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1 Introduction

Our paper is devoted to fermionic higher-spin conformal geometry in three dimensions and

its application to the study of the dynamics of fermionic higher-spin gauge fields in four

spacetime dimensions. More precisely, we consider massless fermionic higher-spin gauge

fields of spin s+ 1
2 , described by tensor-spinors ψi1···is that are totally symmetric in their s

indices i1, · · · , is. Under (linearized) higher-spin diffeomorphisms and (linearized) higher-

spin Weyl transformations, these fields transform as

Γψi1i2···is = s∂(i1ξi2···is) + sγ(i1λi2···is) , (1.1)

where ξi1···is−1 and λi1···is−1 are symmetric tensor-spinors with s− 1 indices. The first part

of this transformation is also called a generalized diffeomorphism and the second one a
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generalized conformal transformation. The bosonic analogs of these transformations for a

spin-s field Zi1i2···is are

ΓZi1i2···is = s∂(i1ξi2···is) +
s(s− 1)

2
δ(i1i2λi3···is) , (1.2)

where ξi1···is−1 and λi1···is−2 are now symmetric tensors with s− 1 indices and s− 2 indices

(and no spinor index), respectively. We have assumed for definiteness that the metric

is Euclidean and given by δij , as this is the case relevant below. In the Minkowskian

case, one simply needs to replace δij by the Lorentzian metric ηij in (1.2). A central

question investigated here is the construction of the invariants under both higher-spin

diffeomorphisms and higher-spin Weyl transformations and the study of their properties.

This is what we mean by “developing conformal geometry”.

Conformal higher-spin gauge fields have attracted a lot of attention over the years,

in any number of spacetime dimensions (for more information, see for instance some of

the earliest references [1–10] and references therein). Conformal higher-spin gauge fields

are interesting per se, but also appear as “prepotentials” in manifestly duality-invariant

formulations of higher-spin non-conformal gauge fields in 4 spacetime dimensions, through

the resolution of the constraints appearing in the Hamiltonian formalism.1 Following the

work of [11], this was originally observed for spin-2 in [12–14] and generalized to higher

integer spins in [15, 16]. The prepotentials appear as three-dimensional tensors defined on

the constant time Euclidean hypersurfaces in the 3+1 Hamiltonian spacetime split. That

they enjoy the higher-spin conformal gauge symmetry (1.2) was somehow unexpected but

established for all integer spins [15, 16] using the relevant higher-spin conformal techniques

in three dimensions.

For fermionic fields, however, prepotentials with the desired properties were introduced

only for spins 3
2 [17] and 5

2 [18], where they were also verified to enjoy the symmetries (1.1).

It was conjectured in that latter reference that a similar pattern would also hold for half-

integer spins equal to 7
2 or higher, but that conjecture was not proven.

One reason that the conjecture was left unproved in [18] is that the corresponding

tools for handling the higher-spin conformal symmetry in the dimension three relevant for

the construction of prepotentials were not available in a form adapted to the Hamiltonian

constraint analysis. The difficulty with dimension three is that conformal symmetry is not

controlled by the Weyl tensor, which identically vanishes, but by the Cotton tensor, which

involves higher derivatives of the fields.

The Cotton tensor has been defined for higher-spin bosonic gauge fields in [2, 19],

and [15]2 and its properties relevant to the introduction of prepotentials through the res-

olution of the Hamiltonian constraints have been established in [15] (see also [20]). The

Cotton tensor contains s− 1 derivatives of the Riemann tensor and thus 2s− 1 derivatives

of the higher-spin s bosonic field. It plays a central role both in the study of the dynamics

1The term “prepotential” is always used here in that sense, as potentials needed to solve the constraints

of the Hamiltonian formalism.
2Note a small subtlety between [2] and [15] when s ≥ 4. It is that the definition given in [2] involves a

symmetrization by hand, which turns out not to be necessary because the relevant expression is actually

symmetric. This observation turns out to be useful for establishing the properties of the Cotton tensor.
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of conformal higher-spin gauge fields in three spacetime dimensions [21–25] and, as we have

just pointed out, for the introduction of prepotentials in the Hamiltonian formulation of

standard higher-spin gauge fields in four spacetime dimensions.

The purpose of this article is to extend the work of [15, 16] to higher-spin fermionic

fields. To that end, we define and study the properties of the Cotton tensor for half-integer

spin fields in three dimensions. The Cotton tensor is actually a tensor-spinor, but like for

any other tensor-spinor we shall often loosely refer to it just as tensor. The Cotton tensor

contains 2s derivatives of the field ψi1i2···is (in terms of the spin S = s+ 1
2 , this is equal to

2S − 1 as in the bosonic case). It was defined earlier in [26] for spin 3
2 and more recently

for all half-integer spins in [27–29]. Our derivation follows a different line. It is based on

the use of the differential operator d(s) of [30, 31] that fulfills

ds+1
(s) = 0 (1.3)

and the corresponding Poincaré-type lemmas. As such, our definition it is not tied to

supersymmetry or superspace calculus. The same method has been applied to mixed Young

symmetry tensors for which the “critical dimension” where the Weyl tensor identically

vanishes is generically higher than 3 (see, e.g., [32] and [33–36]).

Once the Cotton tensor has been defined and its main properties established, one can

turn to the resolution of the fermionic constraints of the Hamiltonian formalism. These

can be rewritten in a form that makes the introduction of prepotentials effortless.

Our paper is organized as follows. Section 2 is devoted to the definition and study

of the properties of the Cotton tensor for half-integer spin fields in three dimensions. We

then consider in section 3 the dynamics. We first show that the equations of motion can

be rewritten, just as in the bosonic case [16], as twisted self-duality conditions ([37–39]).

We then turn to the Hamiltonian formulation of the equations of motion, in particular to

the constraint equation, which plays a central role in the twisted self-duality conditions.

We solve in section 4 the constraints, which is the step that introduces the prepotentials in

terms of which we rewrite the action. This action enjoys a chiral SO(2) symmetry. Section 5

is devoted to final comments and conclusions. Table 1, appended at the end of this work,

summarizes the most important definitions and properties of bosonic and fermionic higher

spin fields in the prepotential formalism and might be useful to get a fast overview.

Notation and conventions. The flat metric of 4-dimensional spacetime has signature

(−,+,+,+) and its spatial sections are Euclidean with signature (+,+,+). Our conven-

tion for the Dirac γ matrices is that {γµ, γν} = 2ηµν where ηµν is the spacetime metric.

Furthermore, we define γ5 ≡ γ0γ1γ2γ3 , so that the spatial gamma matrices satisfy the

useful identity

γiγj = δij + εijkγ
kγ5γ0 , (1.4)

and γij ≡ γ[iγj] = εijkγ
kγ5γ0 with ε123 = ε123 = 1. Notice that (γ5)

2 = −I.

