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study the LHC sensitivity to four fermion operators involving heavy quarks by employ-

ing cross section measurements in the tt̄bb̄ final state. Starting from the measurement of

total rates, we progressively exploit kinematical information and machine learning tech-

niques to optimize the projected sensitivity at the end of Run III. Indeed, in final states

with high multiplicity containing inter-correlated kinematical information, multi-variate

methods provide a robust way of isolating the regions of phase space where the SMEFT

contribution is enhanced. We also show that training for multiple output classes allows for

the discrimination between operators mediating the production of tops in different helic-

ity states. Our projected sensitivities not only constrain a host of new directions in the

SMEFT parameter space but also improve on existing limits demonstrating that, on one

hand, tt̄bb̄ production is an indispensable component in a future global fit for top quark

interactions in the SMEFT, and on the other, multi-class machine learning algorithms can

be a valuable tool for interpreting LHC data in this framework.

Keywords: Beyond Standard Model, Effective Field Theories

ArXiv ePrint: 1807.02130

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP11(2018)131

mailto:jodhondt@vub.ac.be
mailto:alberto.mariotti@vub.be
mailto:ken.mimasu@uclouvain.be
mailto:seth.moortgat@vub.be
mailto:cenzhang@ihep.ac.cn
https://arxiv.org/abs/1807.02130
https://doi.org/10.1007/JHEP11(2018)131


J
H
E
P
1
1
(
2
0
1
8
)
1
3
1

Contents

1 Introduction 1

2 tt̄bb̄ in the SMEFT and its virtues 3

2.1 Four-fermion operators for tt̄bb̄ 3

2.2 Complementarity to four top production 5

2.3 EFT validity, power-counting and UV connection 6

3 Analysis strategy 8

4 Sensitivity to individual operators 11

4.1 Cross section in the fiducial detector volume 12

4.2 Quantifying the validity of the EFT 14

4.3 Tailoring the kinematical phase space 15

4.4 Neural network classifier 17

4.4.1 Neural network design 18

4.4.2 Network predictions for individual operators 19

5 Learning to pinpoint the effective operators 23

6 Summary and conclusions 25

A Axigluon model 27

B Neural network setup 30

1 Introduction

The lack of evidence for signatures of new physics at the Large Hadron Collider (LHC) has

led to an increased interest in the Standard Model Effective Field Theory (SMEFT) [1–5]

as a model-independent approach to interpret experimental measurements in the context

of physics Beyond the Standard Model (BSM). The main phenomenological consequences

of the presence of SMEFT operators involve heightened energy dependence and modified

kinematics in Standard Model (SM) processes. It is therefore important to go beyond

inclusive measurements and access the full kinematical information available in a given final

state. Machine learning classifiers are well suited to the task of discriminating between SM

and SMEFT effects, particularly with increasing final state multiplicity and complexity

in which a great deal of inter-correlated kinematical information is present. In this work

we explore the power of these methods, introducing a novel application of multi-class

discriminants trained to distinguish among different classes of operators. We quantify the
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potential to optimally constrain operators and also more accurately pinpoint the origin of

an observed deviation in the parameter space.

We focus our investigation on SMEFT operators that contribute to top pair production

in association with two b-jets. The top-quark sector provides an interesting place to search

for deviations from the SM, given the relatively large production rate of tops at the LHC.

Additionally, the large mass of the top is often considered as a motivation to expect BSM

physics to be connected to the top quark itself. The large Yukawa coupling of the top

quark makes it an ideal probe of the Higgs sector and therefore the mechanism behind

electroweak symmetry breaking. Consequently, the study of SMEFT effects in top quark

processes has been a subject of intense study in recent years [6–18].

Moreover, the production of top quark pairs with additional heavy-flavour jet activity

is an active field of research for the CMS and ATLAS experiments and forms part of a rich

top physics programme at the LHC. More precisely the production of two top quarks in

association with two bottom quarks is an important background for tt̄H (H → bb̄) analyses

which have recently contributed to the discovery of this particular Higgs boson production

mode [19, 20]. tt̄bb̄ production has therefore long been investigated by CMS at 8 TeV [21]

and 13 TeV [22] as well as by the ATLAS experiment at 7 TeV [23] and 8 TeV [24]. These

analyses have however not yet received a lot of attention in terms of BSM interpretations,

even though this process has previously been discussed as a probe of new physics [6, 25, 26].

In this work we will present the possible reach of the tt̄bb̄ process at 13 TeV centre-

of-mass energy to a set of four-heavy-quark EFT operators of dimension six. The process

provides sensitivity to previously unconstrained directions in the SMEFT parameter space.

We begin with a discussion on the sensitivity that can be achieved with the current in-

clusive 13 TeV CMS measurement [22] with 2.3 fb−1, as well as a projection to 300 fb−1.

Afterwards, we estimate the improvement in sensitivity obtained when exploiting the kine-

matical information contained in this multi-body final state. In particular, we explore the

use of machine learning methods to improve the LHC reach. We show that these tech-

niques optimally combine kinematical properties to select the region in phase space that

is enriched in SMEFT contributions. Moreover, by exploiting a multi-class shallow neural

network we can additionally distinguish amongst different classes of SMEFT operators.

This leads to improved performance in the presence of more than one SMEFT contribu-

tion, by focusing on phase space regions preferred by each class of operators. Our results

suggest that the methods we explore could be beneficial for generic SMEFT interpretations

beyond the final state that we consider.

The paper is structured as follows: in section 2, we identify the relevant four-

fermion operators involving heavy quarks that contribute to tt̄bb̄ and discuss the com-

plementarity provided with respect to four top production. We further discuss the va-

lidity/perturbativity of the EFT expansion concerning this process by considering some

explicit power-counting schemes and ultra-violet completions. In section 3 we outline the

analysis strategy, including details on the sample generation, detector simulation, event se-

lection and the statistical procedure used when deriving limits on the Wilson coefficients.

Section 4 presents a selection of sensitivity studies on individual operators for this process

that exploit inclusive, differential and machine-learning-based observables. Section 5 de-
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scribes our novel neural-network discriminant based on a multi-class output. We summarize

and conclude in section 6.

2 tt̄bb̄ in the SMEFT and its virtues

2.1 Four-fermion operators for tt̄bb̄

In the construction of an EFT one extends the SM Lagrangian with operators of dimension

larger than four [2, 3, 27]. Since dimension five operators only generate baryon or lepton

number violating couplings, the first extension happens with the addition of dimension six

effective operators that are suppressed by the square of an energy scale Λ, as expressed in

eq. (2.1) where Ci is the Wilson coefficient corresponding to the EFT operator Oi.

L = LSM +
∑
i

Ci
Λ2

Oi . (2.1)

Assuming flavor universality, a total of 59 independent operators are present [5].

The most important feature that makes the tt̄bb̄ process different than many others, is

its capability of exploring new contact interactions among the third-generation quarks. The

study of the corresponding operators is well motivated in non-flavour-universal scenarios,

where couplings to the third generation could be enhanced. Randall-Sundrum models of

a warped extra dimension could be one example, see e.g. refs. [28, 29]. It is also natural

in models addressing naturalness of the electroweak symmetry breaking scale where the

third generation typically plays a special role (see e.g. [30] for composite Higgs models). In

the SMEFT approach, to focus on this class of operators in a model-independent way, we

introduce some flavor assumptions such that we can single out the coefficients of operators

involving the t- and b-quarks.

Inspired by Minimal Flavor Violation [31], we impose a U(2)q × U(2)u × U(2)d flavor

symmetry in the light quark sector. Accordingly, four-quark operators composed of vector

currents break down into three sub-classes involving either four-light, two-heavy two-light

or four-heavy quarks each with an independent Wilson coefficient and a U(2) flavour sym-

metry among the first two generations where present (see [32] for a comprehensive review).

This also permits scalar current operators only among the third generation quarks. In

this work we focus on the operators in the four-heavy class. The primary reason for this

is that the two-heavy two-light operators contribute to tt̄ and bb̄ production via the qq̄

initial state. Precise measurements of top pair production already constrain the qq̄tt̄ op-

erators quite well [33] and some additional sensitivity is also gained by including four-top

measurements [34]. Consequently, we do not expect to gain further information from tt̄bb̄.

The qq̄bb̄ operators can be constrained by differential dijet cross section measurements in,

e.g., [35]. Such analyses do not make use of any b-tagging information and are therefore

completely blind to jet flavour. Judging by the O(10−2) TeV−2 sensitivity obtained by this

analysis to flavour-universal, colour-singlet four fermion operators, we do not expect tt̄bb̄ to

provide competitive bounds. Apart from 4 fermion operators, the tt̄bb̄ final state can also

be affected by other operators that modify the interactions of the QCD sector. Namely
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the triple gluon and the chromomagnetic dipole operators,

OG = fABCG
Aν
µ GBρν GCµρ , (2.2)

OtG =
(
Q̄ σµν TA tR

)
φ̃ GAµν + h.c., (2.3)

ObG =
(
Q̄ σµν TA bR

)
φGAµν + h.c. . (2.4)

The first has been shown to be strongly constrained by multi-jet measurements [36] to lie

within [−0.04, 0.04] TeV−2. The top quark chromomagnetic operator contributes directly

to top pair production and is constrained individually to the range [−0.30, 0.64] TeV−2 [33].

