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1 Introduction

T-duality is an exact symmetry of (super)string theories. It leaves hidden imprints in

the low-energy supergravity limits, which can be unmasked through toroidal compactifi-

cations. They are however already present even before dimensional reduction, as realized

from the advent of duality symmetric approaches. Double Field Theory (DFT) [1–5] (for

reviews see [6–8]) is a framework that makes the T-duality symmetry manifest, thus highly

constraining the allowed interactions of the effective theories under its reach. There are

many variants and extensions, but the ones that are of interest here are the frame-like [9]

or flux [10] formulations of the D = 10 and N = 1 supersymmetric [11, 12] heterotic

DFT [13].

Higher derivative corrections to (super)gravity arising from string theory also share

these hidden imprints. Toroidal compactifications can again make them appear in the form

of a symmetry in the lower dimensional theory [14], though it turns out that the problem

is a little more involved than the two-derivative case because unconventional non-covariant

field redefinitions are required. Many methods have been proposed to learn about higher

derivative interactions based on the way in which duality organizes the lower dimensional

theories [15–18].

The natural scenario to study how T-duality constrains higher derivative interactions

is DFT, as it encodes duality symmetries from the onset in a background independent

fashion, so it is not surprising that this long standing problem has resurfaced in such a

context [19]. Interestingly, two seemingly different approaches arise in this scenario for the

case of the heterotic string to first order in α′:
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• One scenario considers a generalized version of the Green-Schwarz transformation.

In the standard picture [20] the Kalb-Ramond field is not Lorentz invariant, which

requires Lorentz Chern-Simons corrections to its three-form field strength Ĥ with re-

spect to a certain torsionful spin connection ω− = ω− 1
2Ĥ, due to Hull [21]. The first

order T-duality covariant generalization was introduced in [22, 23]. There, the fields

are O(D,D) multiplets transforming as usual under generalized diffeomorphisms but

receiving a first order generalized Green-Schwarz transformation that deforms the

double Lorentz symmetry. After a GL(D) decomposition, choice of solution to the

strong constraint and proper field redefinitions the standard Green-Schwarz transfor-

mation is recovered from the generalized one. Due to the T-duality covariance the

Kalb-Ramond and gravitational sectors mix in such a way that the generalized Green-

Schwarz transformation demands the well-known quadratic Riemann interactions, on

top of the Chern-Simons terms.

• Another scenario is based on the work of Bergshoeff and de Roo [24, 25]. There,

the torsionful spin connection ω− and the gravitino curvature were shown to behave

effectively as a gauge multiplet with respect to supersymmetry to first order in α′.

We refer to this as the Bergshoeff-de Roo identification between independent and

composite degrees of freedom. This fact was exploited to compute the first order

corrections to the action [24], and later extended up to quartic Riemann interactions

through a Noether procedure [25]. In [26, 27] this idea was engineered by considering

the extended duality structure O(D,D+k) of the heterotic setup [13], such that after

a GL(D) decomposition the one-form gauge fields were identified with (a component

of) the generalized spin connection for O(1, D−1) ∈ O(1, D+k−1), extensively dis-

cussed in the literature [1, 2, 9, 28–30]. Since the identification between independent

and composite degrees of freedom is done after the GL(D) decomposition, duality

covariance is not manifest and must be checked explicitly.

Both approaches look rather orthogonal as in the first case the duality structure is extended

and the local symmetries remain intact, whereas in the second case the duality group stays

unmodified but the local symmetries are deformed. The link between them remains unclear

-though they lead to the same first order heterotic action- and higher order corrections to

these approaches have been so far elusive. In this paper we introduce a general setup from

which both approaches can be derived and extended to all orders in a derivative expansion.

Let us provide some highlights of the route we follow and the results we encounter:

• We consider a hybrid between both approaches. Starting from a G = O(D,D+k) ex-

tended space, we perform a G = O(D,D) decomposition -as opposed to the standard

GL(D) decomposition- in the lines of [31]. This leaves us with a G-valued gener-

alized frame plus additional covariantly constrained G-vectors, thus fully preserving

T-duality covariance.

• The G generalized diffeomorphisms induce a generalized Green-Schwarz transforma-

tion for the G-valued frame with respect to the extra G-vectors.
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• The G-vectors are identified in a duality covariant way -by matching gauge and super-

symmetry transformations- with generalized fluxes playing the role of a generalized

spin connection for the full O(1, D + k − 1). We do the same between the gauginos

and a generalized notion of gravitino curvature. This is what we call the generalized

Berghshoeff-de Roo identification.

Contrary to the standard identification, the generalized one is exact. This is possible

because the gauge group is identified with the full O(1, D+k−1) rather than its O(1, D−1)

subgroup, so the generalized identification that we propose here would be impossible to im-

plement in supergravity. An interesting consequence of our results is that the tangent space

must be infinite dimensional. This might sound strange, but is somewhat expected given

that the identification is exact, which presumably means that it captures an infinite tower

of higher derivative corrections. We test this proposal by performing an α′ perturbative

expansion. To first order we recover the well known heterotic generalized Green-Schwarz

transformation of [22], and to second order we obtain a novel consistent correction that

preserves the constraints and closes.

The paper is organized as follows. In section 2 we introduce the G structure of the

extended space and reduce it to the double space in a G-covariant way. Section 3 is

devoted to lock the vector degrees of freedom in terms of (derivatives of) the G-covariant

generalized frame (the generalized Bergshoeff-de Roo identification). As a consistency check

of the approach we perform a derivative expansion, finding the second order completion of

the heterotic generalized Green-Schwarz transformation of [22]. The full supersymmetric

treatment is presented in section 4. An outlook is given in the last section, together with

a list of possible future lines of research.

2 From extended to double

The starting point of this section is the generalized frame formalism [9] (mostly following

the conventions in [10]) in the

Extended space

{
Global symmetry G = O(D,D + k)

Local symmetry H = O(D − 1, 1)×O(1, D + k − 1)
, (2.1)

and the goal is to re-formulate it in terms of multiplets of the

Double space

{
Global symmetry G = O(D,D)

Local symmetry H = O(D − 1, 1)×O(1, D − 1)
. (2.2)

The notation is presented in table 1. The degrees of freedom in the extended case are

a generalized dilaton d and a generalized frame EMA which is a constrained field, satisfying

ηMN = EMA ηAB ENB . (2.3)

The generalized dilaton plays no role whatsoever in our analysis, so it will be ignored. The

gauge transformations of the extended generalized frame are given in terms of extended
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Name Group Indices Metric

G O(D,D) M ηMN

g O(k) α καβ

G O(D,D + k) M = (M, α) ηMN =

(
ηMN 0

0 καβ

)

H = H O(D − 1, 1) A = a PAB = Pab

H O(1, D − 1) a P̄ab

h O(k) α καβ

H O(1, D + k − 1) A = (a, α) P̄AB =

(
P̄ab 0

0 καβ

)

H H×H A = (A, A) = (a, a, α) ηAB =

(
PAB 0

0 P̄AB

)

H H ×H A = (a, a) ηAB =

(
Pab 0

0 P̄ab

)

Table 1. Notation used throughout the paper. Modulo a few exceptions, calligraphic letters refer

to the extended space while conventional ones to the double space. The metrics and their inverses

are used to raise and lower indices.

