(0) = 0 there is always

an obstructionless flow v0, and hence the above constraint inequality places no further

condition on m at this order. If at higher orders we need to maximize flux over ∇zvi0 then

this inequality will be important, but we will see at second order how the dependence of

flux on ∇zvi0 can be removed with a suitable choice for f2[v].

First order. Flux: the flux to first order in λ is(∫
m
v

)(1)

=

∫
m

√
g̃((v̂z)(0)(Fλ[v])(1) + (v̂z)(1)(Fλ[v])(0) =

∫
m

√
g̃(f1[v0])

(0) (2.38)

Comparing this to the first-order term in aλ(m) implies

(f1[v0])
(0) = Ã(0). (2.39)
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Norm bound: the norm bound saturation (2.26) on m to first order is

vz1 = (f1[v0])
(0) = Ã(0), (2.40)

however the tangential components of v1 are undetermined at this order.

Linear obstruction equation: the first-order in the linear obstruction equation (2.13) is

(vµ∇zvµ − Fλ[v]∇zFλ[v])(1) = (∇zvz1 + v1i∂zv
i
0 − ∂zf1[v])(0)

= 0.
(2.41)

where we have used ∂zv
z
0 = 0 on m.

Quadratic obstruction equation: the first order of the quadratic obstruction equation

does not have any impact on our flux maximization, more details are given in appendix A.

Second order. Flux: the flux to second order in λ is(∫
m
v

)(2)

=

∫
m

√
g̃(v̂(0)z (Fλ[v])(2) + v̂(1)z (Fλ[v])(1) + v̂(2)z (Fλ[v])(0))

=

∫
m

√
g̃

(
f1[v](1) + f2[v](0) −

g̃
(0)
ij v

i
1v
j
1

2

)

=

∫
m

√
g̃

(
(f1[v0])

(1) + (f1[v]− f1[v0])(1) + f2[v](0) −
g̃
(0)
ij v

i
1v
j
1

2

) (2.42)

We will maximize this contribution to the flux with respect to v1, so it is important to

know the v1 dependence of each term, to this end in the last line we separated (f1[v])(1)

into terms containing only v0, and those exactly linear in v1.

Suppose we took the functional Ã[u] and replaced u with v̂. Let us call that functional

ã[v̂]. As v̂0 = u on m, and Ã contains only derivatives projected tangentially to the surface

we have

ã[v̂0] = Ã, (2.43)

If we choose f1 to equal ã then we have

f1[v0] = Ã (2.44)

and the correction to the HEE surface functional is captured to all orders in λ. There is still

work to do however as there are terms left over in the second order flux, which as everything

in the HEE functional has been accounted for must equal zero. These additional terms

come from the flow being perfectly normal to m, only to zeroth order in λ, the higher order

corrections to the norm bound (f2 and above) exist to cancel overcorrections to the flux.

We would like to keep f1 as general as possible, so note that we can add

f1b[v] =
∞∑
n=1

pn[v](vµ∂µ|v|)n (2.45)

to f1[v] without changing f1[v0] on m, as vµ0 ∂µ|v0| = ∂zv
z
0 = 0 on the surface and so (2.44)

is still satisfied. f1b[v0] does not therefore affect the flux, but f1b is important for the flow
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to be obstructionless. pn are unfixed functions. vµ∂µ|v| measures change in bit thread

number density tangential to the flow. The first order correction to the norm bound thus

has two components,

f1[v] = ã[v̂] + f1b[v], (2.46)

one which captures the surface functional correction Ã, and the other which ensures flow

is obstructionless.

Let us return to the second order flux and calculate the contribution from f1b,∫
m

√
g̃(f1b[v]− f1b[v0])(1) =

∞∑
n=1

∫
m

√
g̃(pn[v](vµ∂µ|v|)n − pn[v0](v

µ
0 ∂µ|v0|)

n)(1)

=

∫
m

√
g̃(p1[v])(0)(∂z|v|)(1)

=

∫
m

√
g̃(p1[v]∂zf1[v])(0).

(2.47)

To reach the last line we have used the first order linear obstruction constraint

(∂z(|v| − (1 + λf1[v]))(1) = 0. (2.48)

Now let us calculate the contribution to the second order flux from (ã[v]− ã[v0])
(1). As

we will be performing a functional variation around v = v0, we need to understand what

derivative terms of v can appear. As derivatives of u in Ã must be projected tangential

to m, all derivative terms of v̂ in ã[v̂] must be projected onto the normal subspace of v.

A consequence of this is that terms involving the normal derivatives of v vanish at zeroth

order, for example, suppose that ã[v̂] is the trace of the extrinsic curvature

k[v̂] = Pµν [v̂]∇µv̂ν , (2.49)

then terms such as (
∂k̃[v̂]

∂(∇z v̂µ)

)(0)

= (P zν [v̂])(0) = gzν − uzuν = 0. (2.50)

This leaves just derivatives tangential to m, which can be integrated by parts to strip off

all the derivatives acting on v1, in a fashion similar to the derivation of the Euler-Lagrange

equation. The contribution from ã is∫
m

√
g̃(ã[v̂]− ã[v̂0])

(1) =

∫
m

√
g̃

(
ã

[
v̂µ0 + λ

Pµν [v̂0]v
ν
1

|v0|

]
− ã[v̂0]

)(1)

=

∫
m

√
g̃

(
∂ã[v̂]

∂v̂µ
Pµν [v̂0]v

ν
1

|v0|
+

∂ã[v̂]

∂(∇ρv̂µ)
∇ρ
(
Pµν [v̂0]v

ν
1

|v0|

)
+ . . .

)(0)

=

∫
m

√
g̃

(
∂ã[v̂]

∂v̂i
vi1 +

∂ã[v̂]

∂(∇j v̂µ)
∇j
(
Pµν [v̂0]v

ν
1

|v0|

)
+ . . .

)(0)

=

∫
m

√
g̃

((
∂ã[v̂]

∂v̂i
−∇j

∂ã[v̂]

∂(∇j v̂i)
+ . . .

)
vi1

)(0)

+ boundary terms

=

∫
m

√
g̃
(
ζi[v]vi1

)(0)
+ boundary terms

(2.51)
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with the definition

ζi[v] :=

(
∂ã[v̂]

∂v̂i
−∇j

∂ã[v̂]

∂(∇j v̂i)
+∇k∇j

∂ã[v̂]

∂(∇j∇kv̂i)
− . . .

)
(2.52)

Let us assume that the boundary terms vanish. We will explicitly show they do for

GB HEE.