The b-quark dipole operator will contribute to the dijet cross section and likely result in very

strong limits. We argue that the tt̄bb̄ process will not provide more stringent information

on these operators and therefore do not include them in our study. In any case, the focus

of this analysis is to point out the sensitivity to previously unconstrained directions in the

SMEFT parameter space.

There are 12 independent 4-fermion operators involving only heavy quarks. Following

the basis choice recommended by the LHC Top Working Group [32]:

Operator tt̄bb̄ tt̄tt̄

O1
QQ =

1

2

(
Q̄ γµ Q

) (
Q̄ γµ Q

)
, 3 3 (2.5a)

O8
QQ =

1

2

(
Q̄ γµ T

A Q
) (
Q̄ γµ TA Q

)
, 3 3 (2.5b)

O1
tb = (t̄ γµ t)

(
b̄ γµ b

)
, 3 (2.5c)

O8
tb =

(
t̄ γµT

A t
) (
b̄ γµ T

A b
)
, 3 (2.5d)

O1
tt = (t̄ γµ t) (t̄ γµ t) , 3 (2.5e)

O1
bb =

(
b̄ γµ b

) (
b̄ γµ b

)
, (2.5f)

O1
Qt =

(
Q̄ γµ Q

)
(t̄ γµ t) , 3 3 (2.5g)

O8
Qt =

(
Q̄ γµ T

A Q
) (
t̄ γµ TA t

)
, 3 3 (2.5h)

O1
Qb =

(
Q̄ γµ Q

) (
b̄ γµ b

)
, 3 (2.5i)

O8
Qb =

(
Q̄ γµ T

A Q
) (
b̄ γµ TA b

)
, 3 (2.5j)

O1
QtQb =

(
Q̄ t
)
ε
(
Q̄ b
)
, 3 (2.5k)

O8
QtQb =

(
Q̄ TA t

)
ε
(
Q̄ TA b

)
. 3 (2.5l)

Q represents the left-handed SU(2) doublet of third generation quarks (top and bottom), t

and b represent the right-handed top and bottom quarks, TA denotes the SU(3) generators

and ε is the totally antisymmetric Levi-Civita tensor in SU(2)-space. We additionally

specify whether each operator contains tt̄bb̄ and tt̄tt̄ interactions. It should be noted that

a subset of the color singlet operators appearing in eq. (2.5a)–(2.5l) have been indirectly

constrained through RG induced contributions to electroweak precision observables [37].

Our study presents the first direct constraints on the full set of four heavy quark operators

containing tt̄bb̄ interactions.
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Figure 1. Dominant EFT contributions to tt̄bb̄ production.

The Wilson coefficient corresponding to each of these operators as they appear in the

Lagrangian will be denoted by replacing the O in the name of the operator by a C. We

absorb the 1/Λ2 factor into the definition of the Wilson coefficients and assume Λ = 1 TeV

throughout this work. The dependence of the tt̄bb̄ cross section on the Wilson coefficients,

in general, forms a 10-dimensional quadratic function in this Wilson coefficient space

σtt̄bb̄ = σSM
tt̄bb̄

1 +
∑
i

pi1Ci +
∑
i≤j

pij2 CiCj

 . (2.6)

Both the SM and EFT contributions to this process are predominantly mediated by the

gg → tt̄bb̄ subprocess. The dominant Feynman diagrams involving a single insertion of the

EFT vertex are shown in figure 1.

2.2 Complementarity to four top production

Out of the 12 operators in eq. (2.5), those that contain a tt̄tt̄ component can also be

constrained by four top production processes, for example in ref. [34, 38]. These operators

are: O1
QQ, O8

QQ, O1
Qt, O

8
Qt and O1

tt (which does not contribute to tt̄bb̄). Of the first

two operators O1
QQ and O8

QQ, only one linear combination can be probed by the four-top

process. This can be seen by writing down their respective interaction terms:

O1
QQ =

1

2

[
(t̄Lγ

µtL) (t̄LγµtL) +
(
b̄Lγ

µbL
) (
b̄LγµbL

)]
+ (t̄Lγ

µtL)
(
b̄LγµbL

)
(2.7)

O8
QQ =

1

6

[
(t̄Lγ

µtL) (t̄LγµtL) +
(
b̄Lγ

µbL
) (
b̄LγµbL

)]
+
(
t̄Lγ

µTAtL
) (
b̄LγµT

AbL
)

(2.8)

where the first term in O8
QQ has a color-singlet structure because it has been Fierzed. As

a result, in four-top production only one combination of the two operator coefficients

C
(+)
QQ =

1

2
C1
QQ +

1

6
C8
QQ (2.9)

is probed. In contrast, in tt̄bb̄ production both degrees of freedom are probed independently,

because the tt̄bb̄ terms in O1
QQ and in O8

QQ have different color structures. This lifts the

flat direction C8
QQ = −3C1

QQ in the C1
QQ–C8

QQ plane, left from the four-top measurements.

The underlying reason is that, while the color singlet and octet structures for a tLtLtLtL

– 5 –
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Operator
4-top

(Mcut = 2 TeV)

4-top

(Mcut = 3 TeV)

4-top

(Mcut = 4 TeV)

this work

(Mcut = 2 TeV)

C1
QQ [−3.9, 3.5] [−2.9, 2.6] [−2.8, 2.5] [−2.1, 2.3]

C8
QQ [−11.8, 10.5] [−8.8, 7.8] [−8.4, 7.4] [−4.5, 3.1]

C1
Qt [−3.2, 3.3] [−2.4, 2.4] [−2.2, 2.3] [−2.1, 2.3]

C8
Qt [−7.4, 5.8] [−5.4, 4.3] [−5.1, 4.1] [−3.9, 3.8]

Table 1. Projected individual confidence intervals quoted in ref. [34] from 4-top production. These

are derived assuming an upper limit of the signal strength, µ < 1.87 is obtainable at the LHC

with 300 fb−1, as estimated in ref. [39]. The limits are reported as a function of an upper bound

on the total invariant mass of the events, Mcut. The last column compares these intervals to best

projections from tt̄bb̄ production obtained in our work.

interaction term are equivalent due to Fierz identity, it is not the case for tLtLbLbL interac-

tion. The projected individual LHC sensitivities with 300 fb−1 from four-top production on

the operators it shares with tt̄bb̄, translated from ref. [34] are summarised in table 1. The

final column represents the best sensitivities obtained from our tt̄bb̄ study for comparison.

One of the interesting points of this study will be to compare the sensitivity of tt̄bb̄ to

the existing and future limits from four top. In this context, one major difference between

the two processes is the comparative rarity of four top production. In 13 TeV pp collisions,

its cross section is of order 9 fb, compared to the ∼3 pb prediction for tt̄bb̄. The limited

statistics of four top measurements at the LHC will most likely mean that it will only ever be

measured at inclusive level for the foreseeable future. tt̄bb̄ production does not suffer from

this and the methods developed in this paper are designed to exploit the sufficiently large

statistics present in 300 fb−1 of integrated luminosity to enhance the relative sensitivity to

the EFT parameter space. As mentioned, operators (2.5c), (2.5d), (2.5i)–(2.5l) have never

been directly constrained before and we obtain sensitivity to them in the tt̄bb̄ topology. In

summary, the EFT interpretation of tt̄bb̄ measurements at the LHC presents the following

advantages:

• A sufficiently large inclusive cross section that allows for the use of differential infor-

mation after 300 fb−1 of integrated luminosity.

• It directly constrains 6 four heavy quark operators for the first time.

• It breaks the degeneracy in a blind direction of the parameter space with respect to

four top measurements.