and gauged generalized diffeomorphisms, plus extended Lorentz H-transformations

δEMA = ξP∂PEMA +
(
∂Mξ

P − ∂PξM
)
EPA + g fMN

PξNEPA + EMB ΓB
A . (2.4)

We included a dimensional coupling g−2 ∼ α′ to render the structure constants fMNP
dimensionless. The extended Lorentz parameters satisfy

ΓAB = Γ[AB] , ΓAB = 0 , (2.5)

and the gaugings obey linear and quadratic constraints

fMNP = f[MNP] , f[MN
KfP]K

L = 0 . (2.6)

The gauge transformations close

[δ1, δ2] = −δ12 , (2.7)

with respect to the following brackets

ξM12 = 2ξP[1∂Pξ
M
2] + ∂MξP[1ξ2]P + g fNP

MξN1 ξ
P
2 (2.8)

Γ12AB = 2ξP[1∂PΓ2]AB + Γ[1A
C Γ2]BC , (2.9)
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provided a strong constraint is imposed

ηMN ∂M ⊗ ∂N = 0 , fMN
P ∂P = 0 . (2.10)

We now want to write everything in terms of G = O(D,D) ∈ G multiplets. Taking a

close look into table 1 we see that derivatives and parameters split as follows

∂M = (∂M , ∂α) , ξM =
(
ξM , ξα

)
. (2.11)

Since we intend to preserve G-invariance, we need to annihilate all the G components of the

gaugings fMNP , such that only the fαβγ survive. The extended strong constraint (2.10)

then implies the double strong constraint

∂α = 0 , ηMN ∂M ⊗ ∂N = 0 . (2.12)

As for the parameters, the ξM components now generate double generalized diffeomor-

phisms, and the ξα generate gauge transformations of a given gauge group K defined by

its structure constants fαβγ .

The extended generalized frame satisfies the constraint (2.3) implying that it contains

dim[G] degrees of freedom (dof)

dim[O(D,D + k)] = dim[O(D,D)]︸ ︷︷ ︸
EMA

+ 2Dk︸︷︷︸
AMα

+ dim[O(k)]︸ ︷︷ ︸
eαα

, (2.13)

where EM
A is a double generalized frame satisfying

ηMN = EM
AηABEN

B , (2.14)

and eα
α is a bijective map between h and g

καβ = eα
α καβ eβ

β . (2.15)

Then, the extended dof admit a general G and H decomposition of the form

EMA = (χ
1
2 )M

N EN
A ,

EMα = −AMβ eβ
α , (2.16)

EαA = AMαEM
A ,

Eαα = (�
1
2 )α

β eβ
α ,

where we introduced the following quantities

χMN = ηMN −AMαANα , �αβ = καβ −AMαAMβ , (2.17)

that satisfy the identity

AMβ f(�)β
α = f(χ)M

N ANα , (2.18)

for any function f .
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Due to the original H symmetry, there are many non-physical gauge dof. It will then

turn out to be convenient to perform a gauge fixing to remove some of them

EMaAMα = 0 , eα
α = constant . (2.19)

Demanding that these constraints are gauge invariant δEαa = 0 and δeα
α = 0 freezes the

following components of the H parameters

Γαa = eαα (�−
1
2 )α

β ∂P ξβ E
P
ā , (2.20)

Γαβ = eα[α e
β
β] (�−

1
2 )α

γ
(
δ(�

1
2 )γβ − ∂P ξγ APβ − g fγδλ ξδ (�

1
2 )λβ

)
,

forcing a dependence on the generators of K.

We now compute from the gauge transformations in the extended space (2.4) how the

double dof in (2.16) transform. The transformations turn out to have simpler expressions

in terms of a redefined vector field CMα

CMα = −AMβ(�−
1
2 )β

α , AMα = −CMβ(∆−
1
2 )β

α , (2.21)

which is also covariantly constrained EMaCMα = 0, and we define

∆αβ = καβ + CMαCMβ , ΞMN = ηMN + CMαCNα , (2.22)

which relate to the previous definitions as follows

∆αβ = (�−1)αβ , χMN = (Ξ−1)MN , CMβf(∆)β
α = f(Ξ)M

NCNα . (2.23)

The transformations of the double fields are

δEM
a = L̂ξEMa + EM

b Λb
a + EPa ∂P ξ

α CMα , (2.24)

δEM
a = L̂ξEMa + EM

b Λb
a − ∂Mξ

α CQαEQa , (2.25)

δCMα = L̂ξCMα + ∂Mξ
α − ∂Mξ

βCQβCQα + CMβ ∂P ξβ CP α + g fβγ
αξβCMγ , (2.26)

where L̂ denotes the standard generalized Lie derivative in the double space, and we have

redefined the double Lorentz parameters so that both projections of the frame field look

slightly more symmetric

Λab = Γab − EM [aE
N
b](Ξ

1
2 )M

P
(
δ(Ξ−

1
2 )PN + ∂P ξ

αCQα(Ξ−
1
2 )QN

)
, (2.27)

Λab = Γab .

In addition we defined the standard projected derivatives

∂M = PM
N∂N , ∂M = P̄M

N∂N , (2.28)

in terms of the projectors

PMN = EM
aENa =

1

2
(ηMN −HMN ) , P̄MN = EM

aENa =
1

2
(ηMN +HMN ) . (2.29)
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In terms of the collective H indices of table 1 the transformation of the frame field can

be recast as

δEM
A = L̂ξEMA + EM

BΛB
A − 2∂[Mξ

α CN ]αE
NA , (2.30)

and this reproduces the schematic form of generalized Green-Schwarz transformations dis-

cussed in [22] for a given choice in the bi-parametric freedom discussed there. The difference

is that here CMα is an independent degree of freedom, corresponding to the duality covari-

ant gauge vectors of a gauge group K. Normally, in the heterotic supergravity CMα would

undergo a GL(D) parameterization in terms of one-form gauge fields Aµ
α and the gauge

group would be K = SO(32) or K = E8 × E8, or further enhancements [32–34]. In this

paper we will ignore the gauge sector of heterotic supergravity, so we have different plans

for CMα.

We have then extracted the double field transformations from those in the extended

space. Closure is guaranteed by construction, and the brackets can be obtained either

through direct inspection or from the G and H decomposition of the extended brack-

ets (2.8)–(2.9). In the latter case, the field-dependent redefinition of the H parameter (2.27)

must be properly accounted for. The double brackets are

ξM12 = 2ξP[1∂P ξ
M
2] + ∂MξP[1ξ2]P + ∂Mξα[1ξ2]α ,

ξα12 = 2ξP[1∂P ξ
α
2] + gfβγ

αξβ1 ξ
γ
2 , (2.31)

Λ12ab = 2ξP[1∂PΛ2]ab + 2Λ[1a
cΛ2]bc + 2EM [aE

N
b]∂Mξ

α
1 ∂Nξ

β
2 ∆αβ ,

Λ12ab = 2ξP[1∂PΛ2]ab + 2Λ[1a
cΛ2]bc + C[a

αCb]βHMN∂Mξ1α∂Nξ2β

+2EM [aE
N
b]∂Mξ

α
1 ∂Nξ2α .

