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1 Introduction

Correlation functions of local operators are among the most interesting observables to be

studied in a CFT. They encode nontrivial physics of the theory that can be accessed using

different limits of the correlation functions (large spin, bulk point or Regge limit [1–3]). Of

all CFTs known, N = 4 SYM stands at a special point where symmetries of the theory

might allow to completely solve it. It is then possible to study the effects of finite coupling

in a four-dimensional gauge theory, which might lead to better strategies in the study of

other quantum field theories.

The most powerful method in N = 4 SYM that exploits these symmetries is integrabil-

ity, which started with the understanding of two-point functions of single-trace operators

in the planar limit [4–6]. More recently it was understood how to use integrability to

compute higher-point correlators of local operators [7–10] and even to obtain non-planar

quantities [11, 12]. This proposal, known as the hexagon approach, has now passed many

non-trivial checks both at weak and strong coupling [13–19]. However, despite being a

finite-coupling proposal this program is taking its first steps and there are still aspects

that need to be better understood, so it is essential to obtain field-theoretic results which

provide further checks and clarify subtleties within the integrability framework.
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Correlators of half-BPS scalar operators are probably the simplest objects in N = 4

SYM, and the fact that they are finite and do not need infinite renormalization makes

them ideal objects to study. While two- and three-point functions are protected, higher-

point functions have an explicit coupling dependence, which motivated their study in the

early days of AdS/CFT correspondence, both at weak and strong coupling [20–23]. More

recently, the discovery of a symmetry enhancement [24] has been combined with a light-

cone OPE analysis, which allowed to fix the correlator of four O20′ operators to very high

loop order [25]. This OPE constraint is very powerful, as it implies exponentiation of the

correlator in the light-cone limit, therefore providing recursive relations between different

orders in the perturbative expansion of the four-point function. Let us remark that some

correlators have also been obtained using bootstrap methods [26–32].

The goal of this paper is to compute the four-point correlation functions of half-BPS

operators with higher R-charge weights, up to five loops. In these generic configurations

the symmetry mentioned above is not as strong and the light-cone OPE not as constrain-

ing, which means that the integrand cannot be completely determined with these methods.

In this work we combine the light-cone OPE analysis with OPE data extracted from inte-

grability, and successfully fix all four-point functions at four and five loops. We want to

emphasize that we only needed OPE coefficients that are quite easy to obtain from the

integrability point of view, while the data extracted from the four-point functions allows

us to make highly non-trivial predictions for finite-size corrections of hexagon form factors.

The most important result is the leading five-loop order of the triple wrapping correction,

which was originally expected to contribute only from six loops.

In section 2 we describe the symmetries of the correlator’s integrand, which allow us

to construct an ansatz given in terms of conformal integrals. In section 3 we show how to

fix most coefficients in the ansatz by relating the light-cone OPE limit of correlators with

different weights. We follow with section 4 where we explain how one can use input from in-

tegrability to fix the remaining coefficients. We then present our results for the correlators

at four and five loops in section 5, where we also elaborate on the predictions for finite-size

correction of hexagon form factors that we can extract from the euclidean OPE limit of the

four-point functions. We end in section 6 with our conclusions and future research direc-

tions. Finally, appendix A contains a short review on asymptotic expansions of conformal

integrals. We also provide an auxiliary file with all four- and five-loop four-point functions,

as well as the leading asymptotic expansions for all relevant integrals at that loop order.

2 Four-point correlation functions and integrands

We consider gauge-invariant operators at the bottom of half-BPS supermultiplets of N = 4

SYM theory. The operator of weight L is realized as a single trace of the product of L ≥ 2

fundamental scalars ΦI(x), I = 1, . . . , 6,

OL(x, y) = yI1 . . . yILTr
(
ΦI1 . . .ΦIL

)
(x) . (2.1)

The traceless symmetrization over R-symmetry indices is provided by the auxiliary so(6)

harmonic variables yI : y · y = 0. Half-BPS operators are protected — they do not un-
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dergo infinite renormalization, so their conformal dimension exactly equals to L and the

correlation functions of these operators are finite quantities in D = 4. Also the classical

(super)conformal symmetry of the N = 4 SYM Lagrangian is inherited by these dynam-

ical quantities. The two- and three-point correlation functions are completely fixed by

the conformal symmetry, and their tree-level approximation is exact. For more points the

correlators receive quantum corrections. We study the four-point correlators

〈OL1(x1, y1)OL2(x2, y2)OL3(x3, y3)OL4(x4, y4)〉 . (2.2)

They are highly nontrivial functions containing useful information about dynamics of the

theory. At the same time the symmetry constraints considerably simplify their form that

makes them more manageable as compared with higher-point correlators.

In the tree approximation the correlators are given by the sum of products of free prop-

agators dij =
y2ij
x2ij

stretched between scalar fields Φ. Here y2
ij ≡ yi · yj and x2

ij ≡ (xi − xj)2.

The perturbative expansion of the correlators in the ‘t Hooft coupling λ = g2Nc/(4π
2)

contains a huge number of Feynman diagrams which have to be added together to obtain

a gauge-invariant quantity. Thus, prior to any loop integrations, just finding the gauge-

invariant integrand of correlator (2.2) constitutes a nontrivial problem. In this paper we

solve this problem up to the five-loop order for arbitrary BPS weights using the integrability

methods.

The Lagrangian insertion formula [20] provides a neat expression for the integrand

of (2.2)

〈OL1OL2OL3OL4〉(`) ∼
∫
d4x5 . . . d

4x4+` 〈OL1 . . .OL4L(x5) . . .L(x4+`)〉Born , (2.3)

as the correlation function of 4+ ` operators — four operators OLi and ` chiral Lagrangian

densities L — calculated in the Born approximation, which is the lowest nontrivial pertur-

bative approximation. Let us stress that the Born level (4 + `)-point correlator

G
(`)
L1,L2,L3,L4

≡ 〈OL1(x1, y1) . . .OL4(x4, y4)L(x5) . . .L(x4+`)〉Born (2.4)

is of order λ`, and familiar Feynman diagrams representing this correlator involve the

interaction vertices. Nevertheless, G is a rational function of 4+` space-time coordinates x

and it is polynomial in harmonic variables y. G carries conformal weight Li and harmonic

weight Li at external points E = {1, 2, 3, 4}, and zero harmonic weight and conformal

weight (+4) at internal points I = {5, . . . , 4 + `}. G is a particular component of the

supercorrelator of 4 + ` half-BPS multiplets. The super-conformal symmetry of the latter

implies [24, 33–35] that G is proportional to the rational factor R(1, 2, 3, 4),

R(1, 2, 3, 4) = d2
12d

2
34x

2
12x

2
34 + d2

13d
2
24x

2
13x

2
24 + d2

14d
2
23x

2
14x

2
23

+ d12d23d34d14(x2
13x

2
24 − x2

12x
2
34 − x2

14x
2
23)

+ d12d13d24d34(x2
14x

2
23 − x2

12x
2
34 − x2

13x
2
24)

+ d13d14d23d24(x2
12x

2
34 − x2

14x
2
23 − x2

13x
2
24) . (2.5)
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This factor absorbs harmonic weight (+2) and conformal weight (+1) at external points

E . The complementary harmonic weights, i.e. Li − 2 at point i ∈ E , can be absorbed by

propagator factors, that leads to the following generic form of the Born-level correlator

G
(`)
L1,L2,L3,L4

= λ`CL1L2L3L4 R(1, 2, 3, 4)
∑
{bij}

∏
i<j
i,j∈E

(dij)
bij

 P
(`)
{bij}(x1, . . . , x4+`)∏
p∈E
q∈I

x2
pq

∏
p<q
p,q∈I

x2
pq

. (2.6)

The summation in eq. (2.6) is over tuples {bij}i<ji,j∈E satisfying constraints
∑

j 6=i bij = Li−2

for each i ∈ E . The tuples represent different ways to distribute harmonic weights. Then

the conformal weight counting shows that P
(`)
{bij} carries weight (1− `) at each point E ∪ I.