2.3 EFT validity, power-counting and UV connection

The most basic requirement to satisfy when interpreting a particular measurement in the

SMEFT framework is to ensure that one is probing scales below the mass scale of new

physics, ΛNP. Above this scale, one expects resonant physics to appear which cannot be

captured by the EFT description. To control the energy scales being probed, we introduce
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a new parameter Mcut and impose that all energies associated to our process be less than

this value. As a result, our EFT description can approximate UV completions for which

ΛNP > Mcut. (2.10)

However, from the low-energy perspective, ΛNP is unknown, since the scale of new physics

is degenerate with the value of the Wilson coefficient. Hence, in order to make quantitative

statements on the EFT validity, one has to make some assumptions on the power counting

rule of SMEFT [40, 41] and therefore on the nature of the UV completion. From now on

we assume that there is one single BSM coupling denoted g∗ associated with ΛNP, as done

in the SILH description of Higgs EFT [42]. The EFT operators can then be expanded in

terms of the following building blocks

LEFT =
Λ4

NP

g2
∗
L
(
Dµ

ΛNP
,
g∗H

ΛNP
,
g∗fL,R

Λ
3/2
NP

,
gFµν
Λ2

NP

)
. (2.11)

From this power-counting prescription, we see that the four-fermion operator coefficients

are of order C = g2
∗/Λ

2
NP. The validity of the EFT description in eq. (2.10) can then be

rewritten as |Ci|M2
cut . g2

∗. This is minimally conservative when g∗ takes its largest value

g∗ ∼ 4π, i.e.

|Ci|M2
cut . (4π)2. (2.12)

In this limit, such a condition is equivalent to the model independent requirement of quan-

tum perturbativity in the EFT [32]. The latter is examined through the contributions

involving more and more operator insertions with higher and higher numbers of loops.

The convergence of the series requires that CiM
2
cut/(4π)2 be less than a constant, which

should be roughly of order one. In section 4.2, we will make use of condition (2.12) to

identify an appropriate value for the upper bound on the energy scale of the process Mcut.

The experimental sensitivities on Ci that we will eventually find in our analysis (see fig-

ure 12) are more stringent than (2.12) and hence will be in a valid regime assuming the

simple power counting of (2.11). On the other hand, they will typically correspond to

strong coupling values for g∗.

With the power counting introduced in eq. (2.11), one can also investigate the relative

size of interference and quadratic terms in dim-6 and dim-8 SMEFT operators.1 We will

show that assuming a strongly coupled UV completion implies that the dim-8 interference

terms are sub-leading with respect to the dim-6 quadratic ones, even though they are

formally of the same order in the EFT expansion. Concretely, the dim-6 interference and

quadratic terms in the cross section for gg → tt̄bb̄ production are

dim-6 interference:
g6
sg

2
∗E

2

Λ2
NP

, (2.13)

dim-6 quadratic term:
g4
sg

4
∗E

4

Λ4
NP

, (2.14)

1Dimension 7 operators generate baryon or lepton number violation [43, 44] and we do not consider

them here.
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where E is the largest energy scale characterizing the process and can be at most E ∼Mcut

in our analysis. The two terms in (2.13) and (2.14) could have similar size, and the

quadratic terms could even dominate over the interference, if g∗ is large enough such that

(g∗/gs)
2E2/Λ2

NP & 1. This is actually the relevant regime for the typical constraints that

we will find in this work on the Wilson coefficients (see again figure 12), meaning that both

terms should be included.

On the other hand, the dim-8 interference is subleading, even though it is suppressed

by the same power of ΛNP as the dim-6 squared terms. A dim-8 four-fermion operator

would have the schematic form ffffD2, and, according to eq. (2.11), a coefficient of order

g2
∗/Λ

4
NP, which is not enhanced by higher powers of g∗. This gives a contribution of order

dim-8 interference:
g6
sg

2
∗E

4

Λ4
NP

, (2.15)

which is subleading compared to the dim-6 interference in eq. (2.13), as far as Mcut is below

the scale ΛNP, i.e. the validity criterion is satisfied. The dim-8 interference contribution is

also definitely subleading with respect to the dim-6 quadratic contributions (2.14) as soon

as g∗ > gs.

Apart from four-fermion operators, a general dim-8 operator could involve more fields

and thus have more powers of g∗ in its coefficient. For the process of interest, the relevant

operators are those that lead to contact gttbb and ggttbb interactions, and should have

the schematic forms ffffGµν and ffffDµDν . Note that in eq. (2.11), the coupling that

comes with Gµν is gs, instead of g∗. This is of course a model-dependent assumption,

but seems natural, as the coupling between a gauge boson and a BSM particle is likely

to be its own gauge coupling. Based on this assumption, the coefficients of the operators

ffffGµν and ffffDµDν are of the order g2
∗gs/Λ

4
NP and g2

∗/Λ
4
NP respectively, and thus

their interference contributions to the gg → tt̄bb̄ amplitude, from either gttbb or ggttbb

vertices, are the same as eq. (2.15), and also subleading to eq. (2.13), again if the validity

criterion is satisfied.

In summary, we assume that the operators obey the power-counting depicted in

eq. (2.11), apply the analysis cut Mcut < ΛNP to ensure EFT validity, and truncate the

EFT expansion at dim-6 at the amplitude level, which amounts to including the dim-6

quadratic contribution while neglecting dim-8 operators and beyond.2 This corresponds

to including the contributions with sizes given in eqs. (2.13) and (2.14), and neglecting

any additional contributions suppressed by E2/Λ2
NP < M2

cut/Λ
2
NP < 1. In appendix A we

give a concrete BSM example with a strongly coupled new particle, and derive its relevant

operators in gg → tt̄bb̄, to illustrate that the above power counting assumption is satisfied

and that our strategy would indeed capture the dominant BSM contributions.

3 Analysis strategy

Before describing our workflow, we comment on the latest experimental method adopted by

CMS [21, 22] to measure the tt̄bb̄ cross section. Rather than directly selecting tt̄bb̄ events,

2For similar discussions on power counting arguments in the context of helicity selection rules in the

SMEFT, see refs. [45–48].
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a selection is performed to obtain an inclusive tt̄+ 2 jet sample. The fractional tt̄bb̄ yield is

then extracted by fitting the multivariate b-jet discriminants of the two additional jets. The

b-tagging calibration is the main source of systematic uncertainty in this procedure. In our

analysis, we only consider the tt̄bb̄ component, assuming that it can reliably be extracted

by this method. This rests on the expectation that the b-jet discriminant information is

not affected by the presence of EFT operators, nor by the additional kinematical selection

requirement we impose in section 4.3. Indeed, these discriminants are designed to be as

independent as possible of the jet pT and η [49, 50]. Although we employ fast detector

simulation, these do not include information on the b-jet discriminant, rather parametrising

the b-tagging probability. Explicit verification of this assumption is therefore beyond the

scope of this study.

Simulation. We begin by describing our signal sample generation for the tt̄bb̄ process

that will be used through our sensitivity study. We obtain our signal samples using the

Universal FeynRules Output (UFO) model dim6top [32] that includes both the SM and

the four heavy quark operators of eqs. (2.5a)–(2.5l). We also validate our generation with

an independent implementation of the same operators using the FeynRules package [51].

The tt̄bb̄ final state in which both top quarks decay leptonically, is simulated at LO in

the four-flavour scheme3 from proton-proton collisions at 13 TeV center-of-mass energy

using MadGraph5 aMC@NLO 2.6.0 [53] (MG5 aMC@NLO). The so-called “visible” phase

space as quoted in the CMS measurement of the tt̄bb̄ cross section is mimicked as closely

as possible by requiring the two charged leptons (electrons or muons) to have transverse

momentum (pT ) > 20 GeV and pseudorapidity (η) between −2.4 and 2.4, and the four

particle-level b-jets to satisfy pT > 20 GeV and |η| < 2.5. The angular separation4 in

∆R between different jets or between jets and leptons is required to be larger than 0.5.

Where necessary, parton shower/hadronisation is simulated with Pythia8 [54] and object

reconstruction is modelled with the Delphes [55] detector simulation software, using the

default CMS card.

Event reconstruction. The parton level, “visible” phase space prediction will be com-

pared to the CMS inclusive measurement and future prospects for 300 fb−1 will be esti-

mated. We will then progressively refine the selection procedure, assuming 300 fb−1 of

LHC data, in order to increase the sensitivity to the operators. This however implies that

one has to step away from the unfolded cross section to the fiducial detector volume, and

instead impose further selection requirements on the reconstructed objects. We impose an

event selection following as closely as possible the CMS analysis [22]. Each event must

have two reconstructed, isolated leptons (electrons or muons) with pT > 20 GeV and |η| <
2.4, which are arbitrarily assigned the labels `1 and `2. Missing transverse energy has to

3This choice was motivated by the recent studies on simulating tt̄ + b-jet production at the LHC [52].

It is known that such multi-scale processes are currently difficult to simulate. The theory uncertainty of

the best SM prediction at NLO+PS is of order 20–30%[52]. In this work we assume that this precision can

be improved by the end Run III of the LHC.
4∆R =

√
(∆φ)2 + (∆η)2, where φ is the azimuthal angle difference between two objects and η the

pseudorapidity difference between two objects.
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be larger than 30 GeV. At least four jets must be present with pT > 30 GeV and |η| < 2.5,

of which at least two are b-tagged.

