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1 Introduction

T-duality is an exact symmetry of (super)string theories. It leaves hidden imprints in
the low-energy supergravity limits, which can be unmasked through toroidal compactifi-
cations. They are however already present even before dimensional reduction, as realized
from the advent of duality symmetric approaches. Double Field Theory (DFT) [1-5] (for
reviews see [6-8]) is a framework that makes the T-duality symmetry manifest, thus highly
constraining the allowed interactions of the effective theories under its reach. There are
many variants and extensions, but the ones that are of interest here are the frame-like [9]
or flux [10] formulations of the D = 10 and N' = 1 supersymmetric [11, 12] heterotic
DFT [13].

Higher derivative corrections to (super)gravity arising from string theory also share
these hidden imprints. Toroidal compactifications can again make them appear in the form
of a symmetry in the lower dimensional theory [14], though it turns out that the problem
is a little more involved than the two-derivative case because unconventional non-covariant
field redefinitions are required. Many methods have been proposed to learn about higher
derivative interactions based on the way in which duality organizes the lower dimensional
theories [15-18].

The natural scenario to study how T-duality constrains higher derivative interactions
is DFT, as it encodes duality symmetries from the onset in a background independent
fashion, so it is not surprising that this long standing problem has resurfaced in such a
context [19]. Interestingly, two seemingly different approaches arise in this scenario for the
case of the heterotic string to first order in o’



e One scenario considers a generalized version of the Green-Schwarz transformation.
In the standard picture [20] the Kalb-Ramond field is not Lorentz invariant, which
requires Lorentz Chern-Simons corrections to its three-form field strength H with re-
spect to a certain torsionful spin connection w_ = w — %ﬁ , due to Hull [21]. The first
order T-duality covariant generalization was introduced in [22, 23]. There, the fields
are O(D, D) multiplets transforming as usual under generalized diffeomorphisms but
receiving a first order generalized Green-Schwarz transformation that deforms the
double Lorentz symmetry. After a GL(D) decomposition, choice of solution to the
strong constraint and proper field redefinitions the standard Green-Schwarz transfor-
mation is recovered from the generalized one. Due to the T-duality covariance the
Kalb-Ramond and gravitational sectors mix in such a way that the generalized Green-
Schwarz transformation demands the well-known quadratic Riemann interactions, on
top of the Chern-Simons terms.

e Another scenario is based on the work of Bergshoeff and de Roo [24, 25]. There,
the torsionful spin connection w_ and the gravitino curvature were shown to behave
effectively as a gauge multiplet with respect to supersymmetry to first order in «’.
We refer to this as the Bergshoeff-de Roo identification between independent and
composite degrees of freedom. This fact was exploited to compute the first order
corrections to the action [24], and later extended up to quartic Riemann interactions
through a Noether procedure [25]. In [26, 27] this idea was engineered by considering
the extended duality structure O(D, D+ k) of the heterotic setup [13], such that after
a GL(D) decomposition the one-form gauge fields were identified with (a component
of) the generalized spin connection for O(1,D —1) € O(1, D+ k — 1), extensively dis-
cussed in the literature [1, 2, 9, 28-30]. Since the identification between independent
and composite degrees of freedom is done after the GL(D) decomposition, duality
covariance is not manifest and must be checked explicitly.

Both approaches look rather orthogonal as in the first case the duality structure is extended
and the local symmetries remain intact, whereas in the second case the duality group stays
unmodified but the local symmetries are deformed. The link between them remains unclear
-though they lead to the same first order heterotic action- and higher order corrections to
these approaches have been so far elusive. In this paper we introduce a general setup from
which both approaches can be derived and extended to all orders in a derivative expansion.
Let us provide some highlights of the route we follow and the results we encounter:

e We consider a hybrid between both approaches. Starting from a G = O(D, D+ k) ex-
tended space, we perform a G = O(D, D) decomposition -as opposed to the standard
GL(D) decomposition- in the lines of [31]. This leaves us with a G-valued gener-
alized frame plus additional covariantly constrained G-vectors, thus fully preserving
T-duality covariance.

e The G generalized diffeomorphisms induce a generalized Green-Schwarz transforma-
tion for the G-valued frame with respect to the extra G-vectors.



e The G-vectors are identified in a duality covariant way -by matching gauge and super-
symmetry transformations- with generalized fluxes playing the role of a generalized
spin connection for the full O(1,D + k — 1). We do the same between the gauginos
and a generalized notion of gravitino curvature. This is what we call the generalized
Berghshoeff-de Roo identification.

Contrary to the standard identification, the generalized one is exact. This is possible
because the gauge group is identified with the full O(1, D+k—1) rather than its O(1, D—1)
subgroup, so the generalized identification that we propose here would be impossible to im-
plement in supergravity. An interesting consequence of our results is that the tangent space
must be infinite dimensional. This might sound strange, but is somewhat expected given
that the identification is exact, which presumably means that it captures an infinite tower
of higher derivative corrections. We test this proposal by performing an o’ perturbative
expansion. To first order we recover the well known heterotic generalized Green-Schwarz
transformation of [22], and to second order we obtain a novel consistent correction that
preserves the constraints and closes.

The paper is organized as follows. In section 2 we introduce the G structure of the
extended space and reduce it to the double space in a G-covariant way. Section 3 is
devoted to lock the vector degrees of freedom in terms of (derivatives of) the G-covariant
generalized frame (the generalized Bergshoeff-de Roo identification). As a consistency check
of the approach we perform a derivative expansion, finding the second order completion of
the heterotic generalized Green-Schwarz transformation of [22]. The full supersymmetric
treatment is presented in section 4. An outlook is given in the last section, together with
a list of possible future lines of research.