Taking one spatial trace is indicated with a bar, T̄ = T [1] = δijTij , and the slash is

the spatial gamma-trace, /T = γiTi. Multiple traces are indicated by a bracketed exponent,

e.g., T [2] = δijδklTijkl. Due to the property γ(iγj) = δij , the double gamma-trace of a
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symmetric tensor is the same as a normal trace, so no notation is introduced for multiple

gamma-traces. Space-time traces are rarely used and indicated by a prime or backslash

respectively, T ′ = ηµνTµν and T\ = γµTµ. The Dirac conjugate ψ̄ = ψ†γ0 is also indicated

by a bar, but no confusion should arise since the context is clear.

We will sometimes find it convenient to adopt a compact notation where the vectorial

indices are suppressed and symmetrization over unwritten vectorial indices is implied. For

example, in this notation, equations (1.1) and (1.2) become

Γψ = s∂ξ + sγλ , ΓZ = s ∂ξ +
s(s− 1)

2
δλ . (1.5)

Since it should be clear from the context and to improve readability we mostly call tensor-

spinors just tensors.

Finally, a tensor(-spinor) with (a1, a2, · · · , an) Young symmetry is labeled by the length

of the rows, i.e., corresponds to a Young diagram with n rows which have ai boxes. If not

stated otherwise, we follow the manifestly antisymmetric convention.

2 Three-dimensional conformal geometry

The Riemann tensor, or equivalently the Einstein tensor, controls higher-spin diffeomor-

phisms. By this we mean that any function that is higher-spin diffeomorphism invariant

can be written as a function of the Riemann (or equivalently Einstein) tensor and its

derivatives. However, the Riemann tensor lacks higher-spin conformal invariance, which is

an important property needed for the resolution of the Hamiltonian constraints. For this

reason the Cotton tensor must be introduced and its important properties established.

2.1 Riemann tensor

The “Riemann”, or “curvature” tensor is defined by taking s derivatives of the spin-s (or

s + 1
2) field [40]. In terms of the differential operator d(s) of [30, 31], the Riemann tensor

can be written as

R = ds(s)ψ (2.1)

or, in components,

Ri1j1···isjs = 2s ∂[j1| · · · ∂[js|ψ|i1]···|is] . (2.2)

It is a tensor of Young symmetry type (s, s) which satisfies the Bianchi identity d(s)R = 0

because of the property ds+1
(s) = 0. On account of that same equation, it is also invariant

under higher-spin diffeomorphisms, which can be written as Γξψ = d(s)ξ. Furthermore, a

necessary and sufficient condition for the higher-spin field to be a pure higher-spin diffeo-

morphism, i.e., ψ = d(s)ξ for some ξ, is that its Riemann tensor vanishes. This is equivalent

to the statement that the most general higher-spin diffeomorphism invariant function can

be expressed as a function of the Riemann tensor and its derivatives only.

The Riemann tensor is not invariant under higher-spin Weyl transformations. The

construction of invariants for that symmetry makes dimension three very special. In di-

mension strictly greater than three, one can construct invariants by removing gamma-trace
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terms from the Riemann tensor, defining thereby the Weyl tensor. This procedure does not

yield quantities of great interest in dimension three, however, because the tracefree part of

the Riemann tensor then identically vanishes. What controls higher-spin Weyl symmetry

is the Cotton tensor, which contains higher derivatives of the higher-spin fields, to which

we will turn after defining the Einstein tensor for general s.

2.2 Einstein tensor

As we indicated, the Weyl tensor identically vanishes in three dimensions. The curvature

tensor is therefore completely determined by the “Ricci tensor”, or equivalently, by the

“Einstein tensor”, which is the s times dual (with a sign factor inserted for convenience)

G = (−1)s ? ? · · · ?︸ ︷︷ ︸
s times

ds(s)ψ (2.3)

of the curvature. We dualize on each antisymmetric pair so this expression can also be

written as

G = (ε · ∂ · )s ψ . (2.4)

In words, the Einstein tensor is obtained by contracting s times εijkr∂
j with ψk1···ks . Ex-

plicitly, when s = 1 (spin 3
2) one has

Gi = εijk∂
jψk , (2.5)

while for s = 2 (spin 5
2)

Gij = εikmεjln∂
k∂lψmn . (2.6)

The Einstein tensor is a completely symmetric tensor which fulfills the contracted

Bianchi identity

∂i1G
i1i2···is = 0 . (2.7)

Conversely, any symmetric and divergenceless tensor can be written as the Einstein tensor

of some field.

While equivalent, we find it convenient in the sequel to work systematically with the

Einstein tensor rather than with the Riemann tensor.

2.3 Schouten and Cotton tensors: first cases

The Einstein tensor and its derivatives provide a complete set of higher-spin diffeomor-

phism invariant functions, but little can be said about higher-spin Weyl symmetry without

introducing the Cotton tensor. The idea is to algebraically construct out of the Einstein

tensor and its successive traces the “Schouten tensor” that transforms under higher-spin

Weyl transformations into a symmetrized gradient. The Cotton tensor is then the Einstein

tensor of the Schouten tensor and is therefore Weyl invariant. This is much along the lines

of the bosonic case, as can be seen in table 1 at the end of this work, but there the Schouten

tensor transforms under a symmetrized double gradient rather than a single symmetrized

gradient. The symmetrized double gradient is removed by acting with ds−1(s) rather than

– 5 –



J
H
E
P
1
1
(
2
0
1
8
)
1
5
6

with ds(s), which explains the difference in the number of derivatives when expressed in

terms of s.

After the Cotton tensor is properly defined, we prove the following two important

theorems.

Gauge completeness: the Cotton tensor is zero if and only if the field is pure gauge with

respect to higher-spin diffeomorphisms and higher-spin Weyl transformations.

This property ensures that the Cotton tensor fully controls the gauge invariance,

which means that any local higher-spin diffeomorphism and higher-spin Weyl invari-

ant function can be written in terms of the Cotton tensor and its derivatives. So

the Cotton tensor and its derivatives provide a complete set of gauge invariant func-

tions (see, e.g., appendix B.1 of [15] for more details and the proof that this claim is

equivalent to the property above).

Conformal Poincaré lemma: any symmetric, divergenceless and gamma-traceless ten-

sor can be written as the Cotton tensor of some field.

This property will be crucial when solving the Hamiltonian constraint of the higher-

spin fermionic field in section 4.

As a warm-up, we start with the spin- 32 field. Most of the subtleties of the general

case are already present in the case of the spin- 52 field, which we discuss next before we

generalize to general spin.

2.3.1 Spin-3
2

We first consider the familiar case of spin 3
2 (s = 1). The spin-32 field is a vector-spinor ψi.

We are looking for a complete set of functions of this field invariant under the following

transformations

Γψi = ∂iξ + γiλ . (2.8)

As we have recalled, a complete set of invariants under spin- 32 diffeomorphisms, i.e., the

first term in (2.8), is given by the Einstein tensor

Gi = εijk∂
jψk (2.9)

and its derivatives, which transforms under a conformal transformation as ΓGi = εijk∂
jγkλ.