We include here a few words on the generalized metric formulation, mostly intended

to show that the O(D,D) decomposition we use is exactly the one introduced in [31]. The

extended generalized metric is defined as follows

ĤMN = EMAENA − EM
AENA =

(
H̃MN C̃Mβ

C̃Nα Ñαβ

)
. (2.32)

The components can be computed directly from (2.16) and after implementing the redefi-

nition (2.21) we find

H̃MN = HMN + 2CMα(∆−1)αβCNβ ,
C̃Mα = 2CMβ(∆−1)βα , (2.33)

Ñαβ = −καβ + 2(∆−1)αβ .

This is precisely the parameterization of the extended space generalized metric in terms

of O(D,D) multiplets as presented in [31]. We are using the same letters, but strictly the

tensors in [31] contain scalars in the context of heterotic compactifications on tori, while

here we are dealing with the full generalized fields and not assuming a compactification.

For completeness we give the transformation of the double generalized metric

δHMN = L̂ξHMN + 4∂(Mξ
α CN)α , (2.34)

which again takes the form of a generalized Green-Schwarz transformation as in [22].
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Key to the forthcoming analysis are the extended generalized fluxes

FABC = 3D[AEMB ENC] ηMN + g fMNP EMAENBEPC , (2.35)

where we have defined DA = EMA ∂M, which are generalized diffeomorphism scalars and

transform anomalously under extended Lorentz transformations

δFABC = ξP∂PFABC − 3
(
D[AΓBC] + Γ[A

D FBC]D
)
. (2.36)

As a consequence of the strong constraint (2.10) and due to the linear and quadratic

constraints for the gaugings (2.6), the generalized fluxes satisfy Bianchi identities

[DA, DB] = FABC DC , D[AFBCD] −
3

4
F[AB

EFCD]E = 0 . (2.37)

Generalized fluxes can also be defined in the double space

FABC = 3D[AE
M
B E

N
C] ηMN , (2.38)

where we defined double flat derivatives DA = EMA∂M . They satisfy their own Bianchi

identities

[DA, DB] = FAB
C DC , D[AFBCD] −

3

4
F[AB

EFCD]E = 0 . (2.39)

The extended fluxes can then be cast in terms of the double ones. The projections that

are relevant to our discussion are

Fabc = (χ
1
2 )a

e Febc , (2.40)

Fabγ = −
[
(χ

1
2 )a

e
(
EαdFbde +DbEαe

)
−Db(�

1
2 )α

β Eβa
]
eαγ̄ , (2.41)

Faαβ = g fδε
γ Eγ a (�

1
2 )δα(�

1
2 )εβ e

α
α e

β
β (2.42)

+(χ
1
2 )a

b Eαc eα[α e
β
β]

[
FbcdEβd + (2DcEβ b −DbEβ c)

]
+eα[α e

β
β] Db(�

1
2 )γα

[
(χ

1
2 )a

b(�
1
2 )β

γ + Eγa Eβb
]
.

3 The generalized Bergshoeff-de Roo identification

In the previous section we saw that the generalized frame in the extended space can undergo

a G and H decomposition in terms of a double generalized frame EM
A, fundamental G-

vectors AMα playing the role of gauge fields of the gauge group K, and a g-valued matrix

eα
α. Our intention here is to lock the extended dof AMα and eα

α in terms of (derivatives

of) the double generalized frame EM
A, leaving it as the unique dof of the theory.

To avoid detours, we include an appendix where we discuss different possibilities for

locking the extended dof, also comparing with previous attempts. Here we go straight to

the point. The identification we make is the following

K = H . (3.1)

– 8 –



J
H
E
P
1
1
(
2
0
1
8
)
1
6
0

A priori this would seem impossible because

dimK = k , dimH =
(D + k)(D + k − 1)

2
, (3.2)

and so there is no way to match both dimensions for finite k. However, the identification we

make forces k →∞, so there is no conflict in making this choice as long as the dictionary

between both groups is well established. Since the indices in K and H are noted differently,

we need to introduce a map between them

VA
B = −g Vα (tα)A

B , (3.3)

where (tα)A
B denote the generators of the gauge algebra, and satisfy [tα, tβ ] = fαβ

γtγ .

The locking is accompanied by the gauge fixing discussed in the previous section,

AMα = 0 and eα
α = constant, which required non vanishing Γaα and Γαβ parame-

ters (2.20). The only dof that one has to identify is then Eαa = EMaAMα ≡ Aaα, that

transforms as a projected generalized connection

δAaα = L̂ξAaα −Daξα + gfαβ
γξβAaγ +AdαΓda . (3.4)

Using the map (3.3), this can be rewritten as

δAaBC = L̂ξAaBC −DaξBC + 2AaD[C ξ
D
B] +AdBC Γda , (3.5)

and this is precisely the way in which the following projection of the extended fluxes

transforms

δFaBC = L̂ξFaBC −DaΓBC + 2FaD[CΓ
D
B] + FdBCΓ

d
a . (3.6)

The resemblance between (3.5) and (3.6) turns into an exact identity provided

ξAB = −g ξα (tα)AB = ΓAB ,

AaBC = −g Eαa (tα)BC = FaBC .
(3.7)

This is the key identity of the paper: it corresponds to an exact locking of the extended

degrees of freedom, and it is what we call the generalized Bergshoeff-de Roo identification.

Its supersymmetric extension will be discussed on a separate section.

We assume the generators to define invertible maps1

(tα)AB (tβ)AB = XR δ
α
β , (3.8)

(tα)AB (tα)CD = XR δ
CD
AB , (3.9)

where XR denotes the Dynkin index of the representation. Notice that consistency of the

equations above requires

καβ = −fαγδ fβδγ = − 4

XR
(tγ)K[C (tα)D]K(tβ)CL (tγ)L

D = XR (N − 2)καβ . (3.10)

1This assumption might actually be too strong, as in the second identity the Kroneker delta must be

replaced by the projector to the adjoint representation. We leave for future work to provide a more rigorous

treatment of this infinite-dimensional mathematical structure.
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Hence XR = 1
N−2 , where N = δAA . In the limit we consider this would vanish. Nevertheless

it will play a fundamental role as a regulator of certain divergent traces and so, we will

still keep track of this factor until the end of the computation.