2 From extended to double

The starting point of this section is the generalized frame formalism [9] (mostly following
the conventions in [10]) in the

Global symmetry G=0(D,D +k)

Extended space , (2.1)
Local symmetry H=0(D-1,1)x0(1,D+k—-1)

and the goal is to re-formulate it in terms of multiplets of the

(2.2)

Global symmetry G=0(D,D)
Double space

Local symmetry H=0(D-1,1)x0(1,D —1)

The notation is presented in table 1. The degrees of freedom in the extended case are
a generalized dilaton d and a generalized frame &, which is a constrained field, satisfying

v = Em? nas ENF (2.3)

The generalized dilaton plays no role whatsoever in our analysis, so it will be ignored. The
gauge transformations of the extended generalized frame are given in terms of extended



Name Group Indices Metric
G O(D,D) M MM N
g O(k) a Kap
, 0
g O(D,D+k) | M= (M, a) N = (”MN )
0 Rap
H=H |OD-1,1) A=a Pyp = Py
H O(1,D —1) a P
E ( ) a K@
_ I ] Py 0
H O(1,D+k-1) | A= (a, @) L =
0 I‘i@
_ _ L Pus O
H HxH A=A A)=(a,a,a T]AB<_ >
0 Pg
_ Py O
" HxH A=(a,a) nAB_<_>
ab’

Table 1. Notation used throughout the paper. Modulo a few exceptions, calligraphic letters refer
to the extended space while conventional ones to the double space. The metrics and their inverses

are used to raise and lower indices.

and gauged generalized diffeomorphisms, plus extended Lorentz H-transformations
0Em™ = EPOpEM™ + (0T — 0P Ep) Ep7 + g frnPEV EPH + EME T

We included a dimensional coupling g~
dimensionless. The extended Lorentz parameters satisfy

Lag =T'4p);

2

and the gaugings obey linear and quadratic constraints

The gauge transformations close

Jmne = fimwrr

[515 52] = 76127

with respect to the following brackets

gl = 2l opey" + Ml e + g IpMEN ]

TCioup = 25[7;57913],43 + Tpa Tyse

FAE:O’

fan foct =0

(2.4)

~ o to render the structure constants fynp

(2.5)



provided a strong constraint is imposed
?Nou@oy =0,  funTOp=0. (2.10)

We now want to write everything in terms of G = O(D, D) € G multiplets. Taking a
close look into table 1 we see that derivatives and parameters split as follows

oM = (8M7 80&)7 gM = (é‘M: ga) : (2'11)

Since we intend to preserve G-invariance, we need to annihilate all the G components of the
gaugings fanp, such that only the f,3, survive. The extended strong constraint (2.10)
then implies the double strong constraint

0a=0, nMNoyodn=0. (2.12)

As for the parameters, the £ components now generate double generalized diffeomor-
phisms, and the £% generate gauge transformations of a given gauge group K defined by
its structure constants fqg,.

The extended generalized frame satisfies the constraint (2.3) implying that it contains
dim[G] degrees of freedom (dof)

dim[O(D, D + k)] = dim[O(D, D)] + 2Dk + dim[O (k)] , (2.13)
EMA AMa eaa

where Ej4 is a double generalized frame satisfying
nun = Ex'napEn", (2.14)

and e, is a bijective map between h and g

Kaf = eaalﬁ;@eﬂﬁ . (2.15)
Then, the extended dof admit a general G and H decomposition of the form
En? = (x2)u™ Ex?,
En® = — AP es”, (2.16)
gaA = AMa EMA )

gaa = (D%)aﬁ 656,
where we introduced the following quantities
XMN = N — A Anas  Oap = Kap — Arta AM g5, (2.17)

that satisfy the identity
A’ F(O)s* = FOOM™ AN, (2.18)

for any function f.



Due to the original ‘H symmetry, there are many non-physical gauge dof. It will then
turn out to be convenient to perform a gauge fixing to remove some of them

EMZ Ay =0, e, = constant . (2.19)

Demanding that these constraints are gauge invariant 6€,% = 0 and de,® = 0 freezes the
following components of the H parameters

Tag = €& (072)a" 0pts E 4, (2.20)
Tog = e’y (O75)a" (5(5%)75 — "¢, Aps — g 50 € (D%)A/ﬁ )

forcing a dependence on the generators of .

We now compute from the gauge transformations in the extended space (2.4) how the
double dof in (2.16) transform. The transformations turn out to have simpler expressions
in terms of a redefined vector field Cps“

1 1

Cu® =—-An"([O72)5%,  An®=-Cu’(A72)", (2:21)
which is also covariantly constrained EMCy;* = 0, and we define
Aop = kap+CraC™s,  Enn = nun +Cu*Cha (2.22)
which relate to the previous definitions as follows
Aog =0 Nap, xuv=Eun, Cuf(A)s"=fECn.  (2.23)
The transformations of the double fields are
SEx® = LeEr® + En® Ay + BT 0pE Carar (2.24)

SEM® = LeBar® + En® Ay® — 036" Cga B9, (2.25)
0CM™ = LeCu® + 0m&™ — 0567CapC?® + Cu® 97¢5 Cp® + g f3,°"Cur™, (2.26)

where £ denotes the standard generalized Lie derivative in the double space, and we have
redefined the double Lorentz parameters so that both projections of the frame field look
slightly more symmetric

Aay = Ty~ BV, BNy (@00 (5@ ) + 0pE°Cau@ %) . (227

AE:FE.

In addition we defined the standard projected derivatives
8M = PMNGN , 6M = PMN(‘)N , (2.28)

in terms of the projectors

1 _ — 1
Pyn = Ey*Eng = 3 (mun —Hmn),  Punv = Eyu"Eng = 3 (mvN +Hun) - (2.29)



In terms of the collective H indices of table 1 the transformation of the frame field can

be recast as

SEM™ = LeEv™ + Ex®Ap™ = 20576% Cyja BN, (2.30)
and this reproduces the schematic form of generalized Green-Schwarz transformations dis-
cussed in [22] for a given choice in the bi-parametric freedom discussed there. The difference
is that here Cps“ is an independent degree of freedom, corresponding to the duality covari-
ant gauge vectors of a gauge group K. Normally, in the heterotic supergravity Cp/* would
undergo a GL(D) parameterization in terms of one-form gauge fields A, and the gauge
group would be K = SO(32) or K = Eg x Eg, or further enhancements [32-34]. In this
paper we will ignore the gauge sector of heterotic supergravity, so we have different plans
for C Ma.

We have then extracted the double field transformations from those in the extended
space. Closure is guaranteed by construction, and the brackets can be obtained either
through direct inspection or from the G and H decomposition of the extended brack-
ets (2.8)—(2.9). In the latter case, the field-dependent redefinition of the H parameter (2.27)
must be properly accounted for. The double brackets are

&y = 26[0p&y + 0ME[&p + 0V €110,
€8 = 2610pey + 9fs,"€)E] | (2.31)
Aygap = 26 0p Mgy + 2015 Ay + 2B G BNy 00 ERONES s ,
Arogy = 26O Aojap + 201, Aggpe + ClCy” HMN 016100n 60
+2EM [, BN 0y &Y OnEaa -
We include here a few words on the generalized metric formulation, mostly intended

to show that the O(D, D) decomposition we use is exactly the one introduced in [31]. The
extended generalized metric is defined as follows

" A T
Haiw = EmAE 7 — EMmAEna = Hun Cup (2.32)
o CNa Na,B
The components can be computed directly from (2.16) and after implementing the redefi-
nition (2.21) we find
Hun = Hun + 200 (A7) 0pCn"
Crta = 200" (A V)50, (2.33)

Naﬁ = _/{04,3 —|— Q(A_l)aﬁ .

