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1 Introduction

Abelian gauge theories enjoy a somewhat special status as quantum field theories compared

to their non-abelian cousins. In four dimensions, their perturbative beta-function is non-

negative and the theory, once coupled to matter, is bound to leave the perturbative regime

at very high energies. Extrapolating the behaviour of the gauge coupling towards the

ultra-violet (UV), it is natural to speculate that a proper definition of the theory in the UV

requires new degrees of freedom. One possibility is an embedding into an asymptotically

free, and hence ultra-violet complete, non-abelian gauge theory above certain energy scales.

In absence of such a protection mechanism, quantum gravity effects might be required to

render the theory well-defined.

In six dimensions, on the other hand, the fate of being non UV-complete by themselves

is shared not only by abelian, but even by non-abelian gauge theories. Indeed, all gauge
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theories are non-renormalisable and hence become strongly coupled towards the UV. In-

terestingly, in presence of eight supercharges, the degrees of freedom needed to render a

non-abelian gauge theory ultra-violet complete are not necessarily gravitational in nature.

Rather, an N = (1, 0) supersymmetric gauge theory contains anti-self-dual tensor fields

coupling to string-like objects in six dimensions. The potentially dangerous strong cou-

pling limit of the gauge theory coincides with the limit in which these strings become light

and eventually tensionless, furnishing infinitely many new degrees of freedom which enter

the dynamics of the theory [1, 2]. In the case of a non-abelian gauge theory this leads to

a conjectured non-trivial UV fixed point dubbed N = (1, 0) superconformal field theory

(SCFT), which can exist even without coupling in truly gravitational degrees of freedom.

Given this powerful UV protection mechanism, it is natural to wonder about the fate

of six-dimensional abelian gauge theories as we approach strong coupling. Despite little

explicit knowledge about the microscopic physics of the 6d N = (1, 0) SCFTs, it is widely

believed that the existence of a UV fixed point is intimately related to the non-abelian

nature of the gauge and tensor theory to which the tensionless strings are coupled. If this

is the case, an abelian theory, unless embedded into a non-abelian model at high energies,

must be UV completed by gravity itself, much as in four dimensions.

In this article we show that this natural assumption is indeed correct both from the

perspective of a 6d N = (1, 0) supergravity analysis and in the context of string theory,

and analyse its consequences for the possibility of having abelian decorations of N = (1, 0)

SCFTs. As we will see in section 2, the well-known structure of anomaly cancellation

alone implies that an abelian gauge theory in six dimensions cannot exist in absence of

gravity. More precisely, as we decouple the gravitational multiplet by taking the 6d Planck

mass to infinity, the celebrated Green-Schwarz-Sagnotti-West mechanism [3, 4] (GS for

short) fails to cancel the 1-loop abelian gauge anomalies after we discard the contribution

from the gravi-tensor. As a result the abelian theory on its own is inconsistent as a gauge

theory. The situation is strikingly different from its non-abelian counterpart, where the GS

mechanism for the cancellation of the pure gauge anomalies is not necessarily affected by

the decoupling of the gravi-tensor. In this sense, abelian gauge theories coupled to matter

do not exist in six dimensions unless coupled to gravity (or embedded in a non-abelian

theory). In particular, there is no UV protection mechanism in the form of an N = (1, 0)

SCFT, as expected on general grounds. Rather, as we decouple gravity, the abelian gauge

coupling necessarily tends to zero as well. In this field theory limit, the abelian symmetry

remains only as a global, or flavour, symmetry. While the decoupling of the gravi-tensor is

fatal to the cancellation of purely abelian gauge anomalies, the mixed abelian-non-abelian

anomalies are not affected (provided the non-abelian gauge theory fields themselves stay

dynamical in the field theory limit). The U(1) flavour symmetry is hence free of chiral,

or ABJ, anomalies, while the remnant of the uncancelled U(1) gauge and mixed gauge-

gravitational anomalies gives rise to non-trivial ’t Hooft anomalies.

This simple observation manifests itself in a beautiful manner in the context of a

string-theoretic realisation of such theories. Indeed, it is well appreciated in the literature

that abelian gauge theories have a rather special status also concerning their explicit ori-

gin in string compactifications. In the context of brane constructions, non-abelian gauge

– 2 –



J
H
E
P
1
1
(
2
0
1
8
)
1
4
7

symmetries are locally supported on individual brane stacks wrapping suitable cycles of

the compactification space. If we stay, for concreteness, in the framework of Type IIB/F-

theory compactifications with 7-branes, the latter wrap complex curves on a 2-complex-

dimensional compactification space B2. Decoupling gravity from non-abelian gauge the-

ories corresponds to taking the volume of B2 to infinity while keeping the volume of the

wrapped curve finite. Curves for which this is possible are called contractible, because

mathematically this process is equivalent to shrinking the curve to zero size while keeping

the base volume finite.

U(1) gauge symmetries, on the other hand, are sensitive to the global details of the

compactification space. From the Type II brane perspective, the massless U(1)s are linear

combinations of U(1) factors from branes at different locations of the compactification

space. In F-theory, this special status of the abelian gauge symmetries is reflected in the

fact that they originate in the global rational sections of the underlying elliptic fibration [5].

We review this description in some detail in appendix A in the hope of making this article

accessible not only to the F-theory afficionado. The explicit realisation of abelian gauge

symmetries in global F-theory compactifications has been studied in detail in the recent

F-theory literature, beginning with [6]. Similarly to non-abelian gauge theories, one can

attribute to each abelian gauge symmetry a curve class on the base, known as the height

pairing associated with the section. The volume of this curve is proportional to the square

of the inverse gauge coupling (at least in the absence of kinetic mixing), and the curve class

itself is the anomaly coefficient governing the GS mechanism for the U(1) [7, 8].

As a simple observation we point out in section 2 that the mechanism of anomaly

cancellation (at least in absence of kinetic mixing) already implies that this curve has

positive self-intersection and hence cannot be contractible. As a result, when we take the

volume of the compactification space to be infinite, the curve in question acquires infinite

volume as well and the gauge theory coupling vanishes. Given that the height pairing is an

object of intensive study in mathematics in its own right, this is an interesting prediction

of F-theory for the geometry of rational sections.

In section 3 we prove this geometric property directly and without the use of anomaly

cancellation. The proof first makes use of a theorem of Kodaira [9] and Néron [10] to argue

that the height pairing can always be written as the sum of two effective divisors, one of

which is the anti-canonical divisor; this is a generalization of the Cox-Zucker approach [11]

to studying rational sections on elliptic surfaces. We then proceed to show that the anti-

canonical curve is not contractible. Indeed, on bases supporting minimal elliptic fibrations,

contractible curves necessarily give rise to singularities of the form C2/Γ with Γ a discrete

subgroup of U(2) [12]. As we will discuss, since these singularities are rational, they cannot

be blown up into an anti-canonical curve.

Having established, both in supergravity and string/F-theory, that abelian symmetries

can only survive as global symmetries after decoupling gravity, we can wonder about their

role in the context of 6d N = (1, 0) SCFTs, as classified recently in F-theory [12–15] and

from the perspective of field theory [16]. Since the abelian symmetries survive the decou-

pling limit without acquiring dangerous ABJ anomalies with the dynamical gauge groups,

they remain as global symmetries of the non-abelian gauge theories on the tensor branch.
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More precisely, we will focus in this work on the global symmetries which can be identified

via their action on 6d matter hypermultiplets. We argue in section 4 that the global abelian

symmetries of this type encountered in a given F-theory realisation of the decoupling limit

can be understood as linear combinations of the ‘diagonal U(1)s’ associated with the max-

imal non-abelian flavor group of the model, possibly with an admixture of Cartan U(1)s

within this maximal non-abelian flavour group. Field theoretically, the linear combination

is determined by requiring the absence of mixed cubic 1-loop anomalies, which would re-

quire the U(1)s to be ‘geometrically massive’ (as studied in the F-theory context in [17]).

In this sense the a priori rich set of different options to realize U(1) gauge symmetries

in a globally defined F-theory model reduces to a rather tractable set of possible flavour

symmetries after decoupling gravity, which can essentially be determined locally. This is

in agreement with the way how detailed global information about the existence of rational

sections gets washed out in the local decoupling limit.

The possibility of having abelian flavour symmetries has first appeared in this context

in [18] in a field theoretic analysis, starting from a non-abelian flavour symmetry and

breaking it by T-brane data to remnants which sometimes contain abelian factors. However,

the charges of the representations and the geometric origin of the abelian symmetries have

not been determined. Recently, in [19] examples of F-theory compactifications have been

constructed with a decoration of an N = (2, 0) SCFT sector which carries charges, in the

supergravity regime, under abelian and discrete gauge symmetries. Given our analysis of

section 2, these theories have abelian (or discrete) flavor symmetries in the decoupling limit

of gravity, and, as we expect, also in the SCFT phase. In section 4 we give examples of

such theories, proceeding along two complementary approaches. First, in subsection 4.1

and subsection 4.3, we construct globally defined F-theory models over compact base spaces

which contain shrinkable curves. Enhancing the non-abelian gauge group over these curves

leads to a theory which can be enhanced by abelian gauge symmetries if we constrain the

elliptic fibration further such as to admit an extra independent section. We then analyse the

limit of decoupling gravity and show explicitly that the resulting abelian flavour symmetry

is free of ABJ anomalies. We compute the ’t Hooft anomaly polynomial and conjecture

that, since this does not change along the tensor branch, the resulting SCFT has an abelian

flavour symmetry.

As we explain in subsection 4.2, the abelian flavour symmetry obtained in these ex-

amples can indeed be understood in terms of a suitable linear combination U(1)m of in-

dividually massive U(1) factors of the maximal field theoretic flavour symmetry. The key

point in this interpretation is to assign to N hypermultiplets in a complex representation

a maximal flavour group of U(N) = SU(N) × U(1)/ZN . This leads to a natural proposal

for the general form in particular of the non-abelian part of the flavour group. When we

take the decoupling limit of a globally consistent model with a U(1)A gauge group, the

action of the latter on the charged states is to be identified with a linear combination of

this U(1)m and some Cartan U(1)c within the non-abelian part of the flavour group. Even

though we started, heuristically, from a global model with an abelian gauge group, we

stress that once the dust has settled, the abelian flavour symmetry of any local model can

be determined fully locally. Whether or not it survives as a gauge theory in the presence

of gravity depends on the chosen global completion.
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To exemplify this, in subsection 4.4 we turn tables round and ask in which cases

a local model might have an embedding into a global geometry with an abelian gauge

group. We investigate this for the N = (1, 0) conformal matter theory based on a chain of

(−1)−(−3)−(−1) curves enhanced to an so(8) gauge symmetry [14]. The flavour group of

the local model only involves Sp(1) factors and hence no extra abelian flavour symmetries.

Nonetheless, some linear combinations of the flavour Cartan U(1)s might be realized as

gauge symmetries in a global completion. Unfortunately, to date the most general form of

an elliptic fibration with an extra section is not known due to subtleties associated with

non-unique factorization domains [20–23]. To be concrete we require that the model arises

as the local limit of an elliptic fibration which can be written in the Morrison-Park form [8].

The canonical (and some non-canonical) forms of non-abelian gauge enhancements have

been classified in this framework in [24]. The details of these enhancements, together

with anomaly cancellation, constrain the form of the height pairing and hence the possible

abelian charges in a potential global completion of this type.

We summarize our findings and discuss some prospects for future work in section 5.

2 U(1) gauge symmetries upon decoupling gravity in 6d (1, 0) theories

We begin by considering a 6d N = (1, 0) supergravity theory and analyzing its behaviour

as we decouple gravity. As we will see in section 2.2, the structure of anomaly cancellation

alone implies that in the decoupling limit any abelian gauge symmetry necessarily becomes

a global symmetry with non-zero ’t Hooft anomalies, and only non-abelian gauge symme-

tries can remain dynamical. In section 2.3 we deduce from this field theoretic statement

the geometric insight that certain curve classes in an F-theory realisation are necessarily

non-contractible.

2.1 6d N = (1, 0) supergravity background

Let us set the stage by recalling the form of the bosonic part of the six-dimensional N =

(1, 0) supergravity effective action with T tensor multiplets and gauge group G =
∏
κGκ×∏

A U(1)A. In a frame where the six-dimensional Planck mass is set to MPl = 1, this

effective action takes the form (see e.g. [25] and references therein)

S =

∫
R1,5

1

2
R ∗ 1− 1

4
gαβH

α ∧ ∗Hβ − 1

2
ΩαβB

α ∧Xβ
4 −

1

2
gαβdj

α ∧ ∗djβ

−
∑
κ

(2j · bκ)
1

λκ
trFκ ∧ ∗Fκ −

∑
A,B

(2j · bAB) trFA ∧ ∗FB + Shyper .
(2.1)

Here α = 0, 1, . . . , T labels the tensor fields Bα with gauge invariant field strength

Hα = dBα +
1

2
aαω3L + 2

∑
κ

bακ
λκ
ωκ3Y + 2

∑
A,B

bαABω
AB
3Y . (2.2)

The field strength is defined in terms of ω3L and ω3Y the Chern-Simons forms of the

spin connection, the non-abelian gauge fields Aκ and the abliean gauge fields AA. The

normalization factors λκ are the Dynkin labels of the fundamental representation of each
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simple gauge group factor. Furthermore a, bκ and bAB are constant SO(1, T ) vectors whose

indices are contracted by means of the SO(1, T )-covariant intersection matrix Ωαβ e.g. as

a · b = aαbα = aα bβ Ωαβ . (2.3)

The SO(1, T ) vector jα is subject to the constraint

j · j = 1 . (2.4)

Its independent entries parameterise the dynamical scalar fields in the T tensor multiplets

and determine the kinetic metric gαβ as

gαβ = 2jαjβ − Ωαβ . (2.5)

The dynamical scalar fields jα furthermore govern the gauge couplings of the non-abelian

and of the abelian gauge fields in terms of the constant vectors bκ and bAB. The expres-

sion (2.1) is only a pseudo-action to the extent that the tensor fields are subject to the

self-duality constraint

gαβ ∗Hβ = ΩαβH
β , (2.6)

which is to be imposed at the level of equations of motion.

As a final piece of information, the Chern-Simons couplings of the tensor fields involve

the 4-form

Xα
4 =

1

2
aα trR ∧R+ 2

∑
κ

bακ
λκ

trF κ ∧ F κ + 2
∑
A,B

bαAB F
A ∧ FB. (2.7)

Due to a gauging of the 2-form potential Bα with respect to the gauge symmetries and

diffeomorphism this Chern-Simons term renders the classical pseudo-action anomalous in

such a way that the classical gauge variance cancels the 1-loop gauge and gravitational

anomalies provided the latter factorise as

I1-loop8 =
1

32
ΩαβX

α
4 ∧X

β
4 . (2.8)

Here I8 denotes the anomaly polynomial. This cancellation via the Green-Schwarz-

Sagnotti-West mechanism [3, 4] is encoded in the anomaly equations, whose part involving

the abelian gauge fields takes the form

a · bAB = −1

6

∑
I

MIqIAqIB (2.9)

0 =
∑
I

Mκ
IE

I
κqIA (2.10)

bκ
λκ
· bAB =

∑
I

Mκ
IA

I
κqIAqIB (2.11)

bAB · bCD + bAC · bBD + bAD · bBC =
∑
I

MIqIAqIBqICqID . (2.12)
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The sums in the above equations are taken over the irreducible representations I of the

gauge group, of which U(1)A charges are denoted by qIA. We denote the dimension of I

by MI and the number of Gκ representations in I by Mκ
I . Furthermore, AIκ and EIκ are

defined through

trI F
2
κ = AIκ trF 2

κ , trI F
3
κ = EIκ trF 3

κ , (2.13)

where tr denotes the trace in the fundamental representation.

