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Abstract: The small-scale structure problems of the universe can be solved by self-

interacting dark matter that becomes strongly interacting at low energy. A particularly

predictive model for the self-interactions is resonant short-range interactions with an S-

wave scattering length that is much larger than the range. The velocity dependence of

the cross section in such a model provides an excellent fit to self-interaction cross sections

inferred from dark-matter halos of galaxies and clusters of galaxies if the dark-matter mass

is about 19 GeV and the scattering length is about 17 fm. Such a model makes definite

predictions for the few-body physics of weakly bound clusters of the dark-matter particles.

The formation of the two-body bound cluster is a bottleneck for the formation of larger

bound clusters. We calculate the production of two-body bound clusters by three-body

recombination in the early universe under the assumption that the dark matter particles

are identical bosons, which is the most favorable case. If the dark-matter mass is 19 GeV

and the scattering length is 17 fm, the fraction of dark matter in the form of two-body

bound clusters can increase by as much as 4 orders of magnitude when the dark-matter

temperature falls below the binding energy, but its present value remains less than 10−6.

The present fraction can be increased to as large as 10−3 by relaxing the constraints from

small-scale structure and decreasing the mass of the dark matter particle.
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1 Introduction

The simplest paradigm for dark matter is that it consists of weakly interacting elementary

particles. However visible matter consists not only of elementary particles, such as elec-

trons, but also of composite particles, such as nuclei. Nuclei are clusters of protons and neu-

trons bound by residual forces from QCD. Protons and neutrons consist of quarks bound by

the color force of QCD. Dark matter could also consist of composite particles. In particular,

it could consist of “dark nucleons” and bound clusters of dark nucleons (“dark nuclei”). The

dark nucleons could be elementary or composite, but they have an integer-valued conserved

charge that we call “dark baryon number”. Various models for dark-matter bound states

have been discussed in the literature, including a near-threshold S-wave resonance [1–3],

the exchange of a light mediating boson between elementary fermions, QCD-like structure

in the dark sector, and other mechanisms [4–34]. Light nuclei up to 7Li are produced in

the early universe by big-bang nucleosynthesis [35, 36]. The relevant reactions are all 2-

body collisions of nuclei. Some of the 2-body reactions that produce a nucleus with larger

baryon number than either of the colliding nuclei are rearrangement reactions, such as
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d + d → 3He + n. However the most important such reactions are radiative fusion reac-

tions, such as p+d→ 3He +γ, in which the two incoming nuclei coalesce while radiating a

photon to conserve energy and momentum. The effects of 3-body collisions are negligible

in big-bang nucleosynthesis. Three-body collisions do play a role in stellar nucleosynthesis

despite the relatively low density. In particular, the Hoyle reaction α + α + α → 12C + γ

provides a pathway around the bottleneck caused by the relatively large binding energy of

the 4He nucleus α.

If dark matter consists of dark nucleons that can form bound clusters, these dark nuclei

can be produced in the early universe by “dark nucleosynthesis”. Studies have shown that

a sequence of dark nuclei with increasing dark baryon number can indeed be produced

in the early universe [9, 11, 14, 37]. The relevant few-body mechanisms were assumed

to be 2-body radiative fusion reactions, in which two incoming dark nuclei coalesce while

radiating a much lighter particle to conserve energy and momentum. If there is no such light

particle, dark nuclei with larger dark baryon numbers must instead be built up through

rearrangement collisions. If dark nuclei with dark baryon number 2 (“dark deuterons”)

have already been formed, dark nuclei with larger dark baryon numbers can be produced by

rearrangement collisions of two dark nuclei, in which dark nucleons are transferred between

the two colliding nuclei. However the production of the dark deuterons is a bottleneck that

can only be overcome by collisions of 3 or more dark nucleons. The simplest such reaction

is the 3-body recombination of three dark nucleons into a dark deuteron and a recoiling

dark nucleon. Whether a significant population of dark deuterons can be produced in the

early universe can only be determined by detailed calculations using specific models for the

few-body physics.

One class of models for few-body physics that are extremely predictive are those with

short-range interactions and an S-wave resonance very close to the scattering threshold for

a pair of particles [38]. In these models, the elastic scattering cross section for a pair of

particles has dramatic energy dependence that is completely determined by the particle

mass m and the S-wave scattering length a, which is much larger that the range r0 of the

interactions. When the center-of-mass collision energy E decreases below the energy scale

1/mr2
0 set by the range, the elastic cross section increases as 1/E, nearly saturating the S-

wave unitarity bound. The cross section levels off when E decreases below the energy scale

1/ma2, approaching a large value proportional to a2 as E approaches 0. If a is positive,

the S-wave resonance is a stable bound cluster. This weakly bound cluster is universal, in

the sense that it has properties determined by a, including a small binding energy 1/ma2

and large geometric size of order a. The universality in the two-particle sector for particles

with a large scattering length extends to the 3-particle and higher sectors, although it can

be more intricate [38]. It strongly constrains the universal bound clusters, whose binding

energies are smaller than the energy scale set by the range. Whether there are universal

bound clusters with 3 or more particles depends on the symmetries of the particles. The

simplest case in which there are such universal bound clusters is identical spin-0 bosons.

Universality also provides strong constraints on reaction rates in the 3-particle and higher

sectors [38]. These reaction rates can display dramatic resonant enhancements at low

energy. For example, the 3-body recombination rate can increase as 1/E2 when the center-
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of-mass collision energy E decreases below the energy scale 1/mr2
0, and it can approach a

large value proportional to a4 in the low-energy limit.

Large low-energy cross sections for dark matter particles are motivated by discrepan-

cies between observations of the small-scale structure of the universe and simulations based

on collisionless cold dark matter [39–44]. Observations of dwarf galaxies are inconsistent

with the cusp of dark matter at the center of a galaxy that is predicted by dark-matter-

only simulations. Dark-matter-only simulations also imply that dwarf galaxies bound to

the Milky Way should be denser than those that have been observed. Although other ex-

planations for these problems have been proposed, they can all be solved by self-interacting

dark matter that is strongly interacting at low energy [45, 46]. Short-range interactions

with a large scattering length provide a particularly predictive model of self-interactions

that become strong at low energy [1–3].

If dark nucleons have short-range interactions with a large scattering length a, they

have universal low-energy properties determined by a [1]. We denote the dark nucleon by

d and a bound cluster of n dark nucleons by dn. If a is negative, there are no weakly bound

clusters of two dark nucleons. If a is positive, there is one universal weakly bound cluster:

the dark deuteron d2. If a pair of dark nucleons has annihilation channels, the scattering

length a is complex with a small negative imaginary part. In addition to the elastic cross

section and the binding energy of the dark deuteron, the annihilation rate of a pair of dark

nucleons and the decay rate of the dark deuteron are also universal in the sense that they are

determined by the complex scattering length [1]. In a direct detection experiment, the dark

deuteron can scatter elastically from a target nucleus, or it can be broken up by the colli-

sion [2, 3, 47]. The low-energy cross sections for both processes are determined by a up to a

multiplicative factor. Their dependence on the collision energy and the recoil angle provides

interesting signatures for this simplest dark nucleus. The simplest reaction that can form

a bound cluster is 3-body recombination: d+ d+ d→ d2 + d. In an expanding and cooling

thermal system, such as the early universe, the decreasing number density will tend to sup-

press 3-body recombination while the decreasing temperature will tend to enhance it. Once

dark deuterons are produced, the competing breakup reaction d2+d→ d+d+d will destroy

them. The net effect on the population of d2 can only be determined by explicit calculations.

In this paper, we study 3-body recombination into dark deuterons during the Hubble

expansion in the early universe under the assumption that the dark matter consists of

dark nucleons that are identical bosons with a large positive scattering length, which is the

most favorable case for the formation of universal bound clusters. We determine the mass

mχ and the scattering length a of the dark nucleon that would be required to solve the

small-scale structure problems of the universe. For these values of mχ and a, the fraction

of dark matter in the form of dark deuterons can increase by orders of magnitude when

the dark-matter temperature decreases to below the binding energy of the dark deuteron.

However, we find that a significant population of dark deuterons cannot be produced during

the Hubble expansion. Since the production of the dark deuteron is a bottleneck, larger

dark nuclei will also not be formed. A much larger population of dark deuterons can be

produced if the constraints from small-scale structure are relaxed and the mass of the dark

matter particle is decreased.
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In section 2, we summarize the universal 2-body physics of particles with a large

scattering length. We also determine the mass and the scattering length of the dark nucleon

that would be required to solve small-scale structure problems of the universe. In section 3,

we summarize the universal 3-body physics of identical bosons with large scattering length.