As v0 = v̂0 on m, we could have replaced any of the v̂0 terms in ã[v̂0] with v0. Then

there would be additional terms in the second order flux involving v0 and vz1 = Ã(0). As

functions purely of v0 such as these are easily removed with a suitable choice for f2, as we

will see, we are in effect only shuffling terms between f1 and f2 and nothing is lost by taking

ã to be purely a function of the direction field v̂. Substituting both the contributions from

ã and f1b into the second order flux gives(∫
m
v

)(2)

=

∫
m

√
g̃

(
Ã(1) + ζi[v]vi1 + p1[v]∂zf1[v] + f2[v]− vi1v1i

2

)(0)

(2.53)

For now we will assume there is no constraint on vi1 from the obstruction equations, max-

imize the second order flux with respect to vi1, then find a p1[v] such that the obstruction

equation is satisfied for this maximizing value of vi1. The maximizing value of vi1 is

v1i = (ζi[v])(0) (2.54)

for which the second order flux is∫
m

√
g̃

(
Ã(1) + p1[v]∂zf1[v] + f2[v] +

ζi[v]ζi[v]

2

)(0)

. (2.55)

To determine f2 we equate this with the second order of aλ(m),

(aλ(m))(2) =

∫
m

√
g̃Ã(1) (2.56)

which implies

(f2[v])(0) =

(
−1

2
ζi[v]ζi[v]− p1[v]∂zf1[v])

)(0)

=

(
−1

2
ζi[v]ζi[v]− p1[v](∂zã[v̂] + p1[v]∂2z |v|)

)(0)

.

(2.57)

While this does not fully determine f2, since we will not continue to third-order in λ

any choice satisfying the above constraint is adequate for our purposes, so let us take the

simplest, defined over the extended flow domain

f2[v] = −1

2
Pµν [v̂]ζµ[v]ζν [v]− p1[v]vµ∂µã[v]− (p1[v])2vµvν∇µ∇ν |v|. (2.58)

To determine p1, we return to the first order linear obstruction equation (2.41),

(∇zvz1 + v1i∂zv
i
0 − ∂zf1[v])(0) =(−∇ivi1 −K(1) + v1i∂zv

i
0 − ∂zã[v̂]− p1[v]∂2z |v|)(0)

=0.
(2.59)

– 12 –



J
H
E
P
1
1
(
2
0
1
8
)
1
6
8

where we have used the divergencelessness of v to relate ∇zvz1 to derivatives tangential

to m,

(∇µvµ)(1) = (∇µvµ0 + λ∇µvµ1 )(1)

= (∂zv
z
0 + ∂iv

i
0 + Γiiµv

µ
0 )(1) + (∇µvµ1 )(0)

= K(1) + (∇zvz1 +∇ivi1)(0)

= 0.

(2.60)

Before we maximized the second order flux with respect to vi1, this obstruction equa-

tion (2.59) contained two unconstrained components of the flow vi1 and ∂zv
i
0, plus any

further unconstrained derivatives of v0 from one’s choise of p1. If we simply solve the

obstruction equation (2.59) for p1

(p1[v])(0) =
(∂z|v|)(1) − (∂zã[v̂])(0)

(∂2z |v|)(0)

=

(
1

∂2z |v|
(ζi[v]∂zv

i
0 −∇iζi[v]− ∂zã[v]−K(1))

)(0)

.

(2.61)

and define p1[v] such that it evaluates to this on m, then no matter what values the

unconstrained components of the flow take there is no obstruction to the flow, at first

order in λ and first order in distance from m. We were free to choose any function for p1,

however besides the special choice given above, (2.59) gives a constraint on vi1 in terms of

∂zv0i and whatever other unconstrained derivatives of v0 appear in the choice for (p1[v])(0),

and this constraint needs to be imposed when maximizing the second order flux with respect

to vi1. The above choice for p1 is merely the most convenient.

The choice for p1 given by (2.61) is singular whenever ∂2z |v0| = 0 and the numerator is

non-zero. Away from m∗λ this is not an issue as regions where the flow capacity is infinite

do not affect the bottleneck position. As the flow always seeks to maximize flux, we only

need to assume the existence of any v0 for which ∂2z |v0| 6= 0 everywhere (corresponding

to threads always moving apart), or even if no such v0 exists, that there is not a new

bottleneck created. We also need to argue that the flow can not take advantage of this

choice of p1 in order to increase the capacity of the bottleneck. The correction to the norm

bound on m from p1 is λ(p1[v]∂z|v|)(0). Now (∂z|v|)(0) always equals 0 on m, however the

flow can still try to increase capacity by choosing ∂2z |v0| = 0 in which case we need to apply

L’Hôpital’s rule to evaluate the ratio ∂z|v0|/∂2z |v0|. ∂3z |v0| must be zero on m for there to

be no obstruction, so we consider ∂3z |v0|/∂4z |v0|. Again the flow can take ∂4z |v0| = 0, and so

on, for the ratio ∂2n−1z |v0|/∂2nz |v0|, the limit of which is where |v0| = 1 everywhere.

Now that we have found a condition such that there is no obstruction to the flow,

we may extend v off the surface such that it is defined throughout the time slice. Let us

choose a function for p1 whose domain is over this extended flow, which when evaluated

on m satisfies the constraint (2.61),

p1[v] =
1

vµvν∇µ∇ν |v|
(Pµν [v](ζµ[v]vρ∇ρvν −∇µζν [v])− vρ∇ρã[v]− k1[v]). (2.62)
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k1[v] is the function formed by replacing u in K(1) with v̂. This definition for p1[v] makes

no reference to any particular surface, K(1) and hence k1[v] can be derived directly from

the HEE surface functional by taking a variational derivative, only the equation of motion

of the minimizing surface is needed, not its solution.

There are terms in f1b[v] that are higher order in vµ∂µ|v| that are still unfixed at this

order in λ, however as we will not proceed to the next order we are free to set them to

zero, p(n≥2)[v] = 0, giving

f1[v] = ã[v̂] + p1[v]vµ∂µ|v|. (2.63)

Norm bound: we can determine the value of vz2 on m from the saturation of the norm

bound to second-order. Using (2.25) and (2.29),∫
m

(|v|v̂z)(2) =

∫
m

(|v|(2) + (v̂z)(2))

=

∫
m
vz2

=

∫
m
Ã(1).

(2.64)

This gives the component of v2 normal to m,

vz2 = Ã(1) (2.65)

Obstruction equations: the second-order of the obstruction equations gives conditions

on vi2 which would only be relevant if we continued to maximizing flux at third-order.