2.2 Anomalies in the decoupling limit

After this preparation we can now discuss the decoupling of gravity in more detail. To this

end it is important to distinguish between the tensor in the gravity multiplet and those

in the tensor multiplets. These differ in that the former is self-dual while the latter are

anti-self-dual, where the self-duality condition on the tensor fields Hα is given in (2.6). Let

us rewrite this as

∗Hα = Dα
βH

β (2.14)

in terms of the duality matrix

D(j)αβ := (g−1)αγΩγβ = 2jαjβ − δαβ . (2.15)

This matrix has the properties

D(j)αβD(j)βγ = δαγ , D(j)αα = 1− T (2.16)

due to (2.14) and thus has a single “positive eigenvector” with eigenvalue +1 and T “neg-

ative eigenvectors” with eigenvalue −1; the tensor in the gravity multiplet corresponds

to the positive eigenvector. Using again (2.14) we immediately see that such a positive

eigenvector is j, that is,

D(j)αβj
β = +jα . (2.17)

This vector hence spans the one-dimensional positive eigenspace while the T -dimensional

space orthogonal to j with respect to Ωαβ is spanned by the negative eigenvectors. The

latter are associated to the 2-form potentials in the T tensor multiplets and contain the

tensors different from the gravi-tensor. Given this split of the vector space R1,T , every

vector can be decomposed into its positive and negative parts, which we will denote by the

superscripts + and −, respectively, i.e.

v = v+(j) + v−(j), D(j)αβ v
±(j)β = ±v±(j)α . (2.18)

Importantly, since the duality matrix D(j)αβ depends on the choice of j, so does this split.

Given the split (2.18), the Bianchi identities for the tensors (2.2) decompose, for each

choice of j, as

dH±(j) =
1

2
a±(j) trR2 +

∑
κ

2b±κ (j)

λκ
trF 2

κ +
∑
A,B

2b±AB(j)FA ∧ FB . (2.19)

In particular, H+ is the field strength of the tensor in the gravity multiplet.
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The decoupling of gravity corresponds to taking the gauge coupling constant of certain

gauge group factors Gκ̂ to infinity while keeping the six-dimensional Planck mass finite.

This happens in suitable regions of the tensor moduli space controlled by the values of

the scalar fields jα. Let us denote by jα0 a choice of scalar fields realising this limit where

j0 · bκ̂ = 0. At this point in moduli space, bκ̂ becomes a negative eigenvector of the duality

matrix, namely

j0 · bκ̂ = 0 =⇒ D(j0)bκ̂ = −bκ̂. (2.20)

Thus, by (2.19) such a gauge theory decouples from the gravi-tensor B+(j0). This means,

in particular, that B+(j0) does not participate in the Green-Schwarz mechanism cancelling

anomalies which involve Gκ̂-gauge fields. Indeed, such a contribution is proportional to

bκ̂ · v = b+κ̂ (j) · v+(j) + b−κ̂ (j) · v−(j) (2.21)

for some vector v, where the first term is the contribution due to the gravi-tensor while

the second is due to the tensor multiplets. Once we decouple gravity, b+κ̂ (j0) = 0 so the

gravi-tensor does not contribute. This guarantees that there are no anomalies involving

the gauge group Gκ̂ after decoupling gravity.

More generally, however, once we decouple gravity some of the gauge symmetries may

become global symmetries and acquire a non-zero ’t Hooft anomaly. It is particularly

interesting to analyse the case of a U(1) gauge symmetry since it allows us to conclude

that such U(1) symmetries can only survive as global symmetries after decoupling gravity.

To see this, consider the quartic abelian U(1)A anomaly

b+A(j) · b+A(j) + b−A(j) · b−A(j) =
1

3

∑
I

MIq
4
IA ≥ 0 , (2.22)

with

bA ≡ bAA. (2.23)

According to the above logic, in the decoupling limit j → j0 we discard, on the l.h.s. , the

contribution b+A(j0) · b+A(j0) ≥ 0 and are left only with the term b−A(j0) · b−A(j0) ≤ 0. If at

least one hypermultiplet carries non-trivial U(1)A charge, the r.h.s. is positive. In this case

the 1-loop U(1)A anomaly is no longer cancelled in the decoupling limit, which is possible

only if U(1)A reduces to (at best) a global, or flavour, symmetry. In this case, the violation

of (2.22) merely indicates a non-zero ’t Hooft anomaly. On the other hand, if no massless

hypermultiplets are charged under U(1)A and the r.h.s. therefore vanishes, the anomaly

equation is still satisfied in the decoupling limit provided b−A(j0) · b−A(j0) = 0. Since the

metric is negative definite on the negative subspace this is possible only if b−A(j0) = 0 and

therefore bA = b+A(j0) + b−A(j0) = b+A(j0). But the anomaly equation bA · bA = 0 away

from the decoupling limit then implies that bA ≡ 0. If this is the only U(1) in the theory,

the theory is completely trivial. In the presence of another U(1)B, the anomaly equations

imply that bAB · bAB = 0 which, together with the fact that the kinetic term must be

– 8 –
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positive semidefinite, shows that bAB = 0 and so U(1)A is not part of the theory. Indeed,

the kinetic matrix for U(1)A and U(1)B is(
0 j · bAB

j · bAB j · bBB

)
(2.24)

and in order for it to be positive semidefinite we must have that j · bAB = 0 or, equiv-

alently, b+AB = 0. This then, together with b2AB = 0, implies that bAB = 0. Notice that

this argument works for any number of U(1)s that may mix with U(1)A since positive

semidefiniteness of the full kinetic matrix requires its leading principal minors to be all

non-negative.

In conclusion, abelian gauge symmetries necessarily become at best global symmetries

after decoupling gravity. One might wonder if in the decoupling limit such a U(1)A sym-

metry acquires non-zero chiral (i.e. ABJ) anomalies, namely, mixed anomalies involving

any of the gauge groups Gκ̂ which remain dynamical in the decoupling limit. As we have

shown above, however, since b+κ̂ (j0) = 0, there can be no anomalies involving any Gκ̂ gauge

field, including any mixed anomaly with a symmetry that became global after decoupling

gravity. Hence the mixed U(1)A−Gκ̂ anomaly is consistently cancelled even in the decou-

pling limit, given that it was cancelled in the supergravity regime. This is crucial because

otherwise the global U(1)A symmetry would be broken by such a mixed anomaly with a

gauge theory factor. By contrast, we have shown that the U(1)A symmetry survives as an

exact global or flavour symmetry in the decoupling limit which has only ’t Hooft anomalies.

2.3 Geometric interpretation of the decoupling limit via F-theory

In the sequel we will engineer the 6d N = (1, 0) supergravity theory as an F-theory com-

pactification with base space B2. The F-theoretic realisation of such supergravities has been

studied intensively in the literature (see e.g. the more recent [25–28] and the review [29]

for further references). The T + 1 tensor fields arise by expanding the Type IIB Ramond-

Ramond form C4 = Bα∧ωα in terms of a basis ωα of H1,1(B2), and hence T+1 = h1,1(B2).

The intersection matrix Ωαβ is given by the topological intersection pairing

Ωαβ =

∫
B2

ωα ∧ ωβ (2.25)

of the base surface, and also the SO(1, T ) vectors a, bκ and bA appearing for instance in (2.2)

have a geometric interpretation: the object a corresponds to the canonical class of B2,

K = aαωα , (2.26)

and bκ = bακ ωα is the class of the curve Cκ in the base wrapped by a stack of 7-branes giving

rise to a gauge group Gκ. As we will review in the next section, a similar interpretation

as an effective divisor class on B2 exists for the anomaly coefficient bA ≡ bAA of a U(1)A
gauge symmetry. Furthermore, the scalar fields in the tensor multiplets parametrise the

Kähler form

J = jαωα (2.27)
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of the F-theory base, where the constraint (2.4) implies that we have set the volume of the

base to 1.1 This is the geometric analogue of the statement that we are working at a fixed

value of the 6d Planck mass

M−4Pl ∝ VolJ(B2) . (2.28)

The gauge kinetic functions of the non-abelian and abelian gauge group factors are then

determined by the volumes of the respective curve classes,

fAA ∝ VolJ(bA) = j · bA , g−2κ ∝ VolJ(bκ) = j · bκ , (2.29)

where fAA multiplies the diagonal part of the abelian gauge kinetic term of the Lagrangian.

We will review the derivation of this classic relation in appendix A.

The decoupling of gravity with some of the non-abelian gauge group factors Gκ̂ kept

dynamical can then be described geometrically in two equivalent ways. If we choose to work

in the above frame where the 6d Planck mass is fixed at MPl = 1, then in the decoupling

limit the Kähler form J approaches a boundary of the Kähler cone along which the volume

of the curves Cκ̂ tends to zero, while the volume of the base B2 stays finite. In this limit the

Kähler form J of B2 approaches a value J0 on the boundary of the Kähler cone for which2

limJ→J0
VolJ(bκ̂)

(VolJ(B2))
1
2

= 0 . (2.30)

The curves for which this is possible are called contractible.

Alternatively, we can think of the decoupling limit in more physical terms by taking

VolJ(B2) → ∞ while keeping VolJ(bκ̂) finite. In this frame, the 6d Planck mass tends to

infinity while the gauge coupling of Gκ̂ remains finite, as is more appropriate from a physical

perspective. In particular, in this picture we can consider a two-step limit, which is relevant

for the definition of superconformal theories: first decouple gravity from the gauge theory

Gκ̂ while keeping VolJ(bκ̂) finite, and in the second step take VolJ(bκ̂)→ 0, corresponding

to the strong coupling SCFT limit of the latter. Both descriptions satisfy (2.30) and are

in fact mathematically equivalent (see e.g. [30]).

In the absence of kinetic mixing, a similar interpretation can be given for abelian gauge

symmetries: in this case fAA in (2.29) is the inverse squared U(1)A gauge coupling. Since

the U(1)A symmetry becomes a global symmetry as we decouple gravity, the curve bA
remains of finite volume in every possible limit in the Kähler moduli space keeping the

overall base volume finite. It is therefore non-contractible. The same conclusion can be

reached in an even simpler manner again by exploiting the anomaly condition (2.12) for

U(1)A (in absence of kinetic mixing): the l.h.s. is the self-intersection of the curve class bA
on B2, and the anomaly equation implies that this self-intersection is non-negative. But on

a complex base B2, contractible curves necessarily have negative self-intersection, as will

be discussed in more detail in section 3.

1Note that the overall volume of the base is part of the universal hypermultiplet.
2The exponent, 1

2
, in the denominator is chosen so that the numerator and the denominator have the

same mass dimensions. Note that for any other exponent choices, there always exists an appropriate

rescaling of the Kähler form J such that the ratio becomes zero.
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In the presence of kinetic mixing a simple geometric interpretation of the gauge cou-

pling is more elusive. The reason is that while the kinetic matrix fAB can be diagonalized

for each fixed choice of j, this involves irrational coefficients which render an interpretation

in terms of (integral) divisors on the base less clear.

Let us summarize our discussion so far. Of the collection of curve classes bκ, suppose

that a subcollection, bκ̂, simultaneously contract to zero volume for a chosen J0 = jα0 ωα
on the boundary of Kähler cone, while the rest remain to have a finite volume. Then the

theory associated to this geometry has gravity decoupled and gauge group
∏
κ̂Gκ̂. On the

other hand, the abelian group
∏
A U(1)A, as well as the remaining part of the original non-

abelian group, survive as a global symmetry with ’t Hooft anomalies only. In the absence of

kinetic mixing, each abelian gauge coupling is determined by the volume of the respective

curve bA, which remains finite in the limit. In order to compute the ’t Hooft anomalies, we

must only include the contribution of the tensors corresponding to the curves that shrink

in the Green-Schwarz mechanism. This is done by simply projecting any of the SO(1, T )

vectors appearing in the l.h.s. of the anomaly equation onto the vector space spanned by

the tensors which remain dynamical. In section 4 we will consider some examples where

this abstract discussion is made explicit.

3 Decoupling of U(1)s in F-theory on elliptic Calabi-Yau 3-folds

In this section we prove that every curve bAA ≡ bA associated with a U(1)A symmetry

is non-contractible directly by analyzing the elliptic fibration over B2 underlying the F-

theory interpretation, and without any reference to the anomaly equations. The proof holds

irrespective of the number abelian gauge group factors. In absence of kinetic mixing, the

volume of bA has the interpretation of the inverse squared gauge coupling, and our result

therefore proves that this U(1)A cannot remain as a gauge symmetry in the decoupling

limit. A special case without kinetic mixing is a setup with only a single U(1)A.

The fact that the curve associated with a U(1) gauge symmetry is necessarily non-

contractible is a rather non-trivial statement if we are to approach the question from the

perspective of a perturbative Type II brane setup. The abelian gauge group is associated

with a linear combination of curves, each of which carries a gauge group U(N) such that

the sum of the diagonal U(1) factors survives the geometric Stückelberg mechanism and

remains massless. Our results show that such a linear combination of curves can never

be shrinkable. This is a priori not completely obvious given that, for instance, shrinkable

curves of self-intersection (-1) in F-theory can well carry non-abelian gauge groups SU(N);

hence one might believe at first sight that they could team up, in the perturbative limit,

to form a U(1) gauge group as sketched above. The power of F-theory is to translate this

question directly into the property of a well-defined geometric object, the height pairing,

which can be studied systematically.

For pedagogical reasons we first discuss the non-decoupling of abelian gauge theories

in six-dimensional theories which do not exhibit any non-abelian gauge group factors in

subsection 3.1. As we will see, the absence of non-abelian gauge symmetry leads to a few

technical simplifications. The general six-dimensional case is then treated in subsection 3.2.
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For the reader’s convenience we review, in appendix A, the relation between U(1)A gauge

symmetries and the geometry of rational sections in F-theory.

3.1 U(1)s on a generalized del Pezzo base

Let us therefore consider F-theory compactified on a Calabi-Yau 3-fold Ŷ3 which is ellipti-

cally fibered over a complex 2-fold base B2 with projection

π : Ŷ3 → B2 . (3.1)

The effective action of this compactification is an N = (1, 0) supergravity theory in R1,5

whose gauge group3 we assume, for now, to be of the form

G =
r∏

A=1

U(1)A . (3.2)

The abelian gauge factors arise from the non-torsional rational sections of the fibration [5].