This is precisely the parameterization of the extended space generalized metric in terms
of O(D, D) multiplets as presented in [31]. We are using the same letters, but strictly the
tensors in [31] contain scalars in the context of heterotic compactifications on tori, while
here we are dealing with the full generalized fields and not assuming a compactification.
For completeness we give the transformation of the double generalized metric

SHarn = LeHarn + 40378" Cya » (2.34)

which again takes the form of a generalized Green-Schwarz transformation as in [22].



Key to the forthcoming analysis are the extended generalized fluxes

Fase = 3DuEMBEN epnpan + g frane EMaEN5E ¢ (2.35)

where we have defined Dy = EM 4 Oy, which are generalized diffeomorphism scalars and

transform anomalously under extended Lorentz transformations
§Fase = &7 0pFase — 3 (Dialne) + Ta” Faep) - (2.36)

As a consequence of the strong constraint (2.10) and due to the linear and quadratic
constraints for the gaugings (2.6), the generalized fluxes satisfy Bianchi identities

3
[Da, Ds] = Fas“De.  DaFpep) — Z]:[ABg]:CD]g =0. (2.37)
Generalized fluxes can also be defined in the double space
Fapc = 3D EY g EN cynuw (2.38)

where we defined double flat derivatives Dy = EM 405;. They satisfy their own Bianchi
identities 3
[Da, Dp] = Fag® Dc,  DiaFpop) — ZF[ABEFCD]E =0. (2.39)

The extended fluxes can then be cast in terms of the double ones. The projections that
are relevant to our discussion are

N
Fabe = (x?)a" ebe (2.40)
1, 1 o
Fa = = |03 (EaFrgy + Dyfae) — D5(03)a” Ega] €75, (2.41)
1 1
]:g@ =9 fo' Eya (D§)6a(D§)EB eaaeﬂg (2.42)

+(x2)ab £t ef e’ [F bea” + (2 Defn ~ Dggﬁg)}

et e’5 Dp(02) [(X%)QQ(D%)B'Y + & &ﬂ -

3 The generalized Bergshoeff-de Roo identification

In the previous section we saw that the generalized frame in the extended space can undergo
a G and H decomposition in terms of a double generalized frame Fj/4, fundamental G-
vectors Apr® playing the role of gauge fields of the gauge group K, and a g-valued matrix
e”. Our intention here is to lock the extended dof Ay and e,® in terms of (derivatives
of) the double generalized frame Ej;4, leaving it as the unique dof of the theory.

To avoid detours, we include an appendix where we discuss different possibilities for
locking the extended dof, also comparing with previous attempts. Here we go straight to
the point. The identification we make is the following

K=H. (3.1)



A priori this would seem impossible because
(D+E)D+Ek—-1)
2 )

and so there is no way to match both dimensions for finite k. However, the identification we

dimK =k, dimH = (3.2)

make forces k — oo, so there is no conflict in making this choice as long as the dictionary
between both groups is well established. Since the indices in K and H are noted differently,
we need to introduce a map between them

VZB = —g Va (ta)zB s (33)

where (ta)zg denote the generators of the gauge algebra, and satisfy [ta,ts] = fag"ty.

The locking is accompanied by the gauge fixing discussed in the previous section,
Az, = 0 and ea® = constant, which required non vanishing I'zz and F@ parame-
ters (2.20). The only dof that one has to identify is then £, = EMQAMQ = Aga, that
transforms as a projected generalized connection

0Aga = LeAsa — Dabo + 9 fap € Agy + AgaTs . (3.4)
Using the map (3.3), this can be rewritten as
0A,mz = LeAupe — Dalpe + 2A,m & 5 + Adge M » (3.5)

and this is precisely the way in which the following projection of the extended fluxes
transforms

0F e = LeF e — Pal'ge + 2F 50T g + Fumela - (3.6)
The resemblance between (3.5) and (3.6) turns into an exact identity provided

S = 9% ()45 = gz,

o (3.7)
'AQBT’ = —gé'o@(t )W = fg@ :

This is the key identity of the paper: it corresponds to an exact locking of the extended
degrees of freedom, and it is what we call the generalized Bergshoeff-de Roo identification.
Its supersymmetric extension will be discussed on a separate section.

We assume the generators to define invertible maps’

(t*)5 (tﬁ)f‘:‘f — Xr %, (3.8)
()45 (ta)P = X7 63, (3.9)

where Xpg denotes the Dynkin index of the representation. Notice that consistency of the
equations above requires

4 — —
Rap = _fomé fﬁé7 = _XiR (t'y)K[E (to)ﬁ]f(tﬂ)CE (t’y)ZD = Xr (N - 2) Kag - (3'10)

!This assumption might actually be too strong, as in the second identity the Kroneker delta must be
replaced by the projector to the adjoint representation. We leave for future work to provide a more rigorous
treatment of this infinite-dimensional mathematical structure.



Hence Xp = ﬁ, where N = (5%. In the limit we consider this would vanish. Nevertheless
it will play a fundamental role as a regulator of certain divergent traces and so, we will
still keep track of this factor until the end of the computation.

It is worth noting that the identification (3.7) holds independently of the gauge fixing
conditions discussed in the previous section. Without such a gauge fixing the identification
would generate infinitely many gauge dof £,; and e,® with an infinite amount of gauge
symmetry parameterized by ['gg and F@. The gauge fixing eliminates the redundant gauge
dof, and together with the locking leaves the double generalized frame Ej;4 as the unique
dynamical field. In addition, (2.20) defines I'zz and I';5 in terms of £”, which due to
the identification depends again on I'zz. The iteration can be pursued order by order to
obtain a derivative expansion. For later use we display here the first contributions to the

o' ~ O(g~2%) expansion

P = — XReﬂaDaF@ (t5)°P
—MeﬂafcwsfcwDaFw (ts)*B + 0 <915) : (3.11)
' = _XlR fas" T45 (157)E eaaeﬁg
2}2 D35 Fuep (ta)*® (t,B) e [aeﬁg] + 0O <gl4> : (3.12)

Analogously we can solve iteratively for the relevant components of the generalized fluxes