In section 4, we present results for the rate constants for many-body systems of identical

bosons with large scattering length in thermal equilibrium. In section 5, we consider the

formation of dark deuterons by 3-body recombination during the Hubble expansion of the

early universe. We calculate the fraction of dark matter in the form of dark deuterons as

a function of the red shift. Our results are summarized and discussed in section 6.

2 Universal two-body physics with large scattering length

In this section, we summarize the universal two-body physics of particles with short-range

self-interactions and a large scattering length. We determine the mass and the large scat-

tering length of a dark nucleon that would be required to solve the small-scale structure

problems of the universe.

2.1 Two-body physics

Atomic physics has provided a strong impetus for developing the universal few-body physics

of particles with large scattering lengths [38]. There are naturally occurring atoms with

large scattering lengths, such as the 4He atom. There are other atoms whose scattering

lengths can be controlled and made arbitrarily large by using Feshbach resonances [48]. In

this subsection, we use the concise language of atomic physics for the particles with large

scattering lengths and their bound clusters. The particle d is referred to as an atom, and

the two-body bound cluster d2 is called a dimer. We make factors of Planck’s constant

~ explicit.

We denote the mass of the atom d by m. The atom has short-range self-interactions

with range r0 and an S-wave scattering length a that is much larger than r0. The range

and the scattering length provide a high energy scale E0 = ~2/mr2
0 and a low energy scale

E2 = ~2/ma2. At energies well below E0, the two-body physics is universal in the sense

that it is completely determined by a. It depends on the nature of the particles and on the

details of their short-range interactions only through a. The universal behavior becomes

exact in the zero-range limit r0 → 0. In this limit, all higher partial-wave interactions go

to 0, so two-body scattering is purely S-wave.

The universal region for the scattering of two atoms is when the collision energy E,

which is the kinetic energy in the center-of-mass frame, is well below E0. The universal

elastic scattering cross section for identical bosons is

σelastic(E) =
8π

1/a2 +mE/~2
. (2.1)

If the two colliding atoms are distinguishable particles, such as the two spin states of a

spin-1
2 fermion, the numerator is replaced by 4π. The cross section has dramatic energy

dependence. When the collision energy E decreases below E0, the elastic cross section
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increases in accordance with eq. (2.1). In the scaling region E2 � E � E0, the cross

section nearly saturates the S-wave unitarity bound 8π~2/mE. As the energy decreases

below E2, the cross section levels off and approaches its maximum value 8πa2 as E → 0. In

the limit a→ ±∞, the scaling behavior 8π~2/mE extends down to arbitrarily low energy.

Since this cross section saturates the S-wave unitarity bound, the limit a → ±∞ is called

the unitary limit.

A universal bound state is one that has properties determined by a. Its binding energy

per pair of particles must be less than E0. Whether or not there is a universal dimer d2

depends on the sign of a. If a < 0, there is no universal dimer. If a > 0, there is a single

universal dimer. The universal binding energy of d2 in the zero-range limit is

E2 = ~2/ma2. (2.2)

A beautiful example in atomic physics of a boson with a large scattering length is

the 4He atom. Its scattering length is about 200 a0, where a0 is the Bohr radius. The

scattering length is larger than the effective range by about a factor of 15, so the cross

section increases at low energies by more than two orders of magnitude. The 4He dimer is

a universal two-body bound state with the tiny binding energy E2 = 1.4 × 10−7 eV. The
4He dimer was first observed in 1993 using electron impact ionization [49]. The universal

low-energy behavior of particles with a large scattering length is illustrated even more

dramatically by experiments with ultracold trapped atoms. The scattering length a of

the atoms can be controlled and made arbitrarily large by tuning the magnetic field to a

Feshbach resonance [48]. Thus the binding energy of the universal dimer can be controlled

and made arbitrarily small.

If the atoms have inelastic scattering channels, the scattering length a is complex with

a negative imaginary part. If all the inelastic scattering channels have energy release large

compared to E2, the inclusive inelastic cross section is also universal and determined by a.

The universal inelastic scattering cross section for identical bosons is

σinelastic(E) =
8π Im[1/a]

(mE/~2)1/2
[
1/a2 +mE/~2

] . (2.3)

We have assumed the imaginary part of 1/a is tiny compared to the real part of 1/a, in

which case the imaginary part can be ignored except in the numerator where it appears

as a multiplicative factor. lnelastic atom-atom scattering channels are also decay channels

for the dimer. The universal expression for the decay rate is

Γ2 =
4~ Im[1/a]

ma
. (2.4)

The imaginary part of a should be ignored in the denominator. The energy ~Γ2 is twice

the imaginary part of the complex binding energy given by eq. (2.2) with complex a. Note

that the imaginary part of 1/a cancels in the ratio of the inelastic cross section in eq. (2.3)

and the decay rate in eq. (2.4).

– 5 –



J
H
E
P
1
1
(
2
0
1
8
)
0
8
4

10 100 100030 300 3000
1

10

102

103

104

Figure 1. Self-interaction reaction rate 〈v σelastic〉 for dark matter particles as a function of the

mean velocity 〈v〉. The data points are results from Kaplinghat, Tulin, and Yu for dwarf galaxies

(red), low-surface-brightness galaxies (blue), and galaxy clusters (green) [53]. The curves are the

best fit for a dark-photon model with α′ = 1/137 [53] (dashed) and the best fit to eq. (2.5) (solid).

The diagonal lines are for energy-independent cross sections.

2.2 Dark matter parameters

The small-scale structure problems of the universe can be solved by self-interacting dark

matter that becomes strongly interacting at low energies [46, 50–52]. In ref. [53], Kapling-

hat, Tulin, and Yu determined self-interaction reaction rates 〈v σelastic〉 for dark matter

particles from astrophysical data on dwarf galaxies, low-surface-brightness galaxies, and

galaxy clusters [54–57]. Their data points are shown as a function of the mean relative

velocity 〈v〉 of the dark atoms in figure 1. In the galaxies, 〈v〉 ranges from about 20 km/s

to about 200 km/s. The values of 〈v σelastic〉 for the galaxies only are roughly compatible

with an energy-independent cross section with σelastic/m = 2 cm2/g. In the galaxy clusters,

〈v〉 is about 2000 km/s. The values of 〈v σelastic〉 for the clusters only are compatible with

an energy-independent cross section with σelastic/m = 0.1 cm2/g. To fit the results for

both the galaxies and the clusters requires a cross section that increases dramatically with

decreasing velocity. The results for 〈v σelastic〉 versus 〈v〉 can be fit by a dark-photon model

with three parameters: the dark matter mass mχ, the dark photon mass µ, and the cou-

pling constant α′ for a Yukawa potential. Kaplinghat et al. included additional systematic

errors of 0.3 in log(〈v σelastic〉/m) and 0.1 in log(〈v〉) for each system to take into account

the uncertainty in their modeling. They fixed the coupling constant at α′ = 1/137 and fit

the parameters mχ and µ. Their fitted values are mχ = 15+7
−5 GeV and µ = 17 ± 4 MeV.

The curve for their best fit with mχ = 15 GeV and µ = 17 MeV is shown in figure 1.
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The results for the self-interaction reaction rates in ref. [53] can be fit equally well by

a short-range interaction model with a large scattering length. We assume dark nucleons

are identical spin-0 bosons with a large real and positive scattering length. The parameters

required to describe the universal two-body physics of dark nucleons are their mass mχ

and the scattering length a. The elastic cross section is given in eq. (2.1). The reaction

rate as a function of the relative velocity v is

v σelastic(v) =
8πa2v

1 + (amχ/2)2v2
. (2.5)

Our fit to the data points for 〈v σelastic〉 versus 〈v〉 shown in figure 1 gives

mχ = 19+3
−2 GeV , (2.6a)

a = ±(17± 3) fm . (2.6b)

The curve for the best fit with mχ = 19 GeV and a = ±17 fm is shown in figure 1. The

binding energy E2 = 1/(mχa
2) of the dark deuteron is predicted to be 7.1 keV. This is also

the value of the collision energy mχv
2/4 where v σelastic(v) has a maximum as a function

of v. The relative velocity v at the maximum is about 300 km/s. The reaction rate in

eq. (2.5) must remain accurate for v beyond the values of 〈v〉 for galaxy clusters. At some

larger velocity scale v0 = 2/mχr0 set by the range r0 of self-interactions, the reaction

rate in eq. (2.5) may cross over to that for an energy-independent cross section, which is

a diagonal line in figure 1. Assuming the crossover does not occur until v is at least 3

times larger than 〈v〉 for galaxy clusters, the energy-independent cross section must satisfy

σelastic/mχ < 0.01 cm2/g. The range r0 must be less than 0.5 fm, and the energy scale

E0 = 1/mχr
2
0 set by the range must be greater than 200 MeV.