The reader not familiar with this concept is advised to jump now to appendix A for some

background and a self-contained derivation of the following facts: given a section sA and

its associated divisor SA = div(sA), one first defines the Shioda homomorphism

σ(sA) = SA − Z − π−1 (π∗((SA − Z) · Z)) ∈ H4(Ŷ3) , (3.3)

where Z denotes the zero-section of the elliptic fibration and the pushforward π∗ is defined

in (A.7). In the dual M-theory expanding the 3-form potential as C3 =
∑r

A=1A
A∧[σ(sA)]+

. . . gives rise to abelian gauge potentials AA which lift to the gauge potentials of the gauge

group factor U(1)A in F-theory. The gauge kinetic terms of the abelian gauge factors in

F-theory are given by

Skin = −2π

2
f̂AB

∫
R1,5

dAA ∧ ∗dAB , f̂AB =

∫
B2

J ∧ bAB , (3.4)

with J the Kähler form on the base B2. The object

bAB = −π∗(σ(sA) · σ(sB)) (3.5)

is known in arithmetic geometry as the height pairing of the section sA with sB and defines

a curve class on B2. Of special interest for us is the height pairing of sA with itself,

bA := bAA = −π∗(σ(sA) · σ(sA)) . (3.6)

As reviewed in appendix A.2, the height pairing can be evaluated as

bA = 2K̄ + 2π∗(SA · Z) , (3.7)

3We are only interested in the part of the gauge group from the 7-brane sector as these are the only ones

under which light matter can be charged. In addition, there can be abelian gauge group factors from what

in Type IIB language would be called the closed string or Ramond-Ramond sector, whose charged states

are wrapped branes which are always heavy.
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where K̄ = −K is the anti-canonical divisor of B2 and π∗(SA · Z) is the curve on B2 over

which the section SA and the zero-section Z meet in the fiber.

In the absence of kinetic mixing, the volume of the curve bA with respect to the Kähler

form J on B2 has the simple interpretation of determining the U(1)A gauge coupling

g−2A ∝ VolJ(bA) . (3.8)

Even though our geometric results for bA hold irrespective of the presence of kinetic

mixing, we shall henceforth restrict to this case. The decoupling criterion (2.30) then turns

into the contractibility criterion for each divisor bA described by the height pairing (3.6)

and (3.7). Since we are only interested in those base manifolds B2 over which an elliptically

fibered Calabi-Yau 3-fold exists, K̄ has to be an effective divisor. This is because every

elliptic fibration is birationally equivalent to a Weierstrass model

y2 = x3 + f x z4 + g z6 (3.9)

with [x : y : z] homogeneous coordinates on the fiber ambient space P2
231 and f ∈

H0(B2,O(4K̄)) and g ∈ H0(B2,O(6K̄)). Hence, in order for f and g to exist as holo-

morphic sections of the indicated line bundles O(4K̄) and O(4K̄), the divisor K̄ must

be effective. Moreover, the second term in the height pairing (3.7) is the divisor in the

base over which the two effective divisors SA and Z of Ŷ3 intersect. This locus defines

an algebraic curve, hence the divisor π∗(SA · Z) is also effective. We thus learn that the

height pairing bA is effective. Of course, in view of (3.8) this is required for consistency of

the effective action because g−2A must be strictly positive everywhere in the interior of the

Kähler cone of B2.

To study the contractibility of bA we recall the following fact: consider an effective

divisor

C =
∑
i

ciCi , ci ∈ Z≥0 , (3.10)

on a complex surface S with irreducible components Ci, each describing an effective curve;

then C is contractible if and only if the union of Ci is contractible to one or several points.

According to Mumford’s contractibility criterion [31], a necessary condition for the union

of irreducible curves Ci to contract to possibly several points is that the intersection matrix

of the curves be negative semi-definite:

{Ci} contractible ⇒ Iij := Ci · Cj
!
≤ 0 . (3.11)

In order for the union of irreducible curves Ci to be simultaneously contractible to a single

point, a necessary condition is Iij to be negative-definite.

To show that this criterion is violated by the height pairing (3.7), recall that in this sec-

tion we are assuming that the gauge group in F-theory is purely abelian. This assumption

has far-reaching consequences for the base B2: as studied in [32], if the base B2 contains

an irreducible curve C of self-intersection C · C = −n with n ≥ 3, then the fibers of the

Weierstrass model Y3 associated to Ŷ3 must necessarily degenerate over C in such a way

that Y3 is singular and C carries a non-abelian gauge group. This phenomenon has been
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dubbed ‘non-Higgsable cluster’ (NHC) because it is the geometric manifestation of the fact

that the non-abelian gauge symmetry from the minimal 7-brane stack wrapping C does not

allow for a Higgs branch along which the gauge group could be broken. Interestingly, the

only surfaces that do not have at least one curve of self-intersection C ·C = −3 or below are

the generalized del Pezzo or weak Fano surfacees, i.e. non-singular projective surfaces with

K̄ · K̄ > 0, K̄ · C ≥ 0 (3.12)

for every effective curve C [33]. Our assumption of absence of non-abelian gauge group

factors forces B2 to have only irreducible curves of self-intersection C · C ≥ −2 and hence

to be a generalized del Pezzo surface.

Then, given the decomposition of the anti-canonical divisor

K̄ =
∑
i

γi Σi , γi ∈ Z≥0 , (3.13)

into its irreducible components Σi, the intersection matrix Iij := Σi · Σj is not negative

semi-definite as ∑
i,j

γi Iij γj = K̄ · K̄ > 0 (3.14)

and hence K̄ is not contractible. Thus bA is the sum of two effective divisors as in (3.7),

at least one of which is not contractible. This shows that bA is not contractible.

3.2 Including non-abelian gauge groups in 6d

Let us now extend our analysis to a more general F-theory compactification to six dimen-

sions, with gauge group

G =

r∏
A=1

U(1)A ×
∏
κ

Gκ , (3.15)

where each Gκ represents a non-abelian simple Lie group. This leads to two types of

modifications: first, as we recall momentarily, the Shioda homomorphism and hence the

height pairing acquires additional contributions which at first sight complicate the analysis.

Second, the weak Fano condition (3.12) can no longer be assumed and in particular K̄ · K̄
can be, and in general is, negative. Nonetheless, we will show that K̄ cannot be contractible

and deduce from this that bA has the same property. Again, in the case of only a single

U(1)A this implies that U(1)A cannot survive as a gauge theory after decoupling gravity,

but the result on bA as such holds in general.

Let us first recall the well-known modifications of the Shioda homomorphism in the

presence of non-abelian gauge symmetry. The non-abelian gauge group factors are due

to stacks of in general mutually non-local [p, q] 7-branes, each wrapping an irreducible

component WI of the discriminant divisor of the elliptic fibration. In the presence of

such non-abelian gauge groups, one distinguishes between the singular Weierstrass model

Y3, (3.9), and its resolution Ŷ3. The vanishing locus of the discriminant polynomial

∆ = 4f3 + 27g2 (3.16)
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associated with the Weierstrass model describes a divisor Σ on B2, with irreducible com-

ponents Cκ. The Weierstrass model is singular in the fiber over Cκ and has a Calabi-Yau

resolution Ŷ3. The singular point in the fiber over Cκ is replaced by a chain of rational

curves, which form, together with the original fiber, the affine Dynkin diagram of the Lie

algebra gκ of Gκ. More precisely, resolving the singularities in the fiber of Cκ introduces

the resolution or Cartan divisors

Eiκ , iκ = 1, . . . , rk(gκ), (3.17)

on Ŷ3 which are generically P1-fibrations over Cκ with fiber P1
iκ

. The pullback of Cκ is of

the form

π−1(Cκ) =

rk(gκ)∑
iκ=0

aiκ Eiκ (3.18)

with aiκ the comarks of the affine Dynkin diagram (and a0κ = 1). The divisor E0κ is

likewise generically rationally fibered with fiber P1
0κ . This rational curve is distinguished

by the fact that it is intersected by the zero-section divisor Z.

We will review in appendix A.3 that, in order to give rise to a properly normalised

U(1)A gauge group factor, the Shioda map σ(sA) is required to satisfy the extra condition

σ(sA) · P1
iκ = 0 , iκ = 1, . . . , rk(gκ) . (3.19)

This can always be achieved by modifying the expression (3.3) into

σ(sA) = SA − Z − π−1(π∗((SA − Z) · Z)) +
∑
κ

∑
iκ

`iκAEiκ , (3.20)

where the coefficients `iκA ∈ Q can be found in (A.29).

Now, if we compute the height pairing for (3.20), the correction terms will lead to

an expression involving effective divisor classes, but in general with positive and negative

coefficients. While the total class of the height pairing is still effective, this has a serious

drawback for us: given an effective divisor class δ presented, say, as the difference of two

effective divisor classes, δ = α− β, we cannot show that the class δ is non-contractible by

showing that one of the two classes α or β is non-contractible. This is possible only if we

have a decomposition for a sum of two effective divisors.

The way out is the observation that we may still find an alternative expression for

the Shioda homomorphism without any contributions from Ejκ . This expression can be

obtained by making use of the following theorem: for each discriminant component Cκ and

gauge group factor Gκ, there exists a finite integer mκ for which the image point of the

section mκ sA, i.e. the multiple of sA in MW (π), lies in the affine component P1
0κ of the

generic fiber over Cκ. Put differently, the divisor associated with mκsA has the intersection

numbers

div(mκ sA) · P1
0κ = 1, div(mκ sA) · P1

iκ = 0 ∀ iκ ∈ {1, . . . , rk(gκ)} . (3.21)
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Mathematically this is a consequence of the following beautiful fact in arithmetic geometry,

proven by Kodaira [9] and Néron [10] for elliptically fibered surfaces: the notion of addition

of points on the general elliptic fiber can be extended to the degenerate, reducible fibers

of Ŷ3 over Cκ. The set of sections lying in the affine component of the degenerate fiber

over Cκ form a subgroup MW (π)0,κ of the Mordell-Weil group, and MW (π)/MW (π)0,κ
is a group of finite order mκ. In extending this statement to elliptically fibered varieties of

higher dimension, only two changes occur: first, due to monodromies along Cκ the global

structure of the fiber may change compared to the local generic fiber over Cκ. In this case

the gauge algebra is a non-simply laced subalgebra g̃κ of the algebra gκ associated with

the local fiber, and the relevant order satisfies m̃κ ≤ mκ. Second, the fiber type changes

in codimension-one and more along Cκ. This, however, is of no relevance for the behavior

of the section over generic points of Cκ and hence for the intersection numbers (3.21).

As a result, for a given elliptic fibration Ŷ3 there exists a finite integer m such that

the section msA lies in the affine component of the generic fiber over every discriminant

component Cκ, or

∀κ : div(msA) · P1
0κ = 1, div(msA) · P1

iκ = 0 ∀ iκ ∈ {1, . . . , rk(gκ)} . (3.22)

Using that the Shioda map is a homorphism, this implies that

mσ(sA) = σ(msA) (3.23)

= div(msA)− Z − π−1(π∗((div(msA)− Z) · Z)) (3.24)

without the necessity of extra correction terms to implement the analogue of (3.19). The

height pairing bA can then be expressed as

bA = −π∗ (σ(sA) · σ(sA)) =
1

m2
(2K̄ + 2π∗(div(msA) · Z)) . (3.25)

The expression in brackets is still a sum of two effective divisor classes,4 for the same

reasons as in section 3.1. Hence we can again show that bA is not contractible by showing

that K̄ is not contractible. A second complication compared to the procedure of the

previous section occurs because in the presence of non-abelian gauge group factors, the

base surface is not necessarily of the generalized del Pezzo type; therefore we can no longer

use that K̄ · K̄ > 0 to show non-contractibility of K̄. In the context of F-theory vacua,

however, we can still prove that K̄ is not contractible as follows. First, we will argue that

if K̄ were contractible at finite distance in moduli space, it would, loosely speaking, not

contain any 1-cycles. And then we will see that this is at odds with its property of being

the anti-canonical divisor of a surface.

In general, K̄ is a reducible divisor. Consider therefore a curve C =
∑

i γiCi with

irreducible curve components Ci. The requirement that a surface B2 serves as the base of

4Recall that K̄ has to be effective for there to exist an F-theory model over the base B2. Furthermore,

the pushforward of the intersection of two sections is also effective as long as the two sections are distinct.

The only exception to the latter is when msA = 0, in which case div(msA) · Z = −K̄, leading to bA = 0.

However, in this case, sA is a torsional section and does not give rise to an abelian gauge group in the first

place [34–36].

– 16 –



J
H
E
P
1
1
(
2
0
1
8
)
1
4
7

an elliptic Calabi-Yau fibration Y3 severely restricts the type of contractible curves C, as

classified in [12]. The classification proceeds in two steps: suppose C is contractible. If

C contains some curve components of self-intersection Ck · Ck = −1, called (−1)-curves,

contract these to points. If we denote the surface obtained by contraction of the (−1)-curve

components of C by B2,1, then the contraction defines a map

ρ : B2 → B2,1 . (3.26)

A (−1)-curve on a complex surface has the special property that its contraction does not

lead to any singularities; hence B2,1 is smooth. The remaining set of curves is called in [12]

‘endpoint’ configuration Cend ⊂ B2,1,

ρ−1(Cend) = C . (3.27)

The main theorem is then that contraction of Cend on B2,1 to a point p, in a manner

compatible with the existence of a Calabi-Yau Weierstrass model Y3 over B2, leads to a

singularity of the local form C2/Γ with Γ a discrete subgroup of U(2). In other words the

contraction of Cend to a point p defines a map

ψ : B2,1 → B2,2, ψ−1(p) = Cend , (3.28)

such that there exists a local neighbourhood Up of p of the form

Up ' C2/Γ, Γ ⊂ U(2) . (3.29)

The restriction to an orbifold of this type is due to the fact that the original surface B2 is

required, by assumption, to support an elliptic fibration Y3 → B2. This implies in particular

that none of the curves in the contractible set C must be of self-intersection Cl ·Cl < −12

as otherwise the sections f and g defining the associated Weierstrass model would vanish

to order ≥ 4 and ≥ 6. Inspection of all possible contractible curve configurations Cend

compatible with the existence of a Weierstrass model then shows that upon contraction

they give rise to a singularity of the form (3.29) [12].

This has the following consequences for us: an orbifold singularity of a surface of the

above type is an at worst canonical singularity (see e.g. [37]). Recall that given a resolution

f : X̂ → X (3.30)

of a singularity at p ∈ X one defines the exceptional set as the locus on X̂ along which

X and f−1(X) differ. If we denote by Ei the strata of the codimension-one exceptional

set, the canonical bundles of both spaces compare as KX̂ = KX +
∑

i aiEi with ai the

discrepancies. The singularity is called at worst canonical if ai ≥ 0 for all i, and at worst

terminal if ai > 0 for all i. Now, canonical (and in particular terminal) singularities have

the property of being rational. Intuitively, this means that the exceptional locus in the

blow-up of the singularity carries no cohomologically non-trivial (i, 0)-forms for i > 0. This

is formalized by stating that given a rational singularity of a variety X at a point p with

resolution (3.30), the so-called right-derived functor sheaf vanishes

Rif∗OX̂ = 0, i > 0 , (3.31)
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in a neighborhood Up of p. Here, Rif∗OX̂ is locally represented by the pre-sheaf on X

that associates to an open set Up the cohomology group H i(f−1(Up),O). In particular

the stalk at the singular point p on X is given by H i(f−1(p),O). The locus f−1(p) is in

turn precisely the exceptional locus of the resolution X̂, whose blow-down gives rise to the

singularity on X.