It is worth noting that the identification (3.7) holds independently of the gauge fixing

conditions discussed in the previous section. Without such a gauge fixing the identification

would generate infinitely many gauge dof Eαa and eα
α with an infinite amount of gauge

symmetry parameterized by Γαa and Γαβ . The gauge fixing eliminates the redundant gauge

dof, and together with the locking leaves the double generalized frame EM
A as the unique

dynamical field. In addition, (2.20) defines Γaα and Γαβ in terms of ξα, which due to

the identification depends again on ΓAB. The iteration can be pursued order by order to

obtain a derivative expansion. For later use we display here the first contributions to the

α′ ∼ O(g−2) expansion

Γαa = − 1

g XR
eβαDaΓCD (tβ)CD

− 1

2 g3X2
R

eβαFcAB FcCDDaΓ
CD (tβ)AB +O

(
1

g5

)
, (3.11)

Γαβ = − 1

XR
fαβ

γ ΓAB (tγ)AB eαα e
β
β

− 1

g2X2
R

DaΓAB FaCD (tα)AB (tβ)CD eα[α e
β
β] +O

(
1

g4

)
. (3.12)

Analogously we can solve iteratively for the relevant components of the generalized fluxes

Fabc = Fabc −
1

2XR g2
FaCD F

eCD Febc +O
(

1

g4

)
, (3.13)

Fabα =
1

XR g

(
FabcF

cAB +DbFa
AB
)
eα
α(tα)AB + O

(
1

g3

)
, (3.14)

Faαβ = − 1

XR
fαβγe

α
α e

β
β FaCD (tγ)CD

+
1

X2
R g

2

(
FacdFcAB F

d
CD+

(
DaFcAB−2DcFaAB

)
FcCD

)
eα[α e

β
β](tα)AB(tβ)CD

+
1

X3
R g

2
fβγδ FaAB Fc CD F

c
EF e

α
[α e

β
β] (tγ)AB(tδ)CD(tα)EF + O

(
1

g4

)
. (3.15)

Let us conclude with some words on how the extended space becomes infinite after

the identification. First we identify K indices α with H indices AB, through the gener-

ators (tα)AB. The H indices now split under an H decomposition as A = (a, α), such

that α → AB → (ab, aβ, αb, αβ). We have also introduced a bijective map e : h → g

in (2.15) that allows to convert h indices α back to K indices α, such that α → AB →
(ab, aβ, αb, αβ) → (ab, aβ, αb, αβ). Repeating this procedure over and over leads to an

infinite dimensional tangent space. As we will see, interestingly, contractions in this space

converge yielding finite order by order expressions. We show the first and second order

expansion in what follows.
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3.1 First order

We show here that the exact identification (3.7), when expanded to first order in α′ ∼
O
(
g−2
)
, reproduces the expected first-order generalized Green-Schwarz transformation

of [22]. To this end, we begin with the H projection of the the generalized frame, whose

exact transformation was written in (2.24)

δEM
a = L̂ξEMa + EM

b Λb
a +DaξαCMα . (3.16)

In (2.21) the gauge vector CMα was related to another one AMα and these dof were locked

in (3.7) by identifying them with the generalized flux component FaBC . Implementing these

relations yields

δEM
a = L̂ξEMa + EM

b Λb
a − 1

g2XR
EM

b FbCD D
aΓCD +O

(
1

g4

)
. (3.17)

The contracted factor on the last term splits as follows

FbCD D
aΓCD = Fbcd D

aΓcd + Fbαβ D
aΓαβ + 2Fbαc DaΓαc . (3.18)

In the last term the mixed contraction 2Fbαc DaΓαc ∼ O
(
g−2
)

by virtue of (3.11), (3.14)

and so it can be ignored at this stage. For the second term we need to take the leading

order from (3.15) and (3.12), obtaining

Fbαβ D
aΓαβ =

1

XR
FbCD D

aΓCD +O
(

1

g2

)
. (3.19)

Remarkably the r.h.s. of (3.19) contains the exact same expression appearing in the l.h.s.

of (3.18). Then, replacing (3.19) in (3.18) we read off

FbCD D
aΓCD =

XR

−1 +XR
Fbcd D

aΓcd +O
(

1

g2

)
=

XR

−1 +XR
Fbcd D

aΓcd +O
(

1

g2

)
,

(3.20)

where in the last equality we used the fact that extended and double fluxes are equal to

leading order (2.40). Then (3.17) becomes

δEM
a = L̂ξEMa + EM

b Λb
a − b

2
EM

dFdbcD
aΛbc +O

(
1

g4

)
, (3.21)

were we defined

b =
2

g2(−1 +XR)
, (3.22)

and used (2.27) to rename the Lorentz parameter. We then find that the first non-trivial

order in α′ (3.21) exactly reproduces the first order generalized Green-Schwarz transfor-

mation of DFT [22].

Let us now focus on the transformation of the H projection (2.25)

δEM
a = L̂ξEMa + EM

b Λb
a − ∂Mξ

α CQαEQa . (3.23)
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To first order in α′ we find

− ∂Mξ
α CQαEQa =

1

g2XR
∂MΓCDFaCD +O

(
1

g4

)
, (3.24)

and in addition we can decompose

∂MΓCDFaCD = ∂MΓcdFacd + ∂MΓαβFaαβ + 2∂MΓαcFaαc . (3.25)

Again the last term can be neglected as it contributes to higher order, and the second

one gives

∂MΓαβFaαβ =
1

XR
∂MΓCDFaCD +O

(
1

g2

)
, (3.26)

which reinserting into (3.25) and replacing by double fluxes yields

∂MΓCDFaCD =
XR

1−XR
∂MΓcdF acd +O

(
1

g2

)
, (3.27)

in analogy with (3.20). We can now replace (3.27) into (3.24) into (3.23), and use the

leading order redefinition of Lorentz parameters (2.27) to arrive at

δEM
a = L̂ξEMa + EM

b Λb
a +

b

2
∂MΛbc F abc +O

(
1

g4

)
. (3.28)

This matches the other projection of the first order generalized Green-Schwarz transfor-

mation [22].

As previously anticipated, the final result is finite and non vanishing in the limit

XR → 0 leading to the simple identification b→ −2/g2.

3.2 Second order

Now we obtain the so far unknown O(α′2) deformations of the generalized Green-Schwarz

transformation. Once again we start considering the H projection of the generalized

frame (2.24)

δEM
a = L̂ξEMa + EM

b Λb
a − 1

g2XR
EM

c (χ−
1
2 )c

b FbCD D
aΓCD . (3.29)

After repeating the steps of the previous section for the last term but keeping the following

order terms that were previously neglected, gives

FbCD D
aΓCD =

XR

(−1 +XR)
Fbcd D

aΓcd (3.30)

− 2

g2 (−1 +XR)

[
FbEFFcG

F
(
FcCGDaΓC

E −F cCEDaΓC
G
)

−
(
DaΓEG

)(
FbcdFcEFF

d
G
F +DbFcEFFcG

F − 2 DcFbEFF
c
G
F
)

− FbEFD
a
(
DcΓEGFcG

F
)
− DaDcΓEF

(
FcdbFdEF +DcFbEF

)]
+O

(
g−6
)
.
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Notice that the χ factor in (3.29) has the effect of switching the extended into the double

fluxes (χ−
1
2 )a

b Fbcd = Facd in the first line of (3.30) whereas it is equivalent to a Kronecker

delta on the second to fourth lines, at this order.

We can try to reproduce the logic of the first order computation, namely to split indices

A → (a, α), replace (3.11)–(3.15), discard terms with mixed indices (as they are subleading)

and get rid of terms with Greek dummy indices by noting that they are proportional to

the same terms with H indices. This procedure turns out not to work for each individual

term at O
(
g−4
)

but remarkably it does for the whole sum in (3.30). Hence, we conclude

δEM
a = L̂ξEMa + EM

b Λb
a − b

2
EM

dFdbcD
aΛbc

− 1

2
b2 EM

b
[
DaDcΛef

(
FcdbF

d
ef +DcFbef

)
− FbefFcd

f
(
F chdDaΛh

e − F cheDaΛh
d
)

+ F cef D
aΛeg

(
FbcdF

dgf −DbFc
gf + 2 DcFb

gf
)

− FbefD
a
(
DcΛedFcd

f
) ]

+O
(
g−6
)
.