One can obtain a very similar curve in figure 1 with spin-1 fermions, for which the factor

8π in eq. (2.5) is replaced by 4π. The best-fit parameters for the mass and scattering length

are 15 GeV and ±22 fm. This mass is the same as that obtained in the dark photon model

of ref. [53]. The same scattering length could be obtained in that model by tuning either the

dark photon mass or the Yukawa coupling constant. The mapping from the parameters of a

model of dark fermions with gauge bosons to the scattering length is extensively discussed

in refs. [58–60]. The mapping from the parameters of a more fundamental dark matter

model with bosons to the scattering length could be as nontrivial as the mapping from the

parameters of QCD to the large neutron scattering length.

An upper bound on the elastic cross section for dark matter particles has been obtained

from the Bullet Cluster, which is the result of a collision of two galaxies with a relative ve-

locity estimated to be O(1000) km/s [61–67]. The apparent absence of significant scattering

from the two dark matter halos implies an upper bound on the elastic cross section for the

dark matter particles divided by their mass. If the dark matter particles have an energy-

independent cross section, the upper bound on σelastic/mχ is roughly 1 cm2/g [68–70]. The

curves in figure 1 at 〈v〉 = 1000 km/s are compatible with this bound.

Another constraint on the elastic cross section for dark matter particles can be ob-

tained by demanding that self-scattering removes the cusp in the dark matter distribution
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at the center of dwarf galaxies that is predicted by the ΛCDM model. If the dark matter

particles have an energy-independent cross section, this condition provides an estimate of

σelastic/mχ that is roughly 1 cm2/g [46]. A typical mean velocity of dark matter particles

in a dwarf galaxy is 10 km/s. The curves in figure 1 at 〈v〉 = 10 km/s are compatible with

this estimate.

Note that in our fit to eq. (2.5) we have only considered the data compiled by Kapling-

hat et al. in ref. [53]. We are aware that there are analyses of astrophysical systems that

exhibit agreement with collisionless dark matter (see e.g. refs. [68, 71]). There are caveats

to these analyses, since the galaxy-dark matter offsets are predicted by strongly interacting

dark matter are small [72] and since the concentration parameter of dwarf galaxies may

be higher than assumed.1 Whether or not self-interacting dark matter is required in as-

trophysical systems requires more research. We will use the fit parameters in eq. (2.6) to

illustrate the near-threshold S-wave resonance model, but we will also consider values of

the parameters that do not solve the small-scale structure problems.

3 Universal three-body physics of identical bosons

In this section, we summarize the universal three-body physics of identical bosons with a

large scattering length, which is surprisingly intricate [38]. The 3-body physics depends

strongly on the scattering length a. It also depends log-periodically on a 3-body parameter

κ∗ that can be determined from the binding energy of a universal bound 3-body cluster.

In this section, we use the concise language of atomic physics for the particles and

their bound clusters. The particle d is referred to as an atom. A two-body bound cluster

d2, a three-body bound cluster d3, and a four-body bound cluster d4 are called a dimer, a

trimer, and a tetramer, respectively. We make factors of Planck’s constant ~ explicit.

3.1 Trimer spectrum

The remarkable nature of trimers composed of identical bosons with a large scattering

length was first realized by Vitaly Efimov. In 1970, Efimov pointed out that in the uni-

tary limit where a is infinitely large, there is a sequence of infinitely many trimers whose

binding energies have an accumulation point at the 3-atom scattering threshold [73]. The

ratio of the binding energies of two successive trimers is the square of a universal number

λ0 = 22.694. The order of magnitude of the binding energy of the most deeply bound

Efimov trimer is the energy scale E0 = ~2/mr2
0 set by the range.

The discrete spectrum of Efimov trimers in the unitary limit a = ±∞ implies that

few-body physics in the zero-range limit must depend on a 3-body parameter. The Efimov

trimers can be labeled by an integer n. A convenient choice for the 3-body parameter is the

binding wave number κ∗ in the unitary limit a = ±∞ of some arbitrarily chosen Efimov

trimer labelled by n∗. In the unitary limit, the binding energies of the other Efimov trimers

differ by integer powers of λ2
0 ≈ 515:

E3,n = λ
−2(n−n∗)
0 ~2κ2

∗/m at a = ±∞. (3.1)

1Private communication from M. Kaplinghat.
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If the binding wave number of a different Efimov trimer was chosen as the 3-body param-

eter, the value of κ∗ would differ by a multiplicative factor that is an integer power of λ0.

Since κ∗ can only be defined modulo multiplicative factors of λ0, few-body physics can only

depend log-periodically on κ∗. In particular, 3-body reaction rates must be functions of a

and κ∗ that are invariant under replacing κ∗ by λ0κ∗.

The binding energies of Efimov trimers are smooth functions of the inverse scattering

length 1/a [74]. If the scattering length is not infinitely large, there are only a finite number

of Efimov trimers. As 1/a decreases through negative values, Efimov trimers disappear

through the 3-atom scattering threshold at critical values of a that differ by multiplicative

factors of λ0. As 1/a increases through positive values, Efimov trimers disappear through

the atom-dimer scattering threshold at critical values of a that differ by multiplicative

factors of λ0. The Efimov trimer whose binding momentum in the unitary limit is κ∗
disappears through the 3-atom scattering threshold E = 0 at the negative scattering length

a− = −1.508 κ−1
∗ [75], and it disappears through the atom-dimer scattering threshold

E = −E2 at the positive scattering length a∗ ≈ 0.07076 κ−1
∗ [38]. Given any large scattering

length a, the energy of one Efimov trimer can be used to determine κ∗ and the binding

energies of the other Efimov trimers can then be predicted. The number of Efimov trimers

is not predicted, because the binding energy of the deepest Efimov trimer is determined

by the range r0.

In atomic physics, the two 4He trimers are beautiful examples of Efimov trimers. The

binding energy of the more deeply bound 4He trimer is about 1.1 × 10−5 eV. It was first

observed using diffraction from a transmission grating [76]. The binding energy of the

more weakly bound 4He trimer relative to the 3-atom threshold is about 2.3 × 10−7 eV,

which is about a factor of 2 larger than that of the 4He dimer. It has been observed only

recently using Coulomb explosion imaging [77]. The first Efimov trimer observed in cold

atom physics was a 133Cs trimer observed in 2008 as a resonance in the atom loss rate from

3-body recombination [78].

3.2 Dimer-atom scattering

The dimer-atom scattering processes are elastic scattering (d2 + d → d2 + d) and dimer-

breakup scattering (d2 + d → d + d + d). The collision energy, which is the total kinetic

energy of the atom and dimer in the center-of-momentum frame, is

E =
3~2k2

4m
, (3.2)

where ~k is the relative momentum of the atom and dimer. The partial wave expansion

for the elastic scattering amplitude is

fk(θ) =

∞∑
J=0

2J + 1

k cot δJ(k)− ik
PJ(cos θ). (3.3)

The phase shifts δJ(k) are dimensionless functions of k. The scattering is purely elastic

for energies between the atom-dimer threshold E = 0 and the dimer-breakup threshold

E = E2. The phase shifts are therefore real for E < E2 and complex for E > E2. The
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cross sections for elastic scattering and for breakup scattering can be expressed in terms

of the phase shifts:

σelastic(E) =
4π

k2

∞∑
J=0

(2J + 1)
∣∣∣eiδJ (k) sin δJ(k)

∣∣∣2 , (3.4a)

σbreakup(E) =
π

k2

∞∑
J=0

(2J + 1)
(

1−
∣∣e2iδJ (k)

∣∣2) . (3.4b)

In the universal regime where the energy E is much smaller than the energy scale E0

set by the range, the only relevant interaction parameters are the scattering length a and

the 3-body parameter κ∗. The S-wave phase shift δ0(k) is a dimensionless function of ka

and aκ∗ that depends only log-periodically on aκ∗. It can be expressed in the form [38]

exp
(
2iδ0(E)

)
= s22(x) +

s12(x)2 exp[2is0 log(a/a+)]

1− s11(x) exp[2is0 log(a/a+)]
, (3.5)

where s0 = π/ log λ0 ≈ 1.00624 is a universal constant and a+ is an alternative 3-body

parameter that differs from κ−1
∗ by a multiplicative factor: a+ = 0.3165κ−1

∗ [75]. The

dimensionless functions s11(x), s12(x), and s22(x) are complex-valued functions of the

scaling variable x = ka. In terms of this variable, the dimer-breakup threshold E = E2 is

x = 2/
√

3. For x < 2/
√

3, the scaling functions s11(x), s12(x), and s22(x) are entries of

a 2 × 2 unitary matrix. For x > 2/
√

3, they are entries of a 2 × 2 submatrix of a 3 × 3

unitary matrix. In ref. [79], they were calculated numerically over the range of x from

10−1 to 10+1. The phase shifts δJ(k) for the higher partial waves are also dimensionless

functions of x = ka. They are real for x < 2/
√

3 and complex for x > 2/
√

3. In ref. [79],

the phase shifts for J from 1 to 6 were calculated numerically over the range of x from

10−1 to 10+1. The results of ref. [79] allow the elastic cross section and the breakup cross

section to be calculated for collision energies up to 100 E2, where E2 is the dimer binding

energy in eq. (2.2).