The numerical normalization factor C in (2.6) is chosen for the sake of convenience,

CL1L2L3L4 =
L1L2L3L4

2(4π2)
1
2

∑
Li

(
Nc

2

) 1
2

∑
Li−2

. (2.7)

A simple short-distance OPE analysis reveals that G ∼ 1/x2
pq + O(1) at xp → xq if p ∈ E

and q ∈ I or p, q ∈ I. This implies that P
(`)
{bij} in eq. (2.6) is polynomial in space-time

coordinates. The polynomial P
(`)
{bij} has certain discrete symmetries. E.g. the integrand of

the four-point function of O20′ operators (L1 = . . . = L4 = 2) is specified by one conformal

polynomial with {bij} = {0, 0, 0, 0, 0, 0} which is invariant under all permutations S4+`

of (4 + `) space-time points [24]. In the case of generic half-BPS weights the conformal

polynomial P
(`)
{bij} has the reduced discrete symmetry. It is invariant with respect to the

same subgroup G ⊂ S4+`, acting on points E ∪ I, as the accompanying factor∏
i<j
i,j∈E

(dij)
bij . (2.8)

Obviously G contains S` as a subgroup, S` ⊂ G , which acts on the Lagrangian points.

Thus the construction of the correlator integrand boils down to fixing a number of

conformal polynomials P
(`)
{bij} with given discrete symmetries. There is a finite number of

them at each loop order ` and they can be enumerated. Therefore the remaining freedom

reduces to a number of numerical constants.

Integrating out ` internal points I according to (2.3) we rewrite the contribution of each

SU(4) harmonic structure in (2.6) as a linear combination of `-loop four-point conformally

covariant integrals I(`)(1, 2, 3, 4),

∫
d4x1 . . . d

4x4+`

P
(`)
{bij}(x1, . . . , x4+`)∏
p∈E
q∈I

x2
pq

∏
p<q
p,q∈I

x2
pq

=
∑
k

c
(k)
{bij} I

(`)
k (1, 2, 3, 4) (2.9)

where the numerical coefficients c
(k)
{bij} are the same as in monomials of the conformal

polynomials P
(`)
{bij}. An integral I(1, 2, 3, 4) carries weights (+1) at all four external points,
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loop order ` 1 2 3 4 5

# of integrals 1 1 3 19 141

Table 1. The number of `-loop integrals I(`)(u, v) contributing to the correlators (2.13). For the

sake of simipicity we mode out: 1). integrals, which factorize in a product of lower-loop integrals;

2). permutations of external points; 3). rational factors in cross-ratios u, v accompanying conformal

integrals.

so it can be represented as

I(1, 2, 3, 4) =
1

x2
13x

2
24

I(u, v) (2.10)

where I(u, v) is a conformally invariant function and, consequently, it depends on conformal

cross-ratios

u =
x2

12 x
2
34

x2
13 x

2
24

, v =
x2

14 x
2
23

x2
13 x

2
24

. (2.11)

Several examples of five-loop conformally covariant integrals are given in eq. (5.2).

The number of linear independent conformal integrals is smaller than one could naively

expect on the basis of the discrete symmetries of their integrands. The conformal symmetry

implies nontrivial relations among them, e.g.

I(1, 2, 3, 4) = I(3, 4, 1, 2) (2.12)

immediately follows from (2.10). The latter relation reduces the number of independent

orientations of the given integral. Applying (2.12) to the conformal `′-loop subintegrals

(`′ < `) of the `-loop integrals we generate ‘magic’ identities [36] among `-loop integrals of

the different topology. Also some of the `-loop integrals trivially factorize in a product of

several lower-loop conformal integrals, and some of the integrals differ only by a rational

factor in cross-ratios u, v. These observations enable us to reduce the number of conformal

integrals we have to deal with. The number of non-trivially distinct `-loop integrals is

given in table 1. The asymptotic expansion of the integrals at u→ 0, v → 1 is discussed in

appendix A and the results are collected in an ancillary file.

In the following we denote (2.9) — the integrated contribution of the {bij} harmonic

structure to the r.h.s. of eq. (2.6) — by
F

(`)
{bij}

(u,v)

x213x
2
24

. As we discussed above it is given by a

linear combination of the conformal integrals

F
(`)
{bij}(u, v) =

∑
m

c̃
(m)
{bij} I

(`)
m (u, v) , (2.13)

where numerical coefficients c̃
(m)
{bij} are linear combinations of c

(k)
{bij} originating from con-

formal polynomials P
(`)
{bij}. Let us stress that the integrated expression (2.13) contains

less coefficients than the integrand. Thus we obtain the following representation for the

– 5 –
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loop order ` 1 2 3 4 5

# of {bij} 1 11 66 276 900

Table 2. The number of different harmonic structures (modulo permutation of the external points)

specified by {bij} in the set of all `-loop correlators assuming that the saturation bound in (2.15)

is κ = κmin.

four-point correlator

〈OL1OL2OL3OL4〉(`) = λ`CL1L2L3L4 R(1, 2, 3, 4)
∑
{bij}

∏
i<j
i,j∈E

(dij)
bij

 F
(`)
{bij}(u, v)

x2
13x

2
24

. (2.14)

The correlator is specified by weights {Li}i∈E of the half-BPS operators, and correlators

of different weights do not have to coincide. However in each given loop order ` there is

only a finite number of different correlators. This is rather obvious from the point of view of

Feynman graphs. Indeed, there is no more than 2` interaction vertices in the corresponding

Feynman graphs, consequently for sufficiently large weights {Li} some propagators are

spectators. They are stretched between pairs of operators OLi and OLj like in tree graphs.

Thus there is a finite number of functions F
(`)
{bij} at any given loop order `. More precisely,

there is a saturation bound κ = κ(`) such that

F
(`)
{b12,b13,b14,b23,b24,b34} = F

(`)
{κ,b13,b14,b23,b24,b34} at b12 ≥ κ, b13, . . . , b34 ≥ 0 (2.15)

and similar relations also hold for any other index bij instead of b12. We expect that

minimal value of the saturation bound is

κmin(`) ≡ min κ(`) = `− 1 . (2.16)

Previously it has been proven to be true up to the three-loop order. We argue that it

should hold up to the five-loop order. Choosing the saturation bound κ in (2.15) higher

than κmin and implementing the correlator bootstrap we find that relations (2.15) hold

with κ = κmin. In table 2 we show the number of functions F
(`)
{bij} for κ = κmin modding

out permutations of the external points.

3 Correlator bootstrap with light-cone OPE

Up to now we have not used planarity restrictions. In order to make use of some dynamical

constraints on coefficients of polynomials P
(`)
{bij} we consider the planar approximation. In

particular we imply that the graphs representing the integrand G, eq. (2.6), have planar

topology. In this way we considerably reduce the number of admissible polynomials P
(`)
{bij}.

Then we can try to fix the remaining numerical coefficients by means of the OPE analysis.

We would like to impose OPE constraints directly on the integrands. Obviously it is

preferable to deal with the rational integrands than with unknown multi-loop integrals. In

– 6 –
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this way we try to pin down as many coefficients in the ansatz (2.6) as possible. Then we

fix the remaining coefficients by extracting more detailed dynamical information from the

OPEs of the integrated quantities.