(3.31)

It is quite remarkable that all the dependence on the Dynkin coefficient XR and the coupling

constant g has arranged once again in the same parameter b as before (3.22).

The transformation of the H projection (2.25) is completely analogous

δEM
a = L̂ξEMa + EM

b Λb
a +

1

g2XR
∂MΓCD (χ−

1
2 )ab F bCD . (3.32)

Repeating the procedure for the previous projection one readily arrives at

δEM
a = L̂ξEMa + EM

b Λb
a +

b

2
∂MΛbc F abc

+
1

2
b2 EM

b
[
DbD

cΛef
(
Fcd

aF def +DcF
a
ef

)
− F aefFcd

f
(
F chdDbΛh

e − F cheDbΛh
d
)

+ F cef DbΛ
e
g

(
F acdF

dgf −DaFc
gf + 2 DcF

agf
)

− F aefDb

(
DcΛedFcd

f
) ]

+O
(
g−6
)
.

(3.33)

As a non-trivial check we have verified closure. The brackets receive second order

corrections, and are given by

ξM12 = 2ξP[1∂P ξ
M
2] + ∂MξP[1ξ2]P

− b
2

Λcd[1 ∂
MΛ2]cd + b2

[
∂MΛef[1 DcΛ2]e

dFcdf +
1

2
∂M

(
DcΛef[1

)
DcΛ2]ef

]
+O(b3) ,

Λab12 = 2 ξN[1 ∂NΛab2] − 2 Λac[1 Λ2]c
b + b DaΛcd[1 D

bΛ2]cd + b2
[
DaΛcd[1 D

bΛef2] F
g
cd Fgef

− DaDeΛcd[1 D
bDeΛ2]cd − 2 D[a

(
DcΛed[1 Fcd

f
)
Db]Λ2]ef

]
+O(b3) , (3.34)
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Λ
ab
12 = 2 ξN[1 ∂NΛ

ab
2] − 2 Λ

ac
[1 Λ2]c

b + b DaΛcd[1 D
bΛ2]cd + b2

[
DaΛcd[1 D

bΛef2] F
g
cd Fgef

− DaDeΛcd[1 D
bDeΛ2]cd − 2 D[a

(
DcΛed[1 Fcd

f
)
Db]Λ2]ef

]
+O(b3) .

The first order exactly reproduces [22] and the second order is a new result. These ex-

pressions could also be obtained from the extended brackets (2.31) after performing the

identification, but one has to take care of the fact that the identification introduces field

dependence in the parameter components, which must be properly accounted for.

4 Supersymmetry

We now consider the N = 1 and D = 10 supersymmetric formulation of extended gauged

DFT [11, 12]. The fermionic degrees of freedom are two Majorana spinors: an extended

generalized gravitino ΨA (which is anH vector and anH spinor) that contains the gravitino

Ψa and gauginos Ψα from the point of view of the double space, and a generalized dilatino

ρ (which is an H singlet and an H spinor) which will be ignored as it plays no relevant

role in our analysis. Both are scalars under extended generalized diffeomorphisms and G
invariant. The supersymmetry parameter ε is also a Majorana H spinor. The gamma

matrices satisfy a Clifford algebra for H{
γa, γb

}
= 2P ab , (4.1)

and we use the standard convention for antisymmetrization of γ-matrices γa...b = γ[a . . . γb].

The Clifford relation (4.1) implies the following useful identities

γaγb = γab + Pab ,

γabγc = γabc + 2γ[aPb]c = γaγbc + 2γ[aPc]b ,

γabγ
cd = γab

cd + 4γ[a
[dPb]

c] + 2P[b
[c Pa]

d] .

(4.2)

Crucial to the analysis is the derivative

∇AVB = DAVB − ωABCVC , (4.3)

which is H covariant provided the generalized spin connection transforms as follows

δΓωABC = −DAΓBC + ωDBCΓ
D
A + ωADCΓ

D
B + ωABDΓDB . (4.4)

Compatibility with the H invariants and vanishing generalized torsion impose constraints

on the connection

ωA(BC) = 0 , ωAbC = 0 , (4.5)

and generalized frame compatibility determines some projections of the connection in terms

of the dynamical fields

3ω[ABC] = FABC . (4.6)

Together these imply

ωaBC = FaBC , ωAbc = FAbc . (4.7)
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There are additional relations involving the generalized dilaton, but we ignore them here

as they have no relevance in the analysis.

Let us now move on to the covariant derivative of a spinorial object. When we consider

spinors, the covariant derivative takes an extra contribution. For example, the covariant

derivative of the gravitino and the adjoint gravitino are

∇AΨB = DAΨB − ωAB
CΨC −

1

4
ωAbcγ

bcΨB , ∇AΨB = DAΨB − ωAB
CΨC +

1

4
ωAbc ΨBγ

bc ,

where the adjoint spinor is defined through Ψ̄ = ΨtC and the charge conjugation matrix

satisfies

C−1 = Ct = −C , CγC−1 = −γt . (4.8)

We will only work to leading order in fermions, such that supersymmetric transforma-

tions of bosons are at most quadratic in fermions, and supersymmetric transformations of

fermions are linear in fermions. On top of the extended generalized diffeomorphisms and H
transformations, the extended generalized frame receives supersymmetric transformations

given by

δεEMa = −1

2
ε̄ γa ΨB EM

B ,

δεEMa =
1

2
ε̄ γb Ψa EMb , (4.9)

δεEMα =
1

2
ε̄ γb Ψα EMb .

The gravitino and gaugino on the other hand transform as follows

δΨa = ξM∂MΨa + ΨBΓBa −
1

4
Γbcγ

bcΨa +∇aε , (4.10)

δΨα = ξM∂MΨα + ΨBΓBα −
1

4
Γbcγ

bcΨα +∇αε . (4.11)

The composition of these transformations closes to leading order in fermions with respect

to the following brackets

ξM12 = 2ξP[1∂Pξ
M
2] + ∂MξP[1ξ2]P + g fNP

MξN1 ξ
P
2 −

1

2
EMa ε̄1 γ

a ε2 ,

Γ12AB = 2ξP[1∂PΓ2]AB + Γ[1A
C Γ2]BC , (4.12)

ε12 = 2ξP[1∂Pε2] −
1

2
Γ[1abγ

abε2] .