This implies Γ/G = −2γ5γ0/∂λ and leads us to define a Schouten tensor as

Si = Gi −
1

2
γi /G . (2.10)

Its gauge variation is indeed a gradient

ΓSi = ∂i (γ5γ0λ) . (2.11)

The definition (2.10) is invertible: the Einstein tensor can be expressed in terms of the

Schouten as

Gi = Si − γi/S . (2.12)
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Since the Einstein tensor is identically divergenceless, the Schouten satisfies

0 = ∂iSi − /∂/S . (2.13)

This is the Bianchi identity for the Schouten tensor. The conformal invariant is then the

Einstein tensor of the Schouten tensor, which we name “Cotton tensor”. For the spin- 32
field this quantity is given by

Di = εijk∂
jSk (2.14)

=
1

2

(
∂i∂

jψj −∆ψi
)
− 1

2
εijkγ5γ0/∂∂

jψk . (2.15)

It is identically divergenceless, and also gamma-traceless on account of (2.13) (and (1.4)).

It is called “Cottino” in [26] where it was first introduced.

We will now prove that the Cotton tensor and its derivatives provide a complete set of

invariant functions with respect to higher-spin diffeomorphism and Weyl transformations

(gauge completeness), and any tensor that is both gamma-traceless and divergenceless is

the Cotton tensor of some vector-spinor (“conformal Poincaré lemma”).

Gauge completeness. The first property is equivalent to the fact that Di = 0 is a

necessary and sufficient condition for the spin- 32 field to be pure gauge. By construction,

we have ΓDi = 0 which shows that for a pure gauge field the Cotton tensor necessarily

vanishes. This condition is also sufficient, since if Di = εijk∂
jSk = 0, then (using the

Poincaré lemma with a spectator spinor index) we have Si = ∂iρ for some ρ that we can

always write as ρ = γ5γ0λ. Inserting now Si into (2.12) leads to Gi − εijk∂
jγkλ = 0,

or equivalently εijk∂
j(ψk − γkλ) = 0. We can again use the Poincaré lemma, yielding

ψi = ∂iξ + γiλ for some ξ. Therefore a vanishing Cotton tensor also implies that the field

is pure gauge.

Conformal Poincaré lemma. Furthermore, by running backwards the construction of

the Cotton tensor, it is also easy to see that any vector-spinor field Ti that is both gamma-

traceless and divergenceless, ∂iTi = 0 and /T = 0, is the Cotton tensor of some vector-spinor

field ψj , i.e., T = D[ψ].

Indeed, the condition ∂iTi = 0 implies Ti = εijk∂
jSk for some Sk that fulfills ∂iSi −

/∂/S = 0 on account of /T = 0. We can now define a tensor Gi through Gi = Si − γi/S:

it fulfills ∂iGi = 0 and is thus itself equal to Gi = εijk∂
jψk for some ψi which is the

searched-for vector-spinor.

2.3.2 Spin-5
2

We now turn to the discussion of the spin- 52 field, a symmetric tensor(-spinor) ψij , which

will lay the ground work for the next section where general half-integer spin is considered.

We are looking for a complete set of functions that is invariant under the transformations

Γψij = 2∂(iξj) + 2γ(iλj) . (2.16)
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As we have seen, such a complete set of invariants under spin- 52 diffeomorphisms is given

by the Einstein tensor

Gij = εikmεjln∂
k∂lψmn (2.17)

= δij

(
∆ψ̄ − ∂k∂lψkl

)
+ 2∂(i∂

kψj)k −∆ψij − ∂i∂jψ̄ (2.18)

and its derivatives. The variation of this tensor under a Weyl transformation is given by

ΓGij = 2ε(i|km∂
kγmµ|j) (2.19)

where µj = εjln∂
lλn is the Einstein tensor of λn. For its traces, this implies

Γ/Gi = −3γ5γ0/∂µi + εijk ∂
kµm (2.20)

ΓḠ = ΓδijGij = 2εijk∂
iγjµk . (2.21)

The Schouten tensor is a combination of the Einstein tensor and its traces, i.e., S =

G+a1Ḡ+ b0γ /G. Using this ansatz and the condition that the Schouten tensor should vary

to a symmetrized derivative leads to3

Sij = Gij −
1

4
δijḠ−

1

2
γ(i /Gj) . (2.22)

Indeed, it varies to

ΓSij = ∂(iνj) (2.23)

where we have defined

νi = −1

2
εijkγ

jµk +
3

2
γ5γ0µi . (2.24)

As in the spin-32 case, the relation between the Einstein and Schouten tensors is invertible

and we have

Gij = Sij − 2γ(i/Sj) − δijS̄ , (2.25)

which implies /Gi = −4/Si and Ḡ = −4S̄ for the traces. Since the Einstein tensor is

identically divergenceless, the Schouten tensor satisfies 0 = ∂jSij − /∂/Si − γi∂j /S
j − ∂iS̄.

Taking the gamma-trace of this expression gives ∂i/S
i

= 0, which then implies the Bianchi

identity for the Schouten tensor

Ui[S] ≡ ∂jSij − /∂/Si − ∂iS̄ = 0 , (2.26)

which is equivalent to the divergencelessness of the Einstein tensor. Likewise, the relation

between µi and νi can be inverted to

µi = −1

2
εijkγjνk − γ5γ0νi , (2.27)

3Note that the Schouten tensor used in [18] is the Schouten tensor for a spin-2 field with spinor indices

treated as spectator indices. The definition adopted here, which is different, is more adapted to the spin- 5
2

case. The tensor (2.22) enjoys indeed more useful properties.
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and the property ∂iµ
i = 0 is equivalent to the identity ∂iν

i− 1
2γ5γ0ε

ijk ∂iγjνk = 0 satisfied

by νi, which can also be rewritten as

I[ν] ≡ ∂iνi + /∂/ν = 0 . (2.28)

An important property is that

Ui[∂ν] = −1

2
∂iI[ν] , (2.29)

which shows that the Bianchi identity for the Schouten tensor is compatible with Weyl

transformations.

The conformal invariant is then the Einstein tensor of the Schouten tensor, named the

“Cotton tensor”

Dij = εikmεjln∂
k∂lSmn (2.30)

= 2∂(i∂
kSj)k −∆Sij − ∂i∂jS̄ . (2.31)

It is again divergenceless and gamma-traceless, and invariant under higher-spin diffeomor-

phisms and Weyl transformations. Its explicit form in terms of the fourth derivatives of

ψij is

Dij = ∆2

(
ψij −

1

2
γ(i/ψj) −

1

4
δijψ̄

)
+

∆

4

(
∂i∂jψ̄ + 2/∂∂(i/ψj) + ∂k(δij ∂

lψlk − 10 ∂(iψj)k + 2γ(i/∂ψj)k + 2 ∂(iγj)/ψk)
)

+
1

4
∂i∂j

(
5 ∂k∂lψkl − 2/∂∂k /ψk

)
− 1

2
∂(iγj) ∂

k∂l/∂ψkl , (2.32)

an expression that would have been of course very difficult to guess (and to generalize)

without the systematic construction using Einstein and Schouten tensors.

We now turn to the proof of the two important theorems concerning the Cotton tensor.

