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1 Introduction

The spin structure of the proton is one of the most challenging open puzzles in high energy

physics. Deep-inelastic scattering experiments suggest that only 30% of the proton spin

is carried by its constituent quarks, which challenged our understanding of the internal

structure of the proton and inspired a lot of efforts from both experimental and theoretical

aspects. On the experiment side, many programs are dedicated to the precise study of

the proton spin structure. On the theory side, several frameworks have been proposed to

describe the proton spin as the sum of quarks and gluons spin contributions [1–6].

In the infinite momentum frame, all the contributions to the proton spin can be clas-

sified according to the Manohar-Jaffe sum rule [1],

Sp =
1

2
=

1

2
∆Σ +∆G+ Lq + Lg, (1.1)

where 1
2∆Σ, ∆G, and Lq,g represent the contributions from the quark and antiquark spin,

the gluon helicity, and the orbital angular momentum of the quarks and gluons, respec-

tively. The quark and gluon helicity distributions can be probed in high-energy scattering

processes with the polarized nucleons, allowing access to ∆Σ and ∆G.

The polarized parton distribution functions have been studied extensively at the

CERN, DESY, JLab, RHIC, and SLAC laboratories for decades (as a review, see [7]).

Based on these experimental data, the global QCD next-to-leading-order (NLO) analyses

of polarized parton distribution functions (PDF) [8–13] revealed that only about 30% of the

proton’s spin is carried by the quark polarization. The remaining spin must come from the

contributions from gluon polarization and from the orbital angular momentum of quarks

and gluons, among which, those from the gluon polarization are essential in understanding

the proton spin puzzle. A newly theoretical calculation by lattice QCD [14] suggests that

the gluon spin takes as much as 50% of the proton’s spin.
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The best probes into the gluon polarization in nucleon are offered by polarized proton-

proton collisions available at RHIC [15]. The measurements of the longitudinal double-spin

asymmetries for inclusive jet [16–19] and π0 [20–22] obtained at RHIC play an important

role in constraining the distribution of the gluon polarization. The latest global fits [13, 23]

that incorporate the inclusive jet [19] and π0 [22] double longitudinal-spin asymmetries

now find compelling evidence for positive gluon polarization of roughly 0.2 over the range

x > 0.05. The polarized PDF for gluons in the region 0.01 < x < 0.05 has been explored

with the measurements of Aπ0

LL at midrapidity by STAR [24] and PHENIX [25] collabora-

tions. Recently, the STAR collaboration published their results on the ALL for dijet which

provides new constrains on ∆g(x) in the region x ∼ 0.01. Their measurements on Aπ0

LL [26]

at forward rapidities can even help to constrain ∆g(x) down to x ∼ 10−3.

Heavy quarkonium also provides a useful laboratory to access the polarized gluon

distribution. At RHIC energies, heavy quarkonium is dominated by gluon-gluon scattering,

therefore, the corresponding double longitudinal-spin asymmetries ALL are expected to

be sensitive to the polarized gluon distribution in nucleon. On the other hand, heavy

quarkonium can be calculated perturbatively, exploiting the nonrelativistic QCD (NRQCD)

factorization formalism [27], which allows one to organize the theoretical calculations as

double expansions in the QCD coupling constant αs and the heavy quark relative velocity v.

Great phenomenological progress has also been made to test the quarkonium production

mechanisms in the past decades [28, 29]. Particularly, the J/ψ hadroproduction data

are well described by NRQCD at QCD NLO [30–35]. On the other hand, the double

longitudinal-spin asymmetry in J/ψ production has been studied at QCD leading order

(LO) within both color-singlet [36, 37] and color-octet mechanisms [38–41] in the NRQCD

framework. However, the relevant calculation at QCD NLO is still lacking. Recently, the

measurements [42] of A
J/ψ
LL by PHENIX collaboration came out, which makes it possible

to study the proton spin in the J/ψ production processes. Since the QCD corrections to

the J/ψ hadroproduction are exceptionally significant, we, in this paper, study the double

longitudinal-spin asymmetry in J/ψ production at QCD NLO. Using the RHIC data, we

will find out whether the polarized gluon PDFs are consistent with the new measurements.

The rest of this paper is organized as follows. In section 2, we outline the formal-

ism of our calculation. In section 3, we present our numerical results and discuss their

phenomenological implications. Our conclusions are summarized in section 4.