The breakup cross section is shown in figure 2 as bands whose envelope corresponds

to minimizing and maximizing the cross section with respect to a+. The upper band is the

total cross section, and the lower band is the contribution from J = 0. The curves inside

the lower band are for 8 values of a+/a between 1 and λ0 that are equally spaced on a log

scale. At E = 100E2, the sum of the higher partial waves is larger than the maximum

J = 0 contribution by more than an order of magnitude. The behavior of the individual

partial waves at large E is consistent with decreasing as 1/E2, but the sum of the partial

waves is consistent with decreasing as 1/E. This is the scaling behavior of the cross section

at high energy that is expected from dimensional analysis, given that the only energy scale

from interactions is E2. Both the upper and lower bands are extrapolated beyond 100 E2

by fitting to power-law scalings between 50 E2 and 100 E2. The breakup cross section in

the high-energy limit can be approximated as

σbreakup(E)→ c2
~2

mE
, (3.6)

where the coefficient is c2 ≈ 35.
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Figure 2. The breakup cross section as a function of energy with respect to the threshold: E−E2.

The upper band is the envelope of σbreakup(E) for all possible values of the three-body parameter

a+. The lower band is the envelope of the J = 0 contribution to σbreakup(E) for all possible values

of a+. The curves inside the lower band are for 8 values of a+: a+/a = λ
n/8
0 , n = 0, 1, . . . , 7. The

dashed line is the extrapolation from the scaling behavior in eq. (3.6).

Analytic expressions for the cross sections are known at special values of the energy [38].

They can be useful for making order-of-magnitude estimates. The elastic cross section at

the atom-dimer threshold is

σelastic(E = 0) = 4π
(
1.46 + 2.15 cot[s0 log(a/a∗)]

)2
a2, (3.7)

where a∗ = 0.0708κ−1
∗ . The cross section at E = 0 depends log-periodically on a/a∗,

and its value ranges from 0 to ∞. It diverges at a∗ = a and at other values of a∗ that

differ from a by an integer power of λ0 = 22.7, because there is an Efimov trimer at the

atom-dimer threshold. The cross section at E = 0 vanishes at a∗ = 2.63 a and at other

values of a∗ that differ from 2.63 a by an integer power of λ0, because there is destructive

interference between two scattering pathways. The S-wave contribution to the elastic cross

section at the dimer-breakup threshold is known analytically. It can be approximated with

an accuracy of better than 1% by [38]

σ
(J=0)
elastic(E = E2) ≈ 3π sin2[s0 log(a/a+)] a2, (3.8)

where a+ ≈ 0.3165κ−1
∗ . This contribution vanishes at a+ = a and at other values of a+

that differ from a by an integer power of λ0, because there is perfect destructive interference

between two reaction pathways. The S-wave contribution to the breakup cross section at

an energy E just above the dimer-breakup threshold E2 is [79]

σ
(J=0)
breakup(E) ≈ C3(a/a+)

32
√

3π

(
E − E2

E2

)2

a2. (3.9)
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The coefficient C3(a/a+) in the prefactor depends log-periodically on a. A completely

analytic expression for this coefficient has been derived by Macek, Ovchinnikov, and Gasa-

neo [80]. It can be expressed as

C3(a/a+) =
66.6373 sin2[s0 log(a/a+)]

1− 0.00717 sin2[s0 log(a/a+)]
, (3.10)

where s0 = π/ log λ0 = 1.00624 and a+ ≈ 0.3165κ−1
∗ [75]. It vanishes at a+ = a and at

other values of a+ that differ from a by an integer power of λ0 = 22.7. At these values

of a+, there is perfect destructive interference between two recombination pathways. The

coefficient in (3.10) can be approximated with an error of less than 1% by the simpler

expression

C3(a/a+) ≈ 67.1 sin2[s0 log(a/a+)]. (3.11)

3.3 Three-body recombination

Three-body recombination is a reaction in which the collision of three atoms results in

the formation of a dimer: d + d + d → d2 + d. The reaction rate depends on the wave

vectors k1, k2, and k3 of the three colliding atoms, but not on the total wave vector

k1 + k2 + k3. It can be expressed as a function of the Jacobi wave vectors defined by

k12 = k1 − k2 and k3,12 = k3 − 1
2(k1 + k2). The collision energy E is the kinetic energy in

the center-of-momentum frame:

E =
~2(3k2

12 + 4k2
3,12)

12m
. (3.12)

The recombination rate can be expressed as a function of E and 5 dimensionless hyperangles

consisting of the spherical angles of the two Jacobi vectors and arctan(
√

3 k12/2k3,12). The

hyperangular average of the recombination rate is a function of E only. It can be expressed

in terms of the breakup cross section at the kinetic energy E2 + E [79]:

〈
R(k12,k3,12)

〉
=

192
√

3π~3(E2 + E)

m2E2
σbreakup(E2 + E). (3.13)

In the universal regime where the collision energy is much smaller than the energy

scale ~2/mr2
0 set by the range, the only relevant interaction parameters are the scattering

length a and the 3-body parameter κ∗. A completely analytic expression for the three-body

recombination rate at zero collision energy has been derived by Macek, Ovchinnikov, and

Gasaneo [80]. It can be expressed as

R(E = 0) = 6C3(a/a+) ~a4/m. (3.14)

The coefficient C3(a/a+) depends log-periodically on a/a+, and it can be approximated by

the expression in eq. (3.11). The recombination rate at E = 0 vanishes at a+ = a and at

other values of a+ that differ from a by an integer power of λ0. It has its maximum value

67.1 ~a4/m at a+ = 4.76 a and at other values of a+ that differ from 4.76 a by an integer

power of λ0.
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3.4 Four-body physics and beyond

In 2004, Platter, Hammer, and Meissner predicted the existence of universal 4-body bound

clusters composed of identical bosons with large scattering length [81, 82]. Their binding

energies were mapped out as functions of a by von Stecher, D’Incao, and Greene [83]. In an

experiment with 133Cs atoms in 2009, the dramatic increase of the 4-body recombination

rate at low temperature near a specific value of a was used to discover the first such

universal tetramer [84]. There is theoretical evidence for universal bound clusters of 5, 6,

and even more identical bosons with a large scattering length [85].

4 Rate coefficients at thermal equilibrium

In this section, we give expressions for the rate coefficients for few-body reactions for

identical bosons with large scattering lengths in thermal equilibrium. We use the concise

language of atomic physics for the bosons and their bound clusters. We consider a gas of

atoms with number density n1 and dimers with number density n2 in kinetic equilibrium

at temperature T but not necessarily in chemical equilibrium. For simplicity, we assume

the gas is sufficiently dilute that the Bose-Einstein momentum distributions of the atoms

and dimers can be approximated by Maxwell-Boltzmann distributions.