In the CMS analysis the jets with the highest b-tagging discriminator are identified as

the b-jets from the top quark decay. This information is however not available in Delphes

which merely parametrises the b-tagging efficiency. Instead, out of the four highest-pT jets

in the event, the one closest in ∆R to `1 is assigned the label b1 and is considered to be the

b-jet associated to the top quark decaying into `1 and b1 and the same association is applied

to identify b2 associated to `2. Finally the two remaining jets are ordered by decreasing pT
and then assigned labels add1 and add2.

We obtain a reconstruction and selection efficiency from Delphes that is roughly a

factor of two smaller than the one quoted by CMS. This is mostly due to the parametrised

lepton reconstruction and isolation requirements as well as the jet reconstruction. It should

be noted that the definition of the visible phase space by CMS includes the presence of at

least four particle-level jets (clustered from generated particles rather than reconstructed

objects), whereas our fiducial phase space prediction does not include parton-shower and

jet clustering effects. Nevertheless, this should not affect the results of our analysis as

long as the acceptance and efficiency of the event selection are the same for SM and EFT

contributions. It has indeed been checked that these are the same up to Monte Carlo

statistical uncertainties. We therefore identify the parton-level predictions with the visible

phase space measurement of CMS and safely use the outlined event selection without

biasing the results of this study. The Mcut requirement discussed in section 2.3 is imposed

on all combinations of invariant masses of final state particles (see list in table 3) as well

as the scalar sum of transverse momenta, HT .

Sensitivity analysis. Having obtained reconstructed samples that should be similar to

those obtained by current and future analyses in this final state, we proceed to estimate

the sensitivity of various selection methods to the Wilson coefficients, one at a time, in

section 4. To access the energy growth of the EFT contributions, we first consider a cut on

the invariant mass of the 4 b-jets in the final state (M4b). Next, we construct a multi-class

discriminant using a shallow neural network (NN), trained to identify classes corresponding

to the SM point, left-handed top EFT operators and right-handed top EFT operators. The

discriminant should draw from the full 20-dimensional phase space of the 8-body final state

and learn to distinguish samples with different top helicities in the final state through the

angular correlations among the top decay products. The sensitivities are first evaluated by

requiring a lower threshold on the value of the discriminant. Additionally we also evaluate

the sensitivity by performing a template fit to the full discriminant distribution. Finally,

in section 5, we highlight the advantages of the multi-class output structure of the NN,

which lead to improved limits when multiple operators with different Lorentz structures

are allowed to vary simultaneously. As a case study, we will illustrate the improved limits

that can be obtained in a two dimensional parameter space spanned by a pair of left and

right handed operators.

The evaluation of the sensitivity generally proceeds via the same general method. We

first construct the functional dependence of an observable O on each Wilson coefficient in
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eq. (2.5), one at a time, according to

Ofit = OSM

(
1 + p1 · Ci + p2 · C2

i

)
, (3.1)

where Ofit is the total observed value of the observable, OSM is the SM prediction, Ci is

the value of the Wilson coefficient and pi (i ∈ [1, 2]) are parameters to be determined.

p1 signifies the fractional importance of the interference of the EFT with the SM and p2

represents the fractional EFT squared contribution to the observable at quadratic order

in the Wilson coefficient of the EFT operator. The observable, O, may be a cross section

or a number of events given a certain integrated luminosity observed in a signal region or

extracted from a template fit. Taking the experimentally measured value or assuming the

SM prediction is observed in future projections and combining statistical and estimated

systematic uncertainties in quadrature, we construct a ∆χ2

∆χ2(Ci|p1, p2) = χ2(Ci|p1, p2)− χ2
min (3.2)

=
(Ofit(Ci|p1, p2)−Oobs)

2

δO2
− χ2

min, (3.3)

where Ofit and Oobs are the predicted and observed observables, δO is the uncertainty on

the observable and χ2
min is the minimum value of the χ2 function in the EFT parameter

space. Typically the uncertainty is composed of statistical and systematic uncertainties

at the LHC as well as some MC statistical uncertainties. The 95% CL sensitivity interval

on the individual Wilson coefficients Ci is then determined by the region in which the χ2

value is lower than 3.84, corresponding to a p-value of 0.05 for a χ2 distribution with 1

degree of freedom in the Gaussian limit. Only in section 5, where two EFT operators are

allowed with non-zero Wilson coefficients simultaneously, the number of degrees of freedom

is augmented to 2, with a corresponding threshold of 5.991 for the same p-value.

Future projections. All of the projected limits on the Wilson coefficients presented

in this analysis assume the observation of the SM prediction with 300 fb−1 of integrated

luminosity and 10% systematic uncertainty. This is based on the fact that the 35% (see

section 4.1) systematic uncertainty of the CMS tt̄bb̄ measurement is dominated by the

b-tagging scale factors, which contribute 27% on their own. These uncertainties have

improved by a factor of ∼4 between b-tagging studies performed with 2.6 fb−1 [49] and

36.1 fb−1 [50]. Furthermore, they are found to remain stable up to around 1 TeV in jet

pT . The next most important source of uncertainty comes from theoretical modelling and

is quoted at 17% in the current measurement. This consists mainly of MC generator and

parton shower scale variations. Given the importance of this final state in the context of

Higgs physics it is reasonable to expect that these uncertainties will be significantly reduced

by the end of Run III.

4 Sensitivity to individual operators

In this section, only one Wilson coefficient is considered at a time, assuming all others

are kept at a value of zero. We then obtain individual limits that reflect the sensitivity of
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Figure 2. Coefficients of the fit to the cross section in the fiducial detector volume, for different EFT

operators turned on one by one. The fit function has the form σfit = σSM

(
1 + p1 · Ci + p2 · C2

i

)
.

In this notation σSM represents the SM cross section, p1 signifies the fractional importance of the

interference of the EFT with the SM and p2 represents the fractional pure EFT contribution to the

cross section at quadratic order in the coupling strength of the EFT operator.

the tt̄bb̄ final state to each of the operators. We start by using the CMS inclusive cross

section measurement including projections for LHC Run III. We investigate the resulting

sensitivity as a function of Mcut and motivate the value of 2 TeV that we use throughout this

work. We then progressively exploit more kinematical information in the reconstructed final

state. After first considering a selection on what was found to be the most discriminating

variable, the invariant mass of the four b-jets, further improvements using machine learning

classifiers to select the EFT enriched phase space are illustrated.

4.1 Cross section in the fiducial detector volume

The values of the coefficients of eq. (3.1) for the fitted visible cross section for each op-

erator can be found in figure 2. One immediately observes a trend between color singlet

operators and color octet operators for the values of p1 and p2. As expected, the singlet

operators have comparatively small interference with the SM and their contribution to the

cross section is dominated by the squared order in the Wilson coefficient. We observe a

preferential interference of the singlet operators with opposite top and bottom chiralities

(O1
Qb and O1

Qt) while those that mediate same-chirality tt̄bb̄ configurations (O1
QQ and O1

tb)

are suppressed. The color octet operators, however, clearly have a stronger interference

with the SM because the SM processes leading to a tt̄bb̄ final state are dominantly mediated

by QCD. Their quadratic contribution to the cross section is smaller compared to the color

singlet operators, which can be explained by a relative color factor of 2/9 in the EFT vertex,

consistent with the observed values of p2 between the two types of operators. This factor

does not apply to the scalar current operators, due to the fact that they contain both bt̄tb̄

and tt̄bb̄ whose interference contribution will have a different color factor. The interference
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Figure 3. Limits at 95% CL on C1
Qb (left) and C8

Qb (right) using the CMS result with 2.3 fb−1 (full

line, light brown area) and prospects for 300 fb−1 (dashed line, dark brown area).

of these operators is mb suppressed. In any case, the interference terms only dominate

the squared term for color octet operators when the Wilson coefficients are below roughly

3.3 [TeV−2], which is below the sensitivity that can be achieved with this measurement,

meaning that the squared order contributions dominate the limits in all cases.

The measured tt̄bb̄ cross section from proton-proton collisions at 13 TeV by CMS is

found to be σtt̄bb̄,CMS = 0.088 ± 0.012 (stat.) ± 0.029 (syst.) pb. The LO computation of

the SM tt̄bb̄ cross section with MG5 aMC@NLO in the visible phase space defined above

yields a value of 78 fb. This is comparable to the NLO prediction with Powheg [56–58] of

70 ± 9 fb, as quoted in the CMS measurement and within the uncertainties of the CMS

measurement. The total uncertainty is obtained by adding the statistical and systematical

uncertainty in quadrature and is taken to be δtt̄bb̄,CMS = 0.031 pb (or 35%). Indicative

results for the sensitivity to C1
Qb and C8

Qb are shown in figure 3, where in the top panel the

red band shows the fitted cross section to the sample points with uncertainties (the fitted

function is also quoted in red on top of the figure). The light brown band represents the

CMS measurement with uncertainties. In the bottom panel the full line is the resulting χ2

as a function of the Wilson coefficient and the light brown band shows the corresponding

95% CL interval. The minima of the χ2 are not centered at 0, indicating the fact that the

cross section obtained by the calculation of MG5 aMC@NLO at leading order is slightly

below the measured value by CMS, but still well within the uncertainty of the measurement.