We now proceed as before making the same G ∈ G and H ∈ H decomposition and

gauge fixing. Imposing Eαā = 0 and δeα
ᾱ = 0 now gives a supersymmetric completion of

the locked H gauge parameters (3.11), (3.12)

Γαa = eαα (�−
1
2 )α

β

(
∂P ξβ E

P
ā −

1

2
ε̄ γb ΨaE

M
bAMα

)
, (4.13)

Γαβ = eα[α e
β
β] (�−

1
2 )α

γ

(
δ(�

1
2 )γβ − ∂P ξγ APβ − g fγδλ ξδ (�

1
2 )λβ

−1

2
ε̄ γb Ψδ eβ

δ EMbAMγ

)
.
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We now want to lock the extended dof (Aaα and Ψα) in terms of the double fields

EM
A and Ψa. We have a starting point based on the pure bosonic locking, so lets begin

by exploring wether that identification survives supersymmetry or not. On the one hand,

the G-vectors transform as

δAaα = L̂ξAaα −Daξα + gfαβ
γξβAaγ +AdαΓda −

1

2
ε̄ γa ΨA Eα

A , (4.14)

which using the map (3.3) can be rewritten as

δAaBC = L̂ξAaBC −DaξBC + 2AaD[C ξ
D
B] +AdBC Γda + ε̄ γa

[
g

2
ΨA Eα

A(tα)BC

]
. (4.15)

On the other hand the projected flux transforms as

δFaBC = L̂ξFaBC −DaΓBC + 2FaD[CΓ
D
B] + FdBCΓ

d
a + ε̄γaΨBC +∇[B ε̄γaΨC] , (4.16)

where we defined

ΨAB = ∇[AΨB] −
1

2
ωDABΨD = D[AΨB] −

1

4
F[Acdγ

cdΨB] −
1

2
FAB

C ΨC . (4.17)

We will call this the gravitino curvature with the caveats that (i) it is not fully covariant,

as it includes a non-covariant term to render it fully determined, (ii) it represents in fact a

curvature for the full ΨA, which includes gauginos as well. So strictly this is a misnomer, but

it helps in highlighting the similarity with the identification in [24]. Comparing with (4.15)

we see that the last term in (4.16) must be canceled. To cure the mismatch, we must

redefine the flux as follows

F∗aB̄C̄ = FaB̄C̄ −
1

2
Ψ̄B̄γaΨC̄ , (4.18)

such that now

δF∗
aBC = L̂ξF∗aBC −DaΓBC + 2F∗

aD[CΓ
D
B] + F∗

dBCΓ
d
a + ε̄γaΨBC . (4.19)

The following identification equates (4.15) with (4.19)

ξAB = −g ξα (tα)AB = ΓAB ,

AaBC = −g Eαa (tα)BC = F∗
aBC ,

Ψ′AB ≡
g

2
ΨD Eα

D(tα)AB = ΨAB .

(4.20)

In particular, the last identification can be solved for the gaugino dof in terms of derivatives

of the double generalized frame and gravitino. This is the supersymmetric extension of what

we previously called the generalized Bergshoeff-de Roo identification.

This identification is self-consistent because both sides of the last line transform equally.

On the one hand, the extended gravitino curvature (4.17) transforms as

δΨAB = ξP∂PΨAB − 2ΨC[AΓCB] −
1

4
Γab γ

ab ΨAB +
1

2
ΨC DCΓAB

+
1

2
FcAB Dcε−

1

4

(
D[AFB]ab + FaA

cFbBc −
1

2
FCAB Fab

C
)
γabε . (4.21)
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On the other, the combination it is identified with in (4.20)

Ψ′AB =
g

2
ΨD Eα

D (tα)AB , (4.22)

transforms as

δΨ′AB = ξP∂PΨ′AB − 2Ψ′C[Aξ
C
B] −

1

4
Γab γ

ab Ψ′AB +
1

2
ΨC DCξAB

+
1

2
AcAB Dcε+

1

4

(
DaAbAB +AaA

C AbBC −
1

2
AcAB Fab

c

)
γabε . (4.23)

In deriving the last expression we used the following identity

EαCFCab = −EαcFcab + 2D[aEαb] + gfαβγEβaEγb . (4.24)

Employing the identifications (4.20), all the terms in (4.21) and (4.23) can be identified

straightforwardly, except for the terms in brackets. It is easy to see however that also

those terms coincide exactly using the following projected form of the extended generalized

Bianchi identities (2.37)

D[AFB]ab +D[aFb]AB + F[a|A
CF|b]BC −

1

2
FCABFab

C = 0 . (4.25)

Note that in these equations there is no distinction between F and F∗ because we are

working to leading order in fermions only. We would also like to emphasize that the

identifications (4.20) are exact, and totally independent of the gauge fixing.

A perturbative treatment of the supersymmetric case and the proof that it exactly

reproduces the results of [25] to first order in α′ will be presented in [35].

5 Outlook

We considered theN = 1 supersymmetric heterotic DFT. The duality group G = O(10, 10+

k) was decomposed in terms of G = O(10, 10) multiplets. The physical G-covariant dof are

a generalized frame and a constrained G-vector. We pointed out that the G-vector could be

identified with certain generalized fluxes provided the heterotic gauge group K were taken

to coincide with H = O(1, 9 + k). A priori this generalized Bergshoeff-de Roo identification

seems unlikely to succeed because the dimension of both groups differs for finite k. We

are then forced to consider infinite-dimensional groups and establish a dictionary between

them. A more rigourous treatment of this mathematical structure is lacking, and deserves

more attention in the future. The procedure allowed us to lock the G-vector in terms

of the projected generalized fluxes. This is not a gauge fixing, but a mechanism that

actually reduces the physical dof. A similar locking is necessary in the supersymmetric

sector, where the gauginos must be locked in terms of a generalized gravitino curvature.

The generalized identification is imposed by hand and it would be nice to find a broader

framework from which it arose naturally. Interestingly the identification is exact, so it

presumably captures an infinite tower of α′ corrections, giving rise to an exact heterotic

generalized Green-Schwarz transformation that closes and preserves the constraints on the
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fields by construction. We show that a perturbative α′ expansion is possible, finding at first

order the known heterotic generalized Green-Schwarz transformation of [22]. We tested the

proposal by computing the following O(α′2) order, finding a consistent higher derivative

completion that was previously unknown.

The results open the door to a large number of questions and future directions. We

elaborate on some important points:

• Gauge fields. We got rid of gauge fields by identifying them with generalized fluxes.

This was just a procedure implemented to reach the gravitational higher derivative

corrections in a duality covariant form. However, the heterotic string and gauged

supergravities in general contain gauge fields as proper independent dof (e.g. those

of K = SO(32) or K = E8 × E8). Reincorporating these fields is a relatively simple

task that can be done in two ways. (i) Starting from a G = O(D,D+k+k′), one can

lock k-vectors and leave the other k′ free. This was done for instance in [26, 27, 36].

(ii) Alternatively, one could consider the α′ expansion of the O(D,D) generalized

Green-Schwarz transformation, and promote the O(D,D) to an O(D,D + k′) thus

incorporating k′ dynamical vector fields. This was done in [23] for generic gauged su-

pergravities, finding in the heterotic case up to quartic powers of the gauge curvatures

F 4 in exact coincidence with those computed in [25].

• Quartic Riemann interactions. Our results provide an all-order supersymmetric du-

ality covariant completion of the Green-Schwarz transformation. A natural question

is what kind of interactions are under its reach.

The standard bosonic Green-Schwarz transformation of the Kalb-Ramond field gener-

ates Chern-Simons terms in its three-form curvature. Its first order duality covariant

completion [22] fixes the connection to the heterotic one, and moreover requires and

fixes quadratic Riemann interactions. This is not surprising because T-duality mixes

the Kalb-Ramond and the gravitational sectors. Supersymmetry is another ingre-

dient that constrains interactions. It was shown in [25] that the supersymmetric

completion of the Lorentz Chern-Simons terms induced by the Green-Schwarz trans-

formation require deformed supersymmetric transformations that lead to quartic Rie-

mann interactions (which are mirrored to their corresponding gauge field analogs).