Gauge completeness. We first want to show that the Cotton tensor fully character-

izes the spin- 52 diffeomorphism and Weyl-invariance. For that, we need to show that the

condition Dij = 0 is equivalent to ψij being pure gauge.

If ψij is pure gauge, then the Cotton vanishes by construction, Dij = 0. Conversely,

if Dij = 0, the Schouten satisfies ∂[iSj][k,l] = 0 or, in index-free notation, d2(2)S = 0. Using

the Poincaré lemma for two-column Young tableaux [30, 31], this implies that S = d(2)ν

for some vector ν, i.e., Sij = ∂(iνj).

Defining Gij and µi through Sij and νi by equations (2.25) and (2.27) gives Gij =

2ε(i|ab∂
aγbµ|j). It is proven below that the ambiguity in νi allows us to fix ∂iµ

i = 0. This

implies µi = εijk∂jλk for some λk and Gij = εikmεjln∂
k∂l(2γ(mλn)), or εikmεjln∂

k∂l(ψmn−
2γ(mλn)) = 0. Again using the relevant Poincaré lemma, this implies ψmn = 2∂(mξn) +

2γ(mλn) for some ξn, which shows that ψmn is pure gauge.

The only extra step with respect to the spin 3
2 -case consists thus in establishing that

the ambiguity in νi allows us to fix ∂iµ
i = 0 or, equivalently, I[ν] = 0. Due to the Bianchi

identity U [S] = 0 satisfied by the Schouten tensor, we know that I[ν] satisfies ∂iI[ν] = 0,
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which leads to I[ν] = p(0) with constant p(0). We can also redefine νi as νi ∼ νi+ ν̃i without

changing the Schouten tensor, as long as ν̃i satisfies ∂(iν̃j) = 0. This is just the Killing

equation for flat space (with a spectator spinor index) and is solved by ν̃i = q
(0)
i + q

(1)
ij x

j ,

where q
(0)
i is a constant vector-spinor and q

(1)
ij is antisymmetric. A short computation then

shows that

I[ν + ν̃] = p(0) − γijq(1)ij . (2.33)

Therefore, choosing q
(1)
ij = −1

6γijp fixes I[ν + ν̃] = 0, thus concluding the proof.

Conformal Poincaré lemma. The Cotton tensor is symmetric, divergenceless and

gamma-traceless. We will now prove that any tensor with these properties, i.e., any sym-

metric tensor Tij satisfying ∂iTij = 0 and /T i = 0, can be written as the Cotton tensor

Tij = Dij [ψ] for some ψij .

Divergenceless of a symmetric tensor implies, using the generalized Poincaré lemma [30,

31], that Tij is the Einstein tensor of some symmetric tensor Sij ,

Tij = εikmεjln∂
k∂lSmn . (2.34)

The condition /T i = 0 leads to

0 = εijk ∂
j(∂lS

lk − /∂/Sk − ∂kS̄) (2.35)

= εijk ∂
jUk[S] , (2.36)

where we have added the last trace-term for convenience, at no cost since partial derivatives

commute while εijk = −εikj . The Poincaré lemma then implies

Ui[S] = ∂jSij − /∂/Si − ∂iS̄ = ∂iρ . (2.37)

Suppose for now that the right hand side vanishes. Then, our tensor S satisfies the Bianchi

identity (2.26) for the Schouten tensor of that spin. Therefore, the tensor Gij defined by

Gij = Sij − 2γ(i/Sj) − δijS̄ , (2.38)

satisfies ∂iGij = 0, as is proven in the beginning of this section. This followed from the

invertibility of the definition of the Schouten in terms of the Einstein tensor, for which the

definition in terms of ψ was irrelevant. Now, since G is divergenceless, we have

Gij = εikmεjln∂
k∂lψmn (2.39)

for some symmetric ψmn, which shows that S is the Schouten tensor of ψ and therefore

that Tij is its Cotton, Tij = Dij [ψ].

To finish the proof we need to show that we can use the ambiguities in the Poincaré

lemma to indeed set the right hand side of (2.37) to zero. The freedom we have is given

by Sij ∼ Sij + ∂(iνj) which leads to

Ui[∂ν] = −1

2
∂i(∂jν

j + /∂/ν) = ∂iρ . (2.40)

– 10 –
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Therefore, it is sufficient to choose ν such that

I[ν] = ∂iν
i + /∂/ν = −2ρ . (2.41)

To prove that such a νi exists, we define a vector-spinor µi in terms of νi as in equa-

tion (2.27) and use the invertibility of that relation. Equation (2.41) is then equivalent to

∂iµ
i = ρ̂ , (2.42)

where ρ̂ = γ5γ0ρ, which always has a solution. This therefore completes the proof.

2.4 Schouten and Cotton tensors: general half-integer spin

The spin-(s + 1
2) field is a symmetric tensor(-spinor) with s vectorial indices ψ. Again, a

complete set of invariants under spin-(s+ 1
2) diffeomorphisms is given by the Einstein tensor

G = (ε · ∂ ·)s ψ . (2.43)

The variation of this tensor under a Weyl transformation (1.1) is

ΓG = s (ε · ∂ · γ)µ , (2.44)

where µ = (ε · ∂ ·)s−1λ is the Einstein tensor of λ or, equivalently, any symmetric diver-

genceless tensor of rank s− 1. This implies, for the p-th trace and gamma-trace of G

ΓG[p] = 2p(ε · ∂ · γ ·)µ[p−1] + (s− 2p) (ε · ∂ · γ)µ[p] (0 ≤ p ≤ bs/2c) , (2.45)

Γ/G
[p]

= −γ5γ0 (s+ 1) /∂µ[p] + (s− 1− 2p) (ε · ∂ ·)µ[p] (0 ≤ p ≤ b(s− 1)/2c) , (2.46)

where bs/2c denotes the largest integer equal or smaller than s/2. The Schouten tensor will

be built out of these quantities multiplied by p delta functions and an additional gamma

matrix for /G
[p]

. The variation of these terms is given by

δpΓG[p] = 2pδp(ε · ∂ · γ ·)µ[p−1] + (s− 2p) δp (ε · ∂ · γ)µ[p] , (2.47)

δpγΓ/G
[p]

= −γ5γ0 (s+ 1) δp∂µ[p] + (s+ 1) δp (ε · ∂ · γ)µ[p]

+ (s− 1− 2p) δpγ (ε · ∂ ·)µ[p] . (2.48)

At first sight, it does not seem possible to combine these expressions in order to obtain a

symmetrized derivative, but we have to take into account the following identity

0 = 4ε[ijkδl]m∂
iγjµk (2.49)

= εijkδlm∂
iγjµk − εjkl∂mγjµk + εkli∂

iγmµ
k − εlij∂iγjµm , (2.50)

where the spectator indices of µ have been left unwritten. After symmetrization in lm

(together with the remaining indices of µ), this gives

0 = δε · ∂ · γ · µ− ∂ (ε · γ ·)µ+ γ (ε · ∂ ·)µ− (ε · ∂ · γ)µ , (2.51)
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which in turn implies

δpΓG[p] = 2pδp−1∂ (ε · γ ·)µ[p−1] − 2pδp−1γ (ε · ∂ ·)µ[p−1] + 2pδp−1 (ε · ∂ · γ)µ[p−1]

+ (s− 2p) δp (ε · ∂ · γ)µ[p] . (2.52)

This leads us to define the Schouten tensor as

S =

bs/2c∑
p=0

apδ
pG[p] +

b(s−1)/2c∑
p=0

bpδ
pγ /G

[p]
. (2.53)

Requiring the gauge variation of the Schouten to be a symmetrized derivative (ΓS = ∂ν

for some symmetric tensor ν) imposes

0 = −2 (p+ 1) ap+1 + (s− 1− 2p) bp , (2.54)

0 = 2 (p+ 1) ap+1 + (s− 2p) ap + (s+ 1) bp . (2.55)

Taking the initial condition a0 = 1, the solution to these recurrence relations is

ap =
(−1)p

4p p!