2 Calculation of double spin asymmetry

2.1 Double longitudinal-spin asymmetry

The double longitudinal-spin asymmetry ALL in the polarized proton-proton collisions is

defined as

ALL =
σ++ − σ+−

σ++ + σ+−
=

∆σ

σ
, (2.1)

where ξ1 and ξ2 in σξ1ξ2 denote the sign of the helicity of the left- and right-hand-side

colliding protons, respectively. The polarized and unpolarized cross sections, ∆σ and σ,
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are defined as

∆σ =
1

4

∑

ξA,ξB=±

(−1)δξAξBσξAξB , (2.2a)

σ =
1

4

∑

ξA,ξB=±

σξAξB . (2.2b)

Exploiting the polarized PDFs, one can rewrite the polarized cross sections in terms

of the parton-level polarized cross sections. Defining f+
a/A (f−

a/A) as the PDF of a polarized

parton, a, in a nucleon, A, with the same polarization as (the opposite polarization to) a,

σξAξB can be expressed as

σξAξB =
∑

a,b

f+
a/A ⊗ f+

b/B ⊗ σξA,ξB
ab +

∑

a,b

f+
a/A ⊗ f−

b/B ⊗ σξA,−ξB
ab

+
∑

a,b

f−

a/A ⊗ f+
b/B ⊗ σ−ξA,ξB

ab +
∑

a,b

f−

a/A ⊗ f−

b/B ⊗ σ−ξA,−ξB
ab , (2.3)

where σξA,ξB
ab are the corresponding parton-level polarized cross sections, and the summa-

tions run over all the possible species of the initial partons. Here, we use ⊗ to imply

that the parton-level cross sections should be convoluted with the PDFs. With the above

definitions, we can express the polarized cross sections in a more explicit form as

∆σ =
∑

a,b

f+
a/A ⊗ f+

b/B ⊗ 1

4

∑

ξA,ξB=±

(−1)δξAξBσξA,ξB
ab

−
∑

a,b

f+
a/A ⊗ f−

b/B ⊗ 1

4

∑

ξA,ξB=±

(−1)δξA,−ξBσξA,−ξB
ab

−
∑

a,b

f−

a/A ⊗ f+
b/B ⊗ 1

4

∑

ξA,ξB=±

(−1)δ−ξA,ξBσ−ξA,ξB
ab

+
∑

a,b

f−

a/A ⊗ f−

b/B ⊗ 1

4

∑

ξA,ξB=±

(−1)δ−ξA,−ξBσ−ξA,−ξB
ab . (2.4)

If we adopt the following definitions,

∆fa/A = f+
a/A − f−

a/A,

∆σab =
1

4

∑

ξa,ξb=±

(−1)δξaξbσξa,ξb
ab , (2.5)

we can rewrite Equation (2.4) in a more compact form as

∆σ =
∑

a,b

∆fa/A ⊗∆fb/B ⊗∆σab. (2.6)

According to the NRQCD factorization formalism, the cross section for J/ψ hadropro-

duction are factorized as the perturbatively calculable short-distance coefficients (SDCs),

which produce on-shell cc̄ pairs with definite color and angular-momentum, and the non-

perturbative long-distance matrix elements (LDMEs), which describe the long-distance
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processes of the hadronization of these cc̄ pairs. The parton-level polarized cross sections

thus can also be factorized within the NRQCD framework. Explicitly, we have

∆σ(A+B → J/ψ +X)

=
∑

a,b

∫

dx1dx2∆fa/A(x1)∆fb/B(x2)∆σ(a+ b → J/ψ +X) (2.7)

=
∑

a,b,n

∫

dx1dx2∆fa/A(x1)∆fb/B(x2)∆σ̂(a+ b → cc(n) +X)〈OJ/ψ(n)〉,

where the indices a, b run over all parton species and n runs over the colors and angular-

momenta of the intermediate cc̄ states. Since the polarized PDFs and the LDMEs can

be found in many published papers, the only missing elements in Equation (2.7) are the

parton-level polarized SDCs, ∆σ̂(a + b → cc(n) + X), the evaluation of which will be

addressed in the following subsection.

2.2 The polarized SDCs at QCD NLO

The J/ψ meson can be produced directly or via the feed down from higher excited states,

the latter of which accounts about 20%-30% of the prompt J/ψ events in RHIC experi-

ments, and thus is considered not important for the double longitudinal-spin asymmetry.

In this paper, we only take count of the contributions from the directly produced J/ψ.

According to the NRQCD factorization, four intermediate states, 3S
[1]
1 , 1S

[8]
0 , 3S

[8]
1 , and

3P
[8]
J , are involved in our calculations.

At QCD LO, the color-singlet J/ψ can only be produced via the gluon-gluon fusion,

namely

g + g → cc(3S
[1]
1 ) + g, (2.8)

while the color-octet cc̄ states can be produced in the following three types of processes,

g + g → cc(n) + g,

g + q(q) → cc(n) + q(q),

q + q → cc(n) + g,

(2.9)

where n = 1S
[8]
0 , 3S

[8]
1 , 3P

[8]
J , and q, here, denotes light quarks, which, for the J/ψ produc-

tions, are u, d, and s.