In [37] the four-point correlator 〈O20′O20′O20′O20′〉 of weights L1 = L2 = L3 = L4 = 2

was considered, and constraints on the asymptotic behavior of its integrand were found in

the light-cone limit x2
12, x

2
23, x

2
34, x

2
14 → 0. The correlator exponentiates in this limit that

implies relations among different orders of the perturbative expansion, so the correlator can

be recursively constrained order by order. Using this approach the integrands have been

fixed up to three loops at generic Nc [37] and up to ten loops in the planar limit [25, 37–39].

For higher-weight correlators a similar exponentiation property does not seem to hold.

Nonetheless some useful OPE constraints for the integrands are known. In [40] studying

the light-cone OPE x2
12 → 0 of higher-weight Born-level correlators (2.4) in the planar

approximation the following relation was obtained

lim
x212→0
y1→y2
d12 fixed

G(`)
L1+1,L2+1,L3L4

CL1+1,L2+1,L3L4

− d12 ×
G

(`)
L1L2L3L4

CL1L2L3L4

 = O(d12) (3.1)

where C is defined in (2.7). It compares the leading light-cone singularities of a pair of

integrands with different BPS weights. Using (3.1) the correlator integrands of all weights

have been fixed up to the three-loop order in the planar approximation.

Let us briefly explain the origin of eq. (3.1) following [40]. We consider the contribution

of a non-protected operator OL,S of twist L, spin S, which belongs to some representation

of SU(4), in the OPE of two half-BPS operators at x2
12 → 0, i.e. schematically OL1 ×

OL2 → OL,S . This contribution is proportional to the structure constant CL1,L2,OL,S (λ) ∼
〈OL1OL2OL,S〉, so inserting it in the Born-level correlator (2.4) we obtain G

(`)
L1,L2,L3,L4

∼
CL1,L2,OL,S 〈OL,SL . . .L〉 at x2

12 → 0. The tree-level structure constants in the planar

approximation satisfy the following relation

CL1+1,L2+1,OL,S
CL1,L2,OL,S

=
CL1+1,L2+1,L3,L4

CL1,L2,L3,L4

. (3.2)

Consequently, if we could use the tree-level approximation for CL1,L2,OL,S then the OPE

contribution of OL,S cancels in the difference of correlators G
(`)
L1+1,L2+1,L3L4

and G
(`)
L1,L2,L3L4

from eq. (3.1). In particular it is true for the operators from sl(2) sector (see section 4.2).

In order to isolate the appropriate OPE channels we take the limit in (3.1). If we could

use the tree-level approximation for the structure constants of generic operators OL,S then

a stronger version of (3.1) should hold

G
(`)
L1+1,L2+1,L3L4

CL1+1,L2+1,L3L4

− d12 ×
G

(`)
L1L2L3L4

CL1L2L3L4

= O

(
1

x2
12

)
at x2

12 ∼ 0 , (3.3)

which was conjectured in [40]. At ` ≤ 3 loop order it is equivalent to (3.1), but starting

from four loops (3.3) is more restrictive. Let us remark that the strong criterion implies

the saturation bound κ = κmin (2.16) at least up to five loops.

– 7 –



J
H
E
P
1
1
(
2
0
1
8
)
0
6
9

loop order ` bound κ planar + sym weak strong OPE 〈3322〉
1 0 0

2 1 14 0 0

3 2 347 1 1 -1

4

3 8543 37

6 -34 24749 77

5 59234 149

5
4 191372 614

33 -12
5 459549 1229

Table 3. Number of free coefficients in the ansatz for the set of all `-loop correlator integrands (2.6)

after imposing planarity and discrete symmetry constraints, weak (3.1) and strong (3.3) light-cone

OPE constraints for different values of the saturation bound κ in (2.15). We assume the correlator

〈O2O2O2O2〉 is already known. In the last column we show the number of additional constraints

coming from exponentiation property of the Euclidean OPE for the correlator 〈O2O2O3O3〉 in the

channel (14)→ (23); they are independent from the light-cone OPE constraints.

We are going to constraint all higher-weight correlators at four- and five-loops in the

planar approximation. For the bootstrap procedure it is essential to consider correlators of

all weights simultaneously rather than their subset, since relations (3.1) are more restrictive

in the former case. We use the weight-two correlator integrands G
(`)
2,2,2,2 from [37] as an input

and constrain higher-weight correlators. Also we make use of additional constraints on the

integrand G
(`)
3,3,2,2 following from exponentiation property of the short-distance OPE x1 →

x3 [37, 40] for the corresponding four-point correlator. Neither weak (3.1) nor strong (3.3)

criteria are enough to fix all coefficients starting from the four-loop order. Nevertheless,

they considerably reduce the number of unknowns, see table 3. In the following we apply the

weak criterion to partially fix the integrand and then we use integrability of the three-point

functions to pin down the remaining coefficients. The obtained results are in agreement

with the strong criterion (3.3).

4 Constraints on integrated correlators

Using the light-cone OPE relations from the previous section we have greatly simplified

the integrands of correlation functions at four and five loops. Meanwhile the integrated

four-point functions are given as combinations of four-point conformal integrals. By taking

into account their symmetries and relations through magic identities [36], we can see that

there is a smaller number of degrees of freedom. For example, while the weak ansatz for the

five-loop integrand has 1217 unknown coefficients at bound κ = 5, the five-loop correlators

are labeled by 791 independent coefficients, which we now want to determine using input

from integrability.

Henceforth, we will be considering the euclidean OPE limit of the four-point functions,

where u → 0 and v → 1. We will assume for simplicity that the lengths of the external

– 8 –
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operators are such that L1 ≤ L2, L3 ≤ L4 and L2 − L1 ≥ L4 − L3, since all other cases

can be obtained easily with a transformation of the cross-ratios. The OPE decomposition

of this correlator is [35]

〈OL1OL2OL3OL4〉 =
(x2

23)L1−E(x2
34)E−L3

(x2
13)L1(x2

24)L1+L2−E
(y2

12)E(y2
34)L3

(y2
14)E−L1(y2

24)E−L2
×

×
∑

Owith ∆,S,n,m

C12O C34O G∆,S(u, v)Y (L1−E,L2−E)
n,m (σ, τ) , (4.1)

where 2E = L1 + L2 + L3 − L4, Y
(L1−E,L2−E)
n,m are the R-charge blocks for the SU(4)

representation [n −m,L4 − L3 + 2m,n −m] and the conformal block takes the following

form in the OPE limit [41]

G∆,S(u, v) ∼ u∆−S(v − 1)S2F1

(
∆ + S − L1 + L2

2
,

∆ + S + L3 − L4

2
; ∆ + S; 1− v

)
.