(s− p)!
(s− 2p)!

, (2.56)

bp = −1

2

(−1)p

4p p!

(s− p− 1)!

(s− 2p− 1)!
= −1

2

s− 2p

s− p
ap . (2.57)

The gauge variation of the Schouten tensor is then indeed a gradient and reads explicitly

ΓS = ∂ν (2.58)

for a symmetric tensor ν which is related to µ as

ν =

bs/2c∑
p=0

2p ap δ
p−1(ε · γ ·)µ[p−1] −

b(s−1)/2c∑
p=0

bp (s+ 1)γ5γ0 δ
pµ[p] . (2.59)

The Schouten tensor satisfies the Bianchi identity

U [S] ≡ ∂ · S − /∂/S − (s− 1) ∂S̄ = 0 , (2.60)

which is equivalent to the divergencelessness ∂ · G = 0 of the Einstein tensor. Indeed,

plugging formula (2.53) into this identity and using the form of the ap, bp coefficients,

one gets

U [S] =
1

s

bs/2c∑
p=0

ap(s− 2p)δp ∂ ·G[p] +

b(s−1)/2c∑
p=0

bp(s− 2p− 1)δpγ ∂ · /G[p]

 , (2.61)

which vanishes by virtue of ∂ · G = 0. Similarly, on the parameter ν for the gauge trans-

formations of the Schouten tensor, the identity equivalent to ∂ · µ = 0 is

I[ν] ≡ ∂ · ν + /∂/ν + (s− 2) ∂ν̄ = 0 (2.62)
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or, equivalently (using γiγj = δij + εijkγkγ5γ0),

∂ · ν − 1

2
γ5γ0(ε · ∂ · γ · ν) +

(s− 2)

2
∂ν̄ = 0 . (2.63)

These identities are compatible since

U [∂ν] = −(s− 1)

s
∂I[ν] , (2.64)

which guarantees (as it should!) that the property U [S] = 0 is not destroyed by a Weyl

transformation.

The Einstein tensor of the Schouten tensor is then the searched-for conformally invari-

ant Cotton tensor

D = (ε · ∂ ·)s S . (2.65)

It is obviously symmetric, divergenceless and invariant under the full gauge and Weyl

transformations of the field. It is also gamma-traceless owing to the identity U [S] = 0;

indeed, a short computation shows that

/D = (ε · ∂ ·)s−1U [S] = 0 . (2.66)

As in the spin-52 case, the proofs of the gauge completeness and the conformal Poincaré

lemma heavily rely on the identities (2.60) and (2.62) satisfied by the Schouten tensor and

the ν parameter.

2.4.1 Gauge completeness

If ψ is pure gauge, then D = 0 by construction. To prove the converse, we proceed as

before, using the differential d(s). If D = 0, the Schouten tensor satisfies ds(s)S = 0, which

implies S = d(s)ν for some rank s− 1 symmetric tensor ν. Defining G and µ by inverting

the definitions above, this is equivalent to G = s(ε · ∂ · γ ·)µ. Now, if the ambiguity in

ν allows us to fix ∂ · µ = 0, implying that µ is the Einstein tensor of some λ, we get

G[ψ] = s(ε · ∂ ·)s(γλ), or (ε · ∂ ·)s(ψ − s γλ) = 0. Again using the Poincaré lemma for d(s),

this implies that ψ = s(∂ξ + γλ) for some ξ, showing that ψ is pure gauge.

The key step above is thus again that the ambiguity in ν allows us to fix ∂ · µ = 0

or, equivalently, I[ν] = 0 (as defined in (2.62)). This can be seen as follows. First of all,

the Bianchi identity for the Schouten tensor implies that I[ν] satisfies ∂I[ν] = 0 or, in

index notation,

∂(i1Ii2···is−1)[ν] = 0 . (2.67)

The general solution of this equation is [41–43]

Ii1···is−2 =

s−2∑
n=0

p
(n)
i1···is−2 j1···jnx

j1 · · ·xjn , (2.68)

where the p(n) are constant tensor with (s − 2, n) Young symmetry (in the symmetric

convention), i.e.,

p
(n)
i1···is−2 j1···jn = p

(n)
(i1···is−2) j1···jn = p

(n)
i1···is−2 (j1···jn) , (2.69)

p
(n)
(i1···is−2 j1)j2···jn = 0 . (2.70)
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On the other hand, the ambiguity in ν is given by solutions of ∂ν̃ = 0, i.e.,

ν̃i1···is−1 =

s−1∑
n=0

q
(n)
i1···is−1 j1···jnx

j1 · · ·xjn , (2.71)

where the q(n) are constant tensors with (s−1, n) Young symmetry (again in the symmetric

convention). Now, computing I[ν̃] shows that we can use this ambiguity to fix I[ν] = 0

provided we choose the tensors q(n) such that

γrsq
(n+1)
i1···is−2r j1···jns = p

(n)
i1···is−2 j1···jn (2.72)

(up to factors that can be absorbed in the q(n)). That this equation always possesses a

solution for arbitrarily given p’s with the (s−2, n) Young symmetry is proven in appendix A.

2.4.2 Conformal Poincaré lemma

As was mentioned above, the Cotton tensor is symmetric, divergenceless and gamma-

traceless. We now want to prove the converse, i.e., that for any symmetric tensor T

satisfying ∂ · T = 0 and /T = 0, there exists some ψ such that T = D[ψ]. First of all,

∂ · T = 0 implies that there exists a symmetric tensor S of which T is the Einstein tensor,

T = G[S] . (2.73)

Then, due to /T = 0, this tensor satisfies (ε · ∂ ·)s−1U [S] = 0, which implies

U [S] = ∂ρ (2.74)

for some symmetric tensor ρ using the appropriate Poincaré lemma. Now, we would like

to use the ambiguity in S to cancel ρ so that U [S] = 0. Indeed, this would imply that S

satisfies the Bianchi identity of the Schouten tensor and therefore that some ψ exists such

that S = S[ψ], which shows that T = D[ψ].