Applied to the resolution (3.28), this shows that

H i(Cend,O) = 0, i > 0. (3.32)

Ultimately, we are not interested in Cend, but rather the original curve configuration C.

To this end, we reiterate that B2,1 obtained by the contraction of the (−1)-curves in C

is smooth. A smooth point of a complex surface is an at worst terminal singularity and

therefore again rational. Therefore we can apply (3.31) to the contraction map (3.26) and

conclude

H i(C,O) = 0, i > 0 . (3.33)

Suppose now that K̄ is contractible on the base B2. This implies H1(K̄,O) = 0, and

what remains is to argue that this is in contradiction with K̄ being the anti-canonical

divisor of B2. To this end we invoke the Riemann-Roch theorem for an arbitrary curve C

embedded in the surface B2,

(K + C) · C = 2pa(C)− 2 . (3.34)

The arithmetic genus pa(C) is given as

pa(C) = 1− h0(C,OC) + h1(C,OC) . (3.35)

For a smooth and irreducible curve C, the arithmetic genus pa(C) equals the geometric

genus g(C), but more generally it is pa(C) which is well-defined for an arbitrary curve C;

likewise (3.34) holds even for singular or reducible curves.

Upon applying eq. (3.34) to the anti-canonical divisor C = K̄, we immediately see that

pa(K̄) = 1 . (3.36)

If K̄ is smooth and irreducible, this reduces to the well-known statement that the anti-

canonical divisor has (geometric) genus one, as expected because by adjunction c1(K̄) = 0.

But in general K̄ is reducible and in particular non-smooth, and in such a situation the

correct statement is (3.36). In any event, if K̄ were contractible and hence H1(K̄,O) = 0,

then the arithmetic genus of K̄ would have to obey

pa(K̄) = 1− h0(K̄,O) + h1(K̄,O) = 1− h0(K̄,O) ≤ 0 , (3.37)

which contradicts eq. (3.36). This proof holds in full generality, even if the height-pairing

is singular or reducible.

This concludes our geometric proof that the height pairing bA is not contractible even

for a general surface base B2 for F-theory models, whether or not there exist non-abelian

gauge group factors.
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4 6d SCFTs with abelian flavour symmetries

As mentioned already in section 2.3, the proper way to realize the decoupling limit in

F-theory is to take the volume of the base to infinity while keeping some of the curves

wrapped by non-abelian 7-brane stacks of finite size. The gauge theories obtained after

this first operation are expected to flow to a non-trivial N = (1, 0) SCFT if we further

shrink, in a second step, the wrapped curves to zero volume within the non-compact base.

In this sense, the field theory arising after step one is typically viewed as an SCFT on

its tensor branch in the literature. We have shown that upon decoupling gravity from a

compact F-theory model, ’t Hooft anomalies arise for the abelian global symmetries while

the ABJ anomalies are absent. This implies that the abelian symmetry survives as a

flavour symmetry of the field theory arising after step one. The anomaly polynomial for

the ’t Hooft anomalies of these flavour symmetries is an important characteristic feature

of the theory. It is furthermore expected that the abelian flavour symmetries which arise

after step one persist as non-trivial abelian flavour symmetries of the interacting SCFT.

Since moving into the tensor branch only breaks conformal invariance, we may compute

the ’t Hooft anomaly polynomial of the SCFT on the tensor branch [38, 39].

A systematic construction of such SCFTs with abelian flavour symmetry along the

tensor branch within F-theory involves several aspects, the first two of which have already

been accomplished:

1. Classify the possible configurations of shrinkable curves in a local F-theory base.

These are the curves which can support non-trivial gauge symmetries in the limit

of decoupling gravity after step one. This has been accomplished in [12], which has

shown that all such curve configurations are the blowup of a C2/Γ singularity for

Γ ⊂ U(2) a discrete subgroup. Note that the classification is local in the sense that it

is not guaranteed (nor required) that each such configuration has an embedding into

a compact F-theory base. In particular, the list of local curve configurations includes

infinite chains.

To each of these curve configurations one associates a minimal gauge group, which

is the gauge group that cannot be higgsed any further [32]. These minimal gauge

theories contain, by definition, no charged hypermultiplets, which would open up a

Higgs branch, but at best half-hypermultiplets in pseudo-real representations. Geo-

metrically the half-hypermutliplets sit at fixed, separate locations of the curve con-

figuration. Such minimal models cannot be decorated by abelian flavour symme-

tries in a non-trivial way without changing the non-abelian gauge symmetries as

only full hypermutliplets can occur in a complex representation and hence acquire a

U(1)F charge.5

5In the minimal models it is also not possible to pair up half-hypermultiplets located at different points

into full hypermultiplets. Pairing up, say, two half-hypermultiplets in a pseudo-real representation into a

full hyper is equivalent to viewing the two half-hypers as transforming as a 2 of a global so(2)F , which

shows that they can acquire U(1) charge.
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2. Classify the possible non-abelian gauge enhancements of the minimal gauge theo-

ries. This has been achieved in [14]. The list includes for instance theories on single

shrinkable curves and their non-abelian enhancements, and a number of chains of

curves together with their possible non-abelian gauge enhancements and the result-

ing charged matter. Again, a necessary condition to decorate these models with

abelian flavour symmetries is the existence of matter hypermultiplets. (This includes

the appearance of more than one half-hypermutliplet in a given pseudo-real represen-

tation of the non-abelian gauge group, which can acquire charge if the position of the

half-hypers can be tuned to coincide such that they pair up to full hypermultiplets.)

Before coming now to the possible abelian flavour symmetries in this list of models, let

us first recall the status of non-abelian global symmetries. We must distinguish between

two different notions of such symmetries.

• The field theoretic non-abelian global symmetry on the tensor branch can be read off

directly from the spectrum: this part of the global symmetry is su(N) acting on N

hypermultiplets in a complex representation of the gauge group, so(2N) acting on N

such hypers in a quaternionic representation and sp(N) acting on N hypermultiplets

in a real representation (see e.g. [40]). Strictly speaking one should distinguish be-

tween the global symmetry along the tensor branch and in the SCFT. According to

the general lore, moving onto the tensor branch of an SCFT only breaks conformal

symmetry. To our understanding, it is only in one case that the above ‘naive’ non-

abelian global symmetry along the tensor branch is known to differ from the latter,

where an so(7) at the SCFT point is enhanced to so(8) along the tensor branch [41]

(see also the discussion in [18, 40]). Similarly, the symmetry along the tensor branch

can in principle enhance at the SCFT point. Both effects are very subtle and their

thorough investigation is beyond the scope of this work. In this article, what we com-

pute is the flavour symmetry on the tensor branch. This agrees with the symmetry

at the SCFT point only if no non-perturbative breaking or enhancement occurs.

• The field theoretic non-abelian global symmetry is to be distinguished from the non-

abelian part of the geometrically realised global symmetry in an F-theory realisation.

The latter is determined by constructing the maximal gauge group on a non-compact

component of the discriminant intersecting the compact gauge curve at the location

of the hypermultiplets of a given representation [40].6

In all examples studied in the literature, the maximal non-abelian geometric global sym-

metry is contained in the field theoretic one [18, 40]. This is also plausible from a geomet-

ric perspective: the distinction between various configurations in F-theory with different

flavour groups is due to different intersection patterns of the discriminant with the 7-brane

6In a generic F-theory model realising the gauge symmetry, it might be that this global symmetry is

(partially) broken because the residual part of the discriminant intersects the curve in distinct points.

The question is then which maximal enhancement of the global symmetry group is possible by tuning the

Weierstrass model without changing the gauge group. The maximally tunable model then determines the

geometric non-abelian global symmetry.
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carrying the gauge theory. In the limit of shrinking curve volume these intersection points

coincide and the difference between the individual configurations is washed out.

Note that, starting from a theory with a certain field theoretic global symmetry, a

new theory can be constructed by allowing for T-brane data characterized by nilpotent

orbits within the global symmetry group [18]. This corresponds to a Higgsing process

which changes in general both the global and the gauge symmetry. The non-abelian global

symmetries obtained as a result of this operation matched, in all examples studied in [18],

the non-abelian part of the global field theoretic symmetry. In addition, it gives rise

to abelian global symmetries, but the charges of the fields under this symmetry are not

determined in [18] and the geometric origin is not worked out.

Compared to the global field theoretic symmetries as determined via the rule above

(su(N) versus so(2N) versus sp(N)) abelian global symmetries are a new feature. As the

simplest example consider the case of a single hypermultiplet in a complex representation.

The ‘non-abelian’ global symmetry is su(1), which is trivial at the continuous level, but

clearly this does not preclude the possibility of the hypermutliplet carrying in addition

charge with respect to a global U(1)F symmetry. We will in fact construct explicit examples

of this kind in subsection 4.1 and subsection 4.3. Similar types of charge assignments are

possible enhancing for instance su(N) to su(N) ⊕ u(1)F for N > 1. A priori, the abelian

flavour factors we obtain in these F-theory examples classify as geometrically realized

symmetries in the above sense. The question is then what are the maximally possible

geometric symmetries that can be engineered in this way, and which field theory global

symmetry do they correspond to. More precisely, we are focusing in this work on those

flavour symmetries which can be detected via their action on the 6d hypermultiplet sector.

We will make a proposal for their form in subsection 4.2.

Recently, [19] has constructed examples of N = (2, 0) sectors on shrinkable curves on

compact bases which carry charges under discrete and abelian gauge symmetries. These

theories hence flow to N = (2, 0) conformal matter sectors with abelian flavour charges.7

In this section, we will present two examples of a top-down construction and one example

of a possible bottom-up approach to study N = (1, 0) SCFTs on their tensor branch with

U(1)F flavour. In the first approach we start with a compact base containing one (sub-

section 4.1) or several (subsection 4.3) shrinkable curves and engineer a non-abelian gauge

group over them together with a gauge symmetry U(1)A. We then take the decoupling

limit and compute the ’t Hooft anomalies first from a purely field theoretic perspective.

This generalizes the method of [38] by the inclusion of abelian flavour symmetries. The

resulting anomaly polynomial agrees with the anomaly polynomial of the compact model

upon discarding the contribution from the decoupled fields. This illustrates our general

results of section 2.2 and exemplifies explicitly the absence of ABJ anomalies for the flavour

symmetry. In subsection 4.2 we identify the field theoretic origin of the geometrically real-

ized U(1)s of subsection 4.1 as an anomaly-free linear combination of massive diagonal and

Cartan flavour U(1)s and state the expected field theoretic form of the flavour symmetry.

7We notice that, despite their name, these theories actually have (1, 0) supersymmetry. The name stems

from the fact that the shrinkable curves have self-intersection −2, and in absence of further tunings this

theory would flow to a (2, 0) SCFT.
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We also present a proposal to generalize this reasoning and support it with another exam-

ple. Importantly, these considerations result in a general recipe to determine the flavour

U(1)s in a purely local fashion, which is independent of a potential global completion of the

model. In the bottom-up approach of subsection 4.4 we start with one of the local curve

configurations of [14] with enhanced gauge symmetry and then constrain the possible global

completions of this model under certain assumptions.

4.1 Global model with T = 1

As our first example, let us consider the del Pezzo surface B2 = dP1 as the base manifold,

which is obtained by blowing up P2 at a point. The cohomology H1,1(B2,Z) ' Z2 is

spanned by the curve classes [Cα] for Cα=0,1 = L,E, where L is a hyperplane of P2 and E

is the exceptional divisor. The curves Cα have the intersection matrix

Ωαβ ≡ Cα · Cβ =

(
1 0

0 −1

)
(4.1)

and the anti-canonical class of B2 is given by[
K̄
]

= 3 [L]− [E] . (4.2)

The curve C1 is hence an example of an isolated (−1)-curve. The minimal gauge

configuration over such a curve is the trivial one [32], but the restriction of the elliptic

fibration to C1 is non-trivial and necessarily degenerates at the twelve intersection points

of the discriminant ∆ with C1 (because [∆] = 12
[
K̄
]

and K̄ ·C1 = 1). If the volume of C1

is taken to zero after decoupling gravity, the theory flows to the N = (1, 0) E-string SCFT.

This theory possesses no charged 6d hypermultiplets because the (−1) curve is not wrapped

by a 7-brane, but it nonetheless exhibits an E8 flavour symmetry in the SCFT limit acting

on the modes of the tensionless string [5, 42–45]. In the sequel, we will be focussing only on

the flavour symmetry to the extent that it is detectable in the 6d hypermultiplet sector.8

The appearance of such flavour symmetry requires an enhancement of the gauge theory

along the (−1) curve.

The possible gauge enhancements of this theory follow already from anomaly can-

cellation and are in fact listed in [18]. As a simple example we begin with an SU(N)

enhancement for N = 5 and augment it by a U(1) gauge symmetry over the compact

base B2.
9 In this section, we will study the resulting U(1) first from the perspective of

the compact geometry and then discuss the decoupling limit. This illustrates the abstract

discussion of section 2. An interpretation of the U(1) from the more general field theory

perspective outlined at the beginning of this section will be given in subsection 4.2.

8In particular, the sector acting on the tensionless string modes may contain abelian factors e.g. if the

particular configuration breaks the E8 flavour to a subgroup with a U(1) commutant [18] (see also [45]).

We do not consider these in our work.
9Our motivation to choose the gauge algebra su(5) is because this is the simplest example over a (−1)

curve in which the theory contains a complex representation with only a single hypermuliplet, see (4.10).

This will be of some heuristic value in the next section.