(4.2)

The OPE limit is therefore dominated by operators of lowest twist ∆ − S and the SU(4)

numbers are restricted such that we have polynomial dependence on the R-charge cross-

ratios σ, τ

n ∈ [E − L1,min(E,L3)] ,

m ∈ [E − L1, n] . (4.3)

Meanwhile, from the point of view of the four-point function, we have to sum over

a number of R-charge structures, each accompanied by a function of the two spacetime

cross-ratios

〈OL1OL2OL3OL4〉(`) = λ`CL1L2L3L4

∑
{aij}

F̃
(`)
{aij}(u, v)

∏
i<j

(dij)
aij , (4.4)

where we sum over all aij such that
∑

i 6=j aij = Lj . Not surprisingly, the number of SU(4)

representations in (4.3) equals the number of allowed tuples {aij}, and one can easily relate

them. Notice that there are relations between the functions F̃
(`)
{aij} as the correlator must

be of the form (2.14)

F̃
(`)
{aij} =

∑
{bij}

R{aij−bij}F
(`)
{bij}

x2
13x

2
24

, (4.5)

where the non-vanishing R{αij} are the components of R(1, 2, 3, 4) from (2.5)

R{2,0,0,0,0,2} = x2
12x

2
34 , R{1,0,1,1,0,1} = x2

13x
2
24 − x2

12x
2
34 − x2

14x
2
23 ,

R{0,2,0,0,2,0} = x2
13x

2
24 , R{1,1,0,0,1,1} = x2

14x
2
23 − x2

12x
2
34 − x2

13x
2
24 ,

R{0,0,2,2,0,0} = x2
14x

2
23 , R{0,1,1,1,1,0} = x2

12x
2
34 − x2

14x
2
23 − x2

13x
2
24 . (4.6)

Each conformally invariant function F
(`)
{bij} is given by a linear combination of conformal

integrals (see eq. (2.13)), which are evaluated in the OPE limit with the method of asymp-

totic expansions, and they are given as

F
(`)
{bij} ∼

∑̀
k=0

αk logk(u) . (4.7)
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n02n01

n12

Figure 1. The asymptotic three point function should be suplemented with finite size corrections

from the three mirror edges. Following the procedure from [7] one is instructed to insert resolution

of the identity in each of the edges. The states can have any number of particles on them however

the higher the particle number the more surpressed the contribution is.

The unknown coefficients of the integrand enter the functions F
(`)
{bij} as in (2.13), and each

conformal integral can in principle contribute to all powers of logk(u), which means that

all αk in (4.7) will in principle depend on those unknown coefficients. If we look back

at the OPE limit of the conformal blocks (4.2), we see that the coefficients multiplying

the higher powers of log(u) contain only lower-loop OPE data. This simple observation

has non-trivial consequences, as it implies that those terms can be constrained without

difficulty by computing the required lower-loop OPE data with integrability.

4.1 Constraints from integrability

In order to put constraints on the functions F
(`)
{bij} which enter (4.4), we must understand

what we can say about the equivalent picture of conformal block decomposition. Thanks

to integrability, we know a lot about the structure of the spectrum [4, 5] and structure

constants that enter (4.1). For both quantities the prescriptions are especially tailored for

decompactification limits. If an operator has large spin-chain length L, then its anomalous

dimension is computed with the asymptotic Bethe ansatz. However, when we make L small

the prescription needs to be corrected with finite-size effects, which are given by Luscher

corrections.

Meanwhile, the OPE coefficients can be computed with Hexagon form factors [7].

This method follows a similar expansion, where the decompactification limit is achieved by

cutting the pair of pants. This regime is controlled by three parameters, the numbers of

tree level Wick contractions between each pair of operators

lij =
1

2
(Li + Lj − Lk) . (4.8)

The asymptotic piece is valid when all lij are large, but as we decrease the bridge lengths,

it must be complemented with hexagon form factors dressed by nij virtual excitations in

the bridge of length lij , as depicted in figure 1. For simplicity, let us consider the structure

– 10 –
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constant between the external operators of length L1 and L2 and an unprotected operator

of length L0 that appears in their OPE. It was shown in [14] that the contribution of

n12 virtual excitations in the bottom bridge l12 (opposite to the unprotected operator) is

suppressed by a factor of

g2(n12l12+n2
12) . (4.9)

This means that even if we put a single virtual excitation in a bridge of length l12, the

wrapping correction appears at best at l12 + 1 loops.

We can now use this knowledge when we evaluate the correlator 〈OL1OL2OL3OL4〉(`).
If we pick the contribution of operators OI with SU(4) charges [M,L0− 2M,M ] and spins

[S, S], at leading twist ∆ − S = L0 the structure constant of those unprotected operators

with OL1 and OL2 is described by hexagons with an opposed bridge of length l12 = 1/2(L1+

L2−L0). If we increase the lengths of the external operators to L1 +n and L2 +n and pick

again the contribution of the operators OI , then we know the structure constants must agree

up to l12 loops. Or in other words, the OPE limit of the correlators 〈OL1OL2OL3OL4〉(`)

and 〈OL1+nOL2+nOL3OL4〉(`) must agree for all powers of logk(u) with k ≥ `− l12.

We can implement these conditions individually for all different representations in

the OPE decomposition of the four-point functions, or equivalently, we can impose them

individually on the euclidean OPE limit of the functions F̃
(`)
{aij} from (4.5). At the end of

the day we have(
F̃

(`)
{n,a13,a14,a23,a24,m} − F̃

(`)
{`,a13,a14,a23,a24,m}

)∣∣∣
logk≥`−n

= 0 for n,m > 0 , (4.10)(
F̃

(`)
{n,a13,a14,a23,a24,m} − F̃

(`)
{`,a13,a14,a23,a24,m}

)∣∣∣
log`

= 0 for min(n,m) = 0 . (4.11)

The reason we treat the case min(n,m) = 0 separately is because it corresponds to OPE

channels with extremal three-point functions, where there is mixing with double-trace

operators. In that case it is not known how to evaluate the OPE coefficients using the

integrability methods, so we restrict the constraint to an obvious tree-level statement.

There is still another set of equations we can impose on the F̃{aij}, which relates to the

fact that opposed wrapping corrections factorize. Apart from a normalization factor N ,

the computation of the structure constant requires the evaluation of hexagon form factors

A{lij}(n01,n12,n02) for different numbers nij of virtual excitations, where the superscript denotes

explicit dependence on some of the bridge lengths {lij}. It turns out that the contribution

of wrapping on the bottom bridge is always of the form

A(l02,l12)
(n01,n12,n02) = A(l02)

(n01,0,n02)B
(l12)
n12

, (4.12)

which means that the expansion over wrapping corrections factorizes in the following way

A = A(l02)
(0,0,0) +A(l02,l12)

(0,1,0) +A(l02)
(1,0,0) +A(l02)

(0,0,1) +A(l02)
(1,0,1) +A(l02,l12)

(1,1,0) +A(l02,l12)
(0,1,1) + . . .

=
(
A(l02)

(0,0,0) +A(l02)
(1,0,0) +A(l02)

(0,0,1) +A(l02)
(1,0,1) + . . .

)(
1 + B(l12)

1 + . . .
)

= A(l02)B(l12) . (4.13)
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This has important implications for the four-point functions. For example, if the

lengths of the external operators are such that L2 − L1 > L4 − L3, then the splittings l02

and l04 in the structure constants C12O and C34O must be distinct. However, thanks to

the factorization property (4.13), we have1

C
(l02,l12)
12O C

(l04,l34)
34O =N 2A(l02)B(l12)A(l04)B(l34) =N 2A(l02)B(l34)A(l04)B(l12) =C

(l02,l34)
1′2′O C

(l04,l12)
3′4′O ,

(4.14)

where we define new external operators with lengths

L′1 = l01 + l34 , L′2 = l02 + l34 ,

L′3 = l03 + l12 , L′4 = l04 + l12 . (4.15)

Using this insight in the OPE decomposition we can see that the functions F̃{aij} must

obey the following property

F̃
(`)
{n,a13,a14,a23,a24,m} − F̃

(`)
{m,a13,a14,a23,a24,n} = 0 for n,m > 0 , (4.16)(

F̃
(`)
{n,a13,a14,a23,a24,m} − F̃

(`)
{m,a13,a14,a23,a24,n}

)∣∣∣
log`

= 0 for min(n,m) = 0 . (4.17)

For the non-extremal case when both n and m are strictly positive, we can impose the

equality for all powers of log(u). Meanwhile, for extremal configurations (4.13) might not

be valid so we restrict the equation to a tree-level statement.2

Let us remark that even though we used knowledge from integrability to formulate

equations (4.10), (4.11), (4.16) and (4.17), they require absolutely no numerical input

from integrable machinery, and yet they introduce powerful constraints on the four-point

functions.