The ambiguity in S is given by S ∼ S + ∂ν (since it is only defined through its

Einstein tensor). Because of equation (2.64), we can fix U [S] = 0 provided we can solve

the differential equation

I[ν] = ρ (2.75)

(up to factors and signs that can be absorbed in ν). Because of the invertible relation

between ν and µ (or between I[ν] and ∂ · µ), this is equivalent to

∂ · µ = ρ̂ , (2.76)

where ρ̂ is an invertible combination of ρ and its traces and gamma-traces. This equation

can be solved for µ, which finishes the proof.

3 Equations of motion as twisted self-duality

In this section, we rewrite the equations of motion of the fermionic spin (s+ 1
2)-field in four

spacetime dimensions as twisted self-duality conditions on the curvature, supplemented by

a purely spatial constraint.
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3.1 From the Fronsdal to the Riemann tensor

The equations of motion for the spin (s + 1
2)-field ψµ1···µs are of first-order in derivatives

and given by

Fµ1···µs = 0 , (3.1)

where the Fronsdal tensor is defined as

Fµ1···µs = ∂\ψµ1···µs − s ∂(µ1ψ\µ2···µs) (3.2)

and the field itself satisfies the trace condition ψ\ ′ = 0 (see section 1 for the notation).

Under a gauge transformation

Γψµ1···µs = s ∂(µ1ξµ2···µs) , (3.3)

the Fronsdal tensor transforms as

ΓFµ1···µs = −s(s− 1) ∂(µ1 ∂µ2ξ\µ3···µs) (3.4)

or, in index-free notation, ΓF = d2(s)ξ\, where the differential d(s) satisfies ds+1
(s) = 0. The

equations of motion are gauge-invariant if the gauge parameter is gamma-traceless.

The first step is to rewrite these equations in a manner that is invariant under the larger

set of traceful gauge transformations; this is done along the lines of [19, 44] by going to the

(spacetime) Riemann tensor. This formulation contains more derivatives of the field, and

the original formulation can then be recovered by fixing the gauge. The Riemann tensor

is the (s, s)-tensor

Rµ1ν1···µsνs = 2s ∂[ν1| · · · ∂[νs|ψ|µ1]···|µs] . (3.5)

It is invariant under (3.3) even if the trace parameter is traceful. Taking the gamma-trace

of R, we get the (s, s− 1)-tensor

γν1Rµ1ν1···µsνs = 2s ∂ν2 · · · ∂νs (∂\ψµ1µ2···µs − ∂µ1ψ\µ2···µs) (3.6)

= 2s ∂ν2 · · · ∂νs
(
∂\ψµ1µ2···µs − s ∂(µ1ψ\µ2···µs)

)
(3.7)

= 2s ∂ν2 · · · ∂νsFµ1µ2···µs (3.8)

where the obvious antisymmetrization in µk, νk (k ≥ 2) are not written explicitly to avoid

cluttered notation. We have added the necessary terms in the second line (at no cost since

partial derivatives commute) to make the Fronsdal tensor appear. In index-free notation,

this is

R\ = ds−1(s) F . (3.9)

Another way to understand why a relation of this type must exist is that, because of

the gauge transformation property of the Fronsdal tensor, the quantity ds−1(s) F is gauge-

invariant and must therefore, like any other local gauge invariant function, be expressible

in terms of the Riemann tensor.

Now, F = 0 implies R\ = 0; conversely, R\ = 0 implies F = d2(s)ζ using the relevant

Poincaré lemma, for some ζ that we can always write as ζ = ξ\. This is the equation

F = 0 up to a traceful gauge transformation. Thus, one can reach F = 0 by a gauge

transformation when R\ = 0. One can further show [45] that there is enough gauge freedom

(when R\ = 0) to impose also the triple gamma-trace condition on the field ψ itself.
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3.2 Rewriting as a twisted self-duality condition

We show in this subsection that the geometrical equation R\ = 0 is equivalent to the system

R = −γ5 ?R , γklRkl i2j2 ··· isjs = 0 , (3.10)

i.e., the twisted self-duality condition supplemented by a constraint on the purely spatial

components.4 This is the analog for fermionic fields of the twisted self-duality condition

derived in [16] for bosonic fields.

Spin-3
2
. We first start with the spin- 32 case, which illustrates the main points. The

equation R\ = 0 is in this case

γµRµν = 0 , Rµν = ∂νψµ − ∂µψν . (3.11)

It is equivalent to the the usual Rarita-Schwinger equation γµνρRνρ = 0.

• R\ = 0 ⇒ R = −γ5 ?R and γklRkl i2j2 ··· isjs = 0: first, by contracting with γν , one

sees that γµRµν = 0 implies γµνRµν = 0 (since Rµν is antisymmetric). Splitting time

and space, this is 2γ0γiR0i + γijRij = 0. The first term is the 0 component of R\ = 0

and therefore vanishes; this shows that R\ = 0 indeed implies the spatial constraint

γijRij = 0.

Then, using the gamma matrix identities

γµνγ
ρσ = γ ρσ

µν − 4δ
[ρ
[µγ

σ]
ν] − 2δρσµν (3.12)

γµνργσ = γµνρσ + 3γ[µνηρ]σ (3.13)

(valid in all dimensions) and

γµνρσ = εµνρσγ5 (3.14)

with ε0123 = +1 (specific to four dimensions), we get

0 = γ ρ
µν γ

σRρσ = εµνρσγ5R
ρσ + 2γ σ

[µ Rν]σ (3.15)

0 = γµνγ
ρσRρσ = εµνρσγ5R

ρσ + 4γ σ
[µ Rν]σ − 2Rµν . (3.16)

Taken together, these two equations imply

Rµν = −1

2
εµνρσγ5R

ρσ , (3.17)

which is the twisted self-duality in components.

• R = −γ5 ?R and γklRkl i2j2 ··· isjs = 0 ⇒ R\ = 0: splitting space and time, the twisted

self-duality is

R0i = −1

2
εijkγ5R

jk . (3.18)

4In our conventions (γ5)2 = −1 which is consistent with (?)2 = −1.
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Contracting with γi and using the identity γjk = −εijkγiγ0γ5, this gives

2γ0γiR0i − γijRij = 0 . (3.19)

Using the constraint, this reduces to the zero component of R\ = 0. We are still

missing the spatial components of that equation, which read γ0R0i+γkRki = 0. This

is proved by using the identity

γiγjk = γijk + 2δi[jγk] = −εijkγ0γ5 + 2δi[jγk] , (3.20)

which gives, using the constraint and the twisted self-duality condition

0 = γiγjkR
jk = −εijkγ0γ5Rjk + 2γkRik = 2γ0R0i + 2γkRik (3.21)

= −2
(
γ0R0i + γkRki

)
. (3.22)

Arbitrary spin. The proof of the previous section carries over without any change if one

adds as many indices as necessary to R. This shows the equivalence between R\ = 0 and

R = −γ5 ?R , γklRkl µ2ν2 ···µsνs = 0 , (3.23)

where the constraint carries additional spacetime indices. To finish the proof in the arbi-

trary spin case, we therefore need to show that the subset of these constraints with only

spatial indices implies all the others components (with one or more zeros).