1 y 1
Faie = Fie = 55, g2 Tacn F* P Fpet O <g4> , (3.13)
1 B AB 1
— = — e D o o=, 3.14
‘nga XRg ( abc]: + ‘7: ) € ( ).AB + 93 ( )
1

CcD
Taww =~y oo w5 Fuen (1)

(FM Fg Flon+ (DJQ@— 2 Dgfgﬁ) CCD) ¢z €5 (ta) "B (t5)CP

L1
X]%g2

1 1
77 s P Focn Poer e (VR0 P00 +0(25) . a9

Let us conclude with some words on how the extended space becomes infinite after
the identification. First we identify K indices o with H indices AB, through the gener-
ators (to)z5- The H indices now split under an H decomposition as A = (a, @), such
that o — AB — (ab, a8, ab, aB). We have also introduced a bijective map e : h — g
n (2.15) that allows to convert h indices @ back to K indices a, such that a — AB —
(ab, aB, ab, aff) — (ab, @B, ab, af). Repeating this procedure over and over leads to an
infinite dimensional tangent space. As we will see, interestingly, contractions in this space
converge yielding finite order by order expressions. We show the first and second order

expansion in what follows.

~10 -



3.1 First order

We show here that the exact identification (3.7), when expanded to first order in o' ~
O (9_2), reproduces the expected first-order generalized Green-Schwarz transformation
of [22]. To this end, we begin with the H projection of the the generalized frame, whose
exact transformation was written in (2.24)

SEy® = LeEn™ + Ex® A% + D7€°Chyo - (3.16)

In (2.21) the gauge vector Cpr* was related to another one Ay/* and these dof were locked
in (3.7) by identifying them with the generalized flux component 7, z-. Implementing these
relations yields

_ A _ T 1 _ 1
b b CD
SEv® CgE Ty A-Ea gziEM7 ‘Fb@ DTY? + O <g4> . (317)

The contracted factor on the last term splits as follows

Fyes DTP = Fymg DT + Fys DTP 4 2Fyee DT (3.18)
In the last term the mixed contraction 2 Fyzz DT ~ O (g~2) by virtue of (3.11), (3.14)
and so it can be ignored at this stage. For the second term we need to take the leading
order from (3.15) and (3.12), obtaining

DR — D 4o L 1

Xg ” 92

Remarkably the r.h.s. of (3.19) contains the exact same expression appearing in the Lh.s.
of (3.18). Then, replacing (3.19) in (3.18) we read off

Fyop DTP = = ﬁRXR Fyzg DT+ 0 (;) = ﬁRXR Fyg DT+ O <912> :
(3.20)
where in the last equality we used the fact that extended and double fluxes are equal to
leading order (2.40). Then (3.17) becomes

a ~ a ba d b a A be 1
SEn™ = LeEy™ + En® A" — iEMQFdED A+ 0 <g4> : (3.21)
were we defined
2
b= —— 3.22
g*(—1+ XR) (3.22)

and used (2.27) to rename the Lorentz parameter. We then find that the first non-trivial
order in o (3.21) exactly reproduces the first order generalized Green-Schwarz transfor-
mation of DFT [22].

Let us now focus on the transformation of the H projection (2.25)

SEM® = LeEn® + Ep® A — 0376 Coa B . (3.23)

- 11 -



To first order in o we find

5 1
— 07€® Coa E92 = OTPFens + 0 — 3.24
é" CQa 2X5 M cp T ) (3.24)
and in addition we can decompose
%p@]:acp - aﬁFa}'aﬁ + %F@}"“aﬂ + 2050 Flae - (3.25)
Again the last term can be neglected as it contributes to higher order, and the second
one gives
— 1 sl 1
Oy P = - 0mt P Fep + O <2> 7 (3.26)
R g
which reinserting into (3.25) and replacing by double fluxes yields
] X — 1
CcD R d
™" Flep = 1, Ol " M + O <92> 7 (3.27)

in analogy with (3.20). We can now replace (3.27) into (3.24) into (3.23), and use the
leading order redefinition of Lorentz parameters (2.27) to arrive at

a ~ a a b be a 1
OEM* = LeEy® + EMQAQ*-F 5%1\17 F4%+ O <g4> . (3.28)

This matches the other projection of the first order generalized Green-Schwarz transfor-
mation [22].

As previously anticipated, the final result is finite and non vanishing in the limit
Xp — 0 leading to the simple identification b — —2/g¢.

3.2 Second order

Now we obtain the so far unknown O(a/?) deformations of the generalized Green-Schwarz
transformation. Once again we start considering the H projection of the generalized
frame (2.24)
— ~ — - 1 1 o
SENM® = LeEy® + En® A" — 792XREM£ (X7 Fyep DT (329)
After repeating the steps of the previous section for the last term but keeping the following
order terms that were previously neglected, gives

XRr

DaFCD
Fiep (— 1+X )

Fym DT (3.30)

pTE— o 1+X ) []_—ng - (]_-cchaF g fgC?DEF6§>
(D“F5 ) (Fbcdfcgff o+ DyFeerFeg” — 2 DeFigrFig f)
— FerD” (Dcrgg]: g > - D"DT <F@f e+ DE]:éﬁﬂ
+0O (976) )

- 12 —



Notice that the x factor in (3.29) has the effect of switching the extended into the double
fluxes (Xfé)gé Fieq = F,; in the first line of (3.30) whereas it is equivalent to a Kronecker
delta on the second to fourth lines, at this order.

We can try to reproduce the logic of the first order computation, namely to split indices
A — (a,@), replace (3.11)—(3.15), discard terms with mixed indices (as they are subleading)
and get rid of terms with Greek dummy indices by noting that they are proportional to
the same terms with H indices. This procedure turns out not to work for each individual
term at O (9*4) but remarkably it does for the whole sum in (3.30). Hence, we conclude

_ _ = — b @A be
(SEMQ — [’EEMG + EMb Aga 7 EMiFdE DaAbc
1
_ 5 b2 [DaDcAef( cde —I—DEFb*)
FbefF f <FcthaA 3 FEEDEAEE>
+ F D“A (Fbch dof Dngﬁ +2 DQFQE)

(3.31)

— Fy ;D" (DCA@dF 7 ) }
+0 (9_6) )
It is quite remarkable that all the dependence on the Dynkin coefficient Xz and the coupling

constant g has arranged once again in the same parameter b as before (3.22).
The transformation of the H projection (2.25) is completely analogous

SEyM® = LeEy®+ Ex® A% + Oy TP (x 2y, Flep - (3.32)

2 XR
Repeating the procedure for the previous projection one readily arrives at
—~ b —
OE*e = ,CgEMg + EMQAZ,g + *%Abc FLbc
b2 x| DDA ( Fof"F + DoF? ;)
hd e he d
2P (FDAGE — F Dpg?) (3.3

+ Fc D Ae (Fachiqf DQFng +9 DQFng)

~ F*.D; (DCAedF ]
+0 (9_6) .