4.2 OPE data in the sl(2) sector

In the previous subsection we derived constraints on the functions F
(`)
{bij} by looking at the

integrability description of three-point functions and using the knowledge of when opposed

wrapping corrections first start to kick in. This nice exercise allows us to fix many of the

unknown coefficients without having to do any actual computation with the integrability

machinery. In this section we explain how to further constrain the integrand by computing

the simplest components of three-point functions in the sl(2) sector.

By choosing specific polarization vectors yi for the external protected operators, we

can single out the OPE channel in (4.1) with SU(4) charges [0, L, 0], twist L and spin S.

These are operators of the form

Tr[ZDSZL−1] + . . . (4.18)

1A naive power counting would imply that A(1,1,1) shows up at six loops, but we will prove later that

the contribution must be present already at five loops. This must happen through the regularization

prescription that is introduced to fix the divergences in A(1,0,1), which could in principle invalidate the

factorization property. However, at five loops this affects only operators with symmetric splitting, in which

case (4.14) is trivially satisfied.
2Interestingly enough, once we fix all four-point functions we observe that both (4.11) and (4.17) would

be valid if applied to the same log(u) powers of (4.10) and (4.16).
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and correspond to spin-chain excitations in the sl(2) sector. This is an especially easy sector

within the integrability framework, where we can find all solutions to the Bethe equations

without difficulty. Since this is a rank-one sector, it is also a relatively easy setup for the

computation of structure constants.

In order to pick such an OPE channel we should analyze correlators of the form

〈Tr[X l12Z l01 ](x1)Tr[X̄ l12Z l02 ](x2)Tr[Y l34Z̄ l03 ](x3)Tr[Ȳ l34Z̄ l04 ](x4)〉 , (4.19)

at the leading power of u−l12 . In terms of the polarization vectors this can be achieved by

choosing [42]

y1 =
1√
2

(1, i, α1, iα1, 0, 0) , y2 =
1√
2

(1, i, α2,−iα2, 0, 0) ,

y3 =
1√
2

(1,−i, 0, 0, α3, iα3) , y4 =
1√
2

(1,−i, 0, 0, α4,−iα4) , (4.20)

and then taking derivatives of the correlator

1

(l12!l34!)2

(
∂

∂α1

∂

∂α2

)l12 ( ∂

∂α3

∂

∂α4

)l34
〈OL1(y1)OL2(y2)OL3(y3)OL4(y4)〉

∣∣∣∣∣
αi=0

. (4.21)

In terms of the four-point function (4.4), we are picking the contribution of a subset

of the functions F̃
(l)
{aij} which are of the form

l01∑
α=0

F̃
(`)
{l12,α,l01−α,l03−α,l02−l03+α,l34}

ul12vl03−α
=

l01−1∑
β=0

(1− v)2F
(`)
{l12−1,β,l01−1−β,l03−1−β,l02−l03+β,l34−1}

ul12vl03−β
.

(4.22)

Notice that only two elements of R contribute for the right-hand side of (4.22), namely

R{1,1,0,0,1,1} and R{1,0,1,1,0,1}. This happens because R{2,0,0,0,0,2} is always subleading in u,

while the other three terms R{0,...,0} happen to be subleading for the specific polarizations

chosen.

In this way we are able to extract sum rules for operators in the sl(2) sector, which we

now want to match with sum rules obtained from integrability. By equating them we will

be able to determine many of the unknown coefficients in the functions F
(`)
{bij}.

The required three-point functions are obtained by a finite-volume correlator of two

hexagon operators. This is a hard object to obtain and so one considers the two-point

function of the hexagon operators as an expansion around the infinite-volume limit. This

is particularly useful at a perturbative level where the finite-volume effects can be tamed

order by order in the coupling. Each non-protected operator is represented by its Bethe

roots, which are distributed among the two hexagons.3 The infinite-volume expansion

corresponds to inserting a resolution of the identity in each unphysical edge of the hexagon,

which in practice is written as an infinite sum of virtual excitations (including the term

with zero particles). A schematic representation of this proposal is portrayed in figure 2.

3Notice that one should sum over all possible ways of distributing the Bethe roots among the two

hexagons.
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Figure 2. As we cut the pair of pants in two hexagons, we must partition the Bethe roots u into

the sets α and ᾱ which populate the physical edge of each of the hexagon form factors. Finite-size

corrections are obtained by inserting particle/anti-particle pairs in the mirror edges of the hexagons,

denoted here by ψij .

The creation and propagation of the virtual excitations costs energy, so their contribution

appears at higher orders in perturbation theory. The explicit coupling dependence of

different finite-size corrections can be found in [14].

We will consider a ratio of structure constants, where the numerator is the OPE co-

efficient for a non-protected operator of length L0 in the sl(2) sector with two protected

operators of lengths L1 and L2, while the denominator corresponds to the structure con-

stant for three protected operators of lengths L0, L1 and L2

C•◦◦

C◦◦◦
=

√ ∏
k µ(uk)

〈{u}|{u}〉
∏
i<j S(ui, uj)

A , (4.23)

where 〈{u}|{u}〉 is the Gaudin norm, µ is the measure which controls the asymptotic

normalization of one-particle states, S is the sl(2) S-matrix and A is the two-point function

of hexagon operators. In this work it was sufficient to consider the asymptotic hexagon form

factors A(0,0,0) and the single-particle wrapping correction in the opposed mirror channel

A(0,1,0), which we now review.

Asymptotic contribution. The leading asymptotic contribution to the hexagon form

factors is [7]

A(0,0,0) =
∑

α∪ᾱ={u}

(−1)|ᾱ|ω(α, ᾱ)h(α)h(ᾱ) , (4.24)

where ω(α, ᾱ) is the splitting factor

ω(α, ᾱ) =
∏
i∈ᾱ

eip(ui)l02
∏

j∈α,i>j
S(ui, uj) (4.25)

and h(u) the hexagon form factor for a set of excitations {u} in a single physical edge

h(u) =
∏
i<j

x−(ui)− x−(uj)

x−(ui)− x+(uj)

1− 1
x−(ui)x+(uj)

1− 1
x+(ui)x+(uj)

1

σ(ui, uj)
, (4.26)

where x± are the Zhukowsky variables and σ is the BES dressing phase.
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Finite-size corrections. The computation of the hexagon with a single virtual excita-

tion in the mirror edge opposed to the unprotected operator boils down to the evaluation

of the following integral [7]

A(0,1,0) = A(0,0,0)

∑
a≥1

∫
du

2π
µa(u

γ)eipa(uγ)l12 Ta(u
−γ)

h1a(u, u−γ)
, (4.27)

where l12 is the length of the opposed bridge, Ta is the transfer matrix, h1a the hexagon

form factor and µa(u
γ) the mirror measure for a bound state of a derivatives, see [15] for

the precise definition of each of these factors. It is instructive to show the leading order

expansion of the integral at weak coupling

a

(u2 + a2

4 )2+l23

Q(u[a+1]) +Q(u[−a−1])−Q(u[a−1])−Q(u[−a+1])

Q(i/2)
, (4.28)

where Q(u) =
∏
i(u−ui) is a polynomial of degree M and ui are the M Bethe roots for the

state under consideration. Notice that the integral in u is divergent for small l12 and large

enough M . As explained in [14], the sum over bound states a cures this divergence, but

it is technically hard to perform the sum before the integration in u. It was then shown

that (4.27) can be evaluated efficiently with the following method:

• Consider the function Q(u) = eiut;

• Do the integral in u by residues;

• Write the result of the integration in terms of nested harmonic sums;

• Perform the remaining sums by identifying it with harmonic polylogarithms.