Using the twisted self-duality condition on other groups of indices, we can dualize every

temporal component appearing in the constraint to spatial indices, for example

γklRkl 0i p3q3···psqs = −1

2
εimnγ

klR mn
kl p3q3···psqs = 0 . (3.24)

This shows that the purely spatial constraint appearing in (3.10) is sufficient.

3.3 Hamiltonian constraint

The constraint γklRkl i2j2 ··· isjs = 0 possesses an interesting interpretation in terms of the

dynamics: it is equivalent to the constraint that appears in the Hamiltonian formulation,

as we now show.

The Fang-Fronsdal action [46] is linear in the first order derivatives and is thus already

in Hamiltonian form (up to field redefinitions of the variables). The components ψ0k2k3...ks

with one index equal to 0 are Lagrange multipliers enforcing the “Hamiltonian constraints”

on the dynamical variables [18, 47–49]. These constraints arise from the components with

one index equal to 0 of the original equations of motion F = 0,

0 = (s− 1) ∂(k2Ξk3...ks) + 2γlm∂lψmk2...ks + (s− 1) ∂(k2ψ̄k3...ks), (3.25)

where

Ξk3...ks = ψ00k3...ks − 2γ0γiψ0ik3...ks . (3.26)
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If we take s− 1 curls of this expression (i.e., if we compute its Einstein tensor), we will get

the vanishing of the gamma-trace of the Einstein tensor of ψk1...ks ,

/G[ψ] = 0 . (3.27)

Using the spatial ε tensor, this is equivalent to the constraint written in (3.10) in terms of

the Riemann tensor.

4 Prepotentials

The fermionic higher-spin conformal geometry provides the tools for introducing prepoten-

tials to write the action for the twisted self-duality equations as a typical, and remarkably

simple, prepotential action. It is equivalent to the usual Fronsdal action, where the con-

straints are solved.

4.1 Solution of the constraints

Since the Einstein tensor G[ψ] is symmetric and divergenceless, the conformal Poincaré

lemma, proven in section 2.4.2, implies that the constraint /G[ψ] = 0 is solved by writing

G[ψ] = D[χ] (4.1)

in terms of a prepotential χ, where D is the Cotton tensor. A formula realizing this

is simply

ψ[χ] = S[χ] , (4.2)

where S is the Schouten tensor, since the Cotton tensor is exactly defined as the Einstein

of the Schouten. The simplicity of this formula with respect to the bosonic case seems to

be a recurring fact for fermionic fields: see [34, 35], where the same happens for fermionic

fields in other dimensions.

Plugging this back into (3.25), we get the equation

0 = (s− 1)∂Ξ + (s− 1)∂S̄[χ]− 2
(
∂ · S[χ]− /∂/S[χ]

)
= (s− 1)∂

(
Ξ− S̄[χ]

)
(4.3)

using the identity ∂ · S − /∂/S − (s − 1)∂S̄ = 0. A particular solution of this equation for

Ξ[χ] is

Ξ[χ] = S̄[χ] . (4.4)

In this way, all the dynamical variables (spatial components of ψ and Ξ) are expressed in

terms of the prepotential χ.

We have chosen a particular solution (4.2) of the equation (4.1). Given the properties

of the Einstein tensor, the most general solution will differ from (4.2) by a gauge trans-

formation of ψ, and so is physically equivalent to the choice adopted here. Moreover, the

relation (4.2) clearly satisfies (by construction of the Schouten tensor) the property that a

Weyl transformation of χ induces a gauge transformation of ψ. Finally, we note that the

ambiguity in Ξ, for fixed ψ’s, is given by a solution of the Killing tensor equation for a

tensor with s − 2 spatial indices. Such a solution is constant or blows up at infinity, and

can be dropped if we assume that the spin-s field goes to zero at infinity.
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4.2 Equations of motion

A sufficient subset of the twisted self-duality equations is given by the components with at

most one zero, i.e.,

R0sj2k2...jsks = −1

2
εspqγ5R

pq
j2k2...jsks

. (4.5)

This is proven indirectly below, starting from the action for the field ψ. Those equations

still contain temporal components of the field; to get rid of those, we take an extra curl,

giving the equation

εirs ∂r

(
R0sj2k2...jsks +

1

2
εspqγ5R

pq
j2k2...jsks

)
= 0 . (4.6)

This equation is equivalent to (4.5): the missing components can be recovered using the

appropriate Poincaré lemmas. The fact that only spatial components of ψ appear in this

equation can be made more manifest by writing εirs ∂rR0sj2k2...jsks = 1
2ε
irsṘrsj2k2...jsks

using the differential Bianchi identities for the Riemann tensor. Contracting further with

epsilon tensors to make the Einstein tensor of ψ appear, we get

Ġi1...is [ψ] + γ5ε
i1jk ∂jG

i2...is
k [ψ] = 0 . (4.7)

As emphasized above, this equation (supplemented by the gamma-tracelessness of G[ψ]) is

equivalent to the usual equations of motion for ψ. In terms of the prepotential χ, this is

Ḋi1...is [χ] + γ5ε
i1jk ∂jD

i2...is
k [χ] = 0 . (4.8)

We have therefore succeeded in rewriting the equations of motion for the field ψ purely in

terms of the prepotential χ; remarkably, they then take the form “sum of time derivative

and curl of the Cotton tensor vanishes” that is familiar in the prepotential formulation [13,

16, 33–36].

4.3 Action in terms of prepotentials

The equation above follows from the prepotential action

S[χ] = −i
∫
dt d3xχ†i1...is

(
Ḋi1...is [χ] + γ5ε

i1jk ∂jD
i2...is
k [χ]

)
. (4.9)

It is invariant under SO(2) rotations

χ→ eαγ5χ (4.10)

generated by γ5, mixing the two chiral components of χ. This extends the results of [17]

for spins 1/2 and 3/2 to arbitrary half-integer spin.

In this section, we prove that this is the action that one would obtain starting from the

usual Fang-Fronsdal action for ψ and solving the constraints. As in the bosonic case, the

argument is indirect and relies on the fact that the action is (almost) uniquely determined

by its invariance properties.
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The Fang-Fronsdal action is given by

S = −i
∫
d4x ψ̄ µ1···µs Gµ1···µs , (4.11)

where the tensor G is given in terms of the Fronsdal tensor (3.2) by

Gµ1···µs = Fµ1···µs −
s

2
γ(µ1F\µ2···µs) −

s (s− 1)

4
η(µ1µ2F

′
µ3···µs)

and the field satisfies the triple gamma-trace condition

ψ\ ′µ4···µs = 0 . (4.12)

This trace condition can obviously be solved to express everything in terms of the field

variables ψi1···is , ψ0i2···is and ψ00i3···is with at most two temporal indices (see for exam-

ple [49] for the explicit formulas). Equivalently, one can perform the invertible change of

variables (3.26) to eliminate the components with two zeros in favor of Ξi3···is . Once this is

done, the equations of motion show that ψi1···is and Ξi3···is are dynamical variables, while

ψ0i2···is is a Lagrange multiplier for the constraint as already indicated above. Therefore,

the action (4.11) necessarily takes the form

S =

∫
dt d3x

[
ΘA(ΨB)Ψ̇A −H(ΨA)

+ ψ̄0i2···isCi2···is(ΨA) + C̄i2···is(ΨA)ψ0i2···is ] . (4.13)

Here, we wrote ΨA = (ψi1···is ,Ξi3···is) for the dynamical variables. Important points are:

1. the variables ψ0i2···is only appear as Lagrange multipliers for the constraints C(ΨA) =

0;

2. these constraints are equivalent to equation (3.25);

3. since the original action is of first order in derivatives, the functions ΘA contain no

derivatives, while H contains one spatial derivative only.