– 22 –



J
H
E
P
1
1
(
2
0
1
8
)
1
4
7

The simplest realisation of a Weierstrass fibration with a single U(1) is given by the

U(1) restricted Tate model [6], which corresponds to a fibration in Tate form

y2 + a1xyz + a3yz
3 = a2x

2z2 + a4xz
4 + a6z

6 , (4.3)

with a6 = 0. Here the fiber coordinates [x : y : z] are homogenous coordinates of P2
231 and

am are global sections of the line bundle OB2(mK̄). The extra section sA sits at [0 : 0 : 1]

and intersects the singularity in the I2 fiber over {a3 = 0} ∩ {a4 = 0}. Resolving this

singularity leads to a toric blow-up divisor SA which is identified with the section divisor

div(sA). The inclusion of non-abelian gauge algebras is possible by restricting the am
following Tate’s algorithm [46]. Ignoring the U(1) for a second, we engineer a non-abelian

gauge algebra SU(5) to be supported on the (−1)-curve

C1 : su(5) (4.4)

by setting a2 = a2,1w, a3 = a3,2w
2, a4 = a4,3w

3, a6 = a6,5w
5 with C1 = {w = 0}, followed

by a resolution of the I5 singularity in fiber over w = 0 [47]. The discriminant of the

Weierstrass model takes the form

∆ =
1

16
w5
(
a41 P +O(w)

)
P = a2,1a

2
3,2 − a1a3,2a4,3 + a21a6,5 . (4.5)

Setting a6,5 = 0 engineers an extra U(1) gauge group factor and leads to a factorization of

the polynomial P as a3,2(a2,1a3,2 − a1a4,3).
The non-abelian anomaly coefficient is

bsu(5) = (0, 1) , (4.6)

where [Cα]α=0,1 have been used as the basis elements of H1,1(B2,Z). Since in the current

model SA ·Z = 0 and π∗(SA ·Ei) = δi3C1 with Ei the su(5) resolution divisors, the height

pairing for U(1)A is readily computed as

bA = 2K̄ − 6

5
C1 =

(
6,−16

5

)
. (4.7)

There are three types of su(5) charged matter fields, localized at the intersection of C1 with

the curve {a3,2 = 0}, {a2,1a3,2 − a1a4,3 = 0} and {a1 = 0} in the base. Their respective

charges [47] and multiplicities are

53/5 : C1 · (3K̄ − 2C1) = 5 , (4.8)

5−2/5 : C1 · (5K̄ − 3C1) = 8 , (4.9)

101/5 : C1 · K̄ = 1 , (4.10)

11 : (4K̄ − 3C1) · (3K̄ − 2C1) = 73 . (4.11)

Finally, there arise 121 neutral hypermultiplets away from C1 at points where a4,3=0 and

a3,2 = 0 that are not charged under the non-abelian group G nor the U(1)A.

One can check that this spectrum is anomaly-free before taking the decoupling limit.

Upon decoupling gravity, we may compute the anomaly polynomial of the resulting theory
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by discarding the contribution of the gravity multiplet together with the abelian vector and

the hypermultiplets that are uncharged under the non-abelian gauge group. The one-loop

anomaly due to the remaining multiplets is described by the anomaly polynomial

Ione-loop|local = Itensor + Ivector + Ihyper

with

Itensor =
29

5760

(
trR4 +

5

4
(trR2)2

)
− 1

128
(trR2)2 (4.12)

Ivector = IvectorSU(5)

= − 24

5760

(
trR4 +

5

4
(trR2)2

)
− 1

24

(
10 trF 4

G + 6(trF 2
G)2
)

+
10

96
trF 2

GtrR2 (4.13)

Ihyper = 5Ihyper53/5
+ 8Ihyper5−2/5

+ Ihyper101/5

=
75

5760

(
trR4 +

5

4
(trR2)2

)
+

1

24

(
10trF 4

G + 3(trF 2
G)2 +

480

25
trF 2

GF
2
A +

107

25
F 4
A

)
− 1

96

(
16trF 2

G +
395

25
F 2
A

)
trR2 . (4.14)

FG and FA denote the non-abelian and abelian field strengths, respectively, and the expres-

sions follow from the general anomaly polynomials collected in appendix B. We stress that

the above expression is valid in the decoupling limit, where FA and R are only background

fields, while FG is dynamical.

The GS contribution is uniquely determined by requiring the theory to be free of all

anomalies involving the non-abelian gauge field, which yields

IGS|local =
1

8

(
trF 2

G +
1

4
trR2 − 16

5
F 2
A

)2

. (4.15)

This is analogous to the procedure in [38], which however did not consider the possibility

of abelian flavour symmetries.

As we now show, the same GS contribution can be obtained purely from the F-theory

geometry following the general discussion of section 2. Indeed, upon decoupling gravity we

may compute the GS term in the anomaly polynomial by using (2.8) and (2.7) once we

discard the contribution due to the tensor in the gravity multiplet since it decouples. This

limit is obtained by taking j1 → 0 and j0 → 1 which shrinks the (−1)-curve keeping the

total volume fixed. In this particular limit, the duality matrix (2.15) reduces to

D(j) =

(
2(j0)2 − 1 −2j0j1

2j0j1 −2(j1)2 − 1

)
→

(
1 0

0 −1

)
. (4.16)

This means that the tensor in the gravity multiplet, which is self-dual, is along the direction

of j = (1, 0) in the decoupling limit. Similarly, the anti-self-dual tensor which remains in

the SCFT is along bsu(5) = (0, 1). Thus, in order to remove the contribution due to the
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gravity multiplet, we simply replace the anomaly coefficients a = K and bA entering the

GS counterterms via (2.8) and (2.7) as in

a = (−3, 1)→ a‖ = (0, 1) (4.17)

bA =

(
6,−16

5

)
→ bA‖ =

(
0,−16

5

)
. (4.18)

Using these projections along bsu(5) as the new values for a and bA in (2.8) and (2.7) we do

indeed reproduce (4.15), hence deriving the absence of gauge anomalies even after taking

the decoupling limit.

The total anomaly polynomial after decoupling gravity is therefore

Itot|local = (Ione-loop + IGS)|local

=
1

72

(
trR4 +

5

4
(trR2)2

)
+

35

24
F 4
A −

35

96
F 2
AtrR2 . (4.19)

It describes the ’t Hooft anomalies of the SU(5) gauge theory with U(1)F = U(1)A flavour

symmetry after the decoupling.

4.2 Field theoretic interpretation and general pattern

We will now understand the abelian flavour symmetry found in the previous model in

more detail from a field theoretic perspective. This understanding will eventually lead to

a general procedure to determine the abelian flavour symmetry in a purely local manner,

independently of the global completions of the model.

Consider first a generic Tate model realising the G = su(5) gauge algebra over C1 by

setting a6 = a6,5w
5, a6,5 6= 0. There are 13 hypermultiplets in the 5 representation of G,

located at the 13 zeroes of the polynomial P in (4.5) along w = 0. For generic values of the

moduli, these 13 points are distinct and the manifest geometrically realized non-abelian

flavour symmetry is trivial. However, at special values of the complex structure moduli

the non-abelian flavour group as realized in the F-theory model can be enhanced up to the

maximal geometrically realizable non-abelian group SU(13), in which case in particular

all of the N = 13 5-hypermultiplets localize at the same point on C1. This matches

with field theoretic expectation for the non-abelian part of the flavour group, which is

SU(13)×SU(1) ≡ SU(13), acting on the N = 13 hypermultiplets in the 5 representation of

G, while the 10 is an SU(13) singlet. In particular this is in agreement with the observation

of [18, 40] that in any given F-theory realisation, the maximal geometrically realised flavour

group is contained in the field theoretic one.

The fact that the 10 hypermultiplet is an SU(13) singlet makes it particularly obvious

that the abelian U(1)A factor found by setting a6 = 0 cannot be embedded into this non-

abelian SU(13) flavour group (see footnote 9). We conclude that the rule of assigning to N

complex hypermultiplets a flavour symmetry factor SU(N) misses this possibility of extra

abelian flavour symmetries.

The mismatch can be remedied by noting that a priori in field theory N hypermultiplets

should be acted on by a flavour group U(N) rather than SU(N). This would give a field
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theoretic flavour group, in the generic model with a6 6= 0, of the form10

G
(trial)
F,gen = [SU(13)×U(1)a]×U(1)b , (4.20)

and we would assemble the spectrum in representations

(13(1,0),5), (1(0,1),10) . (4.21)

However, the two diagonal U(1)a and U(1)b factors by themselves have a 1-loop mixed

U(1)i − SU(5)3 anomaly, which is proportional to

A1-loop
U(1)A−G3

κ
=
∑
I

Mκ
I E

I
κ qIA , (4.22)

where Mκ
I gives the multiplicities of the charged hypermultiplets in representation RI of

the non-abelian gauge group Gκ with U(1)A charge qIA. In a compact brane construc-

tion in Type IIB language, this anomaly is cancelled by a version of the Green-Schwarz

mechanism different from the one considered in the rest of this article: it is associated

with the non-trivial gauging of the axionic scalars obtained from the RR 2-form C2 rather

than from C4. As a result, the gauge bosons associated with the two diagonal factors

U(1)a and U(1)b both acquire a mass via a geometric Stückelberg mechanism (as do the

involved axions), as detailed in the context of four-dimensional F-theory compactifications

in [17]. In F-theory language the diagonal U(1) gauge bosons are realized in terms of

non-harmonic two-forms [17, 48], as opposed to the harmonic two-forms due to rational

sections of the fibration. This makes their quantitative analysis rather involved. In Type

IIB compactifications such massive U(1)s appear as perturbative global symmetries, which

are broken non-perturbatively: the relevant effects are D-brane instantons [49–51] carrying

D1-charge [52, 53]. They break the massive U(1) either completely or to a discrete sub-

group Zk with k > 1 [54, 55].11 The first case is in fact a special instance of a Zk symmetry

with k = 1, but it does not correspond to a global symmetry once brane instanton effects

are taken into account.

While the non-perturbative breaking of the massive U(1) has been primarily studied

in string compactifications to four dimensions, the same logic applies in 6d. Hence, as far

as continuous global symmetries are concerned, we can ignore all combinations of potential

abelian flavour symmetries for which (4.22) is non-vanishing. On the other hand, they are

expected to play a role for discrete global symmetries, possibly even of the type considered

recently in the context of 6d SCFT in [19].

To come back to our example, even though U(1)a and U(1)b are anomalous by them-

selves, a suitable linear combination can remain free of the mixed cubic anomaly. For the

10We are ignoring here the global structure of the group, writing for simplicity U(13) = SU(13) × U(1)a.
11The latter is automatically free of anomalies. The non-trivial Zk, k > 1, remnant survives theoretically

as a global discrete symmetry and geometrically, in F-theory, in the form of torsion homology in the

elliptic fibration [54, 56]. F-theory compactifications with discrete symmetries have been studied intensively,

beginning with [20, 56–63].
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charge assignments (4.21) the generator associated with this anomaly-free linear combina-

tion is

Tm = − 1

13
Ta + Tb . (4.23)

Absence of mixed cubic anomaly is a necessary condition for the linear combination to

remain as a massless gauge symmetry in a global F-theory model [64, 65]. On the other

hand it is necessary and sufficient in order for the combination, upon decoupling gravity,

to become an exact global symmetry. Indeed, in absence of a mixed cubic anomaly, the

only potential ABJ anomaly to be cancelled is the mixed quadratic one. As our analysis

of section 2 shows, this anomaly can always be cancelled already in terms of the tensor

multiplets which survive the field theory limit. Whether or not the U(1) then survives as a

gauge symmetry is a different question which can only be answered for a global completion

of the model. Depending on the details of this global completion a mass term for the

U(1) may or may not arise even though it is anomaly free in the local field theory limit.

Knowledge of such a global completion is, however, not required to determine the flavour

symmetries in the local limit. A possible relation between abelian flavour symmetries in

6d SCFTs and massive U(1)s has also been mentioned generally in [18].

In a given F-theory realisation this linear combination of U(1)a and U(1)b can receive

an admixture from a Cartan U(1)c within the maximal possible non-abelian flavour group

- here SU(13). In the present example, such an interpretation is indeed possible. In fact,

the naive non-abelian flavour symmetry that is suggested by the charges (4.8)–(4.10) is not

the full SU(13), but only an SU(8) × SU(5) subgroup. If we consider the branching

SU(13)→ SU(5)× SU(8)×U(1)c (4.24)

13→ (5,1)8 ⊕ (1,8)−5 (4.25)

1→ (1,1)0 (4.26)

then the charge assignments (4.8)–(4.10) can be understood by identifying the generator

of the flavour group U(1)F = U(1)A with the linear combination

TF =
1

5
Tm +

1

13
Tc . (4.27)

This admixture of the Cartan U(1)c obscures the true nature of the abelian flavour

symmetry. Being a Cartan of the maximal possible non-abelian flavour symmetry, U(1)c
is free not only of the cubic ABJ anomaly, but also of the quadratic ABJ anomaly, whose

1-loop piece is cancelled by the conventional GS mechanism. Furthermore, the mixed

U(1)c − U(1)m − SU(5)2 ABJ anomalies vanish at the 1-loop level, as does the associated

GS term. Therefore the fact that both U(1)c and U(1)F are free of all ABJ anomalies

ensures that also U(1)m is free of ABJ anomalies in the local limit.

The realisation of the global F-theory model as a U(1) restricted Tate model is only a

special case of the more general Morrison-Park model [8], which in principle allows for very

different charge assignments [24, 66–68]. Had we started with one of these, the abelian

gauge symmetry in the compact model, as far as their action of the su(5) charged matter
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is concerned, would be a linear combination of Tm and a different Cartan U(1)c within

SU(13). Locally, after decoupling gravity, all these models become indistinguishable, as

we will elaborate on in more detail below. This shows that the maximal possible global

symmetry in field theory is

GF = SU(13)×U(1)m . (4.28)

Note that we do not have an example of a globally defined fibration in which the

U(1)m is guaranteed to survive as a massless U(1) gauge symmetry.12 Fortunately, this is

not required to support the proposal (4.28). To appreciate this, consider again the most

generic su(5) Tate model by taking a6,5 6= 0. Globally this model does not support a

massless gauge U(1). But as is well known, we can view this model as a U(1) restricted

model after Higgsing the U(1)A. The Higgsing occurs as a conifold transition at the points

a3,2 = a4,3 = 0 away from the su(5) curve. This is the locus of the charged su(5) singlets,

which act as the Higgs fields. In the decoupling limit the information about whether or

not the Higgsing has been performed is not available any more because the singlets are

decoupled from the su(5) field theory. Geometrically, they are infinitely far away after

scaling up the directions normal to the compact curve C1. A finite non-zero vacuum

expectation value of the Higgs fields, which breaks the U(1)A as a gauge symmetry, is

washed out from the perspective of the su(5) field theory in the decoupling limit. One

can phrase the same phenomenon geometrically: the extra section of the U(1) restricted

Tate model at [x : y : z] = [0 : 0 : 1] continues to exist locally in the vicinity of the

curve C1 at w = 0 even after deforming the model by letting a6,5 6= 0. Globally, this

destroys the rational section due to the appearance of branch cuts originating at the locus

a3,2 = a4,3 = 0, but locally and away from this branching locus the model is unaffected by

the deformation. In this sense, even the most generic su(5) Tate model gives rise to a U(1)

flavour symmetry after decoupling gravity - albeit one that cannot be extended globally.

Combined with the fact that in the generic Tate model, the global non-abelian symmetry

SU(13) can be attained, this supports our claim.

Let us present another example illustrating this point, in which in fact no admixture of

a flavour Cartan symmetry to the flavour symmetry occurs even at the level of the globally

extended model. To this end, we realize the gauge algebra e6 along the (−1) curve C1.