The original polynomial can be recovered by acting with Q(−i∂t) in the final result. The

advantage of using the plane-wave eiut is that it makes the integral more convergent,

allowing the evaluation of the integral in u by residues. The sum over bound states is

trivialized once one identifies the sum as harmonic polylogarithms. Another advantage is

that this method gives at once the finite-size contribution for any state.

4.3 Consistency conditions

While the data from asymptotic hexagons and opposed wrapping can introduce strong

constraints on the undetermined coefficients, there are certainly many configurations in

the sl(2) sector which also require the evaluation of adjacent wrappings. It is however pos-

sible to fix coefficients that appear in such configurations without evaluating any adjacent

wrapping explicitly, and we will also see how the input of the opposed wrapping correction

to (`− 2) loops will help constrain the `-loop four-point functions.

Once we take the OPE limit of the correlators it is simple to extract sum rules P (`,n)

which are defined by

∑
O
C12O(λ)C34O(λ)eγO(λ) z =

∞∑
`=0

∑̀
a=0

λ`zaP (`,a) , (4.29)
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Figure 3. Example of a four-point correlator where blue lines denote contraction between X and X̄,

red lines connect Y and Ȳ and all other lines correspond to Z and Z̄ fields. The leading operators

in the OPE limit have twist 4, and we get a product of distinct structure constants. The OPE

coefficient in the top has equal splitting between adjacent bridges and opposed bridge of length

4, so that virtual excitations in those lines do not contribute at four loops. Meanwhile the OPE

coefficient in the bottom half has an assymetric split between left and right adjacent bridges, and

the opposed bridge has length one, which implies the appearance of opposed wrapping at two loops.

where γO are the anomalous dimensions and we sum over all operators O with given dimen-

sion, spin and SU(4) charges. For simplicity, let us now focus on a four-loop example. If we

look at correlators with different weights then we can extract sum rules for configurations

where the unprotected operator has different splittings l01 and l03 and the opposed bridge

lengths have values l12 and l34

P
(4,0)
(l12,l34,l01,l03) =

∑
I

C
(0)
l12,l01,I

C
(4)
l34,l03,I

+ C
(1)
l12,l01,I

C
(3)
l34,l03,I

+ C
(2)
l12,l01,I

C
(2)
l34,l03,I

+ C
(3)
l12,l01,I

C
(1)
l34,l03,I

+ C
(4)
l12,l01,I

C
(0)
l34,l03,I

, (4.30)

with C
(`)
lij ,l0k,I

the `-loop OPE coefficient for opposed bridge of length lij , adjacent bridge

length l0k and operator OI with the correct dimension, spin and SU(4) charges. This

type of sum rule can be extracted from the analysis of correlators like the one depicted in

figure 3.

As explained above, the opposed wrapping contributions factorize in the computation

of the structure constant, so we can rewrite it as

C
(`)
lij ,l0k,I

= NI

(
A(`,l0k)

adj,I +
∑̀
k=2

A(`−k,l0k)
adj,I B(k,lij)

1,I

)
, (4.31)

where NI denotes the normalization factor from (4.23), A(`,l0k)
adj,I is the sum of the asymptotic

and adjacent wrapping contributions at ` loops for adjacent bridge of length l0k, and
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B(`,lij)
1,I is the `-loop single-particle opposed wrapping for opposed bridge length lij . For the

configuration when both opposed bridges have length four, in which case there are only

adjacent wrappings, we have

P
(4,0)
(4,4,l01,l03) =

∑
I

N 2
I

(
A(0,l01)

adj,I A
(4,l03)
adj,I +A(1,l01)

adj,I A
(3,l03)
adj,I +A(2,l01)

adj,I A
(2,l03)
adj,I

+A(3,l01)
adj,I A

(1,l03)
adj,I +A(4,l01)

adj,I A
(0,l03)
adj,I

)
. (4.32)

As we lower the length of the opposed bridge to l34 < 4, we must add contributions from

opposed wrapping, which starts at two loops, so we have

P
(4,0)
(4,l34,l01,l03) =P

(4,0)
(4,4,l01,l03) +

∑
I

N 2
I

(
A(2,l01)

adj,I A
(0,l03)
adj,I +A(1,l01)

adj,I A
(1,l03)
adj,I +A(0,l01)

adj,I A
(2,l03)
adj,I

)
B(2,l34)

1,I

+
∑
I

N 2
I

(
A(1,l01)

adj,I A
(0,l03)
adj,I +A(0,l01)

adj,I A
(1,l03)
adj,I

)
B(3,l34)

1,I +
∑
I

N 2
I A

(0,l01)
adj,I A

(0,l03)
adj,I B

(4,l34)
1,I . (4.33)

Notice that the adjacent wrapping corrections can only start at three loops, which means

that Aadj,I always simplifies to the asymptotic contribution in (4.33). Therefore the only

unknowns are the opposed wrappings B(`,l34)
1,I , but we obtain an overconstrained system of

equations because they appear in sum rules for different splittings l01 and l03. In the sl(2)

sector there are bL/2c operators of twist L and spin 2, while there are 1/2(bL/2c+bL/2c2)

configurations for the splitting of the twist L operator in the four-point function. This

poses non-trivial constraints on the undetermined coefficients of the four-point correlators.

Furthermore, if we let both opposed bridges become smaller, with l12, l34 < 4, then the

sum rule is

P
(4,0)
(l12,l34,l01,l03) = P

(4,0)
(4,l34,l01,l03) + P

(4,0)
(l12,4,l01,l03) − P

(4,0)
(4,4,l01,l03)

+
∑
I

N 2
I A

(0,l01)
(0,0,0),IA

(0,l03)
(0,0,0),IB

(2,l12)
1,I B(2,l34)

1,I . (4.34)

We can see that it is related to the sum rules in (4.32) and (4.33), and these relations can

be easily implemented with the knowledge of relatively simple objects: asymptotic hexagon

form factors and opposed wrapping at two loops. Moreover, if any of the opposed bridges

has length bigger than one, then the last term in (4.34) is identically zero. The fact that

sum rules for different opposed bridge lengths respect such relations imposes non-trivial

constraints on the four-point correlators. Finally, at higher loops the arguments are very

similar, with the only difference being that at ` loops the last term in (4.34) will include

opposed wrapping corrections up to (` − 2) loops and Aadj,I in (4.33) might include the

contribution of adjacent wrapping corrections.

5 Results

In this section we apply the methods described above in order to fix all four- and five-loop

four-point functions of protected operators. Since we could not prove the validity of the

stronger version of the light-cone OPE relations (3.3) above three loops, we shall always

start from the integrand constrained only by the weak relations of (3.1).
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We need to obtain the functions F
(`)
{bij} for all indices bij ranging between 0 and (`−1).

While this bound was proved up to three loops, we do not have a direct proof at higher

loops, but its existence is natural from the point of view of Feynman diagrams. At any

loop order there is a maximum number of fields that can be involved in a given interaction

vertex, which means that for large enough operators there will always be a number of

spectator fields. Furthermore, our results seem to indicate that the strong light-cone OPE

relations (3.3) are valid at four and five loops, and the strong version of the integrand is

the same for all values of the bound larger or equal than κmin(`), which seems to indicate

that is the correct bound.

5.1 Four loops

At four loops we expect the bound on the {bij} in eq. (2.15) to be κ = 3, but in order to test

this we start with functions F
(4)
{bij} whose indices are bounded at κ = 5. The weak ansatz

fixes all 2451 functions up to 149 undetermined coefficients, which is also the number of

degrees of freedom in the integrated correlators.