Overall, both the linear and quadratic EFT contributions to the cross section stay be-

low the percent level. We obtain limits of around [−14, 14] (TeV−2) and [−30, 26] (TeV−2)

for the example color singlet and octet operators respectively. The projected sensitivities

are shown with the dark brown bands and the dotted lines in figure 3, improving the limits

to around [−6, 6] (TeV−2) and [−14, 11] (TeV−2) respectively. The limits on all Wilson

coefficients are summarized in the left panel of figure 12 (black and red lines for 2.3 fb−1

and 300 fb−1 respectively) at the end of this section.

– 13 –



J
H
E
P
1
1
(
2
0
1
8
)
1
3
1

 [TeV]cutM

1 1.5 2 2.5 3 3.5 4 4.5

]
-2

 [
T

e
V

1 Q
b

C

50−

0

50

-195% CL @ 2.3 fb  > 12)π/(42

cut
|M1

Qb
|C

-195% CL @ 300 fb  > 0.162)π/(42

cut
|M1

Qb
|C

 [TeV]cutM

1 1.5 2 2.5 3 3.5 4 4.5

]
-2

 [
T

e
V

8 Q
b

C

50−

0

50

-195% CL @ 2.3 fb  > 12)π/(42

cut
|M

8

Qb
|C

-195% CL @ 300 fb  > 0.292)π/(42

cut
|M

8

Qb
|C

Figure 4. Limits at 95% CL on C1
Qb (left) and C8

Qb (right) as a function of the mass cut Mcut

for an integrated luminosity of 2.3 fb−1 (full line) and projections to 300 fb−1 (dashed line). The

non-perturbative regime of the EFT in which |Ci|M2
cut > (4π)2 is indicated with the light pink

shaded region. The darker red region represents a more stringent perturbativity requirement for

which the upper limit on the Wilson coefficient (at 300 fb−1) intersects the perturbativity threshold

at Mcut = 2 TeV.

4.2 Quantifying the validity of the EFT

We now investigate the dependence of these limits on the value of Mcut. This will be used

to assess the validity criteria as discussed in section 2.3. As previously mentioned, we

apply a cut on all energy (or mass) scales that appear in the events.5 Lowering the value of

Mcut enlarges the range of new physics mass scales compatible with EFT validity criterion

at the price of a reduced sensitivity. This is illustrated in figure 4, where the non-valid

region defined by eq. (2.12) is indicated by the light pink shaded area as a function of the

value of Mcut. The limits on the Wilson coefficient C1
Qb (left) and C8

Qb (right), both for the

measurement at 2.3 fb−1 (full black line) and for the prospects at 300 fb−1 (dashed black

line) are superimposed. The limits are almost insensitive to value of Mcut down to 1.5 TeV

and we therefore fix it to 2 TeV throughout the rest of this study. Given eq. (2.10), the

value of Mcut serves as a hard lower bound on the scale of new physics that can be used

to interpret limits on the Wilson coefficients. Imposing this cut trades sensitivity for a

controlled interpretability of the results. The dark pink shaded region illustrates a more

stringent requirement than in eq. (2.12), namely
|Ci|M2

cut
(4π)2

< κ2. The specific value of κ2

is chosen such that the edge of the new valid region intersects the projected upper limit

for Mcut = 2 TeV (at 300 fb−1). This provides a conservative estimate of the perturbative

uncertainty of the EFT predictions at the edge of our sensitivity (see discussion around

eq. (2.12)). Finally in figure 5, the normalised distributions of the scalar sum of the

transverse momentum of all visible objects, HT , in the final state is shown comparing the

SM contributions (black), with those of the O1
Qb operator with C1

Qb fixed at 10 TeV−2 (blue)

5This is a somewhat conservative approach, since the actual energy that is exchanged in an EFT vertex

is typically lower than, e.g., the summed transverse momenta of all final state particles. However, at

dimension-8, ggtt̄bb̄ contact terms are present, that would be sensitive to the total centre of mass energy of

the scattering.
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Figure 5. Scalar sum of transverse momentum of all final state physics objects in the event (HT ).

and 20 TeV−2 (red) respectively. This is a representative variable for the typical energy

scale of the tt̄bb̄ events and indeed we see that only a small fraction of the events are present

above HT = 2 TeV.

4.3 Tailoring the kinematical phase space

In order to optimise the sensitivity of our process to the operators of interest, we go beyond

inclusive level and consider observables with an enhanced dependence on the presence of

EFT operators. A first step is to select a part of the phase space in which the EFT

contributions are more abundant relative to the SM ones, as first proposed for this process

in ref. [6].

After the full event selection outlined in section 3 is applied, we define a set of re-

constructed variables and identify those that show a clear difference in shape between the

SM and EFT operators. Different such quantities were tested, including the transverse mo-

menta, invariant masses and ∆R separation between final state objects. These variables are

summarized in table 3 of appendix B. The separating strength of each variable is calculated

by an ANOVA (Analysis of variance) F-statistic [59], which reflects the distance between

the means of the SM and EFT distributions and is further defined in appendix B. The in-

variant mass of the 4 b-jets in the final state (M4b) was found to be the most discriminating

variable and is illustrated in figure 6, comparing the shape of the SM (black) prediction to

that of the O1
Qb operator with the Wilson coefficient fixed at 10 TeV−2 (blue) and 20 TeV−2

(red). This observable is able to capture the heightened energy dependence since at least

two of the b-jets always originate from the EFT vertex, albeit sometimes via the decay of

a top quark. Note that the tail of this distribution beyond 2 TeV is never included in our

analysis due to the global Mcut restriction on all energy scales introduced in section 2.3.
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Figure 6. Invariant mass of the four leading jets in the event (M4b) with and without the presence

of EFT operators and before cutting on the maximal mass scale Mcut.
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Figure 7. Individual limits at 95% CL on C1
Qb and C8

Qb as a function of the threshold on the

invariant mass of the 4 b-jets in the event (M sel
4b ). In the bottom panel the predicted SM cross

section as a function of M sel
4b is shown, with the corresponding statistical uncertainty shown as a

grey band.

We define a signal cross section by applying the selection M4b > M sel
4b = 1.1 TeV, chosen to

maximise the sensitivity to the Wilson coefficients, as shown in figure 7 for C1
Qb and C8

Qb.

After the reconstruction and the application of the above mentioned event selections

(including M4b > 1.1 TeV), we determine the functional dependence of the observed cross

section on the value of the Wilson coefficients and the resulting 95% CL interval on those

coefficients. This is illustrated again for C1
Qb and C8

Qb in figure 8, from which it can be seen
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Figure 8. Limits at 95% CL on C1
Qb (left) and C8

Qb (right) after applying a cut on M4b > 1.1 TeV,

assuming an integrated luminosity of 300 fb−1.

that the fit parameters p1 and p2 of eq. (3.1) are in general larger than for the inclusive

cross section, indicating a stronger dependence of the cross section in the presence of the

operators in the selected phase space. The limits on the Wilson coefficients consequently

improve, ranging between [−3, 3] (TeV−2) and between [−6, 7] (TeV−2) for the example

color singlet and octet operators respectively. The results for all operators are summarized

in figure 12 (blue) on the right. The sensitivity improves by around a factor of two compared

to the unfolded cross section observable.

We remark that the optimal choice of the value of Mcut may be altered after the

selection on M4b > 1.1 TeV. To estimate the magnitude of this effect, the analysis was

repeated with a value of Mcut = 4 TeV and a mild improvement in the limits of at most

15% was observed, at the cost of a reduced regime of interpretability for the EFT. For

a consistent comparison of the different methods that we present, we fix Mcut = 2 TeV

throughout the rest of this study.

4.4 Neural network classifier

Instead of selecting a favourable part of the phase space based on one variable, one can

use machine learning algorithms to optimally select a part of this higher-dimensional phase

space. In this work we will demonstrate how a simple neural network (NN) can combine the

information from a set of kinematical properties of the final states to separate SM events

from those including an insertion of an EFT operator.6 Afterwards, in section 5, we will

demonstrate that by using multi-class outputs of the neural network, we are additionally

able to distinguish among different classes of operators. This will be shown to be especially

beneficial in cases where more than one Wilson coefficient is switched on.