2.5 Combined results

Combining all results from zeroth to second-order, the maximizing value of v on m is

vµ|m = (1,~0) + λ(Ã(0), ζi[v0]
(0)) + λ2(Ã(1), vi2) +O(λ2). (2.66)

with vi2 unknown at second order in λ. The norm bound extended off of m, without

reference to any surface, is

|v| ≤1 + λ(ã[v̂] + p1[v]vµ∂µ|v|)

− λ2
(

1

2
Pµν [v̂]ζµ[v]ζν [v] + p1[v]vµ(∂µã[v] + p1[v]vν∂µ∂ν |v|)

)
+O(λ3) (2.67)

with p1 defined as

p1[v] :=
1

vµvν∇µ∂ν |v|
(Pµν [v](ζµ[v]vρ∇ρvν −∇µζν [v])− vρ∂ρã[v̂]− k1[v]). (2.68)

and ζ defined as

ζµ[v] :=

(
∂ã[v̂]

∂v̂µ
− P νρ[v̂]∇ν

∂ã[v̂]

∂(∇ρv̂µ)
+ P νρ[v̂]P σω[v̂]∇ν∇σ

∂ã[v̂]

∂(∇ω∇ρv̂µ)
− . . .

)
. (2.69)

This is as high in orders of λ as we will go. In principle one could continue the procedure

of maximizing the flux and equating it to the HEE functional to even higher order, and

this would continue to give corrections to the value of the flow on m and the norm bound.

At each order in λ a new degree of freedom vµn is added over which the flux is maximized,

and corrections to the norm bound are added to correct for over/undershooting.
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2.6 Application to Gauss-Bonnet gravity

Let us apply our results to Gauss-Bonnet (GB) gravity, where the correction to the surface

functional is

Ã = R̃. (2.70)

with R̃ the induced scalar curvature of the surface

R̃ = R− 2Rµνu
µuν + (Kµ

µ)2 −KµνK
µν (2.71)

and Kµν the extrinsic curvature tensor

Kµν = Pµ
ρ[u]∇ρuν . (2.72)

Gauss-Bonnet gravity is the simplest extension to Einstein gravity that is a Lovelock theory.

The Lagrangian in a Lovelock theory is a sum of Euler densities,

L2p :=
1

2p
δ
ν1...ν2p
µ1...µ2pR

µ1µ2
ν1ν2 . . . R

µ2p−1µ2p
ν2p−1ν2p , (2.73)

quantities whose integrals are topological invariants in 2p dimensions. The equations of

motion of such a theory contain only second derivatives of the metric, meaning that they

require the same initial data as Einstein gravity. GB gravity includes, in addition to the

usual cosmological constant (p = 0) and Einstein-Hilbert (p = 1) terms, the p = 2 term:

I =
1

16πGN

∫
√
g
(
−2Λ +R+ λ(R2 − 4RµνR

µν +RµνλσR
µνλσ)

)
+ boundary terms ,

(2.74)

where λ is a parameter with dimensions of length-squared. For HEE in GB gravity, the

entropy is given by minimizing a functional which includes the area plus the integrated

induced Ricci scalar [13–15]. The GB HEE functional is

aλ(m) :=

∫
m

√
g̃(1 + λR̃) + 2λ

∫
∂m

√
h̃K̃ , (2.75)

and where we use tildes to denote quantites defined with respect to the induced metric

g̃ij on the surface m, K̃ is the trace of the extrinsic curvature not of m but ∂m. The

Gibbons-Hawking-York (GHY) boundary term in (2.75) is necessary to give a well-posed

variational problem. We should again emphasize that we could have chosen any higher-

curvature correction to Einstein gravity to illustrate our method, as long as the entropy

is given by minimizing a local functional on surfaces in the homology class of A. We will

not be using any special properties of Lovelock theories, Gauss-Bonnet gravity is merely a

simple extension to consider.

Before proceeding, we note an important caveat regarding the GB HEE formula.

Naively, it gives −∞ for the entropy of any region. This can be easily seen in 3+1 bulk di-

mensions, where the surface m is 2-dimensional and the λ terms in (2.75) are proportional

to its Euler character χ(m):∫
m

√
g̃R̃+ 2

∫
∂m

√
h̃K̃ = 4πχ(m) . (2.76)
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By adding small handles or spheres to the surface m, its Euler character can be made

arbitrarily negative or positive without significantly changing the total area. Hence, for

either sign of λ, the GB HEE formula, taken at face value, tells us the entropy will always

be −∞! However, one should remember that (2.74) should be treated as an effective

action, with λ treated as a perturbative parameter, rather than assigned a finite value.

Correspondingly, λ should be treated as a perturbative parameter. In other words, the

embedding coordinates of the surface m should be written as a power series in λ, and then

the surface functional minimized order by order in λ. In turn, all calculations demonstrating

our methods on GB gravity will be done perturbatively in the Gauss-Bonnet parameter λ.

By varying aλ(m) we find the equation of motion for m∗λ,

(1 + λR̃)K − 2λR̃ijK
ij = 0, (2.77)

which implies

K(0) = 0, K(1) = 2(R̃ijK
ij)(0). (2.78)

The correction λÃ cannot affect the zeroth order result, so we start at first-order.

With Ã = R̃, we have ã = r where

r[v̂] := R− 2Rµν v̂
µv̂ν + (kµ

µ[v̂])2 − kµν [v̂]kµν [v̂]

kµν [v̂] := Pµ
ρ[v̂]∇ρv̂ν , Pµ

ν [v̂] := δµ
ν − v̂µv̂ν .

(2.79)

The leading order correction to the thread thickness is λr[v0] = λR̃, so loosely speaking

the more curved the surfaces which are perpendicular to the flow are, the more the thread

thickness is affected, thicker or thinner depending on the sign of λ.

Given ã, we next calculate the terms in ζi,

∂r[v̂]

∂v̂i
= −4Riz + 2ki

j [v̂]∇z v̂j , ∇j
∂r

∂(∇j v̂i)
= −2∇jkj i[v̂] (2.80)

giving

(ζi[v])(0) = (−4Riz + 2ki
j [v̂]∇z v̂j + 2∇jkj i[v̂])(0)

= 2(Ki
j∇z v̂j −Riz)(0)

(2.81)

which uses the identity

Riz = ∇jKj
i − ∂iK

=⇒ (Riz)
(0) = (∇jkj i[v̂])(0).