As a non-trivial check we have verified closure. The brackets receive second order
corrections, and are given by

&y = 26fopgy + oM yp

b

2 A[1 M Ayg + B2 [OMAl DEAg F g + aM (DCAef ) Dehy; } Lo,

[ 1
A =2 ) oNAy — 2 AT Ay + b DaAfd DAy + b [D“Afd DAY iy For

— D"D°Af{ D’Dehgjz — 2 DE (DCA[1 3 ) Db]AQ]—} + 00, (3.34)
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1 2
— DDA DEDeyy — 2 DIt (DA Bl ) DEAg] + 00) |

A = 26N ONAS — 2 A Ay L+ b D“Afd DbAy + b [DaAfd DAY FIy P

The first order exactly reproduces [22] and the second order is a new result. These ex-
pressions could also be obtained from the extended brackets (2.31) after performing the
identification, but one has to take care of the fact that the identification introduces field
dependence in the parameter components, which must be properly accounted for.

4 Supersymmetry

We now consider the N'= 1 and D = 10 supersymmetric formulation of extended gauged
DFT [11, 12]. The fermionic degrees of freedom are two Majorana spinors: an extended
generalized gravitino W— (which is an "H vector and an H spinor) that contains the gravitino
U5 and gauginos Vg from the point of view of the double space, and a generalized dilatino
p (which is an H singlet and an # spinor) which will be ignored as it plays no relevant
role in our analysis. Both are scalars under extended generalized diffeomorphisms and G
invariant. The supersymmetry parameter € is also a Majorana #H spinor. The gamma
matrices satisfy a Clifford algebra for H

{'yﬁ, 'yb} =2pP%, (4.1)

and we use the standard convention for antisymmetrization of v-matrices Y%= = ~
The Clifford relation (4.1) implies the following useful identities
YaVo = Yab + Fab
YabVe = Vabe + 2VaPle = YaVoe + 27 Pep » (4.2)
Yab Y = Y + 4y 4Py + 2P Py .
Crucial to the analysis is the derivative
VaVs =DaVs - was’ Ve, (4.3)

which is H covariant provided the generalized spin connection transforms as follows

Srwase = —Dalse +wppelP 4 +wapel P+ waspTPs - (4.4)

Compatibility with the H invariants and vanishing generalized torsion impose constraints
on the connection

wapey =0, wye=0, (4.5)

and generalized frame compatibility determines some projections of the connection in terms
of the dynamical fields

3wiase) = FaBc - (4.6)
Together these imply
MQR = fgﬁ ) Abc fAbc . (47)
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There are additional relations involving the generalized dilaton, but we ignore them here
as they have no relevance in the analysis.

Let us now move on to the covariant derivative of a spinorial object. When we consider
spinors, the covariant derivative takes an extra contribution. For example, the covariant

derivative of the gravitino and the adjoint gravitino are
1

EW_A@’)/ILC\IJE, V_A@E = ,DA@E — WAECWK +

where the adjoint spinor is defined through ¥ = W!C and the charge conjugation matrix

1 _
~W Abe \115’727

Vil =DaVg—w, 5 Vs — 1

satisfies
cl=C'=-C, CyC'=—-4". (4.8)

We will only work to leading order in fermions, such that supersymmetric transforma-
tions of bosons are at most quadratic in fermions, and supersymmetric transformations of
fermions are linear in fermions. On top of the extended generalized diffeomorphisms and H
transformations, the extended generalized frame receives supersymmetric transformations

given by
5 EpE = %m g En®,
SEMm® = %mb\y Emb (4.9)
SEM® = %EVQ\I’EEMQ .

The gravitino and gaugino on the other hand transform as follows

§Wg = eMOpMUg + WgTBy — ZFM Wy + Vae, (4.10)
1
4F bV Vg + Ve . (4.11)

The composition of these transformations closes to leading order in fermions with respect

§Wg = EMOp U + UplPy —

to the following brackets

1
&5 = 2wfiope)! + Mefeyp + g InpMA L - SEMaE e,

Tioas = 26f0pTo a5 + T11a° Tose (4.12)
1
€12 = 25 TOpey) — =Tiap1 ey -

We now proceed as before making the same G € G and H € H decomposition and
gauge fixing. Imposing £,% = 0 and de,* = 0 now gives a supersymmetric completion of
the locked H gauge parameters (3.11), (3.12)

_ L« -1y B P 1 b
I'sa = e“a(072)" (0P E"a —56’}/ by pM b Ara | (4.13)
_1 1 1
F@ = ea[aeﬁﬁ] (O72)a” (5([’2)7,8 - &y App _gf'yé 5 (O2)xs

1
) R Us eg‘s E bAMAY) .
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We now want to lock the extended dof (A,, and ¥g) in terms of the double fields
Ey and ¥z, We have a starting point based on the pure bosonic locking, so lets begin
by exploring wether that identification survives supersymmetry or not. On the one hand,
the G-vectors transform as

5 Aae = EeAun — Db 00 € Aur + AT — 5 €70 V265, (414)
which using the map (3.3) can be rewritten as
0A 5 = LeA e — Dabe + 2A,50 6 5 + Ame M+ €% [g\I’A 5QA(ta)BC] . (4.15)
On the other hand the projected flux transforms as
0F,5c = LeFoype — Dalge + 2F il U + Fupel e + @1 ¥z + Viperaly) » (4.16)

where we defined

Vs = ViaVp — %uﬂ’ﬁ V5 = Dz ¥ — %f[@#qfa - %]—"A—BC Ty . (4.17)
We will call this the gravitino curvature with the caveats that (i) it is not fully covariant,
as it includes a non-covariant term to render it fully determined, (ii) it represents in fact a
curvature for the full U—;, which includes gauginos as well. So strictly this is a misnomer, but
it helps in highlighting the similarity with the identification in [24]. Comparing with (4.15)
we see that the last term in (4.16) must be canceled. To cure the mismatch, we must

redefine the flux as follows 1
Fase = Fase = 5¥87%e, (4.18)

such that now
" = D d _
5]-“@—66 = Lig}";—gc — Dol'ge + 2.7-:5[51 B + .T-Z—BCI o+ @aV5e - (4.19)

The following identification equates (4.15) with (4.19)

S = 9% (") = T'ap,

A = —9€a ()ge = Foge: (4.20)
_9 D

In particular, the last identification can be solved for the gaugino dof in terms of derivatives
of the double generalized frame and gravitino. This is the supersymmetric extension of what
we previously called the generalized Bergshoeff-de Roo identification.