4.1 Inelastic atom-atom scattering

We assume all the inelastic atom-atom scattering channels have energy release large com-

pared to E2, and that the energetic particles produced by the reaction have scattering cross

sections with an atom that are small compared to the elastic atom-atom cross section. The

particles produced by an inelastic reaction can therefore be ignored, and the only effect of

the reaction is to decrease the number of atoms by 2. In a homogeneous system, the rate

at which the number density n1 of atoms decreases from inelastic atom-atom scattering is

proportional to n2
1:

d

dt
n1 = −2K1(T )n2

1. (4.1)

The rate coefficient K1(T ) depends on the temperature and can be expressed as a weighted

integral over the inelastic cross section:

K1(T ) =
4

√
πm (kT )3/2

∫ ∞
0

dE E e−E/kT σinelastic(E). (4.2)

Upon inserting the universal approximation to the inelastic cross section for identical bosons

in eq. (2.3), we obtain an analytic result:

K1(T ) =

(
32π g(kT/E2)

E2

kT

)
~ Im[a]

m
, (4.3)

where the dimensionless function g(t) is 1 − (π/t)1/2e1/t[1 − erf(1/
√
t)]. Figure 3 shows

the rate coefficient K1(T ) and its limiting behaviors: 16π ~ Im[a]/m in the low-T limit and

32π(E2/kT )~ Im[a]/m in the high-T limit.
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Figure 3. Rate coefficient K1(T ) for dimer breakup as a function of the temperature T . The

dashed lines indicate its asymptotic behaviors in the low-T and high-T limits.

4.2 Dimer breakup

The dimer-breakup reaction dd2 → ddd decreases the number of dimers by 1 and increases

the number of atoms by 2. We assume the final-state atoms are thermalized by the elastic

atom-atom scattering. In a homogeneous system, the rate at which the number density n2

of dimers decreases from dimer-breakup scattering is proportional to n1n2:

d

dt
n2 = −K2(T )n1n2. (4.4)

The rate coefficient K2(T ) depends on the temperature and can be expressed as a

Boltzmann average of the dimer-breakup cross section:

K2(T ) =
6√

3πm (kT )3/2

∫ ∞
E2

dE E e−E/kTσbreakup(E). (4.5)

The universal approximation to the dimer-breakup cross section is given in eq. (3.4).

The universal results for the atom-dimer phase shifts δJ(k) in ref. [79] are obtained up to

about 100 E2. The breakup cross section is extended above 100 E2 as shown in figure 2 by

fitting to the power-law behavior in eq. (3.6). This allows K2(T ) to be calculated for all

temperatures kT up to the scale E0 set by the range. The results for the rate coefficient

are shown in figure 4 as bands whose envelope corresponds to minimizing and maximizing

the rate with respect to a+. The upper band is the total rate coefficient, and the lower

band is the contribution from J = 0. The curves inside the lower band are for 8 values of

a+/a between 1 and λ0 that are equally spaced on a log scale.

We can obtain a simple analytic approximation for K2(T ) in the low-temperature limit

kT � E2. In this limit, the breakup cross section in eq. (3.9) is dominated by the S-wave
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Figure 4. Rate coefficient K2(T ) for dimer breakup as a function of the temperature T . The upper

band is the envelope of K2(T ) for all possible values of the three-body parameter a+. The dashed

line is the extrapolation from the scaling behavior in eq. (4.7). The lower band is the envelope of

the J = 0 contribution to K2(T ) for all possible values of a+. The curves inside the lower band are

for 8 values of a+: a+/a = λ
n/8
0 , n = 0, 1, . . . , 7.

contribution. The limiting behavior of the rate coefficient is

K2(T ) −→ C3(a/a+)

2
√

2
e−E2/kT

(
a

λT

)3 ~a
m
, (4.6)

where λT = (2π~2/mkT )1/2 is the thermal wavelength and C3(a/a+) is the coefficient

of ~a4/m in the 3-body recombination rate at zero collision energy in eq. (3.14). This

coefficient can be accurately approximated by eq. (3.11). Note that the dimer-breakup

rate coefficient in eq. (4.6) is exponentially suppressed by the Boltzmann factor.

We can also obtain a simple analytic approximation for K2(T ) in the scaling region,

where kT is much larger than E2 and much smaller than the energy scale E0 = ~2/mr2
0 set

by the range. In the scaling region E2 � kT � E0, the breakup cross section in eq. (3.9) is

dominated by the higher partial-wave contributions. Figure 4 shows that at kT = 100E2,

the sum of the higher partial waves is already more than an order of magnitude larger than

the maximum J = 0 contribution. The dependence on the S-wave scattering length a can

therefore be neglected. Since the interactions provide no other length scales smaller than

the range, the dependence of the rate coefficient on T can be determined up to a numerical

coefficient by dimensional analysis:

K2(T ) −→ c2

√
6

π

~λT
m

, (4.7)

where c2 ≈ 35 is the same coefficient as in eq. (3.6). The extrapolation in T provided by

the scaling behavior in eq. (4.7) is shown as a dashed line in figure 4.
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4.3 Three-body recombination

The three-body recombination reaction ddd → dd2 increases the number of dimers by 1

and decreases the number of atoms by 2. We assume the final-state atom and the final-

state dimer are thermalized by elastic atom-atom scattering and by elastic atom-dimer

scattering, respectively. In a homogeneous system, the rate at which the number density

n2 of dimers increases from 3-body recombination is proportional to n3
1:

d

dt
n2 = +K3(T )n3

1. (4.8)

The rate coefficient K3(T ) depends on the temperature and can be expressed as a

Boltzmann average of the three-body recombination rate:

K3(T ) =

∫∞
0 dE E2 e−E/kT

〈
R(k12,k3,12)

〉
6
∫∞

0 dE E2 e−E/kT
, (4.9)

where
〈
R
〉

is the hyperangular average of the 3-body recombination rate, which is a function

of the collision energy E only. The factor of 1/3! compensates for the overcounting of 3-

body states of the 3 identical bosons in the Boltzmann average. The rate coefficient can

be expressed as a weighted integral over the dimer-breakup cross section:

K3(T ) =
16
√

3π~3

m2(kT )3

∫ ∞
0

dE e−E/kT (E2 + E)σbreakup(E2 + E). (4.10)

We can use eq. (4.5) to express K3(T ) in terms of K2(T ):

K3(T ) = 2
√

2λ3
T e

E2/kT K2(T ) , (4.11)

where λT = (2π~2/mkT )1/2 is the thermal wavelength. The universal approximation to

the dimer-breakup cross section is given in eq. (3.4). The universal results for the atom-

dimer phase shifts δJ(k) in ref. [79] are obtained up to about 100 E2 and the breakup cross

section is extended above 100 E2 in figure 2 by fitting to the power-law behavior. This

allows the recombination rate coefficient K3(T ) to be calculated for all temperatures kT

up to scale E0 set by the range. The results are shown in figure 5 as bands whose envelopes

corresponding to minimizing and maximizing the rates with respect to a+. The upper band

is the total rate coefficient, and the lower band is the contribution from J = 0. The curves

inside the lower band are for 8 values of a+/a between 1 and λ0 that are equally spaced

on a log scale.

We can obtain simple analytic approximations for the 3-body recombination rate co-

efficient by using the relation between K2(T ) and K3(T ) in eq. (4.11) and the analytic

approximations for K2(T ) in eqs. (4.6) and (4.7). In the low-temperature limit kT � E2,

the rate coefficient approaches a constant that depends log-periodically on a/a+:

K3(T ) −→ C3(a/a+)
~a4

m
, (4.12)
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Figure 5. Rate coefficient K3(T ) for three-body recombination as a function of the temperature

T . The upper band is the envelope of K3(T ) for all possible values of the three-body parameter

a+. The dashed line is the extrapolation from the scaling behavior in eq. (4.13). The lower band

is the envelope of the J = 0 contribution to K3(T ) for all possible values of a+. The curves inside

the lower band are for 8 values of a+: a+/a = λ
n/8
0 , n = 0, 1, . . . , 7.

where C3(a/a+) is the coefficient in eq. (3.10), which can be accurately approximated by

eq. (3.11). In the scaling region E2 � kT � E0, the rate coefficient scales as the power of

temperature required by dimensional analysis:

K3(T ) −→ c2
4
√

3

π

~λ4
T

m
, (4.13)

where c2 ≈ 35 is the same coefficient as in eq. (3.6). The extrapolation in T provided by

the scaling behavior in eq. (4.13) is shown as a dashed line in figure 5.

In experiments with ultracold trapped atoms, the atoms form an extremely dilute

gas in the sense that the typical interatom spacing is much larger than the range of the

interactions between atoms: 〈n1〉1/3r0 � 1, where 〈n1〉 is the density-weighted average of

the number density. Three-body recombination can be important in these experiments,

because the dimer and atom in the final state often have enough kinetic energy to escape

from the trapping potential. In that case, every recombination event results in the loss

of three atoms. In an experiment with 133Cs atoms in 2005, the dramatic increase of the

3-body recombination rate at low temperature when the scattering length was tuned to

near the negative value a− = −1.5κ−1
∗ was used to discover an Efimov trimer [78].