(2.82)

In the derivation for the general case, we neglected the boundary terms arising from the

integration by parts. For Gauss-Bonnet these are∫
∂m

√
h̃(kij [v̂0]ñ

ivj1))(0) (2.83)

In an asymptotically AdS spacetime, with spatial metric ds2 ∼ z−2(dxµ)2 and cutoff z = z0,

m∗0 has extrinsic curvature components Kij which remain finite on the boundary, while ñi

goes like z0, so (Kijñ
i)2 goes like z40 , and therefore vanishes as z0 → 0.
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With ζ we can calculate f1. Recall that

f1[v] = ã[v̂] + p1[v]vµ∂µ|v| (2.84)

with ã[v̂] = r[v̂] for GB HEE, and that on m p1 is(
p1[v] =

1

∂2z |v|
(ζi[v]∂zv

i
0 −∇iζi[v]− ∂zã[v]−K(1))

)(0)

(2.85)

Let us calculate each of the terms on the right individually,

(ζi[v]∂zvi)
(0) = 2((kij [v̂]∂z v̂

j −Riz)∂zvi)(0)

(−∇iζi[v̂])(0) = 2(−∇ikij [v̂]∂z v̂
j − kij [v̂]∇i∇z v̂j +∇iRiz)(0)

= 2(−Riz∂z v̂i − kij [v̂]∇i∇z v̂j +∇iRiz)(0)

−K(1) = −2(KijR̃ij)
(0)

(−∂zr[v])(0) = (−∂zR+ 2∂zRzz + 4Rzz∂zv
z + 4Riz∂zvi

+ 2Kij∇zkij [v]− 2Ki
i∇zkjj [v̂])(0)

= (−∂zR+ 2∂zRzz + 4Riz∂zvi + 2Kij∇zkij [v̂])(0)

= (−2∇iRiz + 4Riz∂zvi + 2Kij∇zkij [v̂])(0)

= (−2∇iRiz + 4Riz∂zvi + 2Kij∇z((δρi − viv
ρ)∇ρvj))(0)

= (−2∇iRiz + 4Riz∂zvi + 2Kij(∇z∇ivj − ∂zvi∂zvj))(0)

= (−2∇iRiz + 4Riz∂zvi + 2Kij(∇i∇zvj − ∂zvi∂zvj +Rjzzi))
(0).

(2.86)

For ∂zr, in the first line the third and last terms vanish using ∂zv
z
0 = 0 and K(0) = 0, the

third line makes use of the contracted Bianchi identity

∂ρR = 2∇µRµρ, (2.87)

and the final line uses the relation between the commutator of covariant derivatives and

the Riemann tensor

[∇µ,∇ν ]Vρ = RρσµνV
σ. (2.88)

Combining these contributions many terms cancel giving

(p1[v])(0) =

(
1

∂2z |v|
2Kij(R̃ij −Rjzzi)

)(0)

=

(
1

∂2z |v|
2Kij(Rij −Ki

mKmj)

)(0)
(2.89)

on m, using the GNC identities

R̃ij = Rij + ∂zKij +KKij − 2Ki
mKmj (2.90)

and

Rizzj = ∂zKij −Ki
mKmj . (2.91)
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Thus for GB HEE, the norm bound defined without reference to any surface is

|v| ≤ 1 + λ(r[v̂] + p1[v]vµ∂µ|v|)

− λ2
(

1

2
Pµν [v̂]ζµ[v]ζν [v] + p1[v]vµ(∂µr[v] + p1[v]vν∇µ∂ν |v|)

)
+O(λ3) (2.92)

with

ζµ[v] = 2Pµν [v̂]vσ(Kν
ρ[v̂]∇σv̂ρ −Rνσ) (2.93)

and

p1[v] =
2kµν [v̂](Rµν − kµρ[v̂]kρν [v̂])

vµvν∇µ∂ν |v|
. (2.94)

The bit thread formulation of GB HEE simplifies when the RT surface m∗0 has no

extrinsic curvature, such that (Kij)(0) = 0 and so (p1[v])(0) vanishes on m, and we can

choose p1 = 0 to simplify the norm bound. The tangential component of v1, (ζi[v])(0) also

vanishes on m using the identity that relates the iz component of the Ricci tensor to the

vanishing extrinsic curvature,

Riz = ∇jKj
i − ∂iK. (2.95)

Furthermore, a simpler form for r can be used,

r[v̂] = R− 2Rµν v̂
µv̂ν (2.96)

which still satisfies (r[v̂])(0) = R̃(0), (r[v̂])(1) = R̃(1) on m, so is adequate in giving the

correct flux up to second order in λ. This gives us the norm bound

|v| ≤ 1 + λ(R− 2Rµν v̂
µv̂ν) +O(λ3) (2.97)

for cases where m∗0 has no extrinsic curvature. We will compare this norm bound with the

result derived using Lagrange dualization and find agreement.

2.6.1 Gibbons-Hawking-York term

The GHY term in aλ(m) has so far been neglected. We present two ways to incorporate

it: adding a term to the norm bound with delta-function support on the boundary, and a

doubling trick, taking ∂M to be the boundary both of the original Riemannian manifold

M and an identical copy, with bit threads flowing out into both.

The GHY term contains K̃[ñ], the divergence of the surface’s boundary normal ñ. By

allowing an additional flux through on ∂m we capture the GHY term, however the difficulty

is doing so without making reference to any surface. While we do not a priori know where

the bottleneck will be, we do know what v will be on it from which we can extract ñ and

thus K̃[ñ].

Straightforwardly the unit normal ñ can be written as the normalized projection of

the time slice’s boundary unit normal n onto the tangent space of m, which is

ñµ =
Pµν [u]nν

|P [u]n|
, (2.98)
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Figure 1. Illustration showing u the unit normal to m, ñ the unit normal to ∂m, and n the unit

normal to the bulk time slice boundary ∂M at ∂m.

see figure 1. We would like to adapt this formula for ñ to use v instead of u, therefore

not making reference to any particular surface. Note also that on the boundary of m, as

argued earlier the extrinsic curvature always vanishes, hence so too does vi1,

vi1 = (ζi[v])(0)

= 2(ki
j [v̂]∇z v̂j −Riz)(0)

= 2(Ki
j∇z v̂j −∇jKj

i)
(0)

= 0

(2.99)

and therefore v is normal to m to at least second order,

v|∂m = u+O(λ2). (2.100)

Let us define a function on the spacetime boundary ∂M

Ñµ[v] :=
Pµν [v]nν

|P [v]n|
(2.101)

then at ∂A (2.100) holds and so

Ñ [v] = ñ+O(λ2) (2.102)

on ∂A. To account for the GHY term we add to the norm bound a function with δ−function

support on ∂A, which allows additional finite flux through ∂A equal to the GHY term

|v| ≤ 1 + λ(f1[v] + 2kνν [Ñ [v]]δ∂A) + λ2f2[v] +O(λ3) (2.103)

Note that the norm bound (2.103) is defined purely in terms of boundary geometric data

and an unconstrained v, such that bit thread thickness is only a function of local geometry

and thread orientation. Using the formula for Ñ [v], our method generalises to any higher

curvature HEE prescriptions whose boundary term is a functional of the surface boundary

normal ñ.
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Figure 2. By gluing two copies of the time slice Σ along the boundary ∂Σ, we create a boundaryless

surface m ∪ m̃. The GHY term is accounted for by the integral of R̃ over where m and m̃ join.