6We continue to use Mcut = 2 TeV, as discussed in section 4.2.
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4.4.1 Neural network design

To illustrate the method, we defined a set of 18 kinematical variables,7 consisting of trans-

verse momenta of the final-state particles, invariant masses (minv) of combinations of two,

four or even all six of these final-state particles and angular separations in ∆R between

combinations of two particles. The list of variables can be found in table 3 of appendix B,

and includes the invariant mass of the four b-jets used in section 4.3. These variables are

fed as input to a shallow neural network with one hidden layer, containing 50 neurons and

3 output classes. The outputs represent the probabilities (P) of an event belonging to one

of the following three categories: a Standard Model event (SM), an event from an EFT

operator with a left-handed top quark (tL) current and an event from an EFT operator

with a right-handed top quark (tR) current. This means that the training is performed

only on the squared order contributions from the EFT operators and therefore the resulting

classifier does not learn about possible interference effects. The advantage of this is that the

signal shapes of the quadratic pieces are independent of the values of the Wilson coefficients

and three distinct sample classes can be used in training. The full parametric dependence

(including interference) is, of course, included in the samples on which the discriminant

is evaluated to obtain the limits. A proper treatment of the interference during training

would require a parametrized learning approach as the relative impact of interference and

squared terms depends on the value of the Wilson coefficient. We leave for future work

this interesting possibility which may improve sensitivity to certain regions of parameter

space. The choice of splitting the EFT output class into two separate contributions is mo-

tivated by the fact that we expect to see differences between the kinematics of the decay

products of left-handed and right-handed top quarks. For example, the W bosons from

right-handed top quark decays give a harder leptonic pT spectrum compared to those from

left-handed top quarks. The complete set of distributions of the input variables, comparing

the three categories are shown in figure 18, appendix B and suggest that a considerable

amount of information is present that could be used to distinguish them. This will allow

us to demonstrate that the network can not only identify events including an insertion of

an EFT operator, but can additionally identify the nature of the EFT operator itself. The

neural network was implemented with the Keras [60] software using the TensorFlow [61]8

backend. For more information on the neural network architecture and training, the reader

is referred to appendix B.

From the combination of the three outputs of the network, different observables can be

constructed, each targeting a specific discrimination between two categories. The different

options used in this work are summarized in table 2. In case only one operator is considered

at a time, as will be discussed in section 4.4.2, the combined NN output is constructed to

optimally separate SM events from EFT operators in its category (upper two rows of

7Technically, there are 16 independent phase space variables after taking into account on-shell decay

conditions imposed at generation-level. This will not impact the efficacy of the neural network classifier

to learn to distinguish between signal and background. In fact, it can be considered a safeguard against

accidentally including over-correlated inputs. Indeed, figure 19 in appendix B indicates sizeable correlations

between the input features.
8Software available from https://www.tensorflow.org/.
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Table 2. Definitions of the combined NN outputs used for deriving limits in different situations.

table 2). However, when more than one operator is allowed to vary simultaneously, and

contributions from both the tL and tR categories are present as will be discussed in section 5,

a combination of two observables is used (bottom rows of table 2). By adding the output

probabilities of the left-handed and right-handed top quark EFT outputs (P (tL) + P (tR))

one obtains a good discrimination between SM events and EFT events in general. This

is illustrated in the top of figure 9, where on the left the normalized distributions of this

combined output are shown for SM events in red and for events with a single insertion of

an EFT operator in black. The corresponding receiver operating curve (ROC) is shown on

the top right, showing on the x-axis the efficiency of selecting events with an insertion of

an EFT operator and on the y-axis the selection efficiency for selecting a pure SM event.

Similarly, an observable can be constructed to distinguish between the second and third

category, namely between events from operators containing tL or tR currents. This variable

is defined as P (tL)
P (tL)+P (tR) and is displayed in figure 9 on the bottom left, together with the

ROC curve on the bottom right. It can be clearly seen that the network has learned

to differentiate between these two classes. We will use this distinction further along in

section 5 to illustrate a method which improves sensitivity when two Wilson coefficients

are allowed to be non-zero at a time.

4.4.2 Network predictions for individual operators

Selecting on the NN output. Constraints on the Wilson coefficients are presented

using the combined outputs of the network defined in the first two rows of table 2 (de-
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Figure 9. Discriminator distributions of combined outputs of the neural network that discriminate

the SM processes from the EFT processes (top left) and the EFT operators with a tL current

form the ones with a tR current (bottom left). The ROC curves corresponding to each of these

distributions are shown on the right and the area under the ROC curve (AUC) is displayed.

pending on the chirality of the top quarks9 in the operator). By selecting only events for

which this value is larger than 0.83 (again chosen to optimise the constraints as shown in

figure 10), limits are obtained on the individual Wilson coefficients. Examples are again

shown in figure 11 for C1
Qb (left) and C8

Qb (right). This leads to a further improvement

of the sensitivities on our example color singlet and octet operators to [−2.1, 2.3] (TeV−2)

and [−5, 4.5] (TeV−2), respectively. Results for the other operators are again collected in

figure 12 (green lines).

Template fits to the NN output. One can further use the separation power of the

neural network by analysing the shape information of its outputs. The fully differential

outputs can be used in a binned likelihood fit of the data to some predefined templates

for the different categories of events. The advantage of such a fit lies in the fact that the

relative normalization of the different categories can be deduced from the region in phase

space where that category is dominantly abundant. This reduces the systematic uncertainty

related to the normalization of the measured SM cross section and may, in practise, improve

9For the scalar operators O1
QtQb and O8

QtQb, where both left- and right-handed top quarks are involved,

the choice was made to assign them to the tR category. This was motivated by the fact that the distributions

of the kinematical variables show more similarity to this category.
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NN output threshold is shown, with the corresponding statistical uncertainty shown as a grey band.
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Figure 11. Limits at 95% CL on C1
Qb (left) and C8

Qb (right) after requiring the network output to

be above 0.83 and assuming an integrated luminosity of 300 fb−1.

the limits that can be obtained on the Wilson coefficients. To illustrate the strength of

such a fit, template histograms (T 1D) are defined for the three categories such that the NN

outputs for a general point in our EFT parameter space can be parametrised as functions

of the event yields for the different event categories (NSM and NL or NR)

fL (NSM, NL) = NSM · T 1D
SM +NL · T 1D

L , (4.1)

fR (NSM, NR) = NSM · T 1D
SM +NR · T 1D

R . (4.2)

These yields normalize each template (T 1D
SM , T

1D
L and T 1D

R ) and are extracted by fitting to

data. The RooFit package [62] incorporated in the ROOT data analysis framework [63] was
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Figure 12. (Left) Summary of the individual limits at 95% CL on all the Wilson coefficients,

from the 13 TeV inclusive tt̄bb̄ cross section measurement of CMS with 2.3 fb−1 (black), as well as

projections for 300 fb−1 (red). (Right) Corresponding limits with 300 fb−1 obtained in this work:

by making a selection on M4b (blue) and on the neural network output (green) and by applying

template fitting techniques to the network outputs (brown). For comparison we also include in red,

the limits from the 300 fb−1 projection shown on the left plot. An upper cut on every energy scale

of the process of Mcut = 2 TeV has been applied throughout.

used to perform the fit of pseudo-data to eqs. (4.1) and (4.2), generated for different values

of the Wilson coefficients assuming 300 fb−1 of integrated luminosity. The fitted yields are

used as described in section 3 to obtain limits on the individual Wilson coefficients, which

are summarised in figure 12 (brown lines). This shows that a similar sensitivity can be

achieved with this method.

Overall, the relative gain in sensitivity with respect to M4b is less pronounced than

going from the total cross section to M4b. This suggests that the majority of the information

in distinguishing between the SM and the EFT is contained in this variable. Nonetheless

it is clear that the use of the NN outputs consistently improves the sensitivity. The next

section will further highlight the benefits of a dedicated machine learning classification.
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Figure 13. Normalized distributions of the combined NN outputs for events corresponding to

SM (red), SM+EFT (tL operators) (green) and SM+EFT (tR operators) (blue). The Wilson

coefficients are set to 20 (TeV−2). The size of each box is proportional to the abundance of events

of the corresponding sample. The discriminators on the x and y axis are as defined in table 2. The

dashed lines define SR1 and SR2. See text for more details.

5 Learning to pinpoint the effective operators

We finally illustrate the strength of the multi-class output structure of the network, which

becomes apparent when both EFT operators with a tL current and with a tR current are

given non-zero Wilson coefficients at the same time. We illustrate this with an example us-

ing events generated with both C1
Qb and C1

tb non-zero. To visualize the separation potential

of the neural network between the three classes, figure 13 shows how the different classes

are distributed in the plane of the combined neural network outputs outlined in the last two

rows of table 2. The x-axis represents the summed probability P (tL)+P (tR) that is able to

separate the SM events (red) from any kind of event that includes the insertion of an EFT

operator. On the y-axis, the normalized probability P (tL)
P (tL)+P (tR) is displayed, designed to

distinguish between the tL (green) and the tR (blue) categories. These distributions show

a clear concentration of SM events to the left, whereas the tL and tR contributions domi-

nantly populate the upper and lower right hand corners, respectively. We therefore define

two signal regions (SR1) and (SR2) as delimited in figure 13.