This identification is self-consistent because both sides of the last line transform equally.
On the one hand, the extended gravitino curvature (4.17) transforms as

_ 1 1 =
P C b C
5‘11./478 = f 8P‘II.A78 — 2\115[XF E] — zfaib’yaf \Ijﬁ + 5\11 D@Fﬁ

1 1 1 2\ w
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On the other, the combination it is identified with in (4.20)
g —_
Ul = 3 U5 Ea” (") 15 (4.22)
transforms as
_ ¢P C b C
00 = & OpWiy — zw’mg o ZFCM“— Ui+ 5\1/ Dzéag

1 1 c 1
+ 5 A%DQE + 1 <DaAbM + .AQXC Abﬁ - iAgE fabc> ’7@6 . (4.23)

In deriving the last expression we used the following identity

ELF p = —EaFeab + 2DjaEap) + 9faprE% € - (4.24)

Employing the identifications (4.20), all the terms in (4.21) and (4.23) can be identified
straightforwardly, except for the terms in brackets. It is easy to see however that also
those terms coincide exactly using the following projected form of the extended generalized
Bianchi identities (2.37)

1
DiaFaje + PlaFoas + Flax Flose — 5%%7:@0 =0. (4.25)

Note that in these equations there is no distinction between F and F* because we are
working to leading order in fermions only. We would also like to emphasize that the
identifications (4.20) are exact, and totally independent of the gauge fixing.

A perturbative treatment of the supersymmetric case and the proof that it exactly
reproduces the results of [25] to first order in o’ will be presented in [35].

5 Outlook

We considered the N/ = 1 supersymmetric heterotic DFT. The duality group G = O(10, 10+
k) was decomposed in terms of G = O(10, 10) multiplets. The physical G-covariant dof are
a generalized frame and a constrained G-vector. We pointed out that the G-vector could be
identified with certain generalized fluxes provided the heterotic gauge group K were taken
to coincide with H = O(1,9 + k). A priori this generalized Bergshoeff-de Roo identification
seems unlikely to succeed because the dimension of both groups differs for finite k. We
are then forced to consider infinite-dimensional groups and establish a dictionary between
them. A more rigourous treatment of this mathematical structure is lacking, and deserves
more attention in the future. The procedure allowed us to lock the G-vector in terms
of the projected generalized fluxes. This is not a gauge fixing, but a mechanism that
actually reduces the physical dof. A similar locking is necessary in the supersymmetric
sector, where the gauginos must be locked in terms of a generalized gravitino curvature.
The generalized identification is imposed by hand and it would be nice to find a broader
framework from which it arose naturally. Interestingly the identification is exact, so it
presumably captures an infinite tower of o’ corrections, giving rise to an exact heterotic
generalized Green-Schwarz transformation that closes and preserves the constraints on the
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fields by construction. We show that a perturbative o/ expansion is possible, finding at first
order the known heterotic generalized Green-Schwarz transformation of [22]. We tested the
proposal by computing the following O(a’?) order, finding a consistent higher derivative
completion that was previously unknown.

The results open the door to a large number of questions and future directions. We
elaborate on some important points:

e Gauge fields. We got rid of gauge fields by identifying them with generalized fluxes.
This was just a procedure implemented to reach the gravitational higher derivative
corrections in a duality covariant form. However, the heterotic string and gauged
supergravities in general contain gauge fields as proper independent dof (e.g. those
of K =8S0(32) or K = Eg x Eg). Reincorporating these fields is a relatively simple
task that can be done in two ways. (i) Starting from a G = O(D, D+ k+ k'), one can
lock k-vectors and leave the other k' free. This was done for instance in [26, 27, 36].
(ii) Alternatively, one could consider the ' expansion of the O(D, D) generalized
Green-Schwarz transformation, and promote the O(D, D) to an O(D, D + k') thus
incorporating k&’ dynamical vector fields. This was done in [23] for generic gauged su-
pergravities, finding in the heterotic case up to quartic powers of the gauge curvatures
F* in exact coincidence with those computed in [25].

e Quartic Riemann interactions. Our results provide an all-order supersymmetric du-
ality covariant completion of the Green-Schwarz transformation. A natural question
is what kind of interactions are under its reach.

The standard bosonic Green-Schwarz transformation of the Kalb-Ramond field gener-
ates Chern-Simons terms in its three-form curvature. Its first order duality covariant
completion [22] fixes the connection to the heterotic one, and moreover requires and
fizes quadratic Riemann interactions. This is not surprising because T-duality mixes
the Kalb-Ramond and the gravitational sectors. Supersymmetry is another ingre-
dient that constrains interactions. It was shown in [25] that the supersymmetric
completion of the Lorentz Chern-Simons terms induced by the Green-Schwarz trans-
formation require deformed supersymmetric transformations that lead to quartic Rie-
mann interactions (which are mirrored to their corresponding gauge field analogs).
There is a different set of quartic Riemann terms that have no analog in the gauge
sector. Based on the symmetries shared with the construction in [25], it is possible
that the framework presented here captures the first set, but not the second set of
interactions.

e Bi-parametric deformations. The first order heterotic Green-Schwarz transformation
belongs to a bi-parametric family of deformations [22] (see also [37])

OnEn™ = Ex®Ap® + adp AL Fiy, e BN = b oA’ Py N 4+ 0(0?), (5.1)

corresponding to the cases a = 0 or b = 0 (which are the same up to a change of sign
of the Kalb-Ramond field), that more generally captures the gauge transformations
of the bosonic string [38] (a = b) and the HSZ theory [19] (a = —b).
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First one can ask wether there is an extension of the framework considered here
featuring both deformations. Since the two parameters a and b account for the
different groups H and H respectively, it seems likely that these deformations will
arise from a further extended tangent space G = O(D + k, D + k), whose physical dof
can be parameterized in terms of a double frame, two pairs of covariantly constrained
O(D, D) vectors and also scalars in the coset %. The identifications would
then be a little more involved because, although the vector fields are likely to be
identifiable with projections of the extended generalized fluxes, the scalar fields would
have to be identified as well, with the complication that they are also covariantly
constrained to be an element of O(k, k). We plan to study the general case in the
future. Of course, yet another question is whether new deformations start beyond
the first order.