An alternative way of including the contribution of the GHY term is to employ a

doubling trick. Taking m to be a surface homologous to boundary subregion A, and

adding the mirror image m̃ of m across the boundary, creates a boundaryless surface

m+ m̃ for which ∫
m
R̃+ 2

∫
∂m

K =
1

2

∫
m∪m̃

R̃. (2.104)

After gluing the surface m together with its double, there may be a kink in the surface at

∂A, giving a singular induced scalar curvature. The GHY terms can then be understood

as accounting for possible delta-function singularities in R̃ where we join m with its mirror

image. From the norm bound (2.103), this implies infinite bit thread density at ∂A, though

the flux is still finite.

In this doubling trick picture, the entanglement entropy is given by half the maximum

flux out of boundary region A,

4GNS(A) =
1

2
max
v

∫
A
v (2.105)

where v can flow out into two copies of Σ glued along ∂Σ, subject to divergenceless of v

and the norm bound, see figure 2.

3 Lagrange dualization method

The max flow-min cut theorem (1.2) is proven as a consequence of strong Lagrange duality

between two convex optimization problems, namely max flow and a relaxed form of the

min cut problem. (A review of these concepts aimed at physicists can be found in [16].)

In this section, we will apply these ideas to the Gauss-Bonnet holographic entanglement

entropy formula. Unfortunately, as we will see, the λ term in the funcational aλ(m) in

general ruins the convexity of the relaxed min cut functional. Therefore, the technique will

only work in certain special cases, namely when the minimal surface has no boundary and

vanishing extrinsic curvature Kij = 0, such as when calculating the entanglement entropy
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of one side in the high-temperature thermofield-double state. This will allow us to replace

the non-convex optimization problem min
m∼A

aλ(m) with an equivalent convex optimization

problem. This is important because non-convex problems generally have a duality gap

between the primal and dual problem.1 Specializing to the situation where the problem is

convex will then allow us to use Lagrange dualization to derive the flow reformulation.

3.1 Convex optimization and Lagrange dualization

We present here a brief review of the mathematics of Lagrange dualization and its appli-

cation to HEE, however the authors strongly suggest that readers unfamiliar with these to

read the more detailed expositions in sections 2 and 3 of [16] before trying to follow their

extension to the higher-curvature case in subsection 3.2 of this paper.

3.1.1 Review of Lagrange dualization

Lagrange duality is a technique often employed in the fields of linear programming and

network theory. For a well defined class of minimization problems (the primal) there exists

a description where the problem has been transformed into a maximization problem (the

dual). Strong duality is the nontrivial assertion that these two descriptions are in fact the

same, that the maximum of one equals the minimum of the other.

Let Lp and {fa} be a set of convex functions, and {hb} a set of affine functions on a

vector space parametrized by x. The primal program is given by the constrained optimiza-

tion program

min
x
Lp(x) s.t. fa(x) ≤ 0 hb(x) = 0 . (3.1)

We may rewrite Lp by imposing Lagrange multipliers for the constraints

L(x, {φa}, {γb}) ≡ Lp(x) + φafa(x) + γbhb(x), φa ≥ 0. (3.2)

The primal problem Lp may be recovered from L by maximizing with respect to the

Lagrange multipliers

Lp(x) = max
φa≥0,γb

L(x, {φa}, {γb}). (3.3)

To obtain the dual program however, we instead minimize L with respect to x

Ld({φa}, {γb}) ≡ min
x
L (x, {φa}, {γb}) . (3.4)

The difference between the solution of the primal program and the dual program is called

the duality gap

dg ≡ min
x
Lp(xi)− max

φa≥0,γb
Ld({φa}, {γb}). (3.5)

When the duality gap is zero then strong duality is said to hold. A sufficient, but not

necessary condition for strong duality to hold is for Lp(xi) to be a convex function, and

1A general procedure exists called convex relaxation which allows one to embed a nonconvex problem

in a larger solution space which is convex. When such a relaxation can be done it is possible to find a

dual with zero duality gap. So far we have not been able to find such a relaxation which would allow the

Gauss-Bonnet holographic entanglement entropy to be calculated in the general case. We leave this for

future work.
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there to exist an xi in the relative interior of its domain for which the constraints are

satisfied; this is Slater’s condition.

When the dual program has a unique optimal configuration (φ∗a, γ
∗
b ), then the values

of the Lagrange multipliers tell us how sensitive the optimal value is to small changes in

the constraints. In other words, if we replace the constraint fa(x) ≤ 0 by fa(x) + λ ≤ 0,

then to first order in λ the optimal value changes by λφ∗a. This is derived for example

in [16]. In fact, by a slight generalization of that argument, the result holds even when we

perturb the constraint by a function δfa(x): if the dual optimal configuration is unique

and if δfa(x
∗) has the same value for all primal optimal points x∗, then replacing fa(x) ≤ 0

by fa(x) +λδfa(x) ≤ 0 changes the optimal value by λφ∗aδfa(x
∗) +O(λ2). The same result

also holds for concave programs: replacing fa(x) ≥ 0 by fa(x) + λδfa(x) ≥ 0 changes the

optimal value by λφ∗aδfa(x
∗) +O(λ2). We will use this fact in subsection 3.1.3.

3.1.2 Example: max flow-min cut

As an example to further familiarize readers, and to set the stage for the derivation with

GB gravity, we will show how to apply Lagrange dualization to the RT formula with EH

gravity, proving the Riemannian MFMC theorem. Let M be a Riemannian manifold with

boundary, in this case a constant time slice of a bulk spacetime in a static state of a

holographic theory. Given a region A ⊂ ∂M the HEE is

S(A) =
1

4GN
min
m∼A

∫
m

√
g̃ . (3.6)

To define the problem as a well posed convex program we perform a convex relaxation of

the program by adding a scalar field degree of freedom ψ, which is subject to the boundary

condition ψ|∂M = χA with χA = 1 on A and 0 on the complement Ac. This has the effect

of smearing the surface to form level sets of constant ψ in the bulk. The optimal solution

involves stacking these level sets all on the true minimal surface. The space of surfaces m

is a subspace of possible ψ(x), when ψ(x) is binary valued, equal to 1 is a bulk region (not

necessarily connected) and 0 in the complement, then surface m can be understood as the

boundary of these regions. The resulting optimization problem is convex in ψ:

min
m∼A

∫
m

√
g̃ = min

ψ

∫
M

√
g|∂µψ|, ψ|∂M = χA . (3.7)

In order to proceed with the dualization we introduce Lagrange multiplier term vµ enforcing

the replacement of ∂µψ with a new vector degree of freedom wµ, and a boundary term that

is minimized when ψ|∂M = χA

S(A) =
1

4GN
min
ψ,vµ

[∫
M

√
g [|w|+ vµ(wµ − ∂µψ)] +

∫
∂M

√
h |ψ − χA|

]
. (3.8)

Optimizing first with respect to the Lagrange multipliers imposes the constraints and

returns us to the primal program so let us instead optimize over the fields wµ and ψ, giving

the dual program

S(A) =
1

4GN
max
vµ

∫
A

√
hnµv

µ, |v| ≤ 1, ∇µvµ = 0. (3.9)
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As the primal problem was convex and obeys Slater’s condition, strong duality holds, and

thus the Riemannian MFMC theorem is proven.