Adopting a similar strategy to the individual operator case, we can make a single

selection on P (tL) + P (tR) asking this value to be larger than 0.83. The observed cross

section is now fitted according to the generalised function

σfit = σSM

(
1 + pA · CA + pB · CB + pAA · C2

A + pBB · C2
B + pAB · CACB

)
, (5.1)
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Figure 14. (Left) Two-dimensional limits at 95% CL assuming a measurement consistent with the

SM-only hypothesis (blue cross) and allowing two couplings, C1
Qb and C1

tb to vary simultaneously:

(red) one dimensional cut on P (tL) + P (tR) output; (green) SR1; (blue) SR2; (red dashed) combi-

nation of SR1 and SR2; (black) two dimensional template fit. (Right) Same as on the left plot, but

for the EFT signal injection hypothesis. See text and figure 13 for more details.

for two simultaneously non-zero Wilson coefficients. Under the assumption of observing the

SM, this yields a two-dimensional contour of the 95% CL limit on the Wilson coefficients

C1
Qb and C1

tb as shown by the full red line in figure 14 on the left. When the limits are

obtained additionally selecting SR1(SR2) separately, one becomes more sensitive to C1
Qb

(C1
tb), as indicated by the green (blue) contours. By combining these two signal regions

(red dashed contour), an increased sensitivity is observed compared to the one obtained

by the one-dimensional selection on P (tL) + P (tR).

More interesting observations can be made in the case of a potential discovery of new

physics. Under the hypothesis of observing an EFT signal, this strategy can help in the

determination of which type of operators are involved. To illustrate this effect, we inject

a benchmark signal with C1
Qb = 5 TeV−2 and C1

tb = 3 TeV−2 into our pesudo-data. The

2D limit obtained at 95% CL by the one-dimensional selection on P (tL) + P (tR) is shown

in red in figure 14 on the right. The shape of the contour shows a symmetry around the

central point (0, 0), indicating that this selection is insensitive to the sign of the Wilson

coefficient as well as to relative contribution of each operator. However, a combination of

confidence intervals obtained in SR1 and SR2 (dashed red) is able to reduce the best fit

region. It excludes at 95% CL a value of 0 TeV−2 for C1
Qb, which was not possible with the

one-dimensional selection.

The use of template fitting methods becomes even more interesting in this two dimen-

sional example. A two-dimensional binned maximum likelihood fit to predefined templates
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Figure 15. Projected distributions of the fitted templates and one of the generated pseudo-datasets

onto the P (tL) + P (tR) axis (left) and onto the P (tL)
P (tL)+P (tR) axis (right). The pseudo-experiments

are generated from a sample with the Wilson coefficients C1
Qb = 5 TeV−2 and C1

tb = 3 TeV−2, and

assuming an integrated luminosity of 300 fb−1.

(T 2D) is performed by fitting the function

f2D (NSM, NL, NR) = NSM · T 2D
SM +NL · T 2D

L +NR · T 2D
R , (5.2)

to pseudo-data corresponding to the SM observation and also to the observation of a

potential excess as above. A χ2 value is calculated from the sum of each of the EFT event

categories separate (tL and tR) for each sample point in the parameter space of Wilson

coefficients. The 95% CL contours of this distribution are shown in black in figure 14 on

the left (SM-only hypothesis) and the right (possible observation of a signal due to EFT

operators). In the former case the more rectangular shape of the contour leads to the

strongest observed limits in some parts of the parameter space. In the latter case it is clear

that the template fitting procedure is able to pinpoint with more precision the values of

the Wilson coefficients. By using template fits, a value of 0 (TeV−2) for C1
tb is now also

excluded at 95% CL, which was not the case for combined limits in SR1 and SR2. Figure 15

shows the projected distributions of the fitted templates for P (tL) +P (tR) on the left and

for P (tL)
P (tL)+P (tR) on the right.

6 Summary and conclusions

In this work, we present new methods designed to exploit the full kinematical information

to interpret Standard Model searches in the SMEFT framework. The high multiplicity and

complexity of the final-state, in combination with the possible contributions from multiple

effective operators, make machine learning classifiers a promising candidate to maximise

our sensitivity. We identify the production of a top-quark pair in association with two b-jets

as an interesting process, given its 8-body final state and its dependence on 10 four-heavy-

quark operators of dimension six. Its production cross section is large enough to provide
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the required statistics for a differential analysis of the kinematical properties with 300 fb−1

of integrated luminosity. We show that it provides sensitivity to previously unconstrained

directions in the SMEFT parameter space and would therefore be an indispensable com-

ponent in a future global fit for the top-quark interactions. We also present a discussion

of various issues concerning the validity and perturbativity of the EFT and its eventual

UV completion. Therein, we motivate making an upper cut of 2 TeV on all energy scales

involved in the process, to provide a measure of control while hardly sacrificing any sen-

sitivity to the operators. Using power-counting arguments, we show that, in the case of a

strongly coupled UV completion with coupling g∗ > gs, the dominant SMEFT contribu-

tion arises quadratically in the dimension-6 operators while all others are parametrically

suppressed. This is supported by an explicit example of an axigluon scenario.

We have presented a detailed analysis of the LHC sensitivity in this process to the Wil-

son coefficients of four-quark operators involving only third generation quarks. Starting

with new limits from the current inclusive measurement, we progressively employ kinemat-

ical information and machine learning classifiers, obtaining a significant improvement in

projected sensitivity at the end of Run III. To this end, we employ a multi-class architecture

in which a shallow neural network is trained to classify events into three categories: SM,

left-handed top quark operator and right-handed top quark operator. This strategy allows

for the construction of optimal discriminants both for distinguishing individual operator

types from the SM and/or among themselves.

The strength of our approach becomes apparent when multiple operators with different

chiral structures are considered simultaneously. We illustrate this by considering the pres-

ence of two operators with opposite chiral structure at the same time. Using template fits

to the two-dimensional neural network discriminant distribution is shown to provide the

best limits in the two-dimensional Wilson coefficient space. Furthermore, in the scenario

of a hypothetical excess in tt̄bb̄, this method is able to pinpoint with the most accuracy the

values of the responsible Wilson coefficients.

Our method can be extended to more advanced network architectures in combination

with more optimal input variables and larger training datasets to further exploit the power

of these machine learning algorithms to constrain the SMEFT [64, 65]. Here we have

presented one example where the kinematics of top decay are employed to discriminate

between two broad classes of EFT operators. A comprehensive exploration of how far such

a strategy could be pushed towards a discriminator capable of distinguishing individual

SMEFT operators would be extremely interesting.

To conclude, we have presented a detailed investigation of the application of machine

learning classifiers in extracting SMEFT signals in the tt̄bb̄ final state. This process has

shown itself to be a important component to constrain top EFT interactions. Furthermore,

our study serves as a proof of principle that motivates the use of multi-class discriminants

in the context of globally constraining the SMEFT at the LHC.
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A Axigluon model

We will use an axigluon model to illustrate that our power counting assumption is satisfied

and to justify the truncation of the SMEFT expansion at dim-6, even with a strongly

coupled theory.

Model setup. Consider an axigluon model where the strong sector is extended to

SU(3)L × SU(3)R,

L = −1

4
G1µνG

µν
1 −

1

4
G2µνG

µν
2 +

f2

4
TrDµΣDµΣ†, (A.1)

which is spontaneously broken to the diagonal subgroup SU(3)c = SU(3)L+R of QCD by

the nonlinear sigma field Σ, which transforms in the bifundamental representation:

Σ→ ULΣU †R. (A.2)

The physical fields are obtained by rotating the gauge fields G1 and G2 to the mass eigen-

state basis: (
GA1µ

GA2µ

)
=

(
cθ −sθ
sθ cθ

)(
GAµ

CAµ

)
, (A.3)

where CAµ is the axigluon field with mass M . The mixing angle is given by

sθ =
g1√
g2

1 + g2
2

, (A.4)

where g1 and g2 are the coupling strength of the SU(3)L and SU(3)R gauge fields, respec-

tively. The QCD strong coupling is given by

gs =
g1g2√
g2

1 + g2
2

. (A.5)

Below, we will demonstrate that the power counting assumption of eq. (2.11) is satisfied

in this model.