Anomaly cancellation implies N = 5 hypermultiplets in the 27. The maximal non-abelian

flavour symmetry, including a potential diagonal U(1), is hence

GF = U(5) = SU(5)×U(1)a . (4.29)

Since tr27F
3 = 0, the diagonal U(1)a is free of the mixed cubic anomaly (4.22) and has

therefore a chance to survive even by itself as a massless gauge symmetry in a compact

model. This is confirmed by an explicit geometric analysis: to stay in the example of

12Interestingly, the required combination of charges qm = −1 for 5 and qm = 13 for 10 does appear in the

list provided by [69] for in principle compatible charges in su(5) models with non-singular sections, namely

the configuration I
(0|1)
5 . A global realisation as a canonical Morrison-Park model seems not possible on the

base B2, as follows by working out the constraints implied by the vanishing orders determined in [24]. To

the best of our understanding, this does not yet preclude the existence of non-canonical models.
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the U(1) restricted Tate model over B2, if we engineer the vanishing orders a1 = a1,1w,

a2 = a2,2w
2, a3 = a3,2w

2, a4 = a4,3w
3 (with C1 = {w = 0}), the discriminant of the elliptic

fibration takes the form

∆ =
1

16
w8(27a43,2 +O(w)) . (4.30)

The 5 hypermultiplets in the 27 are localised at the intersection of {a3,2 = 0} with C1.

An explicit resolution and analysis of the fibers shows that each of these carries charge

qA = −1
3 with respect to a U(1)A with height pairing bA = 2K̄ − 4

3C1 [70]. The U(1)A
is free of ABJ anomalies in the decoupling limit, hence giving rise to a global symmetry

SU(5) × U(1)A. If we now break the U(1)A gauge group (while keeping the e6) in the

globally defined model by setting a6 = a6,5w
5 for a6,5 6= 0, the form of discriminant does

not change to leading order in w. Again, locally, away from the singlet locus, the two

models are indistinguishable. The fact that the U(1)A survives as a flavour symmetry after

decoupling, on the other hand, only requires local information, in particular the vanishing

of the mixed cubic anomaly (4.22).

To conclude this discussion, we make the following proposal to determine the field the-

oretic global symmetry in the decoupling limit, as far as its action on the 6d hypermultiplet

sector is concerned: Assign to Ni hypermultiplets in a complex representation Ri of the

gauge group an initial flavour group factor U(Ni) = SU(Ni) × U(1)i. The abelian flavour

symmetries not contained in the Cartan of the non-abelian part of the flavour group are

then those linear combinations
∑

i xi U(1)i which are free of the mixed cubic 1-loop ABJ

anomaly (4.22) with the non-abelian gauge group.13 In a concrete geometric realisation

of the model, it can, and generically does happen that one finds a U(1) given by a linear

combination of these U(1)s and some Cartan U(1) within the maximal non-abelian flavour

group; naively the latter is broken, in the concrete geometric realisation, to a corresponding

subgroup. However, the field theoretic global symmetry group, in particular at the SCFT

point, is conjectured to be the one with the maximal non-abelian gauge group plus the

additional abelian combinations
∑

i xi U(1)i.
14

In particular, the number of independent abelian flavour symmetries acting on the non-

abelian theory in the decoupling limit is determined in terms of local data. This number

can be bigger or smaller than the number of abelian gauge symmetries in a given global

embedding of the model. In the latter case the distinction between the extra globally

realized gauge symmetries is due to the U(1) charges of states uncharged under the local

gauge group, for instance extra U(1) charged singlet states, which have been decoupled

from the local non-abelian gauge theory.

13In the case of pseudo-real or real representations, the non-abelian part of the flavour group is enhanced

from SU(N) to SO(2N) or Sp(N), respectively. When a suitable subgroup is gauged, it might be necessary

to consider a branching which leads to hypermultiplets charged under a ‘diagonal’ U(1) at intermediate

stages, and these can enter the anomaly free linear combination
∑
i xi U(1)i. An example will be discussed

in the following subsection.
14Recall, however, from the discussion at the beginning of section 4 that in principle the flavour symmetry

at the origin of the tensor branch might be smaller than the ‘naive’ symmetry determined away from the

SCFT point.
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vz1

vz2

vz0

ve1

ve2
vf

Figure 1. The two-dimensional fan for the toric surface P̂2
132. To each ray is associated a homoge-

neous coordinate indicated by the subscript.

In this sense, the construction of a global model with a U(1) is only one possible global

completion of the SCFT. Irrespective of whether or not a flavour U(1) survives as a gauge

theory in this particular global completion, the abelian part of the flavour group is as

stated above.

4.3 Global model with T = 2

The next example involves a chain of two (−2)-curves. The minimal gauge theory on such

curves is trivial, and the elliptic fibration over the (−2)-curves is just a product. The theory

of k linearly intersecting (−2)-curves is in fact simply the Ak N = (2, 0) SCFT. We will

again have to first enhance to a non-abelian gauge algebra, which we can then decorate by

a U(1) gauge symmetry and study its behaviour upon decoupling gravity, where it becomes

a flavour symmetry. SCFTs over a chain of (−2)-curves with abelian and discrete charges

have also been considered recently in [19].

Let us start by the weighted projective space P2
132, whose homogeneous coordinates

zk=0,1,2 are subject to the C∗ identification

(z0, z1, z2) ∼ (λz0, λ
3z1, λ

2z2) , λ ∈ C∗ . (4.31)

Note that there exist two point-like orbifold singularities at z0 = z1 = 0 and at z0 = z2 = 0,

which can be resolved by inserting the rational curves

F : {f = 0} , Ea : {ea = 0} for a = 1, 2 , (4.32)

respectively. Here, f and ea are the additional homogeneous coordinates of the blown-up

surface. We take this resolved manifold as the base of our F-theory model,

B2 = P̂2
132 . (4.33)

It is a toric variety described by the fan in figure 1.

Denoting the toric divisors {zk = 0} by Dk (k = 0, 1, 2), one can see that the cohomol-

ogy H1,1(B2,Z) is spanned by the four curve classes [Cα] for Cα=0,...,3 = D0, F, E1, E2 while
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the two toric divisor classes [D1] and [D2] are subject to the linear equivalence relations

[D1] = 3 [D0] + [F ] + [E1] + 2 [E2] , (4.34)

[D2] = 2 [D0] + [F ] + [E2] . (4.35)

The intersection matrix is also computed easily from the fan as

Ωαβ ≡ Cα · Cβ =


−1 1 0 1

1 −2 0 0

0 0 −2 1

1 0 1 −2

 , (4.36)

which has one positive and three negative eigenvalues. Finally, the anti-canonical class is

given by

[
K̄
]

=
2∑

k=0

[Dk] + [F ] +
2∑

a=1

[Ea] (4.37)

= 6 [C0] + 3 [C1] + 2 [C2] + 4 [C3] (4.38)

= (6, 3, 2, 4) , (4.39)

where [Cα]α=0,...,3 have been used as the basis elements of H1,1(B2,Z).

In absence of further enhancements, F-theory on this basis flows to the N = (2, 0)

SCFT A1⊕A2, where the A1 is supported on the (−2)-curve F and the A2 on the chain of

(−2)-curves E1 and E2. We will engineer a non-trivial non-abelian gauge enhancement over

the latter chain and augment it by an abelian gauge group. For example, let us construct a

Weierstrass model over B2 for which the gauge group is G×U(1)A with G = SU(2)×SU(3).

Instead of starting from scratch, we may apply to the B2 of our choice what is known about

the sixteen toric hypersurface fibrations [20], one of which has exactly G × U(1)A as the

generic gauge group. To be more specific, we first fiber an appropriately chosen toric surface

S over B2 and impose a hypersurface equation to obtain an elliptic curve embedded in S

as the generic fiber. This is done in such a way that the Mordell-Weil group is of rank one

(indicating one extra independent rational section) and the fibers over the curves E1 and

E2 degenerate to type I2 and I3, respectively. We compute below the relevant properties

of the model by using the results in section 3.5.1 of [20], to which the reader is referred for

the details on the fiber geometry.

We start by engineering the non-abelian gauge algebras to be supported on the

(−2)-curves

C2 : su(2) , C3 : su(3) , (4.40)

so that

bsu(2) = (0, 0, 1, 0) , bsu(3) = (0, 0, 0, 1) . (4.41)

In such a model, the height pairing for the U(1)A is computed, with the help of [20], as

bA = 2
[
K̄
]
− 1

2
[C2]−

2

3
[C3] =

(
12, 6,

7

2
,
22

3

)
, (4.42)
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and the complete spectrum of charged matter representations is obtained from the inter-

section matrix (4.36) of B2 as follows:

(2,3)−1/6 : C3 · C2 = 1 , (4.43)

(2,1)1/2 : C2 · (8K̄ − 2C2 − 3C3) = 1 , (4.44)

(1,3)−2/3 : C3 · (3K̄ − C2 − C3) = 1 , (4.45)

(1,3)1/3 : C3 · (6K̄ − C2 − 2C3) = 3 , (4.46)

(1,1)−1 : (3K̄ − C2 − C3) · (4K̄ − C2 − 2C3) = 69 . (4.47)

In addition to these charged hypermultiplets there are 109 uncharged hypers.

As expected, this spectrum satisfies all the anomaly cancellation conditions before we

decouple gravity. As in the previous example, the G-singlets disappear upon decoupling

gravity together with the gravity multiplet. Furthermore, the tensor associated to the curve

C1 decouples from the theory on C2 and C3 because the latter are disjoint from C1; hence we

remove its contribution when we compute the anomaly polynomial of the resulting SCFT.

The one-loop anomalies of tensor, vector and hypermultiplets after decoupling are then

Ione-loop|local = Itensor + Ivector + Ihyper

= −1

4
(trF 2

SU(2))
2 − 1

4
(trF 2

SU(3))
2 +

1

4
trF 2

SU(2) trF 2
SU(3) +

1

12
F 2 trF 2

SU(2)

+
5

24
F 2 trF 2

SU(3) +
5

144
F 4 − 1

32
F 2 trR2 +

67

5760

(
trR4 +

5

4
(trR2)2

)
.

(4.48)

Here Itensor is the contribution of the two remaining tensor multiplets (coupling to C2 and

C3) and

Ivector = IvectorSU(2) + IvectorSU(3) (4.49)

Ihyper = Ihyper(2,3)−1/6
+ Ihyper(2,1)1/2

+ Ihyper(1,3)−2/3
+ 3Ihyper(1,3)1/3

. (4.50)

The GS contribution after decoupling is uniquely determined from the requirement that

there are no gauge anomalies [38],

IGS|local =
1

4
(trF 2

SU(2))
2 +

1

4
(trF 2

SU(3))
2 − 1

4
trF 2

SU(2) trF 2
SU(3) −

1

12
F 2 trF 2

SU(2)

− 5

24
F 2 trF 2

SU(3) +
13

144
F 4 . (4.51)

The total anomaly polynomial is hence

Itot|local = (Ione-loop + IGS)|local

=
18

144
F 4 − 1

32
F 2 trR2 +

67

5760

(
trR4 +

5

4
(trR2)2

)
. (4.52)

Let us conclude our analysis of this model by confirming that the same GS contribution

arises from the F-theory geometry. In order to do this, we need to compute the new
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anomaly coefficient vectors a, bA, bsu(2), bsu(3) without the contribution due to the tensors

that decouple. In this particular case, these are the tensor in the gravity multiplet as well

as the one associated to the curve C1. In the limit where we decouple the SU(2) × SU(3)

sector from the rest, i.e. when the volume of the curves bsu(2) and bsu(3) goes to zero, we

must use the projection of a and bA onto the subspace spanned by 〈bsu(2), bsu(3)〉. These

projections are

a‖ = 0 (4.53)

bA‖ =

(
0, 0,−1

2
,

2

3

)
, (4.54)

which lead to the same GS term as deduced above.

The field theoretic interpretation along the lines of our general discussion in the pre-

vious section is sightly more tricky due to the gauging of part of the flavour group and

exemplifies the remark in footnote 13: the maximal non-abelian flavour group for 4 hyper-

multiplets in a 2 of SU(2) is SO(8), viewing them as 8 half-hypers in the 8v. An SU(3)

subgroup of this SO(8) is gauged in the present model, and the relevant branching is

SO(8)→ U(4)a → [SU(3)×U(1)c1 ]×U(1)a (4.55)

8v → 41 + c.c.→ 3(1c1 ,1a)
+ 1(−3c1 ,1a) + c.c. . (4.56)

We can ignore the complex conjugate as separate states by treating the fields again as

full hypermultiplets, rather than half-hypers. In this interpretation, U(1)a appears as a

‘diagonal’ U(1). The SU(3) factor is identified as part of the gauge group.

On the other hand, the maximal flavour group acting on 6 hypermultiplets in the 3 of

the gauge group SU(3) is U(6)b. A subgroup of SU(2) is gauged, and in the present model

the commutant is further broken to an SU(3)F subgroup at the non-abelian level. The

branching rule for the first step is

U(6)b → [SU(2)× SU(4)F ×U(1)c2 ]×U(1)b (4.57)

61b → (2,1)(2c2 ,1b) + (1,4)(−1c2 ,1b) , (4.58)

followed by

SU(4)F → SU(3)F ×U(1)c3 (4.59)

4→ 31c3
+ 1−3c3 . (4.60)

While the Cartan U(1)ci are manifestly free of mixed cubic SU(3) ABJ anomalies (recall

that SU(2) is always free of cubic anomalies), the anomaly free linear combination of the

diagonal U(1)a and U(1)b is generated by

Tm = 2Ta − Tb . (4.61)

In terms of these, the U(1) flavour charges of the model, (4.43)–(4.46), suggest writing the

flavour generator as

TF = −1

2
Tm +

(
−1

2
Tc1 +

5

12
Tc2 +

1

4
Tc3

)
. (4.62)
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The maximal global symmetry of the model is

GF = SU(4)F ×U(1)m , (4.63)

even though in the present geometric realisation only an SU(3)F × U(1)F subgroup is

manifest.

4.4 Local model: U(1)F charged conformal matter

In this section, we study constraints on the possible completions of a local model with

a globally defined U(1) gauge symmetry. Rather than constructing a compact base B2

which contains a particular 7-brane curve configuration, as we did in the previous two

examples, we will use the anomaly cancellation conditions to restrict the possible abelian

charges which the fields could carry in a global completion. We will combine these anomaly

constraints with input from the structure of a putative fibration with an extra section, even

without constructing a globally consistent model over a compact base.

As an example consider a local base B2 which contains a configuration of shrinkable

curves C1, C2, C3 with intersection matrix

Ci · Cj =

−1 1 0

1 −3 1

0 1 −1

 . (4.64)

This configuration represents a so-called conformal matter theory [13]. For instance, it

arises by blowing up the intersection point of two 7-branes with gauge algebra e6. In this

case, the chain of curves C1 − C2 − C3 is sandwiched between two such curves with a

corresponding e6 enhancement in the Weierstrass model over B2 [12]. According to the

general results of [32], the minimal, non-Higgsable non-abelian gauge algebra along the

curve C2 of self-intersection number −3 is su(3) along C2, while the (-1)-curves C1 and

C3 carry trivial gauge algebra. In such a non-Higgsable configuration there is no localised

charged matter at the intersection of the curves.