5 Early universe

In this section, we study the production of dark deuterons through three-body recom-

bination of dark nucleons during the Hubble expansion of the early universe under the

assumption that the dark nucleons are identical bosons with a large positive scattering
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length. We calculate the fraction of dark matter in the form of dark deuterons as a func-

tion of the redshift.

5.1 Rate equations

After the decoupling of dark matter from ordinary matter, the densities of dark nucleons

and larger dark nuclei evolve in thermal equilibrium until they are captured by the grav-

itational potential wells of galaxies. The time evolution is due to the Hubble expansion

and to reactions among the dark nuclei. Assuming that the larger dark nuclei are weakly

bound, the density and temperature at decoupling are large enough that any larger dark

nucleus that is formed is immediately broken up by a collision with a dark nucleon. Thus

we can take as an initial condition that the dark matter consists entirely of dark nucleons

at the decoupling time.

Given an initial state consisting only of dark nucleons, larger dark nuclei can be formed

by N -body recombination reactions in which N dark nuclei collide and some of them form

bound states. At sufficiently low dark nucleon number density n1, the N -body recombina-

tion rate is proportional to nN1 . Thus if a dark deuteron d2 exists, the most favorable reac-

tion is 3-body recombination (d+d+d↔ d2+d). Once dark deuterons have been produced,

larger dark nuclei can be formed by rearrangement collisions, such as dn + d2 → dn+1 + d.

The formation of dark deuterons is a bottleneck that must be overcome by 3-body re-

combination in order to form the larger dark nuclei. We wish to determine whether this

bottleneck can be overcome in the early universe when the dark matter is still in thermal

equilibrium. To answer this, we can ignore dark nuclei dn with n ≥ 3 and consider only

the time evolution for dark nucleons and dark deuterons. The only reactions we need

to take into account are 3-body recombination and the dark deuteron breakup reaction

(d2 + d ↔ d + d + d). We wish to determine whether a significant population of dark

deuterons can be generated in the early universe.

We denote the number densities of the dark nucleon and the dark deuteron by n1(t)

and n2(t). We assume the number densities of dark nuclei with larger dark baryon number

are negligible, so the total dark baryon number density is

ndark(t) = n1(t) + 2n2(t). (5.1)

The time evolution equations for n1(t) and n2(t) obtained from the Boltzmann equation are(
d

dt
+ 3H

)
n1 = −2K3(T )n3

1 + 2K2(T )n1n2 − 2K1(T )n2
1 , (5.2a)(

d

dt
+ 3H

)
n2 = K3(T )n3

1 −K2(T )n1n2 − Γ2 n2 , (5.2b)

where H is the Hubble function, K3(T ), K2(T ), and K1(T ) are temperature-dependent

event rate coefficients, and Γ2 is the dark deuteron decay rate. The Hubble function H(t)

depends on time, being determined by the scale factor a(t) of the universe: H = d ln(a)/dt.

The rate coefficients are functions of the temperature T (t) of the dark matter, which also

depends on time.
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We neglect the effects of the annihilation of dark nucleons into ordinary matter. We

therefore set K1(T ) = 0 and Γ2 = 0 in the rate equations in eqs. (5.2). If there were

such an annihilation process, it would decrease n1 through annihilation collisions of two

dark nucleons and it would decrease n2 through the annihilation of the two constituents

of the dark deuteron. The rates for both processes are determined by the same parameter

Im[1/a], which appears as a multiplicative parameter in both K1(T ) and Γ2. When Γ2 is

much larger than 3H(t), the number density n2 of dark deuterons decreases exponentially.

Any dimers that have been produced by 3-body recombination would decay quickly on

a cosmological time scale. The net effect is that n2 would remain essentially 0, and the

decrease in n1 would be given by the 3-body recombination term in eq. (5.2a) only. Since

we ignore the annihilation of dark nucleons, our results for the number density of dark

deuterons can be interpreted as upper bounds.

If we ignore the annihilation terms in the evolution equations in eqs. (5.2), we get a

simpler equation for the total dark baryon number density:(
d

dt
+ 3H(t)

)
ndark(t) = 0 . (5.3)

Using dt = H−1d ln a, the solution is

ndark(t) = ndark(0)

(
a(0)

a(t)

)3

. (5.4)

The time evolution of the total dark baryon number density does not depend on the dark

matter interactions; it is just diluted by the Hubble expansion.

It is convenient to use the redshift z as an alternative time variable. The redshift is

related to the scale factor a by 1 + z(t) = a(0)/a(t). The solution for the total dark baryon

number density in eq. (5.4) can be expressed as

ndark(z) =
ρcdm

mχ
(1 + z)3 , (5.5)

where ρcdm = 2.23× 10−30 g/cm3 is the present average mass density of dark matter in the

universe [86] and mχ is the mass of the dark nucleon. The Hubble function in terms of

redshift is given by

H(z) = H0

[
Ωγ(1 + z)4 + Ωm(1 + z)3 + ΩΛ

]1/2
, (5.6)

where the Hubble constant is H0 = 67.8 km s−1 Mpc−1 and the fractions of the critical

density of the Universe for CMB photons (Ωγ), matter (Ωm), and dark energy (ΩΛ) are

5.38× 10−5, 0.308, and 0.692, respectively [86].

Since the dark nucleons are nonrelativistic after the decoupling, their temperature

T (z) is proportional to the square of their average momentum [87]. On the other hand,

the temperature Tγ(z) of the photons is proportional to their average momentum. The

Hubble expansion changes the momentum of a particle by a factor of 1 + z. Thus the two

temperatures are different functions of the redshift:

T (z) ≈ T (0) (1 + z)2 , (5.7a)

Tγ(z) ≈ Tcmb (1 + z) , (5.7b)
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where T (0) is the present temperature of dark matter that has not been captured by

gravitational potential wells and Tcmb = 2.73 K is the present temperature of the photons.

At decoupling, the dark matter and ordinary matter are in thermal equilibrium: T (zdc) =

Tγ(zdc), where zdc is the redshift at decoupling. We are not displaying the dependence

on the Standard Model degrees of freedom in these and the following expressions for the

temperature for simplicity. The variation due to the three-body parameter is larger than

the effects from the decreasing number of relativistic degrees of freedom. The dark matter

temperature is therefore

T (z) ≈ Tcmb
(1 + z)2

1 + zdc
. (5.8)

The decoupling redshift can be expressed as zdc ≈ T (zdc)/Tcmb. If the thermal decoupling

of dark matter and ordinary matter occurs not long after their chemical decoupling, the

decoupling temperature is given approximately by the dark-matter mass multiplied by a

constant: kT (zdc) ≈ mχ/20 [88]. The resulting estimate for the decoupling redshift is

1 + zdc ≈
mχ/20

kTcmb
. (5.9)

The mass fraction of the dark matter in the form of dark deuterons is

f2(z) = 2n2(z)/ndark(z) . (5.10)

If we ignore the annihilation terms in the evolution equations in eqs. (5.2), the dark deuteron

fraction satisfies the differential equation

d

dz
f2 =

1

(1 + z)H

[
− 2K3(T )n2

dark (1− f2)3 +K2(T )ndark f2(1− f2)
]
. (5.11)

We have used dt = −[(1 + z)H]−1 dz to replace the time derivative by a redshift derivative.

Given H(z), ndark(z), and T (z) in eqs. (5.6), (5.5), and (5.8), our problem reduces to solving

this single differential equation for f2(z) subject to the initial condition f2(zdc) = 0, where

zdc is given in eq. (5.9).

5.2 Approximation in scaling and threshold regions

The evolution equation for the dark deuteron fraction with redshift in eq. (5.11) involves

the rate coefficients K2(T ) and K3(T ). If dark nucleons are identical bosons with a large

positive scattering length and if kT is much smaller than the energy scale E0 set by the

range, the rate coefficients are given in eqs. (4.5) and (4.10). The rate coefficients have

simple behavior in the low-temperature limit kT � E2, where E2 = 1/(mχa
2) is the dark

deuteron binding energy, and in the scaling region E2 � kT � E0, where E0 = 1/(mχr
2
0)

is the energy scale set by the range. We can use those results to determine the qualitative

behavior of the dark deuteron fraction in those regions.

In the scaling region E2 � kT � E0, the rate coefficients K2(T ) and K3(T ) have the

limiting behaviors given in eqs. (4.7) and (4.13). They scale as λT and λ4
T , respectively,

where λT is the thermal wavelength, which is proportional to (1 + z)−1:

λT =

(
2π(1 + zdc)

mχ kTcmb

)1/2 1

1 + z
. (5.12)
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Since ndark is proportional to (1 + z)3, the products K2 ndark and K3 n
2
dark are both pro-

portional to (1+ z)2. Thus there can be an equilibrium value of f2 for which the two terms

on the right side of eq. (5.11) cancel. The ratio of K3(T ) and K2(T ) is given in eq. (4.11).