3.1.3 Perturbing the convex program

The flow formulation of RT HEE given by (3.9) is a well-posed convex program (more

precisely, concave program, since it involves maximizing a concave functional). Dualizing

it returns us to the relaxed min cut program (3.7). (See [16] for the details of this deriva-

tion.) By viewing the max flow program as the primal, we can use the relation between

perturbations of the primal constraints and changes in the optimal value, described at the

end of subsection 3.1.1 above, to figure out how to change the norm bound in the max flow

program in order to reproduce the λ term in the GB HEE functional. This gives a very

straightforward way to find the first-order correction to the norm bound.

In the dualization of the max flow program, there is a Lagrange multiplier ψ for the

divergencelessness constraint and another one φ for the norm bound. As long as the

minimal surface m∗0 is unique, the dual optimal configuration is also unique; in particular,

φ∗ is a delta function on m∗0.

In this subsection we will only work to first order in λ. If we perturb the norm bound

to make it

1− |v|+ λF ≥ 0 , (3.10)

where F is some function on M , then the maximum flux will change by

λ

∫
√
g Fφ∗ = λ

∫
m∗0

√
g̃F . (3.11)

In particular, if we choose F to be any function which equals Ã on m∗0, then the maximum

flux will equal ∫
m∗0

√
g̃ (1 + λÃ) = aλ(m∗0) = aλ(m∗λ) +O(λ2) , (3.12)

where we used the fact that m∗0 extremizes the area, so area(m∗λ) = area(m∗0) +O(λ2). In

order for F to equal Ã on m∗0 for any max flow, we set it equal to ã[v̂]. The norm bound

is thus

|v| ≤ 1 + λã[v̂] . (3.13)

3.2 Lagrange dualization of higher curvature holographic entanglement en-

tropy

In this section, Lagrange dualization is applied to optimization problems of the form

min
m∼A

∫
m

√
g̃(1 + λÃ), (3.14)

corresponding to a perturbative correction of the RT HEE prescription.

We now carry out the same convex relaxation as in section 3.1.2, such that the normal

vector field with δ-function support becomes a one-form ∂µψ supported over the bulk time

slice M with ψ ∈ R,

uµ → ∂µψ

|∂ψ|
. (3.15)
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Heuristically, this convex relaxation smears the surface over the manifold forming a foliation

of hypersurfaces with ∂µψ/|∂ψ| the unit normal on a component surface. This gives

min
ψ

[∫
M

√
g

(
1 + λã

[
∂µψ

|∂ψ|

])
|∂ψ|+

∫
∂M

√
h
(

1 + λÃ
)
|χA − ψ|

]
(3.16)

where χA = 1 in A and 0 in Ac. We restrict ourselves to the case where Ã depends on the

surface unit normal u, but not derivatives of u as they generally cause the problem to be

non-convex. For example, suppose Ã contains terms involving the trace of the extrinsic

curvature. M is foliated by hypersurfaces of constant ψ, so smooth changes to ψ(x) can lead

to discontinous changes in hypersurface foliation, with very different extrinsic curvatures.

A consequence of this is that the convexity condition

pK[ψa] + (1− p)K[ψb] ≥ K[pψa + (1− p)ψb], 0 ≤ p ≤ 1 (3.17)

can be violated to an arbitrary degree, making it a non-convex optimization problem.

We next add a Lagrange multiplier term vµ(wµ−∂µψ) to replace derivatives of ψ with

wµ, arriving at the following Lagrangian:

L[ψ,w, v] =

∫
M

√
g [(1 + λã[ŵ])|w|+ vµ(wµ − ∂µψ)]

+

∫
∂M

√
h(1 + λÃ)|ψ − χA|

(3.18)

where ŵµ ≡ wµ/|w|. We now minimize over the variables ψ and wµ on M and ∂M .

Integrating the vµ∂
µψ term in (3.18) by parts strips all derivatives off ψ, allowing us to do

a pointwise minimization. The terms involving ψ are∫
M

√
g ψ∇µvµ +

∫
∂M

√
h
(

(1 + λR̃)|ψ − χA|+ ψnµ∂Mvµ

)
. (3.19)

The bulk integrand is unbounded unless

∇µvµ = 0 , (3.20)

in which case it vanishes. On the boundary, in order to have a bounded minimum in ψ, we

require

|nµvµ| ≤ 1 + λÃ ; (3.21)

this inequality allows for the possibility that A itself is the flow bottleneck. The minimum

is at ψ = χA, leaving us with

min
ψ
L[ψ,w, v] =

∫
M

√
g [(1 + λã[ŵ])|w|+ vµw

µ] +

∫
A

√
hvµn

µ
∂M (3.22)

Let us minimise the bulk integrand

(1 + vµŵ
µ + λã[ŵ]) |w| . (3.23)
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with respect to w. If the prefactor for |w| is negative for any value of its direction ŵ, then

the minimum is unbounded by sending its magnitude |w| → ∞. Thus we require, for all

values of ŵ,

1 + vµŵ
µ + λÃ(ŵ) ≥ 0 , (3.24)

and then the minimum is zero at |w| = 0. To see whether (3.24) holds for any ŵ, we

minimize the left-hand side of the inequality with respect to ŵ, subject of course to the

constraint ŵµŵµ = 1, finding the minimizing value for ŵ

ŵµ = −
vµ + λ∂ã[ŵ]∂ŵµ

|v + λ∂ã[ŵ]∂ŵ |

= −v̂µ − λ

|v|
Pµν [v̂]

∂ã[ŵ]

∂ŵν
+ λ2

(v̂µP ρν [v̂] + 2v̂ρPµν [v̂])

2|v|2
∂ã[ŵ]

∂ŵν

∂ã[ŵ]

∂ŵρ
+O(λ3)

(3.25)

using (2.28). Contracting with vµ gives

vµŵ
µ = −|v|+ λ2

2|v|
Pµν [v̂]

∂ã[ŵ]

∂ŵµ

∂ã[ŵ]

∂ŵν
. (3.26)

Taking this minimizing value of ŵ and Taylor expanding the λã[ŵ] term in (3.24) about