Notice that in the supersymmetric formulation the fermions are H spinors. In 10
dimensions we would then need H = O(9, 1) thus forbidding the supersymmetrization
of the case a # 0. N =1 Supersymmetry then reduces the space of parameters to a
single deformation parameterized by b (for the supersymmetry conventions employed
in this paper). This is expected because the bosonic string and the HSZ theory do
not admit a supersymmetric completion.

Mazimal supersymmetry. The proper framework to address duality covariant higher
derivative corrections in theories with maximal supersymmetry is Exceptional Field
Theory. Consider as an example the case of 4 space-time dimensions [39] with E )
duality symmetry. In order to examine a possible uplift of the deformations consid-
ered here to the maximal theory, the natural route would be to first take this DFT
construction to a four-dimensional Kaluza-Klein formulation [40] and then explore
how the duality group embeds into E7(7). While this is certainly possible when the
duality group is O(6,6), the case O(6,6 + k) does not admit such an uplift. This
makes us believe that the deformations considered here are not consistent with max-
imal supergravity, nor exceptional symmetries. Perhaps the results in [41] shed light
on this point.

Instead, the higher derivatives in maximal theories start at eight derivatives O(a/3)
through quartic Riemann interactions -which however are different in structure from
the heterotic ones-, among others beyond the gravitational sector. A possibility is
that generating these corrections would require a new deformation starting at this
order, in which case the standard EFT action would not be invariant, and duality
covariant eight-derivative terms (and higher) would be necessary.

Extended tangent space approach. Previous treatments of first-order higher deriva-
tives through finite extensions of the generalized tangent space [26] must be put into
scrutiny in light of the results discussed here. The identification performed here gen-
erates an infinite extension of the generalized tangent space that accommodates all
higher orders. The extended generalized frame £y contains extra directions £,
and E,(%, beyond the double ones £3;4. The extended directions take values in the
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adjoint of K, which after being identified with H becomes infinite-dimensional. There
is a subtlety though, in that when converting indices o — (AB) = (ab, a3, ab, ),
the components ab and af were shown to start at the same order in perturbations.
The @ indices are then further identified over and over generating the infinite di-
mensional extended tangent space -see discussion below equation (3.15)-. The point
we want to make is that first order corrections are distributed all over the infinite
dimensional tangent space, and not only through a single finite extension as in [26],
but through infinite first order replicas. We have seen that all these contributions
converge and add up to the expected first order deformation, so both approaches
are effectively equivalent to first order: lifting the first order deformations (3.21)
and (3.28) to generalized diffeomorphisms in an extended tangent space is a triv-
ial task. However, seeking a lift for the second order deformations to the generalized
Green-Schwarz transformations (3.31), (3.33) looks more complicated, casting doubts
on further higher derivatives being accounted for through finite extensions of the gen-
eralized tangent space.

Action. We have only discussed exact gauge transformations, but finding the exact
gauge invariant action can be done by following the same procedure. One should
start from the G invariant heterotic N’ = 1 supersymmetric DFT action [11, 13]

Sn—1 = /dzD"'kX e 2d (R(é’, d) — \TJAVQVQ\I';‘ — Y Vep — Z\TJAVAp) . (5.2)

Decomposing the extended generalized frame with respect to G-multiplets as
in (2.16), and performing the identifications (4.20) should lead to the final action.
One could then realize a perturbative o expansion to find the action order by order.
The only non trivial step here is that we should get rid of the Greek dummy indices
by implementing manipulations similar to those discussed above (3.31).

It is possible that apart from (5.2), there exist higher derivative invariants that trigger
their own tower of o’ corrections. They should be invariant under duality symme-
tries, extended generalized diffeomorphisms, extended Lorentz transformations and
supersymmetry. If they exist, the G-decomposition, identifications, and derivative
expansion would proceed in exactly the same way as here.

Non-perturbative treatment. Possibly the most important question is how to deal with
this deformation exactly, without performing an o/ expansion. A similar question has
been addressed is the HSZ setup [19]. Both frameworks are similar in that there is
a closed non-perturbative form of the gauge transformations and action, which can
then be perturbed in a derivative expansion (see [42-46]), such that when written in
terms of an O(D, D) generalized frame or metric acquires infinite o’ corrections. It
is certainly desirable to learn what kind of information can be extracted from these
closed and exact expressions.

Solutions. Exact all order equations of motion (eom) can be derived from (5.2).
One could then explore higher derivative corrections to supergravity solutions (first
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order deformations were considered in [47-49]), and even aim at obtaining exact
solutions to all orders. Interestingly, one can perform generalized Scherk-Schwarz re-
ductions [50, 51] of the o/-DFT action obtained from (5.2) to generate higher deriva-
tives corrections in gauged supergravity. In [23] the first order scalar potential of
half-maximal gauged supergravity was computed in the embedding tensor formalism
and a moduli stabilization analysis was addressed to first order. The results here
could in principle allow for a non-perturbative treatment that could shed light on is-
sues such as moduli stabilization, supersymmetry breaking, etc. in lower dimensional
half-maximal gauged supergravities.

On a slightly different page, using these results as a solution generating technique in
supergravity would require the knowledge of finite double Lorentz transformations,
as opposed to the infinitesimal ones considered here. This is due to the fact that in
supergravity the double Lorentz group H x H is broken to a single Lorentz group, and
then after generic T-dualities a finite compensating double Lorentz transformation
would be required.

e Background independence. It was argued in [52-54] that in order to achieve manifest
background independence, a duality symmetric formulation of higher derivative in-
teractions would require gauge degrees of freedom for enhanced gauged symmetries.
This is known in the context of first order o/ corrections to DFT [22] which highly
rely on the frame formulation for double Lorentz symmetries. A natural question
is wether higher derivatives would require further enhanced gauge symmetries. We
see that in the heterotic case the standard double Lorentz symmetries of DFT are
already enough to account for all the o/ corrections in the universal gravitational
sector considered here in a manifestly background independent way.

Acknowledgments

We are in debt to O. Hohm for exceedingly interesting remarks and comments, and col-
laboration at early stages of this project. We also thank C. Nunez and A. Rodriguez for
sharing their project with us, and C. Hull, D. Waldram and B. Zwiebach for enlightening
discussions. WB receives financial support from ANPCyT-FONCyT (PICT-2015-1525).
Our work is supported by CONICET.