There is a different set of quartic Riemann terms that have no analog in the gauge

sector. Based on the symmetries shared with the construction in [25], it is possible

that the framework presented here captures the first set, but not the second set of

interactions.

• Bi-parametric deformations. The first order heterotic Green-Schwarz transformation

belongs to a bi-parametric family of deformations [22] (see also [37])

δΛEM
A = EM

BΛB
A + a ∂[MΛc

b FN ]b
cENA − b ∂[MΛc

b FN ]b
cENA +O(α′2) , (5.1)

corresponding to the cases a = 0 or b = 0 (which are the same up to a change of sign

of the Kalb-Ramond field), that more generally captures the gauge transformations

of the bosonic string [38] (a = b) and the HSZ theory [19] (a = −b).
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First one can ask wether there is an extension of the framework considered here

featuring both deformations. Since the two parameters a and b account for the

different groups H and H respectively, it seems likely that these deformations will

arise from a further extended tangent space G = O(D+k,D+k), whose physical dof

can be parameterized in terms of a double frame, two pairs of covariantly constrained

O(D,D) vectors and also scalars in the coset O(k,k)
O(k)×O(k) . The identifications would

then be a little more involved because, although the vector fields are likely to be

identifiable with projections of the extended generalized fluxes, the scalar fields would

have to be identified as well, with the complication that they are also covariantly

constrained to be an element of O(k, k). We plan to study the general case in the

future. Of course, yet another question is whether new deformations start beyond

the first order.

Notice that in the supersymmetric formulation the fermions are H spinors. In 10

dimensions we would then need H = O(9, 1) thus forbidding the supersymmetrization

of the case a 6= 0. N = 1 Supersymmetry then reduces the space of parameters to a

single deformation parameterized by b (for the supersymmetry conventions employed

in this paper). This is expected because the bosonic string and the HSZ theory do

not admit a supersymmetric completion.

• Maximal supersymmetry. The proper framework to address duality covariant higher

derivative corrections in theories with maximal supersymmetry is Exceptional Field

Theory. Consider as an example the case of 4 space-time dimensions [39] with E7(7)

duality symmetry. In order to examine a possible uplift of the deformations consid-

ered here to the maximal theory, the natural route would be to first take this DFT

construction to a four-dimensional Kaluza-Klein formulation [40] and then explore

how the duality group embeds into E7(7). While this is certainly possible when the

duality group is O(6, 6), the case O(6, 6 + k) does not admit such an uplift. This

makes us believe that the deformations considered here are not consistent with max-

imal supergravity, nor exceptional symmetries. Perhaps the results in [41] shed light

on this point.

Instead, the higher derivatives in maximal theories start at eight derivatives O(α′3)

through quartic Riemann interactions -which however are different in structure from

the heterotic ones-, among others beyond the gravitational sector. A possibility is

that generating these corrections would require a new deformation starting at this

order, in which case the standard EFT action would not be invariant, and duality

covariant eight-derivative terms (and higher) would be necessary.

• Extended tangent space approach. Previous treatments of first-order higher deriva-

tives through finite extensions of the generalized tangent space [26] must be put into

scrutiny in light of the results discussed here. The identification performed here gen-

erates an infinite extension of the generalized tangent space that accommodates all

higher orders. The extended generalized frame EMA contains extra directions EαA

and EMα, beyond the double ones EMA. The extended directions take values in the
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adjoint of K, which after being identified with H becomes infinite-dimensional. There

is a subtlety though, in that when converting indices α → (AB) = (ab, aβ, αb, αβ),

the components ab and αβ were shown to start at the same order in perturbations.

The α indices are then further identified over and over generating the infinite di-

mensional extended tangent space -see discussion below equation (3.15)-. The point

we want to make is that first order corrections are distributed all over the infinite

dimensional tangent space, and not only through a single finite extension as in [26],

but through infinite first order replicas. We have seen that all these contributions

converge and add up to the expected first order deformation, so both approaches

are effectively equivalent to first order: lifting the first order deformations (3.21)

and (3.28) to generalized diffeomorphisms in an extended tangent space is a triv-

ial task. However, seeking a lift for the second order deformations to the generalized

Green-Schwarz transformations (3.31), (3.33) looks more complicated, casting doubts

on further higher derivatives being accounted for through finite extensions of the gen-

eralized tangent space.

• Action. We have only discussed exact gauge transformations, but finding the exact

gauge invariant action can be done by following the same procedure. One should

start from the G invariant heterotic N = 1 supersymmetric DFT action [11, 13]

SN=1 =

∫
d2D+kX e−2d

(
R(E , d)− Ψ̄Āγb∇bΨĀ − ρ̄γa∇aρ− 2Ψ̄Ā∇Āρ

)
. (5.2)

Decomposing the extended generalized frame with respect to G-multiplets as

in (2.16), and performing the identifications (4.20) should lead to the final action.

One could then realize a perturbative α′ expansion to find the action order by order.

The only non trivial step here is that we should get rid of the Greek dummy indices

by implementing manipulations similar to those discussed above (3.31).

It is possible that apart from (5.2), there exist higher derivative invariants that trigger

their own tower of α′ corrections. They should be invariant under duality symme-

tries, extended generalized diffeomorphisms, extended Lorentz transformations and

supersymmetry. If they exist, the G-decomposition, identifications, and derivative

expansion would proceed in exactly the same way as here.

• Non-perturbative treatment. Possibly the most important question is how to deal with

this deformation exactly, without performing an α′ expansion. A similar question has

been addressed is the HSZ setup [19]. Both frameworks are similar in that there is

a closed non-perturbative form of the gauge transformations and action, which can

then be perturbed in a derivative expansion (see [42–46]), such that when written in

terms of an O(D,D) generalized frame or metric acquires infinite α′ corrections. It

is certainly desirable to learn what kind of information can be extracted from these

closed and exact expressions.

• Solutions. Exact all order equations of motion (eom) can be derived from (5.2).

One could then explore higher derivative corrections to supergravity solutions (first
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order deformations were considered in [47–49]), and even aim at obtaining exact

solutions to all orders. Interestingly, one can perform generalized Scherk-Schwarz re-

ductions [50, 51] of the α′-DFT action obtained from (5.2) to generate higher deriva-

tives corrections in gauged supergravity. In [23] the first order scalar potential of

half-maximal gauged supergravity was computed in the embedding tensor formalism

and a moduli stabilization analysis was addressed to first order. The results here

could in principle allow for a non-perturbative treatment that could shed light on is-

sues such as moduli stabilization, supersymmetry breaking, etc. in lower dimensional

half-maximal gauged supergravities.

On a slightly different page, using these results as a solution generating technique in

supergravity would require the knowledge of finite double Lorentz transformations,

as opposed to the infinitesimal ones considered here. This is due to the fact that in

supergravity the double Lorentz group H×H is broken to a single Lorentz group, and

then after generic T-dualities a finite compensating double Lorentz transformation

would be required.

• Background independence. It was argued in [52–54] that in order to achieve manifest

background independence, a duality symmetric formulation of higher derivative in-

teractions would require gauge degrees of freedom for enhanced gauged symmetries.