−v̂ gives

λã[ŵ] = λã[ŵ]|ŵ=−v̂ −
λ2

|v|
Pµν [v̂]

(
∂ã[ŵ]

∂ŵµ

∂ã[ŵ]

∂ŵν

)∣∣∣∣
ŵ=−v̂

(3.27)

Substituting (3.26) and (3.27) into the inequality (3.24) gives a constraint on v, which is

the norm bound

|v| ≤ 1 + λã[ŵ]|ŵ=−v̂ −
λ2

2
Pµν [v̂]

(
∂ã[ŵ]

∂ŵµ

∂ã[ŵ]

∂ŵν

)∣∣∣∣
ŵ=−v̂

+O(λ3). (3.28)

Bringing the constraints we have found together, we arrive at the dual problem

max
v

∫
A

√
hvµn

µ over

{
vµ : |v| < 1 + λã[ŵ]|ŵ=−v̂

− λ2

2
Pµν [v̂]

(
∂ã[ŵ]

∂ŵµ

∂ã[ŵ]

∂ŵν

)∣∣∣∣
ŵ=−v̂

+O(λ3),

∇µvµ = 0, |nµvµ| ≤ (1 + λÃ)

} . (3.29)

Starting with the dual problem (3.29), one can reverse the process and recover the HEE

formula (3.31). The details of this calculation are non-essential to the conclusions of this

paper, but it is worthwhile to note that from a convex maximal flow problem, one can find

a dual minimal cut problem.

3.2.1 Application to Gauss-Bonnet gravity

Here we will apply the results of the previous section to GB HEE, in the special case where

the minimal surface has vanishing extrinsic curvature and no boundary, for which the min-

imization of surfaces becomes a convex problem. There are some non-convex optimization

problems whose Lagrange dual obtains strong duality, GB HEE is not one of them.
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The GHY term contains the trace of the extrinsic curvature and is not convex, so we

consider only surfaces without boundaries, for which the GB HEE formula is

S(A) =
1

4GN

∫
m∗λ

√
g̃
(
1 + λ(R− 2Rµνu

µuν +K2 −KµνK
µν)
)
. (3.30)

As before, m∗λ is the codimension-2 surface homologous to A that minimizes the surface

functional, and g̃µν and R̃ are the induced metric and curvature scalar on m∗λ. The extrinsic

curvature terms in (3.30) are problematic to obtaining strong duality as they make the

problem non-convex.

We will restrict ourselves to m∗0 having no extrinsic curvature, then the λKµνKµν term

in the GB HEE functional will be third order on m∗λ and can be dropped as we are only

working to second order. The extrinsic curvature tensor appears only quadratically in GB

HEE, so under the assumption that m∗0 has no extrinsic curvature these terms can be

removed without affecting the local minimum of (3.30). In cases where m∗0 has vanishing

curvature due to Killing symmetries, such as on bifurcation surfaces of Killing horizons,

then m∗λ may also have vanishing extrinsic curvature. This is the case for all known static

black hole event horizons in Lovelock gravity [6].

Thus we can take

S(A) =
1

4GN
min
m∼A

∫
m

√
g̃ (1 + λ(R− 2Rµνu

µuν)) (3.31)

as the primal program to dualize. We identify

Ã = R− 2Rµνu
µuν (3.32)

as the perturbation to the RT area functional, for cases where the optimum surface m∗λ has

no boundary or extrinsic curvature. Following the procedure given in the previous section,

after convex relaxation and substitution of ψ with ŵ, this becomes

Ã(ŵ) = R− 2Rµνŵ
µŵν . (3.33)

for which, applying the result (3.28), gives the norm bound

|v| ≤ 1 + λ(R− 2Rµν v̂
µv̂ν)− 8λ2Pµν [v̂]RµρRνσv̂

ρv̂σ +O(λ3). (3.34)

In fact, the O(λ2) term in the above norm bound can be removed as they vanish on m∗λ,

which follows from the vanishing of extrinsic curvature terms in the identity

Riz = ∇jKj
i − ∂iK . (3.35)

Thus the norm bound is simply

|v| ≤ 1 + λ(R− 2Rµν v̂
µv̂ν) +O(λ3). (3.36)

There is perfect agreement between the norm bound found using Lagrange dualiza-

tion (3.36) and the norm bound found using the bottleneck method (2.97) in their overlap-

ping regimes of validity: when m∗0 has no boundary or extrinsic curvature. The non-trivial

part of the agreement is that the second-order correction to the norm bound derived using

the two methods both vanish.
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4 Maximization over bit thread paths

There are special cases in which the corrected norm bound takes the form |v| ≤ Fλ[v̂],

with the right-hand side depending only on the direction of v. An example is the one

discussed at the end of the previous section, in which the unperturbed minimal surface

m∗0 has no extrinsic curvature, and the norm bound is given by (3.36). This suggests

a decoupling of the norm |v| and direction v̂ of the vector field. However, the two are

coupled by the divergencelessness constraint ∇µvµ = 0. Here we will show that one can

nonetheless decouple the direction and norm. Thus the problem of maximizing the flow

can be decomposed into two steps: for a given v̂, maximum the norm |v|; then maximize

over v̂.

In the language of bit threads, the direction field v̂ specifies the potential thread

configurations, while the norm bound fixes the maximum density.

Consider a particular thread originating from a boundary point xi ∈ A. Define a path

xµ(xi, s) along the thread as the integral curve along v̂µ: the solution to

d

ds
xµ(xi, s) = v̂µ, (4.1)

with xµ(xi, s = 0) the boundary point. The claim is that given knowledge only of the

direction field v̂, and the fact that we want to maximize the flux through A, we can find

the thread number density everywhere in the bulk, and hence know everything about v.

First we show that if we know the thread density at any point on the thread, we know

it for the whole thread. The divergencelessness of v can be written as

v̂µ∇µ ln |v| = −∇µv̂µ (4.2)

Integrating this along the bit thread from the boundary at s = 0 to a point s = s′ gives

|v|(xi,s′) = |v|(xi,0) exp

(
−
∫ s′

0
∇µv̂µds

)
(4.3)

From (4.3) we see that, in order for |v| to be single-valued, any loops of bit threads must

obey
∮
∇µv̂µ = 0. In fact, as any loops of bit threads in the bulk can only impede threads

leaving A and contribute nothing to the flux, we can assume without loss of generality that

the direction field is free of loops. (Given a direction field containing loops, we can simply

set v to 0, making v̂ undefined, on every point through which a loop passes.)

Next, we use the fact that, in order to maximize the flux out of A, for each point xi ∈ A
we should increase |v|(xi,0) until there is a point along the bit thread which saturates the

norm bound, which occurs for

|v|(xi,0) = min
s′

Fλ[v̂](xi,s) exp

(∫ s′

0
∇µv̂µds

)
. (4.4)

Thus |v|(xi,0) is known, which in turn tells us the thread density everywhere.