At QCD NLO, we need to consider both real and virtual correction processes, the latter

of which are comprised of loop and counter-term contributions. In our calculation, we adopt

on-shell renormalization scheme to renormalize the quark and gluon wave functions, and

modified-minimum-subtraction (MS) scheme to renormalize the strongly coupling constant.
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The renormalization constants are obtained as

δZOS
m = −3CF

αs

4π

[

1

ǫUV
− γE + ln

4πµ2
r

m2
c

+
4

3

]

,

δZOS
2 = −CF

αs

4π

[

1

ǫUV
+

2

ǫIR
− 3γE + 3 ln

4πµ2
r

m2
c

+ 4

]

,

δZOS
2l = −CF

αs

4π

[

1

ǫUV
− 1

ǫIR

]

,

δZOS
3 =

αs

4π

[

(β0 − 2CA)

(

1

ǫUV
− 1

ǫIR

)]

,

δZMS
g = −β0

2

αs

4π

[

1

ǫUV
− γE + ln(4π)

]

, (2.10)

where µr is the renormalization scale, γE is Euler’s constant, β0 = 11
3 CA − 4

3TFnf is the

QCD one-loop beta function, nf = 3 is the number of active quark flavors, and the color

factors are given by TF = 1
2 , CF = 4

3 , CA = 3. Note that we neglected the contributions of

the c-quark loop in the gluon self-energy corrections.

QCD correction processes can also be constructed from the LO processes by emitting

an additional gluon or splitting a gluon into a quark-antiquark pair, which are named real-

correction processes. For the CS channel, there are four real-correction processes considered

in this paper, namely,

g + g → cc(3S
[1]
1 ) + g + g,

g + g → cc(3S
[1]
1 ) + q + q,

g + q(q) → cc(3S
[1]
1 ) + g + q(q),

q + q → cc(3S
[1]
1 ) + g + g, (2.11)

while for each CO state, there are eight such processes [30, 43]:

g + g → cc(n) + g + g, g + g → cc(n) + q + q,

g + q(q) → cc(n) + g + q(q), q + q → cc(n) + g + g,

q + q → cc(n) + q + q, q + q → cc(n) + q′ + q′,

q + q → cc(n) + q + q, q + q′ → cc(n) + q + q′. (2.12)

where q, q′ (q̄, q̄′) denote light quarks (anti-quarks) with different flavors. Note that we

omitted the processes, g+g → cc̄(n)+c+ c̄, in our calculation, because they are important

only in high pt region, which is not concerned in this paper.

To obtain finite cross sections, the SDCs for cc̄(3P
[8]
J ) should be renormalized consid-

ering the contributions from the QCD corrections to the 3S
[8]
1 LDME. We refer interested

readers to References [44, 45], where this renormalization procedure are described in detail.

Evaluating the squared amplitudes, we sum over the spins (and colors) of the final-

state particles, while keeping those of the initial-state ones. Then the initial-spin-and-

color-averaged squared amplitudes can be written as

Mξ1,ξ2 ≡ 1

NsNc
A∗

ξ1,ξ2Aξ1,ξ2 , (2.13)
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ref. 〈OJ/ψ(3S
[1]
1 )〉 〈OJ/ψ(1S

[8]
0 )〉 〈OJ/ψ(3S

[8]
1 )〉 〈OJ/ψ(3P

[8]
0 )〉

(GeV3) (GeV3) (GeV3) (GeV5)

Butenschon et al. [33] 1.32 3.04 ×10−2 1.68×10−3 -9.08×10−3

Chao et al. [50] 1.16 8.9 ×10−2 3.0 ×10−3 1.26×10−2

Gong et al. [51] 1.16 9.7×10−2 -4.6×10−3 -2.14×10−2

Bodwin et al. [35] 9.9 ×10−2 1.1 ×10−2 1.1×10−2

Zhang et al. [52, 53] 0.65 0.78 ×10−2 1.08×10−2 4.52×10−2

Table 1. The values of the LDMEs for J/ψ production taken from refs. [33, 35, 50–53].

where Ns and Nc are the numbers of the initial spin and color states, respectively. Having

this, we can express σ̂ξ1ξ2
ab as

dσ̂ξ1ξ2
ab =

1

2ŝ
Mξ1,ξ2dφ, (2.14)

where ŝ is the squared colliding energy of the initial partons, and dφ is the phase-space

small element. Exploiting Equation (2.5), one can obtain the polarized cross sections at

the parton level.