Gauge coupling of fermions. The gluon and axigluon couplings to the fermions are

given by the covariant derivative:

Dµq =∂µq − igsTAGAµ q − ig∗TACAµ (1 + CAγ
5q) (A.6)

where the couplings are

gs =
g1g2√
g2

1 + g2
2

, g∗ =
cθ

2 − sθ2

2sθcθ
gs, CA =

1

cθ2 − sθ2
. (A.7)
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The axigluon Cµ couples to the fermions with coupling strength g∗. In the following we

consider the limit sθ � 1, where we have g∗ � gs, so the theory is strongly coupled. In this

limit, the fermions couple strongly to the heavy axigluons, leading to the g∗f
Λ3/2 in the power

counting assumption of eq. (2.11). Note that under this limit the axial coupling CA ≈ 1.

Gauge coupling of axigluon. The couplings between gluons and axigluons come from

the kinetic terms of G1 and G2. In terms of mass eigenstates, we find the following gauge

interaction terms

CCG : − 1

2
gsf

ABC
(
∂µG

A
ν − ∂νGAµ

)
CBµ C

C
ν − gsfABC

(
∂µC

A
ν − ∂νCAµ

)
GBµC

C
ν , (A.8)

CCGG : − 1

2
g2
sf

ABCfADE
(
GBµG

C
ν C

DµCEν +GBµC
C
ν G

DµCEν +GBµC
C
ν C

DµGEν
)
.

(A.9)

This implies that the gluon couples to axigluon with strength gs, not g∗. This is exactly

what we have argued for the power counting rule for Gµν , where the coupling strength for

the
gGµν

Λ2 term in eq. (2.11) is gs instead of g∗.

Matching. We now derive the coefficients for the relevant operators, to explicitly show

that the assumption in eq. (2.11) indeed applies to the matched operator coefficients.

Four-fermion operator. At leading order, the BSM contribution to the tt̄bb̄ amplitude

is given by figure 16a. The corresponding contribution is reproduced by effective operators

as in figure 16b. The full amplitude can be expanded:

Mttbb =(ig∗)
2JAtµ

−i
s−M2

JAµb =
−ig2

∗
M2

JAtµJ
Aµ
b

(
1 +

s

M2
+ · · ·

)
, (A.10)

where JAµf ≡ ū(f)γµ(1 + CAγ
5)TAv(f) is the top or bottom quark current.

The first term can be reproduced by the following dim-6 operator (neglecting SU(2)

as it is irrelevant for our purpose):

O
(6)
4f =

[
t̄γµ(1 + CAγ

5)TAt
] [
b̄γµ(1 + CAγ

5)TAb
]
, (A.11)

with coefficient
C

(6)
4f

Λ2
= − g2

∗
M2

, (A.12)

while the second term can be reproduced by the following dim-8 operator

O
(8)
DD = Dµ

[
t̄γν(1 + CAγ

5)TAt
]
Dµ

[
b̄γν(1 + CAγ

5)TAb
]
, (A.13)

with coefficient
C

(8)
DD

Λ4
= − g2

∗
M4

. (A.14)

The above coefficients are exactly consistent with what we have expected from

eq. (2.11), taking ΛNP = M . It implies that dim-8 four-fermion operators will not be

enhanced by more powers of g∗, relative to dim-6 operators, and thus the truncation of
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Figure 16. Matching in the axigluon model. Red and blue fermion lines represent top-quark and

bottom-quark currents. Double wavy line represents the axigluon. A blob represents the insertion

of an effective operator. (a), (c), (e) are diagrams in the full theory, which are replaced by (b), (d),

(f) in the EFT. X,Y,M,N are color indices. α, β, ρ, σ are Lorentz indices.

dim-8 operators is well-motivated given that E2/M2 < 1 is ensured by Mcut. This is also

obvious from eq. (A.10), where the validity of the expansion is guaranteed, if s < M2. Note

that this is independent of the relative size of the dim-6 quadratic and interference terms,

which relies on the size of g2
∗.

ffffDD and ffffGµν operators. We also have to check whether the dim-8 contri-

bution from a contact ggffff interaction could be enhanced by more powers of g∗. The

amplitude in the full theory is given by figure 16c. To reproduce the amplitude we find

that two additional operators are needed:

O
(8)
G = fABCGAµν

[
t̄γµ(1 + CAγ

5)TBt
] [
b̄γν(1 + CAγ

5)TCb
]
, (A.15)

O
(8)
DD′ = Dµ

[
t̄γµ(1 + CAγ

5)TAt
]
Dν

[
b̄γν(1 + CAγ

5)TAb
]
. (A.16)
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∆R F-value minv F-value pT F-value

∆R(`1, `2) 274 minv(`1, `2) 312 pT (`1) 580

∆R(b1, b2) 12 minv(b1, b2) 8455 pT (`2) 10

∆R(b1, `1) 1493 minv(b1, `1) 1505 pT (b1) 8500

∆R(b2, `2) 714 minv(b2, `2) 1673 pT (b2) 8434

∆R(add1, add2) 309 minv(add1, add2) 6589 pT (add1) 9664

minv(b1, b2, add1, add2) 14805 pT (add2) 5081

minv(`1, `2, b1, b2, add1, add2) 12895

Table 3. Kinematical variables used in the neural network. The F-values denote the results of the

ANOVA (Analysis of variances) F-statistics.

Together with O
(8)
DD, by equating the diagrams in figure 16c and 16d, we find

C
(8)
G

Λ4
=
−2gsg

2
∗

M4
,

C
(8)
DD′

Λ4
=

g2
∗

M4
. (A.17)

These coefficients are again consistent with the assumption of eq. (2.11), and so as we

have argued, they all lead to subleading contributions as they are not enhanced by more

powers of g∗. We have also checked that these three dim-8 operators reproduce the correct

gttbb amplitude, as in figures 16e and 16f. Since the axigluons can only contribute through

the three one-light-particle-irreducible (1LPI) diagrams, i.e. figure 16a, 16c, and 16e, up

to O(Λ−4), we can now conclude that truncating the SMEFT at dim-6 is justified in this

model, regardless of the size of g∗ and the relative size of dim-6 quadratic term and dim-6

interference.

A final remark is that the operator O
(8)
DD′ is a redundant one. Its contribution to the

gg → tt̄bb̄ from figure 16d and from figure 16f will cancel each other. We include this

operator simply to have a diagram-by-diagram matching, i.e. all three one-light-particle-

irreducible diagrams ttbb+0g, 1g and 2g are matched, which is intuitively more transparent.

B Neural network setup

Training and validation datasets. The network was trained on 18 input variables,

which are summarized in table 3. The F-values in this table denote the results of the

ANOVA (Analysis of variances) F-statistics as defined in [59]. This value scales with

the absolute difference between the mean values of the SM distribution and the EFT

distribution for a given variable. At the same time it is inversely proportional to the

average variance of the individual SM and EFT distributions. Qualitatively, the F-value

thus describes both the overlap between two distributions and the distance between their

mean values, thereby providing information on which observables have strong separating

power between SM and EFT contributions.

Events are simulated in three classes: events including only SM contributions, events

that have a single insertion of an EFT operator with a left-handed top quark and events
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Figure 17. Training curves of the neural network training, displaying the evolution of the accuracy

(top) and value of the loss function (bottom) for increasing number of epochs. These curves are

shown both for the training (red) and for an independent validation data set (blue). These curves

converge towards each other and reach a plateau after about 100 epochs.

that have a single insertion of an EFT operator with a right-handed top quark. Each of

these categories contains around 28,000 events for training and around 7,000 events for

testing. It is important to note that when the network is used to calculate limits on the

Wilson coefficients, it is applied to events which do not strictly belong to one of these three

classes. Instead the events used for the determination of the limits are generated with both

the SM contributions and the EFT contributions (including possible interference) included.

Network architecture. The neural network was trained using Keras with the Tensor-

flow backend. The 18 input nodes are linked to a fully-connected dense layer with 50

neurons with a rectified linear unit activation. A dropout layer is added which randomly

freezes 10% of the neurons in this inner layer in every mini-batch to avoid overfitting. This

layer is connected to the 3 ouputs with a softmax activation such that the outputs sum up

to one. A categorical crossentropy loss function is used and the minimization of this loss

function is performed with a stochastic gradient descent set to an initial learning rate of

0.005 and a decay of 10−6. Nestrov momentum is used and is fixed to a value of 0.8. The

training is performed in mini-batches of 128 events and is stopped after 100 epochs. The

training curve is shown in figure 17, showing a convergence to a plateau both for training

(blue) and testing (green) datasets. The top panel shows the accuracy whereas the bottom

panel shows the value of the loss function.

Variable distributions. In figure 18 the distributions of all the input variables of the

neural network are shown for SM only events (red), for events with a single insertion of an

EFT operator with a left-handed top quark (green) and for those with a right-handed top

quark (blue). The correlation matrix is shown in figure 19.
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Figure 18. Normalized distributions of the neural network input variables for SM events (red),

left-handed top operators (green) and right-handed top operators (blue).
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Figure 19. Correlation matrix of the NN input variables.
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