Threads are always maximally packed on the minimal surface, and generally spread

out towards the boundaries. (4.3) says that when ∇µv̂µ < 0 the threads are coming closer
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together, and when ∇µv̂µ > 0 the threads are moving apart. For RT bit threads, the

minimal surface has |v| = 1 and hence ∇µv̂µ = 0 on it. In most of the bulk, the threads are

free to come together or move apart, but in the neighborhood of either side of the minimal

surface, there must be non-zero regions of ∇µv̂µ, one side which is a source for the direction

field, and the other a sink. The minimal surface thus emerges in this direction field picture

as the surface which separates the two source and sink regions. For GB bit threads, there

is a correction to this: the minimal surface will not perfectly demarcate bands of source

and sink regions, as ∇µv̂µ does not necessariy vanish on m∗λ.

Suppose one has specified a direction field v̂ and this gives a set of integral curves. Each

integral curve has its own bottleneck, at the value of s′ for which the exponential factor

in (4.4) is smallest. We increase the value of |v| on the boundary until the norm bound is

saturated at that s′. For general direction fields, the union of neighbouring integral curve’s

bottleneck points won’t be continuous, more like a random set of points, but for the special

direction fields which give m∗λ that union of points is in fact the continuous minimal surface

we are looking for2. This is another way of seeing how m∗λ appears in the bit thread

picture. Finally, we note that while the higher curvature corrections to the bit threads

were incorporated by altering the norm bound, there are equivalent alternatives. The bit

thread prescription is simple and has few components to it, there are only three aspects the

corrections can affect: the divergence of v, the norm bound, or the objective functional. By

a change of variables, redefining vµ → Fλ[v̂]vµ we regain the constant norm bound |v| ≤ 1

at the cost of replacing the divergencelessness condition with ∇µvµ = −vµ∂µFλ[v̂] and the

objective functional with
∫
A Fλ[v̂]v. This field redefinition exchanges bit threads whose

thickness varies with position and orientation, but must end on the boundary with threads

that have constant thickness, but can start and end in the bulk. We should emphasize

that this is only a change of variables. Even though the divergencesslessness condition has

changed, it has nothing to do with quantum corrections. The specific form of the divergence

here forces the new threads to follow the same integral curve on which they are created,

effectively adding thickness to the thread. A general quantum correction would also give

rise to a corrected divergencelessness condition, but would presumably allow threads to be

created in the bulk which would flow more independently of the threads around it.
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A First order of quadratic obstruction equation

The first order in (2.15) is

(vµ∇2
zv
µ + (∇zvµ)2 − Fλ∇2

zFλ − (∇zFλ)2)(1)

=
(
gµνv

µ∇2
zv
ν + gµν∇zvµ∇zvν

)(1) − (∇2
zF )(1)

= g(0)µν

(
vµ∇2

zv
ν +∇zvµ∇zvν

)(1)
+g(1)µν

(
vµ∇2

zv
ν +∇zvµ∇zvν

)(0)−(∇2
zf1[v])(0)

= g(0)µν

(
vµ0 (∇2

zv
ν)(1) + vµ1 (∇2

zv
ν)(0) + 2(∇zvµ)(0)(∇zvν)(1)

)
+ g̃

(1)
ij (∇zvi)(0)(∇zvj)(0) − (∇2

zf1[v])(0)

= (∇2
zv
z)(1) + vz1(∇2

zv
z)(0) + g̃

(0)
ij v

i
1(∇2

zv
j)(0) + 2g̃

(0)
ij (∇zvi)(0)(∇zvj)(1)

+ g̃
(1)
ij (∇zvi)(0)(∇zvj)(0) − (∇2

zf1[v])(0) ≤ 0

(A.1)

When we reach the second-order calculation we will be performing a pointwise maximiza-

tion with respect to vi1. If the above simplifies to a constraint purely on vi1 and its derivative

tangential to m then it reduces the space of feasible vi1 and will be important in the second-

order calculation. However, if unconstrained variables such as ∂zv
i
1 do not vanish then this

bound places no real constraint on the value of v1 on m. We need to be especially careful to

make full use of the divergenceless of v, which relates derivative of v in different directions.

The evaluation of each term in (A.1) gives(
∇zvi

)(0)
= ∂zv

i
0 +K(0)i

jv
j
0 = ∂zv

i
0(

∇zvi
)(1)

= ∂zv
i
1 + (Γiµzv

µ)(1) = ∂zv
i
1 +K(0)i

jv
j
1(

∇2
zv
i
)(0)

= ∂z(∂zv
i
0 +K(0)i

jv
j
0) +K(0)i

l(∂zv
l
0 +K(0)l

jv
j
0) = ∂2zv

i
0 + 2K(0)i

j∂zv
j
0

∇2
zv
z = ∇z(∇µvµ −∇ivi)

= −∇z∇ivi = −∂i∂zvi − vz∂zK − vj∂zΓiij −K∂zvz − Γiij∂zv
j(

∇2
zv
z
)(0)

= −∂i∂zvi0 − ∂zK(0) − Γ
(0)i
ij ∂zv

j
0

(∇2
zv
z)(1) = −∂i∂zvi1 − R̃(0)∂zK

(0) − ∂zK(1) − vj1∂zΓ
(0)i
ij − Γ

(0)i
ij ∂zv

j
1 − Γ

(1)i
ij ∂zv

j
0

(∇2
zf1[v̂])(0) = ∂2zf1[v0]

(A.2)

which allows us to write (A.1) as

− ∂i∂zvi1 +Ai[v0]∂zv
i
1 +Bi[v0]v

i
1 + C[v0] ≤ 0, (A.3)

with the definitions

Ai[v0] := (2g̃
(0)
ij ∂zv

j
0 − Γ

(0)j
ij )

Bi[v0] := 2g̃
(0)
ij (∂2zv

j
0 + 4K(0)j

l∂zv
l
0 − ∂zΓ

(0)i
ij )

C[v0] := −∂zK(1) − Γ
(1)i
ij ∂zv

j
0 + R̃(0)(−∂i∂zvi0 − 2∂zK

(0) − Γ
(0)i
ij ∂zv

j
0)

+ g̃
(1)
ij ∂zv

i
0∂zv

j
0 − ∂

2f1[v0].

(A.4)
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Eq. (A.3) contains ∂zv
i
1, so there is no real constraint on vi1 from this obstruction equation.

In contrast the first-order linear obstruction equation has no such ∂zv
i
1 terms and the set

of obstructionless vi1 which the flow maximizes over is generally a subset of all vi1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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