If we impose the equations from section 4.1, we are able to fix 130 of the 149 coefficients.

Then we consider correlators in the sl(2) sector by analyzing the configurations from (4.19).

If the adjacent bridge length is l01 and the opposed bridges have lengths l12 and l34, then

the asymptotic hexagons are the only contribution up to min(l12, l34, l01 + 1) loops. That

means that we can compare the data obtained with all logk(u) terms of the correlator for

k ≥ 4−min(l12, l34, l01 + 1). There is a remarkable amount of information and we are able

to determine 18 coefficients in this way. At this point the integrand is completely fixed

up to a single coefficient, which we determine using the consistency conditions presented

in section 4.3. We need to evaluate opposed wrapping up to two loops, and by comparing

sum rules for different opposed bridge lengths we are able to fix the last coefficient.

In the end, we are able to fix all planar four-loop four-point functions with striking

ease. Regarding the result obtained, it is very interesting to observe that the bound on the

indices {bij} does turn out to reduce to κ = 3. Moreover, we find that the solution to the

weak version of light-cone OPE (3.1) is consistent with the strong criterion (3.3). We also

evaluated all three- and four-loop opposed wrapping corrections for spin 2 operators up to

twist 20 and obtained a perfect match with the data extracted from the four-point function.

5.2 Five loops

At five loops we expect the bound on the {bij} from eq. (2.15) to be κ = 4, but once

again we test this conjecture by starting with the bound κ = 5. We need to consider

2451 functions F
(5)
{bij}, which contain 1217 undetermined coefficients, but when we consider

symmetries of the conformal integral and magic identities between them we can show that

the integrated correlator depends only on 791 coefficients.

At five loops it is quite difficult to take the OPE limit of the conformal integrals, so

only the order (1 − v)0 of the expansions is available. That means that if we naively take

v to one in the conditions of section 4.1 then we might lose some important information.

This happens because the SU(4) representations [M,L0 − 2M,M ] that appear in a given
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correlator at twist L0 are combinations of the functions

F̃
(5)
{l12,α,l01−α,l03−α,l02−l03+α,l34} , (5.1)

for 0 ≤ α ≤ l01. It is easy to see that the numbers match if one remembers that only

representation with L0 − 2M ≥ L2 − L1 are allowed, or equivalently, M ≤ l01. Since the

representation [0, L0, 0] corresponds to operators in the sl(2) sector, we know that the first

non-protected operator has spin two and therefore the representation must come with a

factor of (1 − v)2. Analogously, the representation [1, L0 − 2, 1] will always come with a

factor of (1− v), which means that there are two linear combinations of the functions (5.1)

that will be vanishing at v = 1. In order to obtain a maximum number of constraints

from (4.10), (4.11), (4.16) and (4.17) we must then find what those linear combinations

are and substitute the expansions of the conformal integrals at the leading non-vanishing

order of those equations. Once we take this into consideration, we are able to fix 578 of

the 791 undetermined coefficients.

Then, just like at four loops, we can consider the data from asymptotic hexagon form

factors and compare with the logk(u) terms of the correlator for k ≥ 5−min(l12, l34, l01 +

1), which fixes 70 more coefficients. At this point we use the technique introduced in

section 4.3, where we extract adjacent wrapping corrections by looking at correlators with

opposed bridges of length 5, and then look for consistent conditions on the data of lower

opposed bridge lengths. This proves very effective, and we are able to fix a further 120

coefficients by inputing only two- and three-loop opposed wrapping effects.

At this point we have fixed all correlators up to 23 coefficients. In order to fix those last

degrees of freedom, we look again at equations (4.10) and (4.16), but in terms of conformal

integrals and not their OPE expansions. For each equation we must consider only the con-

formal integrals which can contribute at the relevant powers of log(u), and once we do that

we notice that all equations at this point depend only on four distinct conformal integrals

I1 =

∫
d4x5d4x6d4x7d4x8d4x9 x2

14x
4
23x

2
24

x2
15x

2
16x

2
25x

2
26x

2
27x

2
28x

2
35x

2
37x

2
39x

2
46x

2
48x

2
49x

2
57x

2
68x

2
79x

2
89

,

I2 =

∫
d4x5d4x6d4x7d4x8d4x9 x2

13x
2
14x

2
23x

2
24x

2
29

x2
15x

2
17x

2
19x

2
25x

2
26x

2
27x

2
28x

2
36x

2
38x

2
39x

2
45x

2
46x

2
49x

2
56x

2
78x

2
79x

2
89

,

I3 =

∫
d4x5d4x6d4x7d4x8d4x9 x2

12x
2
13x

2
14x

2
23x

2
24x

2
29x

2
59

x2
15x

2
16x

2
18x

2
19x

2
25x

2
27x

2
28x

2
29x

2
35x

2
36x

2
37x

2
46x

2
47x

2
49x

2
56x

2
58x

2
79x

2
89

,

I4 =

∫
d4x5d4x6d4x7d4x8d4x9 x4

13x
4
24

x2
15x

2
16x

2
18x

2
25x

2
26x

2
27x

2
35x

2
37x

2
39x

2
45x

2
48x

2
49x

2
67x

2
68x

2
79x

2
89

. (5.2)

Since I2 and I4 are products of one- and four-loop conformal integrals, we can easily obtain

their expansions to order (1 − v)4. Meanwhile I1 and I3 are genuine five-loop integrals

but luckily they are some of the simpler ones and we were able to perform the asymptotic

expansions to order (1 − v)1. By plugging these new expansions back in the equations we

were able to obtain new constraints corresponding to higher spin contributions in the OPE

decomposition of the four-point correlators, which fixed all but one of the coefficients.

Finally, we consider the correlator

G = (x2
13)2p(x2

24)2p〈Tr[ZpȲ p](x1)Tr[Y pX̄p](x2)Tr[Z̄2p](x3)Tr[ZpXp](x4)〉 , (5.3)

– 19 –



J
H
E
P
1
1
(
2
0
1
8
)
0
6
9

which we evaluate with equation (4.4), leading to

G(5) = u−p
(
F

(5)
{p,p−2,0,0,p−2,p} + (v − 1)F

(5)
{p−1,p−1,0,0,p−1,p−1}

)
+O(u−p+1) . (5.4)

If p ≥ 7, then both functions on the right-hand side of (5.4) saturate the bound and we

have at leading order in u

G(5) =
v

up
F

(5)
{5,5,0,0,5,5} , (5.5)

for which all orders of log(u) depend on the last undetermined coefficient. Thankfully this

correlator has been evaluated in the regime of large p through hexagonalization4 [43] and

we can in this way fix all planar five-loop four-point functions.

It is interesting to note that the solution to the weak ansatz of the integrand is compat-

ible with the strong light-cone OPE relations (3.3) and the bound on the indices {bij} does

reduce to κ = 4 as expected. We also evaluated all four-loop opposed wrapping corrections

for spin 2 operators up to twist 20 and once again obtained a perfect match with the data

extracted from the five-loop four-point function.

5.3 Triple wrapping

As mentioned above, the integrability approach to the computation of three-point func-

tions depends on an asymptotic contribution and finite-size corrections. By considering

specific polarizations and/or large enough external operators, one can postpone some of

the wrapping corrections to higher loops and in some cases even isolate specific finite-size

corrections.