A Alternative identifications

We have discussed equivalences between (composite) dof based on the their gauge and
supersymmetric transformations. These equivalences were then used to lock or fiz one set
of dof in terms of the other. The procedure is not a gauge fixing, as it reduces the number
of physical degrees of freedom rather that eliminating gauge redundancies. In the context
of higher derivatives in heterotic string theory, these equivalences go back to [24], where
the gauge fields (for the SO(32) or Eg x Eg) and a specific Lorentz SO(1,9) spin connection
(containing torsion proportional to three-form curvature of the Kalb-Ramond field) were
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shown to transform somewhat symmetrically, something obvious for gauge symmetries but
less clear for supersymmetry, in which case also the gauginos must be identified with the
gravitino curvature. This equivalence was exploited to compute the first order in o/ action,
and later expanded to quartic Riemann interactions in [25] through a Noether procedure.
These ideas were employed in a number of recent works, some of which we mention below:

e In the context of generalized geometry, [27] considered an extended tangent space
decomposed with respect to GL(D) € G. The identification was established after the
GL(D) decomposition between the one-form components of the generalized frame,
and a generalized spin connection compatible with a reduced structure H € H. It
was argued there that this is only possible if the connection contains a non-vanishing
intrinsic torsion.

e In the context of DFT, [36] considered an extended tangent space decomposed with
respect to G € G, as we do. The difference is that there, the O(D, D) vectors are
covariantly constrained in a strong sense, namely they are self-orthogonal and also
orthogonal to the generalized derivatives as in [55], and the identification is performed
after solving the constraint. So again this approach fails to provide O(D, D) covariant
higher derivative corrections.

e Also in the context of DFT, [26] considered an extended tangent space decomposed
with respect to GL(D) € G. The approach here is similar to that in [27], with
the difference that the identification relates the one-forms to a component of the
generalized H spin connection of DFT, which is O(D, D) covariant. So this approach
gets closer to the goal of finding O(D, D) covariant higher derivatives, but still fails
to achieve the purpose.

In this paper we decided to follow a different route: we are interested in a fully
G = O(D, D) covariant identification between the G-vector that arises from the G € G
decomposition of the extended generalized frame, and (derivatives of ) the generalized grav-
itational degrees of freedom. On top of the one we presented in the paper, which is exact
to all orders in derivatives, we also considered some other possibilities which turned out
to fail in one way or another. For completion we discuss briefly those that looked more
promising:

e The natural possibility, aligned with the three attempts discussed above is to relate IC
with H € H in a G-covariant way. As we discussed, performing the gauge fixing £,z =
0 and de,® = 0, leaves the double frame Ej4 and the vector Aga = EM Ay as the
unique degrees of freedom. We should then identify A, with the H cor;lponents F e
of the generalized H spin connection (and not the full # generalized spin connection
as we do in this paper). We would then need a map between K and H given by the
Lorentz generators (to).;

[tar ts] = fag tys  (tM)ap(te)™ = XrSG,  (t")g5(ta)™ = Xr 6%, (A.1)

- 29 —



such that indices can be converted from one group to the other
Vo= =gV (ta)z - (A.2)
The gauge transformations of both quantities are

A — = PopA

abc

+ T, A — Dabpe + 2A,5:6% (A.3)
0F e = €0 0pF o + 1% Fp — Dl + 2F 0% + 2F 5.0 - (A4)

abc

abc

There is a clear mapping between these transformations, except for the last term
in (A.4), which cannot be set to zero because the gauge fixing locks the off-diagonal
component of the H parameter to a non-vanishing value. An identification is then not
possible in general. However, after taking the parameter to its gauge fixed value (2.20)
it can be seen that the last term in (A.4) starts from one order higher in derivatives
than the rest, and so this approach is perfectly consistent to first order in o/, in
which case the extended fluxes can be replaced by double fluxes F ;- without any
loss of generality. It is easy to check that this identification reproduces the first
order generalized Green-Schwarz transformation, and also gives rise to the extended
tangent space approach of [26] after a GL(D) decomposition.

One could try to avoid the gauge fixing, so as to have freedom to set I'gz = 0, thus
solving the problem of the previous attempt. If so, one should now also identify the
degrees of freedom Agz, = E,g which can no longer be set to zero. Using the relation
between K and H above we find

(S.AAE = gPaP-AAE + 1—‘DA ‘ADE - DAgE + 2"4143[6{&5] ) (A5)

which is exactly the way in which the H components of the generalized spin connec-
tion transform (an extended tangent space containing the generalized spin connection
was also considered in [56])

0w 43 = gPaprE +1rP, Wppe — Daly; + 2WAE[EFdE] . (A.6)

Identifying these degrees of freedom wouldn’t really solve the problem then, because

only some projections like Wiabe = %‘Fabc

the double frame would depend on undetermined components.

are determined, and the transformation of

Independently of what one identifies £,57 with, a different question is wether the
dependence on this component can be eliminated from the gauge transformations
through field-redefinitions. Assuming E,4 is of first order in o/, the leading order
transformations of the double frame and &, 4 are given by

SEM? = EEEMA + ExPTp? — Eyp DA€ 6,7 + 0(0'?), (A7)
0€ar = Le€on — Dabo + gfup €%+ EapTPa+ O(d) . (A.8)
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If we now redefine the Lorentz parameters to first order

reb — A 4 plage g b (A.9)
P _ A, plaga g Bl (A.10)

the transformations of the double frame become

_ ~ _ - _ 1 _ 1 _
SEM™ = LeEy® + EvPA" — iEMQ D> gL + §EMQ DY ET + O('?), (A11)

~ 1 7 1 T
0Bm® = LeEn® + ExMp® — S B\ q DU E6" + S B D€ €22+ O(a?) . (A12)
Our purpose is to eliminate £,z through redefinitions. Redefining the double frame
as follows
~ _ _ 1
Ey® = Ey® + §Eaa5aé Eng, (A.13)
~ 1 —
But = But— Leased 5, (A1)
achieves the purpose
SEy™ = LeEx™ + ExPAy" — Epgy D% E,2 + 0(0'?), (A.15)
(5EMQ = EgEMQ + EMQAQQ + EME Dgfa gag + O(CMIQ) . (Alﬁ)

We tried to pursue this procedure to the next order, but the treatment becomes
cumbersome, and then one wonders if the effort is worth considering we already have
an exact identification that can be treated easily and expanded perturbatively order
by order.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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