The explicit form of ΘA, H and C beyond the features mentioned above are not necessary

for the purposes of this argument.

Now, when the constraints are solved in terms of the prepotentials as is the previous

section, the Lagrange multipliers ψ0i2···is disappear from the action. Then, the kinetic

term ΘA(ΨB)Ψ̇A must be a function of the prepotentials with one time derivative and

2s spatial derivatives (since the fields ΨA are expressed as s spatial derivatives of the

prepotential χ). Since it must be invariant under gauge and Weyl transformations of the

prepotential, it must (up to integration by parts) take the form of the first term of the

action (4.9). Similarly, the Hamiltonian density must contain 2s+1 derivatives and, by the

same invariance argument, must take the form of the second term of (4.9). The relative

factor of these two terms is fixed by the fact that this action should yield (4.8) as equations

of motion with the relative factor written there, since these equations are a consequence of

the original Fronsdal equations as we saw in the previous sections.
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5 Comments and conclusions

In this paper, we have developed the (linearized) conformal geometry of higher-spin

fermionic fields in three dimensions. The difficulty comes from the fact that the Weyl

tensor identically vanishes in three dimensions so that the conformal invariants must be

constructed out of the “Cotton tensor”, which generalizes the tensor with the same name

of gravity and involves higher order derivatives. This tensor was defined and its central

properties (gauge completeness and conformal Poincaré lemma) were established.

We then used these conformal tools to introduce the “prepotentials”, which provide the

explicit solution of the constraint equations resulting from the Fang-Fronsdal action [46].

The reformulation in terms of the prepotentials, intimately connected with the twisted

self-duality reformulation (see eq. (4.8)), puts on the same footing the fermionic fields and

the bosonic fields, for which a similar prepotential formulation was achieved in [15, 16]

starting from the Fronsdal action [50].

The prepotential formulation possesses two striking features:

• The prepotential action enjoys both generalized diffeomorphism invariance (like the

higher-spin (Fang–)Fronsdal action) and generalized Weyl invariance. This is true for

all spins and holds both in the bosonic and fermionic cases. Furthermore, the spatial

dimension is the critical dimension where Weyl geometry requires the introduction

of the Cotton tensor since the Weyl tensor identically vanishes. This is also a feature

that appears to be universal and was found to hold in higher dimensions where the

prepotentials have a non trivial Young mixed symmetry [32–36]. The emergence of

higher-spin Weyl invariance deserves further understanding.

• The resulting prepotential action always takes the same simple form, for all spins,

namely “prepotentials × (time derivative of the Cotton tensors + curl of the Cotton

tensors)” (see also table 1 at the end of this work). This is suggestive that the

sum over all spins of the actions should enjoy remarkable symmetry properties, in

particular sp(8)-symmetry [51, 52] or hypersymmetry [47, 53–56] (for more recent

work see [18, 57, 58]).

Finally, it would be of interest to extend the analysis of this paper to (anti-)de Sitter

backgrounds, following the spin-2 case [14, 59, 60]. In that context, we point out reference

[61], which gives in its Appendix C a construction of higher-spin Cotton tensors for generic

conformally flat space in three dimensions. That interesting construction proceeds along

different lines from those followed in our paper and starts from the Fang-Fronsdal field

strengths.
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A Proof of γq = p

We want to prove that equation (2.72) of section 2.4.1

γrsqi1···is−2r j1···jns = pi1···is−2 j1···jn (A.1)

always possesses a solution for arbitrarily given p’s with (s − 2, n) Young symmetry (the

q’s have (s− 1, n+ 1) Young symmetry). It is a linear system of inhomogeneous equations

Aα
A qA = pα (A.2)

that has a solution for given pα if and only if the given pα fulfills yα pα = 0 for any left

eigenvector yα of the matrix Aα
A with eigenvalue zero (i.e., yαAα

A = 0). Since we want

no restriction on pα, the matrix Aα
A should have no left eigenvector for the eigenvalue

zero. That is, the system Aα
A qA = pα has always a solution for arbitrary p’s if and only

if the only solution to the equations yαAα
A = 0 is yα = 0. In our case (A.2) explicitly

corresponds to

Ai1···is−2 j1···jn
i′1···i′s−2r

′ j′1···j′ns′ qi′1···i′s−2r
′ j′1···j′ns′ = pi1···is−2 j1···jn (A.3)

where

Ai1···is−2 j1···jn
i′1···i′s−2r

′ j′1···j′ns′ = P
(
δ
i′1
i1
· · · δi

′
s−2

is−2
γr
′s′δ

j′1
j1
· · · δj

′
n
jn

)
(A.4)

and P projects on the appropriate Young symmetries, i.e., (s − 2, n) for the lower indices

and (s − 1, n + 1) for the higher indices. Transposing spinor indices, this is equivalent to

showing that the only solution to the equation

γ(r|(syi1···is−2)|j1j2···jn) = 0 (A.5)

with yi1···is−2 j1j2···jn of p-symmetry type (s− 2, n) is yi1···is−2 j1j2···jn = 0.

As a first step we set ik = s and jk = r which leads for r 6= s, for which γrs is invertible,

to γrsys···sr···r = 0 which implies

ys···sr···r = 0 . (A.6)

In this section we do no sum over the s and r indices. We now use (A.6) to “free” one of

the indices of the first group so that γ(r|(syi1s···s)|r···r) = γr(syi1s···s)r···r = #γrsyi1s···sr···r = 0,

which leads for r 6= s to γrsyi1s···sr···r = 0 and therefore

yi1s···sr···r = 0 . (A.7)
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We denote with # strictly positive constants whose values are not relevant for the proof.

Repeating this argument for γ(r|(syi1i2s···s)|r···r) = 0 implies that yi1i2s···sr···r = 0. We can re-

iterate on the first group of indices and repeat the same analysis for the second group to get

yi1···is−2r···r = 0 = ys···sj1···jn . (A.8)

We next use these relations to connect the two indices groups since γ(r|(syi1s···s)|j1r···r) =

#γrsyi1s···sj1r···r = 0 which leads for r 6= s to yi1s···sj1r···r = 0. Now we can systematically

“free” the indices, e.g., γ(r|(syi1i2s···s)|j1r···r) = 0 implies yi1i2s···sj1r···r = 0. Repeating this

analysis iteratively on both groups of indices shows that the only solution of (A.5) is

yi1···is−2 j1j2···jn = 0 which completes the proof.
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