A simple example where this happens comes from considering the following family of

four-point functions

〈O2(x1)O2(x2)On(x3)On(x4)〉 , (5.6)

where n ≥ 2. Looking at the singlet SU(4) representation in the OPE limit of small u

and (1 − v) probes the product of structure constants C22KCnnK where K represents the

Konishi operator. As we increase the length n of the operators, the wrapping corrections in

the adjacent bridges remain the same, but the contribution of the virtual excitation in the

opposed bridge is delayed to n loops. For example, by looking at the configuration where

n is six we are able to extract the contribution of adjacent wrappings Aadj = A(1,0,0) +

A(0,0,1) +A(1,0,1) to the structure constant

Aadj = λ3 (324 + 864ζ3 − 1440ζ5)− λ4
(
9801 + 648ζ3 + 9360ζ5 + 3888ζ2

3 − 27720ζ7

)
(5.7)

+ λ5
(
217080− 154224ζ3 + 139536ζ5 − 10368ζ2

3 + 91980ζ7 + 116640ζ3ζ5 − 435456ζ9

)
.

Perhaps more interestingly, we can now evaluate the difference of sum rules introduced

in (4.33)

P
(5,a)
(1,l34,1,1) − P

(5,a)
(1,5,1,1) (5.8)

4We thank Frank Coronado for sharing this result prior to publication.
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which probe the one-particle contribution to the bottom edge. For opposed bridge lengths

2 ≤ l34 ≤ 4 these correlators exactly match the opposed wrapping contributions (we use

the notation introduced earlier A(l34)
(0,1,0) = A(0,0,0)B

(l34)
1 )

B(2)
1 = λ3 (120ζ5) + λ4

(
240ζ5 − 216ζ2

3 − 2100ζ7

)
+ λ5

(
−2400ζ5 + 432ζ2

3 − 3507ζ7 + 5400ζ5ζ3 + 31752ζ9

)
,

B(3)
1 = λ4 (420ζ7) + λ5 (840ζ7 − 1080ζ3ζ5 − 10584ζ9) ,

B(4)
1 = λ5 (1512ζ9) . (5.9)

On the other hand, at l34 = 1 there is a mismatch with the wrapping correction

B(1)
1 = λ2 (36ζ3) + λ3 (72ζ3 − 360ζ5) + λ4

(
−720ζ3 + 432ζ2

3 + 4200ζ7

)
+

+ λ5
(
6228ζ3 + 1980ζ5 + 1728ζ2

3 + 2667ζ7 − 7560ζ3ζ5 − 52920ζ9

)
. (5.10)

This mismatch occurs when all bridges in the three-point function have length one. The

triple wrapping A{1,1,1} was originally expected at six loops, but our results seem to indicate

that it contributes already at five loops with

A(1,1,1) = λ5
(
11016ζ3 − 16200ζ5 − 5184ζ2

3 + 32130ζ7 − 14256ζ3ζ5 − 9072ζ9

)
. (5.11)

This is not unexpected, as the two virtual excitations in the adjacent bridges make the orig-

inal proposal for the triple wrapping divergent. We expect that the required regularization

of this term, along the lines of [15], will anticipate its contribution to five loops.

In order to test that the mismatch is indeed due to a triple wrapping, we also studied

the OPE limit of the following correlators

〈O2(x1)O3(x2)O2+m(x3)O3+m(x4)〉 . (5.12)

We isolated the twist three contributions for all values of m and showed that in this case the

results are perfectly compatible with the contribution of opposed wrapping for all bridge

lengths, proving in that way that the mismatch occurs only when all bridges have length

one.

6 Conclusions

We have obtained all four-point functions of protected operators in N = 4 SYM up to the

five-loop order. Our method relies on a combination of two techniques: first we consider

light-cone OPE relations between integrands of different correlators, and then we take the

euclidean OPE limit of the integrated four-point functions and compare with data obtained

from integrability. We extract a myriad of OPE coefficients and check that they perfectly

agree with OPE data obtained with integrability (which we did not have to use to fix the

correlators).

While we have found convincing evidence that the saturation bound in the R-charge

structures of four-point functions at ` loops is (`− 1), it would be interesting to prove this
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statement. Our results also seem to indicate that the strong version of the light-cone OPE

relations is valid in N = 4 SYM. This fact should be examined in more detail, as a proof

of its validity would tremendously simplify the study of four-point functions of protected

operators at higher loops.

By focusing on the correlator of four O20′ operators, we have shown that new wrapping

effects appear in the hexagon approach to three-point functions at five loops. This is an

example of a fruitful interplay between the integrability machinery and the more standard

perturbative quantum field theory methods, and it would now be important to obtain this

result from the integrability point of view. Since the regularization of hexagon form factors

seems to anticipate wrapping corrections, one should study what are the implications on

the positivity of the hexagon perturbation theory [44].

It is also possible to employ integrability in the study of four-point functions, by using

the method of hexagonalization. It would be interesting to evaluate the observables ob-

tained in this work with such methods, as there is now a point of comparison. Furthermore,

by picking specific polarizations for the external operators one can probe different finite-

size corrections of the four-point functions. In principle, this could lead to integrability

representations of higher-point conformal integrals, in the spirit of [45].

In this work we considered the euclidean OPE limit of the four-point functions, which

was obtained at leading order with the method of asymptotic expansions. However, it

would be extremely helpful to evaluate exactly all conformal integrals that appear in the

correlators, since that would allow us to take other relevant limits which cannot be accessed

by asymptotic expansions.
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A Asymptotic expansions

The integrals appearing in the four-point function at four and five loops are hard to compute

for generic values of the cross ratios u and v.5 However, for our purposes it is sufficient to

extract the values of these integrals in the euclidean OPE limit u→ 0 and v → 1, which can

be done with the method of asymptotic expansions. This method was introduced in [18, 48]

and has been applied recently to compute five-loop p-integrals and structure constants in

N = 4 SYM [16, 49].

The `-loop correlator depends on four external points {x1, x2, x3, x4} and ` internal

points which we integrate over, and all propagators are differences of the form

xij = xi − xj . (A.1)

5The interested reader can find the most recent advances in the evaluation of conformal integrals

in [45–47].
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Conformal symmetry can be used to send x1 to the origin and x4 to infinity, and the final

result is naturally expressed in terms of the ratios

u =
x2

2

x2
3

, v =
x2

23

x2
3

. (A.2)

The structure of the four-point function is not arbitrary since the short-distance singulari-

ties are constrained by the OPE data of the theory. We are interested in the short-distance

limit of the integrals, or in other words we want to study the behavior of the integral when

x2 approaches the origin. The main idea behind the method of asymptotic expansions is

to divide each integration domain in several regions, so that it is possible to take the short-

distance limit inside the integral. In practice we divide the integration over each internal

point xi in two different regions: one where the integration point is close to x2 and one where

it is close to x3. In each of these regions we can expand the propagators in the following way:

1

(x2 − xi)2
=

∞∑
n=0

(2x2 · xi − x2
2)n

(x2
i )
n+1

(if x2
2 < x2

i ) , (A.3)

1

(x3 − xi)2
=

∞∑
n=0

(2x3 · xi − x2
i )
n

(x2
3)n+1

(if x2
i < x2

3) . (A.4)

There are 2` regions corresponding to the ` integration points and in each of these regions

the original integral is expressed as a product of two-point integrals. If k integration vari-

ables are in the region close to x2, then the k-loop integral with external points x1 and x2

multiplies an (`− k)-loop integral with external points x1 and x3.

Then we use the fact that integrals are not all independent since they satisfy IBP

identities. In particular this makes it possible to express any two-point integral as a linear

combination of master integrals. These identities can be obtained using a computer imple-

mentation of the Laporta algorithm such as FIRE [50]. The values of the master integrals

used for this computation were evaluated in [51].

The integrals used here might be useful for other studies and for this reason we include

them in an auxiliary file. We have computed the four-loop integrals up to u0 and (1− v)4,

while the expansions of the five-loop integrals are at u0 and for v = 1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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