The possible non-abelian gauge enhancements of the above curve configuration beyond

the non-Higgsable one have been classified in [14]. As a simple example, consider the

configuration with gauge algebra

C1 : ∅, C2 : so(8), C3 : ∅ . (4.65)

The cancellation of the pure so(8) and mixed so(8)-gravitational anomalies uniquely de-

termines the charged spectrum of this model to be given by NR hypermultiplets in repre-

sentation R with

N8vect = 1, N8s = 1, N8c = 1 . (4.66)

These are localised at the intersection of C2 with the residual component of the discriminant

of the Weierstrass model over B2 and away from the intersection points of C2 with C1 and

C3. The appearance of an equal number of hypermultiplets in the representation 8vect, 8s
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and 8c is in fact a general feature of any model with so(8) algebra and follows from the

subtle factorization properties of the underlying Weierstrass or Tate model [71, 72].

In field theory, the maximal global symmetry acting on a single hypermultiplet in a

real representation 8 of so(8) is Sp(1) (see e.g. [40]). When we realize this model in an

F-theory construction, we therefore expect to obtain at best abelian flavour symmetries

U(1)A which can be interpreted as (linear combinations of) the Cartan U(1)s of the maximal

Sp(1)×Sp(1)×Sp(1) flavour group. We would like to study which constraints we can place

on possible global completions of the model in which such a U(1) is realized as a globally

defined gauge symmetry.

From the perspective of the elliptic fibration, constructing such an abelian gauge sym-

metry corresponds to tuning the Weierstrass model such that it acquires an extra rational

section SA. In a global setup this engineers a U(1)A gauge symmetry with height-pairing

bA, which becomes a global flavour symmetry upon decoupling gravity. In fact, from the

general discussion at the end of subsection 4.2 we know that the U(1) flavour symme-

try is contained as a Cartan in the non-abelian flavour symmetry Sp(1) × Sp(1) × Sp(1)

because the model contains no hypermultiplets in a complex representation of the gauge

group. Suppose the hypermultiplets in the various representations 8 of so(8) acquire U(1)A
charges q8vect , q8s , q8c . As we have shown, it is guaranteed that even in the decoupling

limit the mixed so(8)−U(1)A anomaly is consistently cancelled. With the help of

tr8vectF
2 = tr8sF

2 = tr8cF
2 ≡ trF 2 (4.67)

this translates into the constraint

C2 · bA = 2
(
q28vect

+ q28s
+ q28c

)
, (4.68)

where we have used bκ = C2, λκ = 2 and Avect = 1. We recall that the Shioda map

takes the general form (A.28), which we can analyse even without specifying a full global

completion of the model. Let us label the rational curves in the fiber over C2 corresponding

to the nodes in the affine so(8) Dynkin diagram as P1
i , i = 0, 1, 2, 3, 4. Here P1

0 refers to

the affine node, P1
3 is the central node with multiplicity 2 and P1

1, P1
2, P1

4 represent the

remaining nodes with multiplicity 1. The so(8) Cartan matrix Cij , i = 1, . . . , 4, and its

inverse take the form

Cij =


2 0 −1 0

0 2 −1 0

−1 −1 2 −1

0 0 −1 2

 , (C−1)ij =


1 1

2 1 1
2

1
2 1 1 1

2

1 1 2 1
1
2

1
2 1 1

 . (4.69)

The extra section SA must intersect the full fiber over C2 precisely once. There are only

two qualitatively different patterns of intersection numbers πiA = SA · P1
i , i = 1, . . . , 4

compatible with this requirement. If SA intersects the affine node P1
0, the intersection

numbers πiA = 0 for i = 1, . . . , 4 and hence there arise no so(8) correction terms in the

Shioda map σA, (A.28), and the height pairing bA,

Model I : σA = SA − Z − π−1(π∗((SA − Z) · Z)), (4.70)

bA = 2K̄ + 2π∗(SA · Z) . (4.71)
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Alternatively, SA can intersect any of the curves P1
i , i = 1, 2, 4, but not P1

3, which has

multiplicity 2. Without loss of generality we can take the intersected node to be P1
1 and

hence find for

Model II : σA = SA − Z − π−1(π∗((SA − Z) · Z)) +

(
E1 +

1

2
E2 + E3 +

1

2
E4

)
, (4.72)

bA = 2K̄ + 2π∗(SA · Z)− C2 , (4.73)

where Ei are the so(8) resolution divisors fibered over C2. Applying Riemann-Roch, (3.34),

to the (−3)-curve C2 yields K̄ ·C2 = −1, and the anomaly condition (4.68) translates into

the constraint

2 (q28vect
+ q28s

+ q28c
) = 2π∗(SA · Z) · C2 +

{
−2 Model I

+1 Model II

Up to this point we have not made any assumption about the explicit realisation of

the Weierstrass model with an extra rational section SA. According to [8], a large class of

elliptic fibrations with one extra rational section can be expressed as a hypersurface in a

Bl1P112[4] fibration over the base B2.
15 The model is determined as the hypersurface

c0w
4s3 + c1w

3s2x+ c2w
2sx2 + c3wx

3 = y2s+ b0x
2y + b1ywsx+ b2w

2s2y , (4.74)

where [w : x : y] are homogeneous coordinates of P112[4], blown up to Bl1P112[4] with

blow-up divisor s. The locus divisor

SA : s = 0 (4.75)

is an extra rational section. The base polynomials bi and ci are of degree

[b0] = 2K̄ − β, [b1] = K̄, [b2] = β, (4.76)

[c0] = 2β, [c1] = K̄ + β, [c2] = 2K̄, [c3] = 3K̄ − β , (4.77)

where β is an effective base divisor class

β ≤ 2K̄ . (4.78)

Over a maximally generic base β can be chosen such that the degree of all (holomorphic)

polynomials bi and ci is non-negative. Crucially for us, the intersection of the extra section

SA with the zero-section depends on β,

π∗(SA · Z) = b0, [b0] = 2K̄ − β . (4.79)

Note that the extremal choice β = 2K̄ reduces the model to the U(1) restricted Tate

model [6], for which π∗(SA · Z) = 0.

15This is known not to be the most general conceivable elliptic fibration with an extra section [20, 21,

23, 73], and it would be interesting to determine if more exotic possibilities lead to different results in the

present context.
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Non-abelian gauge enhancements over certain loci on B2 are engineered by specifying

the explicit form of the polynomials bi and ci. For the Bl1P112[4] fibration at hand, this

has first been exemplified in [66–68] and studied systematically in [24]. Depending on the

non-abelian gauge algebra on a curve in class [W ], β will be subject to a bound

2K̄ ≥ β ≥ k[W ] , k ≥ 0 (4.80)

to ensure holomorphicity of all base polynomials. Over a specific base such as the one

containing a curve configuration (4.64) further constraints on β may arise in order for the

fibration to exist.

A realisation of Model II along C2 with locus coordinate C2 : γ = 0 is given by

specifying the vanishing orders [24]

c0 = c0,3γ
3, c1 = c1,2γ

2, c2 = c2,1γ, c3 = c3,1γ, b1 = b1,1γ, b2 = b2,1γ . (4.81)

More precisely, this corresponds to a so-called canonical model, in which there are no further

non-trivial relations between the ci,j and bk,l. Over a generic base, the discriminant of the

fibration then takes the form

∆ = γ6
(
b20b

2
2,1c

2
2,1(b0b21, + c2,1)

2 +O(γ)
)
. (4.82)

This indicates four enhancement loci at the intersection of γ = 0 with any of the four factors

of b20b
2
2,1c

2
2,1(b0b21, + c2,1)

2. Even without constructing a concrete base B2 containing the

configuration (4.64), anomaly cancellation allows us to find important necessary conditions

which such a global model has to comply with. First, non-abelian anomaly cancellation

shows that the intersection of C2 with one of the above four polynomials defining the

matter loci must be trivial in order to arrive at the required number of precisely three

hypermultiplets in the 8 representations. In view of the degrees of the polynomials (4.76)

this is only possible if one of the following two possibilities occurs,

Case A) β · C2 = −2 =⇒ π∗(SA · Z) · C2 = 0 (4.83)

Case B) β · C2 = −3 =⇒ π∗(SA · Z) · C2 = 1 . (4.84)

From the form (4.72) of the correction terms in σA one concludes the charges qi of the

localised hypermultiplets can at best be half-integer. This is because the charges are

computed by the intersection numbers of σA with localised fibral curves in codimension-

two, and the only source of fractions for these charges are the half-integer coefficients of

the resolution divisors Ei in σA. It is then easy to see that the only possible configurations

of charges for Model II compatible with mixed so(8)−U(1)A anomaly cancellation are

Model II, Case A) (q8vect , q8s , q8c) ∈
{(

1

2
,

1

2
, 0

)
,

(
1

2
, 0,

1

2

)
,

(
0,

1

2
,

1

2

)}
(4.85)

Model II, Case B) (q8vect , q8s , q8c) ∈
{(

1

2
,

1

2
, 1

)
,

(
1

2
, 1,

1

2

)
,

(
1,

1

2
,

1

2

)}
. (4.86)

This is the normalization where extra U(1) charged hypermultiplets transforming as so(8)

singlets, which necessarily occur away from the configuration of shrinkable curves, have
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charge 1 and 2 [8]. The inclusion of a U(1)A flavour symmetry hence necessarily breaks

the triality between the three hypermultiplets in representations 8vect, 8s, and 8c, but this

by itself is not an inconsistency. Whether a global extension of this local configuration on

a base B2 together with a rational section really exists is a different question and requires

explicit construction.

Similarly, Model I can be constructed in canonical form by imposing the vanishing

orders [24]

c0 = c0,4γ
4, c1 = c1,2γ

2, c2 = c2,1γ, b1 = b1,1γ, b2 = b2,2γ
2 (4.87)

together with the extra factorization condition

4c1,2c3 − c22,1 = τ2 . (4.88)

The discriminant can be computed as

∆ = γ6
(
c21,2 c

2
3 τ

2 +O(γ)
)
. (4.89)

Non-abelian anomaly cancellation gives the following constraints over a base with config-

uration (4.64) and so(8) enhancement over the (-3) curve C2: the hypermultiplets sit at

the intersection points of C2 with τ , c3 and c1,2. Precisely 3 copies of hypermultiplets are

found if either β · C2 = −4 or β · C2 = −3 or β · C2 = −5. In the first case, all three types

of different loci carry one hypermultiplet, whereas in the second case the intersection of

C2 with either c3 or c1,2 is trivial, while the respective other intersection locus carries 2

hypermultiplets.

The possible charge assignments consistent with the cancellation of mixed anomalies

are

Model I : β · C2 = −5 : (q8vect , q8s , q8c) ∈ {(1, 1, 0), (0, 1, 1), (1, 0, 1)} (4.90)

β · C2 = −4 : (q8vect , q8s , q8c) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} (4.91)

β · C2 = −3 : (q8vect , q8s , q8c) ∈ {(0, 0, 0)} . (4.92)

In the latter case, the U(1)A gauge symmetry acts trivially on the so(8) states. As pointed

already, if we take a decoupling limit, the U(1)A with the charges determined above becomes

a global symmetry which in fact is a linear combination of the Cartan U(1)s of the maximal

field theoretic global symmetry Sp(1) × Sp(1)× Sp(1).

5 Conclusions and prospects

In this work we have explored U(1) flavour symmetries in 6d N = (1, 0) SCFTs. Such

theories can be obtained starting from N = (1, 0) supergravity theories and taking the

limit of decoupling gravity.

In the first part of this paper we have shown that the structure of 6d gauge anomaly

cancellation implies that the U(1) gauge symmetries of a supergravity theory inevitably

turn into a flavour symmetry once gravity is decoupled. A clear geometric interpretation
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has then been given to supergravity theories with a string/F-theory embedding specified by

a compact elliptic Calabi-Yau three-fold: the strength of the U(1) interaction is known to

be inversely proportional to the volume of a complex curve in the compact base B2, given

by the so-called height pairing of a rational section. Our supergravity analysis hence im-

plies that the height pairing cannot be contractible as otherwise the U(1) would remain as

a gauge theory after decoupling gravity. Motivated by this prediction from supergravity we

have studied the contractibility properties of a general height pairing purely from the per-

spective of geometry. We have proven its non-contractibility without relying on the physics

of anomalies. The proof uses that the anti-canonical divisor K̄ of any F-theory base B2 is

an effective piece of the height pairing together with the fact that K̄ is non-contractible.

Having established the fate of U(1) symmetries in the decoupling limit from a geometric

and a supergravity perspective, we have proceeded to analyse abelian flavour symmetries

of 6d N = (1, 0) SCFTs. More precisely, we have focused on the flavour group as far

as its action on the 6d hypermultiplet matter is concerned. Up to a few subtleties [41],

the SCFT flavour symmetries can be explored by investigating the flavour symmetries

of the tensor branch theories. The latter enjoy a geometric description in terms of the

decoupling limit of F-theory on an elliptic Calabi-Yau three-fold. In view of the richness

of possible constructions of abelian gauge theories in compact F-theory, one might at first

sight worry that the possibility of having abelian flavour symmetries leads to a proliferation

of possibilities in the list of SCFTs [12–16]. However, we have argued that the abelian

flavour symmetries can be determined already locally from the perspective of the maximal

global flavour group: if we assign to N hypermultiplets in a complex representation of the

gauge group a maximal flavour group U(N), rather than SU(N), the flavour symmetries

can be understood as anomaly free combinations of the diagonal U(1) factors. This is in

fact in perfect agreement with previous results on the origin also of abelian gauge groups

in F-theory versus Type IIB theory [64, 65]. In a given F-theory realisation, these may

obtain admixtures from the Cartan subgroup of the maximal non-abelian part of the flavor

symmetry. We have tested this proposal in concrete examples in which the local flavour

symmetry has a global completion to a gauge symmetry.

An important physics aspect that has only briefly been mentioned in this work is that

of discrete symmetries. Abelian discrete symmetries are encoded in the F-theory geometry

by torsion homology [54, 56] or, less directly, by a non-trivial Tate-Shafarevich group of a

genus-one fibered Calabi-Yau manifolds [20, 56–62]. At the level of supergravity theories,

discrete gauge symmetries may arise from Higgsing global U(1)s. In addition, the so-called

massive U(1)s, whose massless linear combinations we have identified in subsection 4.2 as

the field theoretic origin of the (non-Cartan) flavour U(1)s, may survive as discrete global

symmetries. Recently, [19] has presented SCFTs with discrete flavour charges. It would

be interesting to generalize our analysis of the continuous U(1) flavour symmetries to a

discrete version in this context, to which we wish to come back in the near future.

Furthermore, while the focus of this work has been placed on 6d theories, it would

be worth analyzing their lower-dimensional analogues, e.g., 4d and 2d theories. To begin

with, it would be interesting to carefully study the fate of a U(1) gauge symmetry upon

decoupling gravity from such a lower-dimensional supergravity theory, be it embedded in
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a string theoretic framework or not. The physical constraints on the U(1)s are particularly

easy to deal with in 6d, where the purely abelian one-loop anomalies are quartic and

thereby lead to a definite sign for the GS contribution. Similarly, the geometric study

for the contractibility property of height pairing is much simpler for a two-fold base B2

than for their higher-dimensional cousins. We leave a further investigation of U(1)s for the

lower-dimensional theories to future work.
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A The Mordell-Weil group and abelian gauge symmetries in F-theory

In this appendix we review the origin of abelian gauge symmetries in the Mordell-Weil

group of rational sections of an F-theory elliptic fibration (3.1).