The equilibrium fraction satisfies

f2

(1− f2)2
= 4
√

2

(
2π(1 + zdc)

mχ kTcmb

)3/2 ρcdm

mχ
. (5.13)

If the equilibrium value of f2 is much less than 1, it can be approximated by the right

side of eq. (5.13). Upon inserting the estimate for the decoupling redshift in eq. (5.9),

the right side reduces to (ρcdm/mχ)/(kTcmb)3 multiplied by a numerical constant. Since

ρcdm/(kTcmb)3 = 0.74 eV, the equilibrium value of f2 is tiny as long as mχ is orders of

magnitude larger than 1 eV.

In the low-temperature region kT � E2, the rate coefficients K2(T ) and K3(T ) have

the limiting behaviors given in eqs. (4.6) and (4.12). They are proportional to λ−6
T e−λ

2
T /a

2

and λ−6
T , respectively. The dark deuteron breakup is exponentially suppressed by the

Boltzmann factor, so the breakup term in the rate equation can be dropped. If the value of

f2 is much less than 1, we need to keep only the leading terms in f2 in the recombination

term in eq. (5.11). The rate equation then simplifies to

d

dz
f2 = −2K3(0)

n2
dark

(1 + z)H
. (5.14)

When z � 104, the Hubble function in eq. (5.6) can be approximated as H(z) ≈ H0Ω
1/2
γ z2.

The solution of eq. (5.14) is then

f2(z) = f2(0)− C3(a/a+)
a4ρ2

cdm

2H0Ω
1/2
γ m3

χ

z4 , (5.15)

where f2(0) is the present dark-deuteron fraction for dark matter that has not been cap-

tured by gravitational potential wells and C3(a/a+) can be approximated by eq. (3.11).

The approach to f2(0) is predicted to be z4 multiplied by a coefficient whose dependence

on a is C3(a/a+) a4. The value of f2(0) should be determined by a boundary condition

from the region of larger z where kT (z) is comparable to E2. We are unable to determine

f2(0) analytically, but it should depend log-periodically on the three-body parameter a+.

Our numerical results for f(0) are consistent with an expression linear in C3.

The evolution equation for the dark deuteron fraction f2(z) in eq. (5.11) with the

rate coefficients K2(T ) and K3(T ) in eqs. (4.5) and (4.10) applies all the way back to the

decoupling redshift provided the decoupling temperature is smaller than the scale E0 set

by the range: kT (zdc) < E0. If E0 is smaller than kT (zdc), the simple expressions for

K2(T ) and K3(T ) in eqs. (4.5) and (4.10) are not applicable until kT decreases to below

E0. However once kT enters the scaling region E2 � kT � E0, f2 will be driven quickly

to the equilibrium value given by eq. (5.13). Thus the present value of f2 is completely

determined by the scattering length a and the 3-body parameter a+ provided only that

the decoupling temperature is much larger than the scale E2 = 1/(mχa
2). This condition

kT (zdc)� E2 can be expressed approximately as mχa�
√

20.
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Figure 6. Dark-deuteron mass fraction f2(z) in the early universe as a function of the redshift

variable zdc/z on a log scale for mχ = 19 GeV and a = 17 fm. The curves are for 8 values of the

3-body parameter: a+/a = λ
n/8
0 with n = 0, 1, · · · , 7.

5.3 Numerical results

Assuming the dark nucleons are identical bosons with a large scattering length, the few-

body parameters are the dark nucleon mass mχ, the scattering length a, and the three-body

parameter a+. For the mass and the scattering length, we use values that can solve small-

scale structure problems of the universe. The values that give the best fit to the data points

for 〈v σelastic〉 versus 〈v〉 in figure 1 are mχ = 19 GeV and a = 17 fm. Since the 3-body

parameter a+ is only defined modulo multiplicative factors of λ0 ≈ 22.69, the complete

range of possibilities is covered by varying a+ from a to 22.69 a.

To determine the dark-deuteron mass fraction f2(z) as a function of the redshift z,

we solve the differential equation in eq. (5.11) subject to the initial condition f2(zdc) = 0.

Given the mass mχ = 19 GeV, the decoupling redshift in eq. (5.9) is zdc ≈ 4 × 1012. We

want to determine whether a significant fraction f2 is ever generated during the subsequent

time evolution.

In figure 6, we show the dark deuteron fraction f2 as a function of a red-shift variable

zdc/z on a log scale. This variable increases from 1 at the decoupling time to infinity at

the present time. The band in figure 6 corresponds to minimizing and maximizing f2 with

respect to a+. The individual curves are for eight values of a+ that are equally spaced on a

log scale between a and 22.69 a. As z decreases from zdc, the dark deuteron fraction f2(z)

increases very quickly to a plateau of about 4×10−11 from thermal equilibrium between 3-

body recombination and dark deuteron breakup. That equilibrium value is consistent with

the estimate for the scaling region in eq. (5.13). We could therefore just as well take the

initial value of f2 at the decoupling red shift to be the equilibrium value given by eq. (5.13).

When the dark matter temperature T decreases below the dark deuteron binding energy
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Figure 7. Dark-deuteron mass fraction f2(z = 0) at late times as a function of the dark matter

mass mχ with the scattering length a determined by σelastic/mχ = 2 cm2/g. The curves are for 8

values of the 3-body parameter: a+/a = λ
n/8
0 with n = 0, 1, · · · , 7. The vertical dotted line marks

the mass mχ = 19 GeV used in figure 6. The results are reliable only well outside the shaded region

where mχa�
√

20.

1/(mχa
2) = 7.1 keV, there is a dramatic increase in f2 by 3 or 4 orders of magnitude. This

feature is expected from the exponential suppression of the breakup process in eq. (4.6) and

from the z4 dependence at late times that is predicted by eq. (5.15). The dark-deuteron

fraction plateaus at a value f2(0) that depends log-periodically on the 3-body parameter

a+ and can be approximated by

f2(0) = (4.6× 10−8) + (6.7× 10−9)C3(a/a+). (5.16)

The maximum value of f2(0) from varying a+ is larger than the minimum value by a factor

of 11. The fraction f2(0) has its minimum when the value of a+/a is just a few percent lower

than 1 (or equivalently λ0 = 22.69), which is the value for which there is total destructive

interference in the 3-body recombination rate at zero temperature. It has its maximum

when the value of a+/a is just a few percent lower than λ
1/2
0 = 4.76.

The results for f2(z) shown in figure 6 are for parameters mχ = 19 GeV and a = 17 fm

that solve small-scale structure problems of the universe, as illustrated in figure 1. However

there are also mechanisms involving baryonic physics that can solve or at least ameliorate

the small-scale structure problems. We first relax the constraint on mχ and a by ignoring

the results for 〈v σelastic〉 versus 〈v〉 from clusters of galaxies. The results in figure 1 from

galaxies only are roughly compatible with a cross section that at low velocities approaches

σelastic/m = 2 cm2/g. This requires the constraint 8πa2/mχ = 2 cm2/g. Given mχ, the

scattering length a is determined. The results for the dark deuteron fraction f2(0) at late

times as a function of mχ are shown in figure 7. If mχ is too small, the decoupling temper-
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ature kT (zdc) ≈ mχ/20 cannot be much larger than the binding energy E2 = 1/(mχa
2).

In this case, the temperatures after decoupling do not include a scaling region in which

T � E2, so f2 is not determined by a and a+ only, but has additional sensitivity to

the range r0. This additional sensitivity to r0 is avoided if mχa �
√

20, which implies

mχ � 0.4 GeV. This requires mχ to be well above the shaded region in figure 7. In the

unshaded region, the fraction f2(0) scales roughly as m−2.5
χ . At mχ = 1 GeV, the range of

f2(0) from varying a+ is from 6× 10−5 to 2× 10−3. Thus a dark deuteron fraction as large

as 10−3 is possible if the dark-matter elastic cross section at low velocities is 2 cm2/g.

If the small-scale structure problems of galaxies are ameliorated by mechanisms involv-

ing baryonic physics, the constraint on mχ and a becomes the inequality 8πa2/mχ<2 cm2/g.

At a given value of mχ, this allows the scattering length to be decreased. This can only

decrease the dark deuteron fraction f2(0) at late times.