This is known in the context of first order α′ corrections to DFT [22] which highly

rely on the frame formulation for double Lorentz symmetries. A natural question

is wether higher derivatives would require further enhanced gauge symmetries. We

see that in the heterotic case the standard double Lorentz symmetries of DFT are

already enough to account for all the α′ corrections in the universal gravitational

sector considered here in a manifestly background independent way.
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A Alternative identifications

We have discussed equivalences between (composite) dof based on the their gauge and

supersymmetric transformations. These equivalences were then used to lock or fix one set

of dof in terms of the other. The procedure is not a gauge fixing, as it reduces the number

of physical degrees of freedom rather that eliminating gauge redundancies. In the context

of higher derivatives in heterotic string theory, these equivalences go back to [24], where

the gauge fields (for the SO(32) or E8×E8) and a specific Lorentz SO(1, 9) spin connection

(containing torsion proportional to three-form curvature of the Kalb-Ramond field) were
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shown to transform somewhat symmetrically, something obvious for gauge symmetries but

less clear for supersymmetry, in which case also the gauginos must be identified with the

gravitino curvature. This equivalence was exploited to compute the first order in α′ action,

and later expanded to quartic Riemann interactions in [25] through a Noether procedure.

These ideas were employed in a number of recent works, some of which we mention below:

• In the context of generalized geometry, [27] considered an extended tangent space

decomposed with respect to GL(D) ∈ G. The identification was established after the

GL(D) decomposition between the one-form components of the generalized frame,

and a generalized spin connection compatible with a reduced structure H ∈ H. It

was argued there that this is only possible if the connection contains a non-vanishing

intrinsic torsion.

• In the context of DFT, [36] considered an extended tangent space decomposed with

respect to G ∈ G, as we do. The difference is that there, the O(D,D) vectors are

covariantly constrained in a strong sense, namely they are self-orthogonal and also

orthogonal to the generalized derivatives as in [55], and the identification is performed

after solving the constraint. So again this approach fails to provide O(D,D) covariant

higher derivative corrections.

• Also in the context of DFT, [26] considered an extended tangent space decomposed

with respect to GL(D) ∈ G. The approach here is similar to that in [27], with

the difference that the identification relates the one-forms to a component of the

generalized H spin connection of DFT, which is O(D,D) covariant. So this approach

gets closer to the goal of finding O(D,D) covariant higher derivatives, but still fails

to achieve the purpose.

In this paper we decided to follow a different route: we are interested in a fully

G = O(D,D) covariant identification between the G-vector that arises from the G ∈ G
decomposition of the extended generalized frame, and (derivatives of) the generalized grav-

itational degrees of freedom. On top of the one we presented in the paper, which is exact

to all orders in derivatives, we also considered some other possibilities which turned out

to fail in one way or another. For completion we discuss briefly those that looked more

promising:

• The natural possibility, aligned with the three attempts discussed above is to relate K
with H ∈ H in a G-covariant way. As we discussed, performing the gauge fixing Eαa =

0 and δeα
α = 0, leaves the double frame EM

A and the vector Aaα = EMa AMα as the

unique degrees of freedom. We should then identify Aaα with the H components Fabc
of the generalized H spin connection (and not the full H generalized spin connection

as we do in this paper). We would then need a map between K and H given by the

Lorentz generators (tα)ab

[tα, tβ ] = fαβ
γtγ , (tα)ab(tβ)ab = XR δ

α
β , (tα)ab(tα)cd = XR δ

cd
ab
, (A.1)
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such that indices can be converted from one group to the other

Vab = −g V α (tα)ab . (A.2)

The gauge transformations of both quantities are

δAabc = ξP∂PAabc + ΓdaAdbc −Daξbc + 2Aad[cξ
d
b] , (A.3)

δFabc = ξP∂PFabc + ΓdaFdbc −DaΓbc + 2Fad[cΓ
d
b] + 2Faδ[cΓ

δ
b] . (A.4)

There is a clear mapping between these transformations, except for the last term

in (A.4), which cannot be set to zero because the gauge fixing locks the off-diagonal

component of the H parameter to a non-vanishing value. An identification is then not

possible in general. However, after taking the parameter to its gauge fixed value (2.20)

it can be seen that the last term in (A.4) starts from one order higher in derivatives

than the rest, and so this approach is perfectly consistent to first order in α′, in

which case the extended fluxes can be replaced by double fluxes Fabc without any

loss of generality. It is easy to check that this identification reproduces the first

order generalized Green-Schwarz transformation, and also gives rise to the extended

tangent space approach of [26] after a GL(D) decomposition.

• One could try to avoid the gauge fixing, so as to have freedom to set Γaα = 0, thus

solving the problem of the previous attempt. If so, one should now also identify the

degrees of freedom Aaα = Eαa which can no longer be set to zero. Using the relation

between K and H above we find

δAAbc = ξP∂PAAbc + ΓDAADbc −DAξbc + 2AAd[cξ
d
b] , (A.5)

which is exactly the way in which the H components of the generalized spin connec-

tion transform (an extended tangent space containing the generalized spin connection

was also considered in [56])

δωAbc = ξP∂PωAbc + ΓDA ωDbc −DAΓbc + 2ωAd[cΓ
d
b] . (A.6)

Identifying these degrees of freedom wouldn’t really solve the problem then, because

only some projections like ω[abc] = 1
3Fabc are determined, and the transformation of

the double frame would depend on undetermined components.

• Independently of what one identifies Eαa with, a different question is wether the

dependence on this component can be eliminated from the gauge transformations

through field-redefinitions. Assuming EαA is of first order in α′, the leading order

transformations of the double frame and EαA are given by

δEM
A = L̂ξEMA + EM

B ΓB
A − EMB D

[Aξα EαB] +O(α′2) , (A.7)

δEαA = L̂ξEαA −DAξα + gfαβ
γξβEγA + EαBΓBA +O(α′) . (A.8)
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If we now redefine the Lorentz parameters to first order

Γab = Λab +D[aξα Eαb] , (A.9)

Γab = Λab +D[aξα Eαb] , (A.10)

the transformations of the double frame become

δEM
a = L̂ξEMa + EM

bΛb
a − 1

2
EMbD

aξα Eαb +
1

2
EMbD

bξα Eαa +O(α′2) , (A.11)

δEM
a = L̂ξEMa + EM

bΛb
a − 1

2
EMbD

aξα Eαb +
1

2
EMbD

bξα Eαa +O(α′2) . (A.12)

Our purpose is to eliminate Eαa through redefinitions. Redefining the double frame

as follows

ẼM
a = EM

a +
1

2
Eαa EαbEMb , (A.13)

ẼM
a = EM

a − 1

2
Eαa EαbEMb , (A.14)

achieves the purpose

δẼM
a = L̂ξẼMa + ẼM

bΛb
a − ẼMbD

aξα Eαb +O(α′2) , (A.15)

δẼM
a = L̂ξẼMa + ẼM

bΛb
a + ẼMbD

bξα Eαa +O(α′2) . (A.16)

We tried to pursue this procedure to the next order, but the treatment becomes

cumbersome, and then one wonders if the effort is worth considering we already have

an exact identification that can be treated easily and expanded perturbatively order

by order.
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