A.1 Rational sections and U(1)A symmetries

A rational section s is a rational (i.e. meromorphic) map from B2 to Ŷ3, which assigns to

each generic point b on the base a unique point s(b) in the fiber over b. Such maps form a

group called Mordell-Weil group

MW (π) ' Z⊕r ⊕MW (π)tor , (A.1)

which is a finitely generated abelian group with respect to the natural arithmetic of the

elliptic fibration π. Since each section intersects a generic elliptic fiber in precisely one

point, the group law on the space of sections can be defined by addition of the image

points on the generic elliptic fiber. The zero element of this abelian group is represented

by the zero-section s0, whose existence distinguishes an elliptic fibration from a genus-one

fibration without section and which maps each point on the base to the zero-point on the

generic elliptic fiber. The number of independent non-torsional sections r is called the rank

of the Mordell-Weil group.

The relation between the abelian gauge group factors and MW (π) originates in

the observation that each independent non-torsional section sA defines an independent

divisor class

SA := div(sA) ∈ H4(Ŷ3) (A.2)

on Ŷ3. This is because sA(B2) defines an embedding of the base into the full fibration, which

is a 4-cycle on Ŷ3 whose associated divisor class we denote by SA. When we compactify M-

theory on Ŷ3, expanding the 3-form gauge potential C3 in terms of the Poincaré dual 2-form

gives rise to a vector field in the M-theory effective action in R1,4, which is related to the

U(1)A gauge potential in the dual F-theory modulo a few subtleties which we now recall.
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Suppose a divisor class D on Ŷ3 gives rise to a 1-form potential in the M-theory effective

action in R1,4 by expanding

C3 = AD ∧ [D] + . . . , (A.3)

where [D] ∈ H2(Ŷ3) is the Poincaré dual 2-form associated to D. In order for the 1-form

potential AD to lift to a 7-brane U(1) gauge potential in the dual F-theory, the divisor

class D must satisfy two constraints known as the transversality conditions16

D · Z ·Dαi = 0, D ·Dα ·Dβ = 0 (A.4)

in terms of the zero-section divisor Z=div(s0) and for any divisor pulled back from the base,

Dα = π−1(Db
α), Db

α ∈ H2(B2) . (A.5)

In the presence of non-abelian gauge group factors, an extra condition must be imposed,

as reviewed at the beginning of subsection 3.2. Up until appendix A.3 we assume that no

such non-abelian gauge groups are present.

The two conditions (A.4) require a modification of the divisor SA in order for it to give

rise to a U(1)A gauge group factor in F-theory. The correct linear combination of divisors

is in fact given by [6, 7]

σ(sA) = SA − Z − π−1 (π∗((SA − Z) · Z)) ∈ H4(Ŷ4) . (A.6)

The expression makes use of the pushforward map π∗ induced by the projection π of the

elliptic fibration,

π∗ : Hk(Ŷ3)→ Hk(B2) . (A.7)

According to the projection formula for all ω ∈ Hk(B2), γ ∈ H4−k(Ŷ3),

π−1(ω) ·Ŷ3 γ = ω ·B2 π∗(γ) . (A.8)

With the help of this formula, it is clear that σ(SA) satisfies (A.4). In arithmetic geometry,

the map (A.6) is known as the Shioda homomorphism [74, 75],

σ : MW (π)→ H4(Ŷ3) , (A.9)

which is a homomorphism from the Mordell-Weil group MW (π) to the homology

group H4(Ŷ3).

In the dual M-theory the expansion of the 3-form gauge potential

C3 =
r∑

A=1

AA ∧ [σ(sA)] + . . . (A.10)

gives rise to abelian gauge potentials AA which lift to the gauge potentials of the gauge

group factor U(1)A in F-theory.

16The symbol · denotes the intersection product in homology. To avoid confusion, we will sometimes

specify on which space it acts by a subscript e.g. of the form ·Ŷ3
for the intersection product in H∗(Ŷ3).
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A.2 Gauge couplings and the height pairing in absence of non-abelian gauge

groups

The abelian gauge kinetic term in M-theory follows by dimensional reduction of the kinetic

term of C3 as

Skin = −2π

2

∫
M1,10

dC3 ∧ ∗dC3 = −2π

2
fAB

∫
R1,4

dAA ∧ ∗dAB (A.11)

with

fAB =

∫
Ŷ3

[σ(sA)] ∧ ∗[σ(sB)] . (A.12)

On the Calabi-Yau 3-fold Ŷ3 with Kähler form JŶ3 this expression can be further expressed

as [76],

fAB =−
∫
Ŷ3

JŶ3∧[σ(sA)]∧[σ(sB)]+
3

2

(∫
Ŷ3

J2
Ŷ3
∧[σ(sA)]

)(∫
Ŷ3

J2
Ŷ3
∧[σ(sB)]

)(∫
Ŷ3

J3
Ŷ3

)−1
.

(A.13)

While this determines the couplings of the gauge potentials in the M-theory effective action,

the gauge kinetic terms in the dual F-theory are considerably simpler. This is because in

the F-theory limit the volume of the fiber is taken to zero while at the same the volume of

the base is rescaled. More precisely, if we expand JŶ3 in a basis of H2(Ŷ3) as

JŶ3 = π∗J + t0[Z] + tA[SA] , J = tα ωα , (A.14)

with ωα a basis of H2(B2), then the 6d F-theory limit corresponds to the scaling [25]

tα → ε−1/2 tα, t0 → ε t0, tA → ε tA (A.15)

and taking ε→ 0. The only surviving terms in this limit involve π∗J , the part of the Kähler

form pulled back from the base B2. Since σ(sA) and σ(sB) satisfy (A.4), the second term

in (A.13) vanishes in the F-theory limit and we are left with

fAB → f̂AB = −
∫
Ŷ3

π∗J ∧ [σ(sA)] ∧ [σ(sB)] =

∫
B2

J ∧ [−π∗(σ(sA) · σ(sB))] . (A.16)

This is the kinetic matrix governing the kinetic terms of the abelian gauge factors in

F-theory,

Skin|F-theory = −2π

2
f̂AB

∫
R1,5

dAA ∧ ∗dAB . (A.17)

Note that the intersection product σ(sA) · σ(sB) defines an element in H2(Ŷ3) and

pushing this onto the base gives a divisor class

bAB := −π∗(σ(sA) · σ(sB)) ∈ H2(B2). (A.18)
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The object bAB is known in arithmetic geometry as the height pairing of the sections

sA and sB and will play a central role in our analysis.

The evaluation of the height pairing is well-known in the mathematics (and in the

F-theory [8, 47, 77, 78]) literature and proceeds with the help of the intersection numbers

of the elliptic fibration Ŷ3 as follows. Let us abbreviate the pullback divisor in the Shioda

homomorphism (3.3) as

DA = π−1 (π∗((SA − Z) · Z)) ∈ H4(Ŷ3) (A.19)

such that

bA =−π∗ ((SA−Z−DA)·(SA−Z−DA))

=−π∗(SA ·SA)−π∗(Z ·Z)+2π∗(SA ·Z)−π∗(DA ·DA)+2π∗((SA−Z)·DA) .
(A.20)

In order to further simplify eq. (A.20), we first note that SA, being a section to the fibration,

obeys the intersection relations

SA · SA ·Dα = −π−1(K̄) · SA ·Dα , (A.21)

SA ·Dα ·Dβ = Db
α ·B2 D

b
β (A.22)

for any pullback divisor of the form

Dα = π−1(Db
α), Db

α ∈ H2(B2) . (A.23)

The same relations hold for the zero section Z.17 Here K̄ ≡ −K is the anti-canonical

divisor of the base B2. On the other hand, a triple product involving only pullback divisors

vanishes,

Dα ·Dβ ·Dγ = 0 . (A.24)

It is then straightforward to see that the last two terms in the heigh pairing (A.20) vanish

and the expression simplifies as

bA = 2K̄ + 2π∗(SA · Z) . (A.25)

A.3 Corrections from non-abelian gauge group factors

Let us finally discuss the modifications of the Shioda homomorphism in the presence of

non-abelian gauge groups. As discussed at the beginning of subsection 3.2, in this case

the singular elliptic fibration is resolved by the inclusion of the resolution divisors (3.17),

whose fibers are the curves P1
iκ

. In the dual M-theory compactification on Ŷ3, M2-branes

wrapping the fibral curves P1
iκ

give rise to gauge bosons whose Cartan charges are given

by the (negative of the) positive simple roots of the Lie algebra gκ. The resolution divisors

Eiκ give rise to the Cartan U(1)s via expansion of the M-theory 3-form C3. In view of the

physical origin of the non-abelian gauge bosons as wrapped M2-branes along the curves

17The reader is kindly referred to ref. [79] for more details, as well as for applications to finding sections

to an elliptic fibration in the context of F-theory.
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P1
iκ

, their Cartan charges are given by (minus one times) the intersection numbers with

Eiκ , i.e.

Eiκ · P1
jλ

= −δκλCiκjκ (A.26)

with Ciκjκ the Cartan matrix of the non-abelian gauge group Gκ.

In the presence of non-abelian gauge group factors Gκ, it is desirable to normalize the

non-Cartan factors U(1)A associated with the Mordell-Weil group such that the non-abelian

gauge bosons are uncharged under it. The constraint we need to impose is hence that

σ(sA) · P1
iκ = 0 . (A.27)

In order to satisfy this constraint in addition to (A.4), the Shioda homomorphism (A.9)

necessarily acquires additional contributions from the resolution divisors and is given in

total by

σ(sA) = SA − Z − π−1(π∗((SA − Z) · Z)) +
∑
κ

∑
iκ

`iκAEiκ . (A.28)

The correction terms involving the resolution divisors Eiκ are required only to imple-

ment (A.27) and involve the coefficients `iκA ∈ Q. These are easily computed as

`iκA = πAjκ(C−1)jκiκ (A.29)

in terms of the intersection numbers

πAiκ = SA · P1
iκ (A.30)

and the Cartan matrix Ciκjκ of the non-abelian gauge group Gκ, which arises because

of (A.26).

B 6d N = (1, 0) anomalies

The low-spin massless representations of six-dimensional (1,0) supersymmetry are labeled

by their SU(2)× SU(2) representations. Namely,

Gravity multiplet : (1, 1) + 2

(
1

2
, 1

)
+ (0, 1)

Tensor multiplet : (1, 0) + 2

(
1

2
, 0

)
+ (0, 0)

Vector multiplet :

(
1

2
,

1

2

)
+ 2

(
0,

1

2

)
Hypermultiplet : 2

(
1

2
, 0

)
+ 4(0, 0)

– 44 –



J
H
E
P
1
1
(
2
0
1
8
)
1
4
7

All of these multiplets contain chiral fields which means that they contribute to the one-loop

anomaly. In particular, the contribution of each multiplet to the anomaly polynomial is

Igravity = − 273

5760

(
trR4 +

5

4
(trR2)2

)
+

9

128
(trR2)2 (B.1)

Itensor =
29

5760

(
trR4 +

5

4
(trR2)2

)
− 1

128
(trR2)2 (B.2)

Ivector = −dG
1

5760

(
trR4 +

5

4
(trR2)2

)
− 1

24
TrF 4 +

1

96
TrF 2trR2 (B.3)

Ihyper = dρ
1

5760

(
trR4 +

5

4
(trR2)2

)
+

1

24
trρF

4 − 1

96
trρF

2trR2 (B.4)

where G is the gauge group, including Abelian factors. In the above expressions, Tr is the

trace in the adjoint representation and trρ corresponds to the trace in the representation

ρ of the gauge group G. dG and dρ denote the dimensions of the gauge group and of the

representation ρ. It is useful to recall the following group-theoretic factors:

trRF
2 = ARtrF 2 (B.5)

trRF
3 = ERtrF 3 (B.6)

trRF
4 = BRtrF 4 + CR(trF 2)2 , (B.7)

where tr denotes the trace in the fundamental representation of G.

When the total one-loop anomaly polynomial factorizes, it can be cancelled by the

addition of a Green-Schwarz-Sagnotti-West term,

SGS = −1

2

∫
ΩαβB

α ∧Xβ
4 . (B.8)

Indeed, such a term is not gauge-invariant and gives the following contribution to the

anomaly polynomial

IGS8 = − 1

32
ΩαβX

α
4 ∧X

β
4 , (B.9)

with Xα
4 is given in (2.7). The total anomaly polynomial is then

I8 = I1-loop8 + IGS8 (B.10)

where I1-loop8 contain the contribution of every massless fundamental field in the tensor

branch.

We should mention that when the gauge group contains a U(1) factor with field strength

F = dA, there is an additional GSSW term that can be added to the action,

S̃GS =

∫
φX6 , (B.11)

where φ is a scalar andX6 is a six-form. This term may cancel a contribution to the anomaly

polynomial of the form F ∧X6 as long as the kinetic form for the scalar is schematically

(dφ+A)2. Since this mechanisms makes the U(1) massive we will not discuss it further.
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Cancellation of anomalies for a gauge group G =
∏r
A=1 U(1)A ×

∏
κGκ, i.e. I8 = 0,

imposes that

273 = H − V + 29T (B.12)

a · a = 9− T (B.13)

a · bκ =
1

6
λκ

(
AAdjκ −

∑
I

Mκ
IA

I
κ

)
(B.14)

0 = BAdjκ −
∑
I

Mκ
IB

I
κ (B.15)

bκ · bκ =
1

3
λ2κ

(∑
I

Mκ
IC

I
κ − CAdjκ

)
(B.16)

bκ · bµ = λκλµ
∑
I

Mκµ
I AIκA

I
ν (B.17)

a · bAB = −1

6

∑
I

MIqIAqIB (B.18)

0 =
∑
I

Mκ
IE

I
κqIA (B.19)

bκ
λκ
· bAB =

∑
I

Mκ
IA

I
κqIAqIB (B.20)

bAB · bCD + bAC · bBD + bAD · bBC =
∑
I

MIqIAqIBqICqID . (B.21)

Here the index I runs over the irreducible representations of the non-abelian gauge group

that appear in the spectrum. Mκ
I and Mκµ

I denote the number of Gκ and Gκ × Gµ
representations in I. Finally, H, V and T denote the total number of hyper, vector and

tensor multiplets.
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[55] M. Berasaluce-Gonzalez, L.E. Ibáñez, P. Soler and A.M. Uranga, Discrete gauge symmetries

in D-brane models, JHEP 12 (2011) 113 [arXiv:1106.4169] [INSPIRE].

[56] C. Mayrhofer, E. Palti, O. Till and T. Weigand, On Discrete Symmetries and Torsion

Homology in F-theory, JHEP 06 (2015) 029 [arXiv:1410.7814] [INSPIRE].

[57] V. Braun and D.R. Morrison, F-theory on Genus-One Fibrations, JHEP 08 (2014) 132

[arXiv:1401.7844] [INSPIRE].

[58] D.R. Morrison and W. Taylor, Sections, multisections and U(1) fields in F-theory,

arXiv:1404.1527 [INSPIRE].
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