The results presented above assume the kinetic decoupling temperature Tkdc is very

close to the chemical decoupling temperature Tdc [89]. We now consider the case when Tkdc

is significantly smaller than Tdc. The value of Tkdc depends on the interactions between dark

matter and ordinary matter. We treat it as an unknown parameter and simply describe

how f2(0) scales with Tkdc/Tdc. During thermal equilibrium, the dark matter temperature

is the same as the photon temperature in eq. (5.7b), while after kinetic decoupling the tem-

perature is quadratic in z as in eq. (5.7a). The dark matter temperature can be written as

T (z) ≈ (1 + z)Tcmb z > zkdc, (5.17a)

≈
(

1 + z

1 + zkdc

)2

Tkdc z < zkdc, (5.17b)

where zkdc ≈ Tkdc/Tcmb − 1 is the redshift at the kinetic decoupling temperature. By

inserting eq. (5.17) into eq. (5.11) instead of eq. (5.8), we obtain the fraction with kinetic

decoupling taken into account. Figure 8 shows the fraction f2(z = 0) at late times as

a function of Tkdc/Tdc for the masses 1 GeV (upper band) and 19 GeV (lower band). As

shown in figure 8, as Tkdc decreases, the fraction decreases, scaling roughly as (Tkdc/Tdc)
1.9.

6 Discussion and conclusion

The predictions of ΛCDM cosmology face a number of challenges at small scales. These

small-scale structure problems can be resolved either by effects of baryons on structure for-

mation or by novel dark matter dynamics. Self-interacting dark matter is a paradigm that

can solve the small-scale structure problems in ΛCDM cosmology while remaining consis-

tent with other cosmological data. Perhaps the most predictive model of self-interacting

dark matter involves a near-threshold S-wave resonance that produces a large scattering

length [1]. This near-threshold resonance is a bound state if the scattering length is posi-

tive. The signatures for this two-body bound state (darkonium or dark deuteron) in direct

detection and directional detection experiments have been studied [2, 3]. In this paper, we

have studied the production rate of the dark deuteron in the early universe.

We first compared the predictions of the near-threshold S-wave resonance model with

cross sections for self-interacting dark matter in different astrophysical objects determined
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Figure 8. Dark-deuteron mass fraction f2(z = 0) at late times as a function of ratio Tkdc/Tdc
of the temperatures for kinetic decoupling and chemical decoupling for the masses 1 GeV (upper

band) and 19 GeV (lower band). The curves are for 8 values of the 3-body parameter: a+/a = λ
n/8
0

with n = 0, 1, · · · , 7.

by Kaplinghat, Tulin and Yu [53]. They showed that a dark-photon model with three

adjustable parameters can reproduce the velocity dependence of the self-interaction cross

section, which spans two orders of magnitude in velocity [53]. We find that the near-

threshold S-wave resonance model provides an equally good fit to these astrophysical data

(see figure 1) with only two adjustable parameters: the mass mχ of the dark-matter particle

and the scattering length a. The best-fit values are mχ = 19 GeV and a = ±17 fm.

We have assumed the dark nucleons are identical bosons with a large positive scattering

length. The smallest universal bound cluster is the dark deuteron d2. The simplest reaction

that can form this bound cluster is 3-body recombination into the dark deuteron: d+d+d→
d2 + d. The three-body recombination rate is a function of the mass mχ, the scattering

length a, and a three-body parameter a+, with the dependence on a+ being log-periodic

with discrete scaling factor 22.7. If the temperature at decoupling is much larger than the

binding energy of the dark deuteron, the present fraction f2(0) of dark matter in the form

of dark deuterons is completely determined by these three parameters. For mχ = 19 GeV

and a = 17 fm, the fraction f2(z) at early red shifts has an equilibrium value of about

4 × 10−11. When the dark-matter temperature decreases to below the binding energy

of the dark deuteron, which occurs at a red shift z ≈ 1010, f2(z) increases by orders of

magnitude to a value between 4 × 10−8 and 5× 10−7 that depends on a+.

The present fraction f2(0) of dark matter in the form of dark deuterons can be increased

by relaxing the constraint on mχ and a from solving small-scale structure problems and

decreasing mχ. However the decoupling temperature must be much larger than the bind-

ing energy of the dark deuteron for f2(0) to be insensitive to the range of the interactions.
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Given this constraint, f2(0) cannot be larger than about 10−3. If the system remains in

thermal equilibrium longer after chemical decoupling, the fraction f2(0) decreases, scaling

approximately as the 2nd power of the ratio of the temperatures for kinetic and chemical

decoupling. We conclude that a significant population of dark deuterons cannot be pro-

duced in the early universe by 3-body recombination of dark matter particles with a large

scattering length. Since the production of dark deuterons is a bottleneck for the formation

of larger bound clusters, we conclude that the formation of bound clusters in the early uni-

verse would require additional microphysics. An example is a light mediator that allows

radiative fusion reactions.

If the large scattering length a is negative, the smallest universal bound clusters are

Efimov clusters d3 (“dark tritons”). The simplest reaction that can form bound clusters

is 4-body recombination into a dark triton: d + d + d + d → d3 + d. The rate for 4-body

recombination is suppressed compared to the rate for 3-body recombination by an addi-

tional factor of the number density of dark matter particles. Since a significant population

of dark deuterons cannot be produced in the early universe by 3-body recombination, a

significant population of dark tritons cannot be produced by 4-body recombination either.

Since the production of dark tritons is a bottleneck for the production of larger dark nu-

clei, a significant number of dark nuclei will not be formed in the early universe if the dark

nucleons are identical bosons with a large negative scattering length.

Identical bosons are not the only types of particles for which there is dramatic enhance-

ment of the 3-body recombination rate at low temperature when the scattering length is

large. The degree to which 3-body recombination is enhanced depends on the symmetries

and mass ratios of the particles with large scattering lengths. Three-body recombination

requires the three particles to come within a distance of order the de Broglie wavelength of

the final-state particles, which is of order 1/a if the collision energy is small. For identical

bosons, the 3-body recombination rate K3(T ) in the low-temperature limit is proportional

to a4. If the dark matter consists of the two spin states of a spin- 1
2 fermion, K3(T → 0)

is suppressed by (r0/a)2, where r0 is the range, because the Pauli exclusion principle sup-

presses the contribution from the region where the separations of the three fermions are all

of order a. If the dark matter consists of the four spin states of two spin- 1
2 fermions, there

is no such suppression and K3(T → 0) is proportional to a4.

We can also show that a significant fraction of dark deuterons cannot form once the

dark matter particles fall inside the gravitational potential well of a galaxy. It is easy to put

an upper bound on the rate of increase in the dark deuteron fraction in the Milky Way from

3-body recombination. The maximum possible rate of increase in n2 is (67.1 a4/mχ)n3
1. The

dark matter mass density in the solar system, which is about 8 kpc from the center of the

Milky Way, is mχn1 = 0.3 GeV/cm3. If feedback between strongly interacting dark matter

and baryons is taken into account, the radius of the dark matter core of the Milky Way

may be about 0.3 kpc [90]. The dark matter mass density in the core of the Milky Way

may be about mχn1 = 8 GeV/cm3. For mχ = 19 GeV and a = 17 fm, the maximum rate

of increase of f2 is about 10−51/s. The age of the Milky Way is about 10 Gyr ≈ 3× 1017 s,

so we see that the dark deuteron fraction remains negligible. If we relax the constraints on

mχ and a from solving small-scale structure problems but keep the binding energy of the
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dark deuteron small compared to the decoupling temperature, the rate of increase of f2 can

be made larger at most by about an order of magnitude. Dwarf galaxies can have higher

dark matter densities than the Milky Way, but the rate of increase in the dark deuteron

fraction is small in those systems too.

Although 3-body recombination of dark matter particles is unable to build up a large

fraction of dark deuterons in the early universe, it may still have a significant effect on dark

matter annihilation. If a pair of dark matter particles has an annihilation scattering chan-

nel, the constituents of a dark deuteron will eventually annihilate once the dark deuteron is

formed. Three-body recombination therefore provides an additional annihilation channel.

If the dark matter particles have a large scattering length a, the annihilation scattering

cross section and the dark deuteron decay rate are both determined by mχ and a up to a

multiplicative constant that cancels in their ratio. The resonant enhancement of annihila-

tion scattering can induce a second period of dark matter annihilation after the thermal

freezeout [91]. The effects of reannihilation have been explored in a dark photon model [91].

A near-threshold S-wave resonance model provides a more predictive framework in which

the effects of reannihilation through 3-body recombination can also be easily explored.
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