3 Numerical results

To numerically evaluate the SDCs, we make use of the FDC program [46, 47] to generate

all the needed FORTRAN source.

In our numerical calculation, we use LHAPDF interface [48] to invoke NNPDF-

pol1.1 [13] and NNPDF3.0 [49], which are employed in our calculation as the polarized

and unpolarized PDFs, respectively. The colliding energy and the rapidity region are set

to be
√
s = 510 GeV and 1.2 ≤ |y| ≤ 2.2, in accordance with the RHIC experiment. The c-

quark mass, factorization, renormalization and NRQCD scales are chosen as mc = 1.5GeV,

µf = µr = µ0 ≡
√

4m2
c + p2t , and µΛ = mc, respectively.

Since there are several parallel extractions of the LDMEs, we need to investigate the

uncertainties brought about by the different values of them. Five sets of LDMEs taken

from refs. [33, 35, 50–53] are collected in table. 1.1

In figure 1, we present the unpolarized (L.H.S.) and polarized (R.H.S) differential cross

sections with respect to pt. The curves correspond to different sets of LDMEs. It should

be noted that the results for unpolarized cross sections using different sets of LDMEs do

not agree with each other. Unfortunately, there is no experimental data available in this

kinematic region, thus we cannot judge which one is better to describe the J/ψ yield. This

observation indicate that the J/ψ production at about 500GeV in the region, 1.2 < |y| <
2.2, can serve as an independent constraint on the LDMEs. For this reason, we suggest

that, PHENIX collaboration do this measurement, which could contribute enormously to

the determination of the NRQCD parameters. Another interesting observation is that the

1Since the CS LDME was not given in ref. [35], we adopt 〈OJ/ψ(3S
[1]
1 )〉 = 1.16GeV as a reasonable

choice.
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Figure 1. The unpolarized (left-hand side) and polarized (right-hand side) cross sections of J/ψ

direct production at
√
s = 510GeV up to QCD NLO.

results for the polarized cross sections employing different sets of LDMEs also differ from

each other. All these results in low pt regions are negative. However, some of them change

their signs as pt becomes higher.

We are now in a position to discuss the double longitudinal spin asymmetry, A
J/ψ
LL .

Our theoretical results are compared to the experimental data given by PHENIX Collab-

oration [42] in figure 2. In low pt region, say pt < 5 GeV, all sets of the LDMEs result in

the same theoretical prediction that is almost zero. As pt increases, these results become

distinguishable. The LDMEs taken from References [50, 52, 53] lead to negative values,

while the other three sets of LDMEs give positive results. The largest pt of the experimen-

tal data is about 5GeV, below which, the uncertainties brought about by the LDMEs are

negligible, as well as those by the uncertainties in each individual set of LDMEs. In this

sense, we can say that the results obtained from different sets of LDMEs are consistent

with each other. We can see from figure 2 that the first two data points are evidently

compatible with all these theoretical curves. At pt = 5.25 GeV, the experimental value of

ALL is ALL = 0.057 ± 0.029 [42], the central value of which is less than 2σ from zero as

well as the theoretical calculations. In the experimental criteria [54], anything less than 2σ

is considered not to be significant, thus, this point is also consistent with our calculations.

In addition to the uncertainties in the LDMEs, we also study the effects of varying

the scales, including the renormalization and factorization ones. In figure 3, we study the

scale dependence of ALL for all the four intermediate states, 3S
[1]
1 , 1S

[8]
0 , 3S

[8]
1 , and 3P

[8]
J .

Seven combinations of the scale configurations are investigated, namely µr = µf = µ0,

2µr = µf = µ0, µr/2 = µf = µ0, µr = 2µf = µ0, µr = µf/2 = µ0, µr = µf = 2µ0, and

µr = µf = µ0/2. Although ALL changes significantly as the values of the scales varies, all

these curves are still within the experimental tolerance.
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Figure 2. The double longitudinal asymmetry A
J/ψ
LL at QCD NLO with different LDMEs schemes.

The data points are from ref. [42].
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Figure 3. The double longitudinal asymmetry A
J/ψ
LL at QCD NLO for different production channels.
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4 Summary

We calculated the QCD corrections to the double longitudinal spin asymmetry of the J/ψ

production in polarized proton-proton collisions at RHIC. To perform a reliable predic-

tion, various sets of NRQCD long-distance matrix elements obtained from different fitting

strategies are employed. The uncertainties brought about by the LDMEs are minor when

pt is smaller than 5GeV, and become larger as pt increases. Our results are consistent with

the RHIC measurements. To acquire solid information for the J/ψ production and the

gluon spin in protons, we look forward to better precision measurements from the future

running of the high-energy hadron colliders.
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